tcp_subr.c revision 1.211 1 /* $NetBSD: tcp_subr.c,v 1.211 2007/02/17 22:34:12 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.211 2007/02/17 22:34:12 dyoung Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168 #include <netipsec/key.h>
169 #endif /* FAST_IPSEC*/
170
171
172 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
173 struct tcpstat tcpstat; /* tcp statistics */
174 u_int32_t tcp_now; /* for RFC 1323 timestamps */
175
176 /* patchable/settable parameters for tcp */
177 int tcp_mssdflt = TCP_MSS;
178 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
179 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
180 #if NRND > 0
181 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
182 #endif
183 int tcp_do_sack = 1; /* selective acknowledgement */
184 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
185 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
188 #ifndef TCP_INIT_WIN
189 #define TCP_INIT_WIN 0 /* initial slow start window */
190 #endif
191 #ifndef TCP_INIT_WIN_LOCAL
192 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
193 #endif
194 int tcp_init_win = TCP_INIT_WIN;
195 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
196 int tcp_mss_ifmtu = 0;
197 #ifdef TCP_COMPAT_42
198 int tcp_compat_42 = 1;
199 #else
200 int tcp_compat_42 = 0;
201 #endif
202 int tcp_rst_ppslim = 100; /* 100pps */
203 int tcp_ackdrop_ppslim = 100; /* 100pps */
204 int tcp_do_loopback_cksum = 0;
205 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
206 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
207 int tcp_sack_tp_maxholes = 32;
208 int tcp_sack_globalmaxholes = 1024;
209 int tcp_sack_globalholes = 0;
210 int tcp_ecn_maxretries = 1;
211
212 /* tcb hash */
213 #ifndef TCBHASHSIZE
214 #define TCBHASHSIZE 128
215 #endif
216 int tcbhashsize = TCBHASHSIZE;
217
218 /* syn hash parameters */
219 #define TCP_SYN_HASH_SIZE 293
220 #define TCP_SYN_BUCKET_SIZE 35
221 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
222 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
223 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
224 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
225
226 int tcp_freeq(struct tcpcb *);
227
228 #ifdef INET
229 void tcp_mtudisc_callback(struct in_addr);
230 #endif
231 #ifdef INET6
232 void tcp6_mtudisc_callback(struct in6_addr *);
233 #endif
234
235 #ifdef INET6
236 void tcp6_mtudisc(struct in6pcb *, int);
237 #endif
238
239 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
240
241 #ifdef TCP_CSUM_COUNTERS
242 #include <sys/device.h>
243
244 #if defined(INET)
245 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246 NULL, "tcp", "hwcsum bad");
247 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248 NULL, "tcp", "hwcsum ok");
249 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250 NULL, "tcp", "hwcsum data");
251 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp", "swcsum");
253
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
255 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
257 EVCNT_ATTACH_STATIC(tcp_swcsum);
258 #endif /* defined(INET) */
259
260 #if defined(INET6)
261 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp6", "hwcsum bad");
263 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp6", "hwcsum ok");
265 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp6", "hwcsum data");
267 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp6", "swcsum");
269
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
273 EVCNT_ATTACH_STATIC(tcp6_swcsum);
274 #endif /* defined(INET6) */
275 #endif /* TCP_CSUM_COUNTERS */
276
277
278 #ifdef TCP_OUTPUT_COUNTERS
279 #include <sys/device.h>
280
281 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 NULL, "tcp", "output big header");
283 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 NULL, "tcp", "output predict hit");
285 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 NULL, "tcp", "output predict miss");
287 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 NULL, "tcp", "output copy small");
289 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 NULL, "tcp", "output copy big");
291 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 NULL, "tcp", "output reference big");
293
294 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
295 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
296 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
297 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
298 EVCNT_ATTACH_STATIC(tcp_output_copybig);
299 EVCNT_ATTACH_STATIC(tcp_output_refbig);
300
301 #endif /* TCP_OUTPUT_COUNTERS */
302
303 #ifdef TCP_REASS_COUNTERS
304 #include <sys/device.h>
305
306 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 NULL, "tcp_reass", "calls");
308 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "insert into empty queue");
310 struct evcnt tcp_reass_iteration[8] = {
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
318 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
319 };
320 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321 &tcp_reass_, "tcp_reass", "prepend to first");
322 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323 &tcp_reass_, "tcp_reass", "prepend");
324 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325 &tcp_reass_, "tcp_reass", "insert");
326 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327 &tcp_reass_, "tcp_reass", "insert at tail");
328 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329 &tcp_reass_, "tcp_reass", "append");
330 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331 &tcp_reass_, "tcp_reass", "append to tail fragment");
332 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333 &tcp_reass_, "tcp_reass", "overlap at end");
334 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335 &tcp_reass_, "tcp_reass", "overlap at start");
336 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337 &tcp_reass_, "tcp_reass", "duplicate segment");
338 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339 &tcp_reass_, "tcp_reass", "duplicate fragment");
340
341 EVCNT_ATTACH_STATIC(tcp_reass_);
342 EVCNT_ATTACH_STATIC(tcp_reass_empty);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
351 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
352 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
353 EVCNT_ATTACH_STATIC(tcp_reass_insert);
354 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
355 EVCNT_ATTACH_STATIC(tcp_reass_append);
356 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
357 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
358 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
359 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
360 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
361
362 #endif /* TCP_REASS_COUNTERS */
363
364 #ifdef MBUFTRACE
365 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
366 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
367 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
368 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
369 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
370 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
371 #endif
372
373 /*
374 * Tcp initialization
375 */
376 void
377 tcp_init(void)
378 {
379 int hlen;
380
381 /* Initialize the TCPCB template. */
382 tcp_tcpcb_template();
383
384 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
385
386 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
387 #ifdef INET6
388 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
389 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
390 #endif
391 if (max_protohdr < hlen)
392 max_protohdr = hlen;
393 if (max_linkhdr + hlen > MHLEN)
394 panic("tcp_init");
395
396 #ifdef INET
397 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
398 #endif
399 #ifdef INET6
400 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
401 #endif
402
403 /* Initialize timer state. */
404 tcp_timer_init();
405
406 /* Initialize the compressed state engine. */
407 syn_cache_init();
408
409 /* Initialize the congestion control algorithms. */
410 tcp_congctl_init();
411
412 MOWNER_ATTACH(&tcp_tx_mowner);
413 MOWNER_ATTACH(&tcp_rx_mowner);
414 MOWNER_ATTACH(&tcp_reass_mowner);
415 MOWNER_ATTACH(&tcp_sock_mowner);
416 MOWNER_ATTACH(&tcp_sock_tx_mowner);
417 MOWNER_ATTACH(&tcp_sock_rx_mowner);
418 MOWNER_ATTACH(&tcp_mowner);
419 }
420
421 /*
422 * Create template to be used to send tcp packets on a connection.
423 * Call after host entry created, allocates an mbuf and fills
424 * in a skeletal tcp/ip header, minimizing the amount of work
425 * necessary when the connection is used.
426 */
427 struct mbuf *
428 tcp_template(struct tcpcb *tp)
429 {
430 struct inpcb *inp = tp->t_inpcb;
431 #ifdef INET6
432 struct in6pcb *in6p = tp->t_in6pcb;
433 #endif
434 struct tcphdr *n;
435 struct mbuf *m;
436 int hlen;
437
438 switch (tp->t_family) {
439 case AF_INET:
440 hlen = sizeof(struct ip);
441 if (inp)
442 break;
443 #ifdef INET6
444 if (in6p) {
445 /* mapped addr case */
446 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
447 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
448 break;
449 }
450 #endif
451 return NULL; /*EINVAL*/
452 #ifdef INET6
453 case AF_INET6:
454 hlen = sizeof(struct ip6_hdr);
455 if (in6p) {
456 /* more sainty check? */
457 break;
458 }
459 return NULL; /*EINVAL*/
460 #endif
461 default:
462 hlen = 0; /*pacify gcc*/
463 return NULL; /*EAFNOSUPPORT*/
464 }
465 #ifdef DIAGNOSTIC
466 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
467 panic("mclbytes too small for t_template");
468 #endif
469 m = tp->t_template;
470 if (m && m->m_len == hlen + sizeof(struct tcphdr))
471 ;
472 else {
473 if (m)
474 m_freem(m);
475 m = tp->t_template = NULL;
476 MGETHDR(m, M_DONTWAIT, MT_HEADER);
477 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
478 MCLGET(m, M_DONTWAIT);
479 if ((m->m_flags & M_EXT) == 0) {
480 m_free(m);
481 m = NULL;
482 }
483 }
484 if (m == NULL)
485 return NULL;
486 MCLAIM(m, &tcp_mowner);
487 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
488 }
489
490 bzero(mtod(m, caddr_t), m->m_len);
491
492 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
493
494 switch (tp->t_family) {
495 case AF_INET:
496 {
497 struct ipovly *ipov;
498 mtod(m, struct ip *)->ip_v = 4;
499 mtod(m, struct ip *)->ip_hl = hlen >> 2;
500 ipov = mtod(m, struct ipovly *);
501 ipov->ih_pr = IPPROTO_TCP;
502 ipov->ih_len = htons(sizeof(struct tcphdr));
503 if (inp) {
504 ipov->ih_src = inp->inp_laddr;
505 ipov->ih_dst = inp->inp_faddr;
506 }
507 #ifdef INET6
508 else if (in6p) {
509 /* mapped addr case */
510 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
511 sizeof(ipov->ih_src));
512 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
513 sizeof(ipov->ih_dst));
514 }
515 #endif
516 /*
517 * Compute the pseudo-header portion of the checksum
518 * now. We incrementally add in the TCP option and
519 * payload lengths later, and then compute the TCP
520 * checksum right before the packet is sent off onto
521 * the wire.
522 */
523 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
524 ipov->ih_dst.s_addr,
525 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
526 break;
527 }
528 #ifdef INET6
529 case AF_INET6:
530 {
531 struct ip6_hdr *ip6;
532 mtod(m, struct ip *)->ip_v = 6;
533 ip6 = mtod(m, struct ip6_hdr *);
534 ip6->ip6_nxt = IPPROTO_TCP;
535 ip6->ip6_plen = htons(sizeof(struct tcphdr));
536 ip6->ip6_src = in6p->in6p_laddr;
537 ip6->ip6_dst = in6p->in6p_faddr;
538 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
539 if (ip6_auto_flowlabel) {
540 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
541 ip6->ip6_flow |=
542 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
543 }
544 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
545 ip6->ip6_vfc |= IPV6_VERSION;
546
547 /*
548 * Compute the pseudo-header portion of the checksum
549 * now. We incrementally add in the TCP option and
550 * payload lengths later, and then compute the TCP
551 * checksum right before the packet is sent off onto
552 * the wire.
553 */
554 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
555 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
556 htonl(IPPROTO_TCP));
557 break;
558 }
559 #endif
560 }
561 if (inp) {
562 n->th_sport = inp->inp_lport;
563 n->th_dport = inp->inp_fport;
564 }
565 #ifdef INET6
566 else if (in6p) {
567 n->th_sport = in6p->in6p_lport;
568 n->th_dport = in6p->in6p_fport;
569 }
570 #endif
571 n->th_seq = 0;
572 n->th_ack = 0;
573 n->th_x2 = 0;
574 n->th_off = 5;
575 n->th_flags = 0;
576 n->th_win = 0;
577 n->th_urp = 0;
578 return (m);
579 }
580
581 /*
582 * Send a single message to the TCP at address specified by
583 * the given TCP/IP header. If m == 0, then we make a copy
584 * of the tcpiphdr at ti and send directly to the addressed host.
585 * This is used to force keep alive messages out using the TCP
586 * template for a connection tp->t_template. If flags are given
587 * then we send a message back to the TCP which originated the
588 * segment ti, and discard the mbuf containing it and any other
589 * attached mbufs.
590 *
591 * In any case the ack and sequence number of the transmitted
592 * segment are as specified by the parameters.
593 */
594 int
595 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
596 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
597 {
598 struct route *ro;
599 int error, tlen, win = 0;
600 int hlen;
601 struct ip *ip;
602 #ifdef INET6
603 struct ip6_hdr *ip6;
604 #endif
605 int family; /* family on packet, not inpcb/in6pcb! */
606 struct tcphdr *th;
607 struct socket *so;
608
609 if (tp != NULL && (flags & TH_RST) == 0) {
610 #ifdef DIAGNOSTIC
611 if (tp->t_inpcb && tp->t_in6pcb)
612 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
613 #endif
614 #ifdef INET
615 if (tp->t_inpcb)
616 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
617 #endif
618 #ifdef INET6
619 if (tp->t_in6pcb)
620 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
621 #endif
622 }
623
624 th = NULL; /* Quell uninitialized warning */
625 ip = NULL;
626 #ifdef INET6
627 ip6 = NULL;
628 #endif
629 if (m == 0) {
630 if (!template)
631 return EINVAL;
632
633 /* get family information from template */
634 switch (mtod(template, struct ip *)->ip_v) {
635 case 4:
636 family = AF_INET;
637 hlen = sizeof(struct ip);
638 break;
639 #ifdef INET6
640 case 6:
641 family = AF_INET6;
642 hlen = sizeof(struct ip6_hdr);
643 break;
644 #endif
645 default:
646 return EAFNOSUPPORT;
647 }
648
649 MGETHDR(m, M_DONTWAIT, MT_HEADER);
650 if (m) {
651 MCLAIM(m, &tcp_tx_mowner);
652 MCLGET(m, M_DONTWAIT);
653 if ((m->m_flags & M_EXT) == 0) {
654 m_free(m);
655 m = NULL;
656 }
657 }
658 if (m == NULL)
659 return (ENOBUFS);
660
661 if (tcp_compat_42)
662 tlen = 1;
663 else
664 tlen = 0;
665
666 m->m_data += max_linkhdr;
667 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
668 template->m_len);
669 switch (family) {
670 case AF_INET:
671 ip = mtod(m, struct ip *);
672 th = (struct tcphdr *)(ip + 1);
673 break;
674 #ifdef INET6
675 case AF_INET6:
676 ip6 = mtod(m, struct ip6_hdr *);
677 th = (struct tcphdr *)(ip6 + 1);
678 break;
679 #endif
680 #if 0
681 default:
682 /* noone will visit here */
683 m_freem(m);
684 return EAFNOSUPPORT;
685 #endif
686 }
687 flags = TH_ACK;
688 } else {
689
690 if ((m->m_flags & M_PKTHDR) == 0) {
691 #if 0
692 printf("non PKTHDR to tcp_respond\n");
693 #endif
694 m_freem(m);
695 return EINVAL;
696 }
697 #ifdef DIAGNOSTIC
698 if (!th0)
699 panic("th0 == NULL in tcp_respond");
700 #endif
701
702 /* get family information from m */
703 switch (mtod(m, struct ip *)->ip_v) {
704 case 4:
705 family = AF_INET;
706 hlen = sizeof(struct ip);
707 ip = mtod(m, struct ip *);
708 break;
709 #ifdef INET6
710 case 6:
711 family = AF_INET6;
712 hlen = sizeof(struct ip6_hdr);
713 ip6 = mtod(m, struct ip6_hdr *);
714 break;
715 #endif
716 default:
717 m_freem(m);
718 return EAFNOSUPPORT;
719 }
720 /* clear h/w csum flags inherited from rx packet */
721 m->m_pkthdr.csum_flags = 0;
722
723 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
724 tlen = sizeof(*th0);
725 else
726 tlen = th0->th_off << 2;
727
728 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
729 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
730 m->m_len = hlen + tlen;
731 m_freem(m->m_next);
732 m->m_next = NULL;
733 } else {
734 struct mbuf *n;
735
736 #ifdef DIAGNOSTIC
737 if (max_linkhdr + hlen + tlen > MCLBYTES) {
738 m_freem(m);
739 return EMSGSIZE;
740 }
741 #endif
742 MGETHDR(n, M_DONTWAIT, MT_HEADER);
743 if (n && max_linkhdr + hlen + tlen > MHLEN) {
744 MCLGET(n, M_DONTWAIT);
745 if ((n->m_flags & M_EXT) == 0) {
746 m_freem(n);
747 n = NULL;
748 }
749 }
750 if (!n) {
751 m_freem(m);
752 return ENOBUFS;
753 }
754
755 MCLAIM(n, &tcp_tx_mowner);
756 n->m_data += max_linkhdr;
757 n->m_len = hlen + tlen;
758 m_copyback(n, 0, hlen, mtod(m, caddr_t));
759 m_copyback(n, hlen, tlen, (caddr_t)th0);
760
761 m_freem(m);
762 m = n;
763 n = NULL;
764 }
765
766 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
767 switch (family) {
768 case AF_INET:
769 ip = mtod(m, struct ip *);
770 th = (struct tcphdr *)(ip + 1);
771 ip->ip_p = IPPROTO_TCP;
772 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
773 ip->ip_p = IPPROTO_TCP;
774 break;
775 #ifdef INET6
776 case AF_INET6:
777 ip6 = mtod(m, struct ip6_hdr *);
778 th = (struct tcphdr *)(ip6 + 1);
779 ip6->ip6_nxt = IPPROTO_TCP;
780 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
781 ip6->ip6_nxt = IPPROTO_TCP;
782 break;
783 #endif
784 #if 0
785 default:
786 /* noone will visit here */
787 m_freem(m);
788 return EAFNOSUPPORT;
789 #endif
790 }
791 xchg(th->th_dport, th->th_sport, u_int16_t);
792 #undef xchg
793 tlen = 0; /*be friendly with the following code*/
794 }
795 th->th_seq = htonl(seq);
796 th->th_ack = htonl(ack);
797 th->th_x2 = 0;
798 if ((flags & TH_SYN) == 0) {
799 if (tp)
800 win >>= tp->rcv_scale;
801 if (win > TCP_MAXWIN)
802 win = TCP_MAXWIN;
803 th->th_win = htons((u_int16_t)win);
804 th->th_off = sizeof (struct tcphdr) >> 2;
805 tlen += sizeof(*th);
806 } else
807 tlen += th->th_off << 2;
808 m->m_len = hlen + tlen;
809 m->m_pkthdr.len = hlen + tlen;
810 m->m_pkthdr.rcvif = (struct ifnet *) 0;
811 th->th_flags = flags;
812 th->th_urp = 0;
813
814 switch (family) {
815 #ifdef INET
816 case AF_INET:
817 {
818 struct ipovly *ipov = (struct ipovly *)ip;
819 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
820 ipov->ih_len = htons((u_int16_t)tlen);
821
822 th->th_sum = 0;
823 th->th_sum = in_cksum(m, hlen + tlen);
824 ip->ip_len = htons(hlen + tlen);
825 ip->ip_ttl = ip_defttl;
826 break;
827 }
828 #endif
829 #ifdef INET6
830 case AF_INET6:
831 {
832 th->th_sum = 0;
833 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
834 tlen);
835 ip6->ip6_plen = htons(tlen);
836 if (tp && tp->t_in6pcb) {
837 struct ifnet *oifp;
838 ro = (struct route *)&tp->t_in6pcb->in6p_route;
839 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
840 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
841 } else
842 ip6->ip6_hlim = ip6_defhlim;
843 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
844 if (ip6_auto_flowlabel) {
845 ip6->ip6_flow |=
846 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
847 }
848 break;
849 }
850 #endif
851 }
852
853 if (tp && tp->t_inpcb)
854 so = tp->t_inpcb->inp_socket;
855 #ifdef INET6
856 else if (tp && tp->t_in6pcb)
857 so = tp->t_in6pcb->in6p_socket;
858 #endif
859 else
860 so = NULL;
861
862 if (tp != NULL && tp->t_inpcb != NULL) {
863 ro = &tp->t_inpcb->inp_route;
864 #ifdef DIAGNOSTIC
865 if (family != AF_INET)
866 panic("tcp_respond: address family mismatch");
867 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
868 panic("tcp_respond: ip_dst %x != inp_faddr %x",
869 ntohl(ip->ip_dst.s_addr),
870 ntohl(tp->t_inpcb->inp_faddr.s_addr));
871 }
872 #endif
873 }
874 #ifdef INET6
875 else if (tp != NULL && tp->t_in6pcb != NULL) {
876 ro = (struct route *)&tp->t_in6pcb->in6p_route;
877 #ifdef DIAGNOSTIC
878 if (family == AF_INET) {
879 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
880 panic("tcp_respond: not mapped addr");
881 if (bcmp(&ip->ip_dst,
882 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
883 sizeof(ip->ip_dst)) != 0) {
884 panic("tcp_respond: ip_dst != in6p_faddr");
885 }
886 } else if (family == AF_INET6) {
887 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
888 &tp->t_in6pcb->in6p_faddr))
889 panic("tcp_respond: ip6_dst != in6p_faddr");
890 } else
891 panic("tcp_respond: address family mismatch");
892 #endif
893 }
894 #endif
895 else
896 ro = NULL;
897
898 switch (family) {
899 #ifdef INET
900 case AF_INET:
901 error = ip_output(m, NULL, ro,
902 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
903 (struct ip_moptions *)0, so);
904 break;
905 #endif
906 #ifdef INET6
907 case AF_INET6:
908 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
909 (struct ip6_moptions *)0, so, NULL);
910 break;
911 #endif
912 default:
913 error = EAFNOSUPPORT;
914 break;
915 }
916
917 return (error);
918 }
919
920 /*
921 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
922 * a bunch of members individually, we maintain this template for the
923 * static and mostly-static components of the TCPCB, and copy it into
924 * the new TCPCB instead.
925 */
926 static struct tcpcb tcpcb_template = {
927 /*
928 * If TCP_NTIMERS ever changes, we'll need to update this
929 * initializer.
930 */
931 .t_timer = {
932 CALLOUT_INITIALIZER,
933 CALLOUT_INITIALIZER,
934 CALLOUT_INITIALIZER,
935 CALLOUT_INITIALIZER,
936 },
937 .t_delack_ch = CALLOUT_INITIALIZER,
938
939 .t_srtt = TCPTV_SRTTBASE,
940 .t_rttmin = TCPTV_MIN,
941
942 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
943 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
944 .snd_numholes = 0,
945
946 .t_partialacks = -1,
947 .t_bytes_acked = 0,
948 };
949
950 /*
951 * Updates the TCPCB template whenever a parameter that would affect
952 * the template is changed.
953 */
954 void
955 tcp_tcpcb_template(void)
956 {
957 struct tcpcb *tp = &tcpcb_template;
958 int flags;
959
960 tp->t_peermss = tcp_mssdflt;
961 tp->t_ourmss = tcp_mssdflt;
962 tp->t_segsz = tcp_mssdflt;
963
964 flags = 0;
965 if (tcp_do_rfc1323 && tcp_do_win_scale)
966 flags |= TF_REQ_SCALE;
967 if (tcp_do_rfc1323 && tcp_do_timestamps)
968 flags |= TF_REQ_TSTMP;
969 tp->t_flags = flags;
970
971 /*
972 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
973 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
974 * reasonable initial retransmit time.
975 */
976 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
977 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
978 TCPTV_MIN, TCPTV_REXMTMAX);
979 }
980
981 /*
982 * Create a new TCP control block, making an
983 * empty reassembly queue and hooking it to the argument
984 * protocol control block.
985 */
986 /* family selects inpcb, or in6pcb */
987 struct tcpcb *
988 tcp_newtcpcb(int family, void *aux)
989 {
990 struct tcpcb *tp;
991 int i;
992
993 /* XXX Consider using a pool_cache for speed. */
994 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
995 if (tp == NULL)
996 return (NULL);
997 memcpy(tp, &tcpcb_template, sizeof(*tp));
998 TAILQ_INIT(&tp->segq);
999 TAILQ_INIT(&tp->timeq);
1000 tp->t_family = family; /* may be overridden later on */
1001 TAILQ_INIT(&tp->snd_holes);
1002 LIST_INIT(&tp->t_sc); /* XXX can template this */
1003
1004 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1005 for (i = 0; i < TCPT_NTIMERS; i++)
1006 TCP_TIMER_INIT(tp, i);
1007
1008 switch (family) {
1009 case AF_INET:
1010 {
1011 struct inpcb *inp = (struct inpcb *)aux;
1012
1013 inp->inp_ip.ip_ttl = ip_defttl;
1014 inp->inp_ppcb = (caddr_t)tp;
1015
1016 tp->t_inpcb = inp;
1017 tp->t_mtudisc = ip_mtudisc;
1018 break;
1019 }
1020 #ifdef INET6
1021 case AF_INET6:
1022 {
1023 struct in6pcb *in6p = (struct in6pcb *)aux;
1024
1025 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1026 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1027 : NULL);
1028 in6p->in6p_ppcb = (caddr_t)tp;
1029
1030 tp->t_in6pcb = in6p;
1031 /* for IPv6, always try to run path MTU discovery */
1032 tp->t_mtudisc = 1;
1033 break;
1034 }
1035 #endif /* INET6 */
1036 default:
1037 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1038 return (NULL);
1039 }
1040
1041 /*
1042 * Initialize our timebase. When we send timestamps, we take
1043 * the delta from tcp_now -- this means each connection always
1044 * gets a timebase of 0, which makes it, among other things,
1045 * more difficult to determine how long a system has been up,
1046 * and thus how many TCP sequence increments have occurred.
1047 */
1048 tp->ts_timebase = tcp_now;
1049
1050 tp->t_congctl = tcp_congctl_global;
1051 tp->t_congctl->refcnt++;
1052
1053 return (tp);
1054 }
1055
1056 /*
1057 * Drop a TCP connection, reporting
1058 * the specified error. If connection is synchronized,
1059 * then send a RST to peer.
1060 */
1061 struct tcpcb *
1062 tcp_drop(struct tcpcb *tp, int errno)
1063 {
1064 struct socket *so = NULL;
1065
1066 #ifdef DIAGNOSTIC
1067 if (tp->t_inpcb && tp->t_in6pcb)
1068 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1069 #endif
1070 #ifdef INET
1071 if (tp->t_inpcb)
1072 so = tp->t_inpcb->inp_socket;
1073 #endif
1074 #ifdef INET6
1075 if (tp->t_in6pcb)
1076 so = tp->t_in6pcb->in6p_socket;
1077 #endif
1078 if (!so)
1079 return NULL;
1080
1081 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1082 tp->t_state = TCPS_CLOSED;
1083 (void) tcp_output(tp);
1084 tcpstat.tcps_drops++;
1085 } else
1086 tcpstat.tcps_conndrops++;
1087 if (errno == ETIMEDOUT && tp->t_softerror)
1088 errno = tp->t_softerror;
1089 so->so_error = errno;
1090 return (tcp_close(tp));
1091 }
1092
1093 /*
1094 * Return whether this tcpcb is marked as dead, indicating
1095 * to the calling timer function that no further action should
1096 * be taken, as we are about to release this tcpcb. The release
1097 * of the storage will be done if this is the last timer running.
1098 *
1099 * This should be called from the callout handler function after
1100 * callout_ack() is done, so that the number of invoking timer
1101 * functions is 0.
1102 */
1103 int
1104 tcp_isdead(struct tcpcb *tp)
1105 {
1106 int dead = (tp->t_flags & TF_DEAD);
1107
1108 if (__predict_false(dead)) {
1109 if (tcp_timers_invoking(tp) > 0)
1110 /* not quite there yet -- count separately? */
1111 return dead;
1112 tcpstat.tcps_delayed_free++;
1113 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_timer.c */
1114 }
1115 return dead;
1116 }
1117
1118 /*
1119 * Close a TCP control block:
1120 * discard all space held by the tcp
1121 * discard internet protocol block
1122 * wake up any sleepers
1123 */
1124 struct tcpcb *
1125 tcp_close(struct tcpcb *tp)
1126 {
1127 struct inpcb *inp;
1128 #ifdef INET6
1129 struct in6pcb *in6p;
1130 #endif
1131 struct socket *so;
1132 #ifdef RTV_RTT
1133 struct rtentry *rt;
1134 #endif
1135 struct route *ro;
1136
1137 inp = tp->t_inpcb;
1138 #ifdef INET6
1139 in6p = tp->t_in6pcb;
1140 #endif
1141 so = NULL;
1142 ro = NULL;
1143 if (inp) {
1144 so = inp->inp_socket;
1145 ro = &inp->inp_route;
1146 }
1147 #ifdef INET6
1148 else if (in6p) {
1149 so = in6p->in6p_socket;
1150 ro = (struct route *)&in6p->in6p_route;
1151 }
1152 #endif
1153
1154 #ifdef RTV_RTT
1155 /*
1156 * If we sent enough data to get some meaningful characteristics,
1157 * save them in the routing entry. 'Enough' is arbitrarily
1158 * defined as the sendpipesize (default 4K) * 16. This would
1159 * give us 16 rtt samples assuming we only get one sample per
1160 * window (the usual case on a long haul net). 16 samples is
1161 * enough for the srtt filter to converge to within 5% of the correct
1162 * value; fewer samples and we could save a very bogus rtt.
1163 *
1164 * Don't update the default route's characteristics and don't
1165 * update anything that the user "locked".
1166 */
1167 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1168 ro && (rt = ro->ro_rt) &&
1169 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1170 u_long i = 0;
1171
1172 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1173 i = tp->t_srtt *
1174 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1175 if (rt->rt_rmx.rmx_rtt && i)
1176 /*
1177 * filter this update to half the old & half
1178 * the new values, converting scale.
1179 * See route.h and tcp_var.h for a
1180 * description of the scaling constants.
1181 */
1182 rt->rt_rmx.rmx_rtt =
1183 (rt->rt_rmx.rmx_rtt + i) / 2;
1184 else
1185 rt->rt_rmx.rmx_rtt = i;
1186 }
1187 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1188 i = tp->t_rttvar *
1189 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1190 if (rt->rt_rmx.rmx_rttvar && i)
1191 rt->rt_rmx.rmx_rttvar =
1192 (rt->rt_rmx.rmx_rttvar + i) / 2;
1193 else
1194 rt->rt_rmx.rmx_rttvar = i;
1195 }
1196 /*
1197 * update the pipelimit (ssthresh) if it has been updated
1198 * already or if a pipesize was specified & the threshhold
1199 * got below half the pipesize. I.e., wait for bad news
1200 * before we start updating, then update on both good
1201 * and bad news.
1202 */
1203 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1204 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1205 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1206 /*
1207 * convert the limit from user data bytes to
1208 * packets then to packet data bytes.
1209 */
1210 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1211 if (i < 2)
1212 i = 2;
1213 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1214 if (rt->rt_rmx.rmx_ssthresh)
1215 rt->rt_rmx.rmx_ssthresh =
1216 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1217 else
1218 rt->rt_rmx.rmx_ssthresh = i;
1219 }
1220 }
1221 #endif /* RTV_RTT */
1222 /* free the reassembly queue, if any */
1223 TCP_REASS_LOCK(tp);
1224 (void) tcp_freeq(tp);
1225 TCP_REASS_UNLOCK(tp);
1226
1227 /* free the SACK holes list. */
1228 tcp_free_sackholes(tp);
1229
1230 tp->t_congctl->refcnt--;
1231
1232 tcp_canceltimers(tp);
1233 TCP_CLEAR_DELACK(tp);
1234 syn_cache_cleanup(tp);
1235
1236 if (tp->t_template) {
1237 m_free(tp->t_template);
1238 tp->t_template = NULL;
1239 }
1240 if (tcp_timers_invoking(tp))
1241 tp->t_flags |= TF_DEAD;
1242 else
1243 pool_put(&tcpcb_pool, tp);
1244
1245 if (inp) {
1246 inp->inp_ppcb = 0;
1247 soisdisconnected(so);
1248 in_pcbdetach(inp);
1249 }
1250 #ifdef INET6
1251 else if (in6p) {
1252 in6p->in6p_ppcb = 0;
1253 soisdisconnected(so);
1254 in6_pcbdetach(in6p);
1255 }
1256 #endif
1257 tcpstat.tcps_closed++;
1258 return ((struct tcpcb *)0);
1259 }
1260
1261 int
1262 tcp_freeq(tp)
1263 struct tcpcb *tp;
1264 {
1265 struct ipqent *qe;
1266 int rv = 0;
1267 #ifdef TCPREASS_DEBUG
1268 int i = 0;
1269 #endif
1270
1271 TCP_REASS_LOCK_CHECK(tp);
1272
1273 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1274 #ifdef TCPREASS_DEBUG
1275 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1276 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1277 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1278 #endif
1279 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1280 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1281 m_freem(qe->ipqe_m);
1282 tcpipqent_free(qe);
1283 rv = 1;
1284 }
1285 tp->t_segqlen = 0;
1286 KASSERT(TAILQ_EMPTY(&tp->timeq));
1287 return (rv);
1288 }
1289
1290 /*
1291 * Protocol drain routine. Called when memory is in short supply.
1292 */
1293 void
1294 tcp_drain(void)
1295 {
1296 struct inpcb_hdr *inph;
1297 struct tcpcb *tp;
1298
1299 /*
1300 * Free the sequence queue of all TCP connections.
1301 */
1302 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1303 switch (inph->inph_af) {
1304 case AF_INET:
1305 tp = intotcpcb((struct inpcb *)inph);
1306 break;
1307 #ifdef INET6
1308 case AF_INET6:
1309 tp = in6totcpcb((struct in6pcb *)inph);
1310 break;
1311 #endif
1312 default:
1313 tp = NULL;
1314 break;
1315 }
1316 if (tp != NULL) {
1317 /*
1318 * We may be called from a device's interrupt
1319 * context. If the tcpcb is already busy,
1320 * just bail out now.
1321 */
1322 if (tcp_reass_lock_try(tp) == 0)
1323 continue;
1324 if (tcp_freeq(tp))
1325 tcpstat.tcps_connsdrained++;
1326 TCP_REASS_UNLOCK(tp);
1327 }
1328 }
1329 }
1330
1331 /*
1332 * Notify a tcp user of an asynchronous error;
1333 * store error as soft error, but wake up user
1334 * (for now, won't do anything until can select for soft error).
1335 */
1336 void
1337 tcp_notify(struct inpcb *inp, int error)
1338 {
1339 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1340 struct socket *so = inp->inp_socket;
1341
1342 /*
1343 * Ignore some errors if we are hooked up.
1344 * If connection hasn't completed, has retransmitted several times,
1345 * and receives a second error, give up now. This is better
1346 * than waiting a long time to establish a connection that
1347 * can never complete.
1348 */
1349 if (tp->t_state == TCPS_ESTABLISHED &&
1350 (error == EHOSTUNREACH || error == ENETUNREACH ||
1351 error == EHOSTDOWN)) {
1352 return;
1353 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1354 tp->t_rxtshift > 3 && tp->t_softerror)
1355 so->so_error = error;
1356 else
1357 tp->t_softerror = error;
1358 wakeup((caddr_t) &so->so_timeo);
1359 sorwakeup(so);
1360 sowwakeup(so);
1361 }
1362
1363 #ifdef INET6
1364 void
1365 tcp6_notify(struct in6pcb *in6p, int error)
1366 {
1367 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1368 struct socket *so = in6p->in6p_socket;
1369
1370 /*
1371 * Ignore some errors if we are hooked up.
1372 * If connection hasn't completed, has retransmitted several times,
1373 * and receives a second error, give up now. This is better
1374 * than waiting a long time to establish a connection that
1375 * can never complete.
1376 */
1377 if (tp->t_state == TCPS_ESTABLISHED &&
1378 (error == EHOSTUNREACH || error == ENETUNREACH ||
1379 error == EHOSTDOWN)) {
1380 return;
1381 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1382 tp->t_rxtshift > 3 && tp->t_softerror)
1383 so->so_error = error;
1384 else
1385 tp->t_softerror = error;
1386 wakeup((caddr_t) &so->so_timeo);
1387 sorwakeup(so);
1388 sowwakeup(so);
1389 }
1390 #endif
1391
1392 #ifdef INET6
1393 void
1394 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1395 {
1396 struct tcphdr th;
1397 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1398 int nmatch;
1399 struct ip6_hdr *ip6;
1400 const struct sockaddr_in6 *sa6_src = NULL;
1401 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1402 struct mbuf *m;
1403 int off;
1404
1405 if (sa->sa_family != AF_INET6 ||
1406 sa->sa_len != sizeof(struct sockaddr_in6))
1407 return;
1408 if ((unsigned)cmd >= PRC_NCMDS)
1409 return;
1410 else if (cmd == PRC_QUENCH) {
1411 /*
1412 * Don't honor ICMP Source Quench messages meant for
1413 * TCP connections.
1414 */
1415 return;
1416 } else if (PRC_IS_REDIRECT(cmd))
1417 notify = in6_rtchange, d = NULL;
1418 else if (cmd == PRC_MSGSIZE)
1419 ; /* special code is present, see below */
1420 else if (cmd == PRC_HOSTDEAD)
1421 d = NULL;
1422 else if (inet6ctlerrmap[cmd] == 0)
1423 return;
1424
1425 /* if the parameter is from icmp6, decode it. */
1426 if (d != NULL) {
1427 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1428 m = ip6cp->ip6c_m;
1429 ip6 = ip6cp->ip6c_ip6;
1430 off = ip6cp->ip6c_off;
1431 sa6_src = ip6cp->ip6c_src;
1432 } else {
1433 m = NULL;
1434 ip6 = NULL;
1435 sa6_src = &sa6_any;
1436 off = 0;
1437 }
1438
1439 if (ip6) {
1440 /*
1441 * XXX: We assume that when ip6 is non NULL,
1442 * M and OFF are valid.
1443 */
1444
1445 /* check if we can safely examine src and dst ports */
1446 if (m->m_pkthdr.len < off + sizeof(th)) {
1447 if (cmd == PRC_MSGSIZE)
1448 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1449 return;
1450 }
1451
1452 bzero(&th, sizeof(th));
1453 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1454
1455 if (cmd == PRC_MSGSIZE) {
1456 int valid = 0;
1457
1458 /*
1459 * Check to see if we have a valid TCP connection
1460 * corresponding to the address in the ICMPv6 message
1461 * payload.
1462 */
1463 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1464 th.th_dport,
1465 (const struct in6_addr *)&sa6_src->sin6_addr,
1466 th.th_sport, 0))
1467 valid++;
1468
1469 /*
1470 * Depending on the value of "valid" and routing table
1471 * size (mtudisc_{hi,lo}wat), we will:
1472 * - recalcurate the new MTU and create the
1473 * corresponding routing entry, or
1474 * - ignore the MTU change notification.
1475 */
1476 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1477
1478 /*
1479 * no need to call in6_pcbnotify, it should have been
1480 * called via callback if necessary
1481 */
1482 return;
1483 }
1484
1485 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1486 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1487 if (nmatch == 0 && syn_cache_count &&
1488 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1489 inet6ctlerrmap[cmd] == ENETUNREACH ||
1490 inet6ctlerrmap[cmd] == EHOSTDOWN))
1491 syn_cache_unreach((const struct sockaddr *)sa6_src,
1492 sa, &th);
1493 } else {
1494 (void) in6_pcbnotify(&tcbtable, sa, 0,
1495 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1496 }
1497 }
1498 #endif
1499
1500 #ifdef INET
1501 /* assumes that ip header and tcp header are contiguous on mbuf */
1502 void *
1503 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1504 {
1505 struct ip *ip = v;
1506 struct tcphdr *th;
1507 struct icmp *icp;
1508 extern const int inetctlerrmap[];
1509 void (*notify)(struct inpcb *, int) = tcp_notify;
1510 int errno;
1511 int nmatch;
1512 struct tcpcb *tp;
1513 u_int mtu;
1514 tcp_seq seq;
1515 struct inpcb *inp;
1516 #ifdef INET6
1517 struct in6pcb *in6p;
1518 struct in6_addr src6, dst6;
1519 #endif
1520
1521 if (sa->sa_family != AF_INET ||
1522 sa->sa_len != sizeof(struct sockaddr_in))
1523 return NULL;
1524 if ((unsigned)cmd >= PRC_NCMDS)
1525 return NULL;
1526 errno = inetctlerrmap[cmd];
1527 if (cmd == PRC_QUENCH)
1528 /*
1529 * Don't honor ICMP Source Quench messages meant for
1530 * TCP connections.
1531 */
1532 return NULL;
1533 else if (PRC_IS_REDIRECT(cmd))
1534 notify = in_rtchange, ip = 0;
1535 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1536 /*
1537 * Check to see if we have a valid TCP connection
1538 * corresponding to the address in the ICMP message
1539 * payload.
1540 *
1541 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1542 */
1543 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1544 #ifdef INET6
1545 memset(&src6, 0, sizeof(src6));
1546 memset(&dst6, 0, sizeof(dst6));
1547 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1548 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1549 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1550 #endif
1551 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1552 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1553 #ifdef INET6
1554 in6p = NULL;
1555 #else
1556 ;
1557 #endif
1558 #ifdef INET6
1559 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1560 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1561 ;
1562 #endif
1563 else
1564 return NULL;
1565
1566 /*
1567 * Now that we've validated that we are actually communicating
1568 * with the host indicated in the ICMP message, locate the
1569 * ICMP header, recalculate the new MTU, and create the
1570 * corresponding routing entry.
1571 */
1572 icp = (struct icmp *)((caddr_t)ip -
1573 offsetof(struct icmp, icmp_ip));
1574 if (inp) {
1575 if ((tp = intotcpcb(inp)) == NULL)
1576 return NULL;
1577 }
1578 #ifdef INET6
1579 else if (in6p) {
1580 if ((tp = in6totcpcb(in6p)) == NULL)
1581 return NULL;
1582 }
1583 #endif
1584 else
1585 return NULL;
1586 seq = ntohl(th->th_seq);
1587 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1588 return NULL;
1589 /*
1590 * If the ICMP message advertises a Next-Hop MTU
1591 * equal or larger than the maximum packet size we have
1592 * ever sent, drop the message.
1593 */
1594 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1595 if (mtu >= tp->t_pmtud_mtu_sent)
1596 return NULL;
1597 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1598 /*
1599 * Calculate new MTU, and create corresponding
1600 * route (traditional PMTUD).
1601 */
1602 tp->t_flags &= ~TF_PMTUD_PEND;
1603 icmp_mtudisc(icp, ip->ip_dst);
1604 } else {
1605 /*
1606 * Record the information got in the ICMP
1607 * message; act on it later.
1608 * If we had already recorded an ICMP message,
1609 * replace the old one only if the new message
1610 * refers to an older TCP segment
1611 */
1612 if (tp->t_flags & TF_PMTUD_PEND) {
1613 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1614 return NULL;
1615 } else
1616 tp->t_flags |= TF_PMTUD_PEND;
1617 tp->t_pmtud_th_seq = seq;
1618 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1619 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1620 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1621 }
1622 return NULL;
1623 } else if (cmd == PRC_HOSTDEAD)
1624 ip = 0;
1625 else if (errno == 0)
1626 return NULL;
1627 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1628 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1629 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1630 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1631 if (nmatch == 0 && syn_cache_count &&
1632 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1633 inetctlerrmap[cmd] == ENETUNREACH ||
1634 inetctlerrmap[cmd] == EHOSTDOWN)) {
1635 struct sockaddr_in sin;
1636 bzero(&sin, sizeof(sin));
1637 sin.sin_len = sizeof(sin);
1638 sin.sin_family = AF_INET;
1639 sin.sin_port = th->th_sport;
1640 sin.sin_addr = ip->ip_src;
1641 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1642 }
1643
1644 /* XXX mapped address case */
1645 } else
1646 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1647 notify);
1648 return NULL;
1649 }
1650
1651 /*
1652 * When a source quench is received, we are being notified of congestion.
1653 * Close the congestion window down to the Loss Window (one segment).
1654 * We will gradually open it again as we proceed.
1655 */
1656 void
1657 tcp_quench(struct inpcb *inp, int errno)
1658 {
1659 struct tcpcb *tp = intotcpcb(inp);
1660
1661 if (tp) {
1662 tp->snd_cwnd = tp->t_segsz;
1663 tp->t_bytes_acked = 0;
1664 }
1665 }
1666 #endif
1667
1668 #ifdef INET6
1669 void
1670 tcp6_quench(struct in6pcb *in6p, int errno)
1671 {
1672 struct tcpcb *tp = in6totcpcb(in6p);
1673
1674 if (tp) {
1675 tp->snd_cwnd = tp->t_segsz;
1676 tp->t_bytes_acked = 0;
1677 }
1678 }
1679 #endif
1680
1681 #ifdef INET
1682 /*
1683 * Path MTU Discovery handlers.
1684 */
1685 void
1686 tcp_mtudisc_callback(struct in_addr faddr)
1687 {
1688 #ifdef INET6
1689 struct in6_addr in6;
1690 #endif
1691
1692 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1693 #ifdef INET6
1694 memset(&in6, 0, sizeof(in6));
1695 in6.s6_addr16[5] = 0xffff;
1696 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1697 tcp6_mtudisc_callback(&in6);
1698 #endif
1699 }
1700
1701 /*
1702 * On receipt of path MTU corrections, flush old route and replace it
1703 * with the new one. Retransmit all unacknowledged packets, to ensure
1704 * that all packets will be received.
1705 */
1706 void
1707 tcp_mtudisc(struct inpcb *inp, int errno)
1708 {
1709 struct tcpcb *tp = intotcpcb(inp);
1710 struct rtentry *rt = in_pcbrtentry(inp);
1711
1712 if (tp != 0) {
1713 if (rt != 0) {
1714 /*
1715 * If this was not a host route, remove and realloc.
1716 */
1717 if ((rt->rt_flags & RTF_HOST) == 0) {
1718 in_rtchange(inp, errno);
1719 if ((rt = in_pcbrtentry(inp)) == 0)
1720 return;
1721 }
1722
1723 /*
1724 * Slow start out of the error condition. We
1725 * use the MTU because we know it's smaller
1726 * than the previously transmitted segment.
1727 *
1728 * Note: This is more conservative than the
1729 * suggestion in draft-floyd-incr-init-win-03.
1730 */
1731 if (rt->rt_rmx.rmx_mtu != 0)
1732 tp->snd_cwnd =
1733 TCP_INITIAL_WINDOW(tcp_init_win,
1734 rt->rt_rmx.rmx_mtu);
1735 }
1736
1737 /*
1738 * Resend unacknowledged packets.
1739 */
1740 tp->snd_nxt = tp->snd_una;
1741 tcp_output(tp);
1742 }
1743 }
1744 #endif
1745
1746 #ifdef INET6
1747 /*
1748 * Path MTU Discovery handlers.
1749 */
1750 void
1751 tcp6_mtudisc_callback(struct in6_addr *faddr)
1752 {
1753 struct sockaddr_in6 sin6;
1754
1755 bzero(&sin6, sizeof(sin6));
1756 sin6.sin6_family = AF_INET6;
1757 sin6.sin6_len = sizeof(struct sockaddr_in6);
1758 sin6.sin6_addr = *faddr;
1759 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1760 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1761 }
1762
1763 void
1764 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1765 {
1766 struct tcpcb *tp = in6totcpcb(in6p);
1767 struct rtentry *rt = in6_pcbrtentry(in6p);
1768
1769 if (tp != 0) {
1770 if (rt != 0) {
1771 /*
1772 * If this was not a host route, remove and realloc.
1773 */
1774 if ((rt->rt_flags & RTF_HOST) == 0) {
1775 in6_rtchange(in6p, errno);
1776 if ((rt = in6_pcbrtentry(in6p)) == 0)
1777 return;
1778 }
1779
1780 /*
1781 * Slow start out of the error condition. We
1782 * use the MTU because we know it's smaller
1783 * than the previously transmitted segment.
1784 *
1785 * Note: This is more conservative than the
1786 * suggestion in draft-floyd-incr-init-win-03.
1787 */
1788 if (rt->rt_rmx.rmx_mtu != 0)
1789 tp->snd_cwnd =
1790 TCP_INITIAL_WINDOW(tcp_init_win,
1791 rt->rt_rmx.rmx_mtu);
1792 }
1793
1794 /*
1795 * Resend unacknowledged packets.
1796 */
1797 tp->snd_nxt = tp->snd_una;
1798 tcp_output(tp);
1799 }
1800 }
1801 #endif /* INET6 */
1802
1803 /*
1804 * Compute the MSS to advertise to the peer. Called only during
1805 * the 3-way handshake. If we are the server (peer initiated
1806 * connection), we are called with a pointer to the interface
1807 * on which the SYN packet arrived. If we are the client (we
1808 * initiated connection), we are called with a pointer to the
1809 * interface out which this connection should go.
1810 *
1811 * NOTE: Do not subtract IP option/extension header size nor IPsec
1812 * header size from MSS advertisement. MSS option must hold the maximum
1813 * segment size we can accept, so it must always be:
1814 * max(if mtu) - ip header - tcp header
1815 */
1816 u_long
1817 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1818 {
1819 extern u_long in_maxmtu;
1820 u_long mss = 0;
1821 u_long hdrsiz;
1822
1823 /*
1824 * In order to avoid defeating path MTU discovery on the peer,
1825 * we advertise the max MTU of all attached networks as our MSS,
1826 * per RFC 1191, section 3.1.
1827 *
1828 * We provide the option to advertise just the MTU of
1829 * the interface on which we hope this connection will
1830 * be receiving. If we are responding to a SYN, we
1831 * will have a pretty good idea about this, but when
1832 * initiating a connection there is a bit more doubt.
1833 *
1834 * We also need to ensure that loopback has a large enough
1835 * MSS, as the loopback MTU is never included in in_maxmtu.
1836 */
1837
1838 if (ifp != NULL)
1839 switch (af) {
1840 case AF_INET:
1841 mss = ifp->if_mtu;
1842 break;
1843 #ifdef INET6
1844 case AF_INET6:
1845 mss = IN6_LINKMTU(ifp);
1846 break;
1847 #endif
1848 }
1849
1850 if (tcp_mss_ifmtu == 0)
1851 switch (af) {
1852 case AF_INET:
1853 mss = max(in_maxmtu, mss);
1854 break;
1855 #ifdef INET6
1856 case AF_INET6:
1857 mss = max(in6_maxmtu, mss);
1858 break;
1859 #endif
1860 }
1861
1862 switch (af) {
1863 case AF_INET:
1864 hdrsiz = sizeof(struct ip);
1865 break;
1866 #ifdef INET6
1867 case AF_INET6:
1868 hdrsiz = sizeof(struct ip6_hdr);
1869 break;
1870 #endif
1871 default:
1872 hdrsiz = 0;
1873 break;
1874 }
1875 hdrsiz += sizeof(struct tcphdr);
1876 if (mss > hdrsiz)
1877 mss -= hdrsiz;
1878
1879 mss = max(tcp_mssdflt, mss);
1880 return (mss);
1881 }
1882
1883 /*
1884 * Set connection variables based on the peer's advertised MSS.
1885 * We are passed the TCPCB for the actual connection. If we
1886 * are the server, we are called by the compressed state engine
1887 * when the 3-way handshake is complete. If we are the client,
1888 * we are called when we receive the SYN,ACK from the server.
1889 *
1890 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1891 * before this routine is called!
1892 */
1893 void
1894 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1895 {
1896 struct socket *so;
1897 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1898 struct rtentry *rt;
1899 #endif
1900 u_long bufsize;
1901 int mss;
1902
1903 #ifdef DIAGNOSTIC
1904 if (tp->t_inpcb && tp->t_in6pcb)
1905 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1906 #endif
1907 so = NULL;
1908 rt = NULL;
1909 #ifdef INET
1910 if (tp->t_inpcb) {
1911 so = tp->t_inpcb->inp_socket;
1912 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1913 rt = in_pcbrtentry(tp->t_inpcb);
1914 #endif
1915 }
1916 #endif
1917 #ifdef INET6
1918 if (tp->t_in6pcb) {
1919 so = tp->t_in6pcb->in6p_socket;
1920 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1921 rt = in6_pcbrtentry(tp->t_in6pcb);
1922 #endif
1923 }
1924 #endif
1925
1926 /*
1927 * As per RFC1122, use the default MSS value, unless they
1928 * sent us an offer. Do not accept offers less than 256 bytes.
1929 */
1930 mss = tcp_mssdflt;
1931 if (offer)
1932 mss = offer;
1933 mss = max(mss, 256); /* sanity */
1934 tp->t_peermss = mss;
1935 mss -= tcp_optlen(tp);
1936 #ifdef INET
1937 if (tp->t_inpcb)
1938 mss -= ip_optlen(tp->t_inpcb);
1939 #endif
1940 #ifdef INET6
1941 if (tp->t_in6pcb)
1942 mss -= ip6_optlen(tp->t_in6pcb);
1943 #endif
1944
1945 /*
1946 * If there's a pipesize, change the socket buffer to that size.
1947 * Make the socket buffer an integral number of MSS units. If
1948 * the MSS is larger than the socket buffer, artificially decrease
1949 * the MSS.
1950 */
1951 #ifdef RTV_SPIPE
1952 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1953 bufsize = rt->rt_rmx.rmx_sendpipe;
1954 else
1955 #endif
1956 {
1957 KASSERT(so != NULL);
1958 bufsize = so->so_snd.sb_hiwat;
1959 }
1960 if (bufsize < mss)
1961 mss = bufsize;
1962 else {
1963 bufsize = roundup(bufsize, mss);
1964 if (bufsize > sb_max)
1965 bufsize = sb_max;
1966 (void) sbreserve(&so->so_snd, bufsize, so);
1967 }
1968 tp->t_segsz = mss;
1969
1970 #ifdef RTV_SSTHRESH
1971 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1972 /*
1973 * There's some sort of gateway or interface buffer
1974 * limit on the path. Use this to set the slow
1975 * start threshold, but set the threshold to no less
1976 * than 2 * MSS.
1977 */
1978 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1979 }
1980 #endif
1981 }
1982
1983 /*
1984 * Processing necessary when a TCP connection is established.
1985 */
1986 void
1987 tcp_established(struct tcpcb *tp)
1988 {
1989 struct socket *so;
1990 #ifdef RTV_RPIPE
1991 struct rtentry *rt;
1992 #endif
1993 u_long bufsize;
1994
1995 #ifdef DIAGNOSTIC
1996 if (tp->t_inpcb && tp->t_in6pcb)
1997 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1998 #endif
1999 so = NULL;
2000 rt = NULL;
2001 #ifdef INET
2002 if (tp->t_inpcb) {
2003 so = tp->t_inpcb->inp_socket;
2004 #if defined(RTV_RPIPE)
2005 rt = in_pcbrtentry(tp->t_inpcb);
2006 #endif
2007 }
2008 #endif
2009 #ifdef INET6
2010 if (tp->t_in6pcb) {
2011 so = tp->t_in6pcb->in6p_socket;
2012 #if defined(RTV_RPIPE)
2013 rt = in6_pcbrtentry(tp->t_in6pcb);
2014 #endif
2015 }
2016 #endif
2017
2018 tp->t_state = TCPS_ESTABLISHED;
2019 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
2020
2021 #ifdef RTV_RPIPE
2022 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2023 bufsize = rt->rt_rmx.rmx_recvpipe;
2024 else
2025 #endif
2026 {
2027 KASSERT(so != NULL);
2028 bufsize = so->so_rcv.sb_hiwat;
2029 }
2030 if (bufsize > tp->t_ourmss) {
2031 bufsize = roundup(bufsize, tp->t_ourmss);
2032 if (bufsize > sb_max)
2033 bufsize = sb_max;
2034 (void) sbreserve(&so->so_rcv, bufsize, so);
2035 }
2036 }
2037
2038 /*
2039 * Check if there's an initial rtt or rttvar. Convert from the
2040 * route-table units to scaled multiples of the slow timeout timer.
2041 * Called only during the 3-way handshake.
2042 */
2043 void
2044 tcp_rmx_rtt(struct tcpcb *tp)
2045 {
2046 #ifdef RTV_RTT
2047 struct rtentry *rt = NULL;
2048 int rtt;
2049
2050 #ifdef DIAGNOSTIC
2051 if (tp->t_inpcb && tp->t_in6pcb)
2052 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2053 #endif
2054 #ifdef INET
2055 if (tp->t_inpcb)
2056 rt = in_pcbrtentry(tp->t_inpcb);
2057 #endif
2058 #ifdef INET6
2059 if (tp->t_in6pcb)
2060 rt = in6_pcbrtentry(tp->t_in6pcb);
2061 #endif
2062 if (rt == NULL)
2063 return;
2064
2065 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2066 /*
2067 * XXX The lock bit for MTU indicates that the value
2068 * is also a minimum value; this is subject to time.
2069 */
2070 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2071 TCPT_RANGESET(tp->t_rttmin,
2072 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2073 TCPTV_MIN, TCPTV_REXMTMAX);
2074 tp->t_srtt = rtt /
2075 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2076 if (rt->rt_rmx.rmx_rttvar) {
2077 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2078 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2079 (TCP_RTTVAR_SHIFT + 2));
2080 } else {
2081 /* Default variation is +- 1 rtt */
2082 tp->t_rttvar =
2083 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2084 }
2085 TCPT_RANGESET(tp->t_rxtcur,
2086 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2087 tp->t_rttmin, TCPTV_REXMTMAX);
2088 }
2089 #endif
2090 }
2091
2092 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2093 #if NRND > 0
2094 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2095 #endif
2096
2097 /*
2098 * Get a new sequence value given a tcp control block
2099 */
2100 tcp_seq
2101 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2102 {
2103
2104 #ifdef INET
2105 if (tp->t_inpcb != NULL) {
2106 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2107 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2108 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2109 addin));
2110 }
2111 #endif
2112 #ifdef INET6
2113 if (tp->t_in6pcb != NULL) {
2114 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2115 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2116 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2117 addin));
2118 }
2119 #endif
2120 /* Not possible. */
2121 panic("tcp_new_iss");
2122 }
2123
2124 /*
2125 * This routine actually generates a new TCP initial sequence number.
2126 */
2127 tcp_seq
2128 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2129 size_t addrsz, tcp_seq addin)
2130 {
2131 tcp_seq tcp_iss;
2132
2133 #if NRND > 0
2134 static int beenhere;
2135
2136 /*
2137 * If we haven't been here before, initialize our cryptographic
2138 * hash secret.
2139 */
2140 if (beenhere == 0) {
2141 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2142 RND_EXTRACT_ANY);
2143 beenhere = 1;
2144 }
2145
2146 if (tcp_do_rfc1948) {
2147 MD5_CTX ctx;
2148 u_int8_t hash[16]; /* XXX MD5 knowledge */
2149
2150 /*
2151 * Compute the base value of the ISS. It is a hash
2152 * of (saddr, sport, daddr, dport, secret).
2153 */
2154 MD5Init(&ctx);
2155
2156 MD5Update(&ctx, (u_char *) laddr, addrsz);
2157 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2158
2159 MD5Update(&ctx, (u_char *) faddr, addrsz);
2160 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2161
2162 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2163
2164 MD5Final(hash, &ctx);
2165
2166 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2167
2168 /*
2169 * Now increment our "timer", and add it in to
2170 * the computed value.
2171 *
2172 * XXX Use `addin'?
2173 * XXX TCP_ISSINCR too large to use?
2174 */
2175 tcp_iss_seq += TCP_ISSINCR;
2176 #ifdef TCPISS_DEBUG
2177 printf("ISS hash 0x%08x, ", tcp_iss);
2178 #endif
2179 tcp_iss += tcp_iss_seq + addin;
2180 #ifdef TCPISS_DEBUG
2181 printf("new ISS 0x%08x\n", tcp_iss);
2182 #endif
2183 } else
2184 #endif /* NRND > 0 */
2185 {
2186 /*
2187 * Randomize.
2188 */
2189 #if NRND > 0
2190 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2191 #else
2192 tcp_iss = arc4random();
2193 #endif
2194
2195 /*
2196 * If we were asked to add some amount to a known value,
2197 * we will take a random value obtained above, mask off
2198 * the upper bits, and add in the known value. We also
2199 * add in a constant to ensure that we are at least a
2200 * certain distance from the original value.
2201 *
2202 * This is used when an old connection is in timed wait
2203 * and we have a new one coming in, for instance.
2204 */
2205 if (addin != 0) {
2206 #ifdef TCPISS_DEBUG
2207 printf("Random %08x, ", tcp_iss);
2208 #endif
2209 tcp_iss &= TCP_ISS_RANDOM_MASK;
2210 tcp_iss += addin + TCP_ISSINCR;
2211 #ifdef TCPISS_DEBUG
2212 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2213 #endif
2214 } else {
2215 tcp_iss &= TCP_ISS_RANDOM_MASK;
2216 tcp_iss += tcp_iss_seq;
2217 tcp_iss_seq += TCP_ISSINCR;
2218 #ifdef TCPISS_DEBUG
2219 printf("ISS %08x\n", tcp_iss);
2220 #endif
2221 }
2222 }
2223
2224 if (tcp_compat_42) {
2225 /*
2226 * Limit it to the positive range for really old TCP
2227 * implementations.
2228 * Just AND off the top bit instead of checking if
2229 * is set first - saves a branch 50% of the time.
2230 */
2231 tcp_iss &= 0x7fffffff; /* XXX */
2232 }
2233
2234 return (tcp_iss);
2235 }
2236
2237 #if defined(IPSEC) || defined(FAST_IPSEC)
2238 /* compute ESP/AH header size for TCP, including outer IP header. */
2239 size_t
2240 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2241 {
2242 struct inpcb *inp;
2243 size_t hdrsiz;
2244
2245 /* XXX mapped addr case (tp->t_in6pcb) */
2246 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2247 return 0;
2248 switch (tp->t_family) {
2249 case AF_INET:
2250 /* XXX: should use currect direction. */
2251 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2252 break;
2253 default:
2254 hdrsiz = 0;
2255 break;
2256 }
2257
2258 return hdrsiz;
2259 }
2260
2261 #ifdef INET6
2262 size_t
2263 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2264 {
2265 struct in6pcb *in6p;
2266 size_t hdrsiz;
2267
2268 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2269 return 0;
2270 switch (tp->t_family) {
2271 case AF_INET6:
2272 /* XXX: should use currect direction. */
2273 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2274 break;
2275 case AF_INET:
2276 /* mapped address case - tricky */
2277 default:
2278 hdrsiz = 0;
2279 break;
2280 }
2281
2282 return hdrsiz;
2283 }
2284 #endif
2285 #endif /*IPSEC*/
2286
2287 /*
2288 * Determine the length of the TCP options for this connection.
2289 *
2290 * XXX: What do we do for SACK, when we add that? Just reserve
2291 * all of the space? Otherwise we can't exactly be incrementing
2292 * cwnd by an amount that varies depending on the amount we last
2293 * had to SACK!
2294 */
2295
2296 u_int
2297 tcp_optlen(struct tcpcb *tp)
2298 {
2299 u_int optlen;
2300
2301 optlen = 0;
2302 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2303 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2304 optlen += TCPOLEN_TSTAMP_APPA;
2305
2306 #ifdef TCP_SIGNATURE
2307 if (tp->t_flags & TF_SIGNATURE)
2308 optlen += TCPOLEN_SIGNATURE + 2;
2309 #endif /* TCP_SIGNATURE */
2310
2311 return optlen;
2312 }
2313
2314 u_int
2315 tcp_hdrsz(struct tcpcb *tp)
2316 {
2317 u_int hlen;
2318
2319 switch (tp->t_family) {
2320 #ifdef INET6
2321 case AF_INET6:
2322 hlen = sizeof(struct ip6_hdr);
2323 break;
2324 #endif
2325 case AF_INET:
2326 hlen = sizeof(struct ip);
2327 break;
2328 default:
2329 hlen = 0;
2330 break;
2331 }
2332 hlen += sizeof(struct tcphdr);
2333
2334 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2335 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2336 hlen += TCPOLEN_TSTAMP_APPA;
2337 #ifdef TCP_SIGNATURE
2338 if (tp->t_flags & TF_SIGNATURE)
2339 hlen += TCPOLEN_SIGLEN;
2340 #endif
2341 return hlen;
2342 }
2343