Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.216
      1 /*	$NetBSD: tcp_subr.c,v 1.216 2007/07/09 21:11:12 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.216 2007/07/09 21:11:12 ad Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcp_congctl.h>
    155 #include <netinet/tcpip.h>
    156 
    157 #ifdef IPSEC
    158 #include <netinet6/ipsec.h>
    159 #include <netkey/key.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef FAST_IPSEC
    163 #include <netipsec/ipsec.h>
    164 #include <netipsec/xform.h>
    165 #ifdef INET6
    166 #include <netipsec/ipsec6.h>
    167 #endif
    168  #include <netipsec/key.h>
    169 #endif	/* FAST_IPSEC*/
    170 
    171 
    172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    173 struct	tcpstat tcpstat;	/* tcp statistics */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 /* patchable/settable parameters for tcp */
    177 int 	tcp_mssdflt = TCP_MSS;
    178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    180 #if NRND > 0
    181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    182 #endif
    183 int	tcp_do_sack = 1;	/* selective acknowledgement */
    184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    188 #ifndef TCP_INIT_WIN
    189 #define	TCP_INIT_WIN	0	/* initial slow start window */
    190 #endif
    191 #ifndef TCP_INIT_WIN_LOCAL
    192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    193 #endif
    194 int	tcp_init_win = TCP_INIT_WIN;
    195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    196 int	tcp_mss_ifmtu = 0;
    197 #ifdef TCP_COMPAT_42
    198 int	tcp_compat_42 = 1;
    199 #else
    200 int	tcp_compat_42 = 0;
    201 #endif
    202 int	tcp_rst_ppslim = 100;	/* 100pps */
    203 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    204 int	tcp_do_loopback_cksum = 0;
    205 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    206 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    207 int	tcp_sack_tp_maxholes = 32;
    208 int	tcp_sack_globalmaxholes = 1024;
    209 int	tcp_sack_globalholes = 0;
    210 int	tcp_ecn_maxretries = 1;
    211 
    212 /* tcb hash */
    213 #ifndef TCBHASHSIZE
    214 #define	TCBHASHSIZE	128
    215 #endif
    216 int	tcbhashsize = TCBHASHSIZE;
    217 
    218 /* syn hash parameters */
    219 #define	TCP_SYN_HASH_SIZE	293
    220 #define	TCP_SYN_BUCKET_SIZE	35
    221 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    222 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    223 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    224 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    225 
    226 int	tcp_freeq(struct tcpcb *);
    227 
    228 #ifdef INET
    229 void	tcp_mtudisc_callback(struct in_addr);
    230 #endif
    231 #ifdef INET6
    232 void	tcp6_mtudisc_callback(struct in6_addr *);
    233 #endif
    234 
    235 #ifdef INET6
    236 void	tcp6_mtudisc(struct in6pcb *, int);
    237 #endif
    238 
    239 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
    240     IPL_SOFTNET);
    241 
    242 #ifdef TCP_CSUM_COUNTERS
    243 #include <sys/device.h>
    244 
    245 #if defined(INET)
    246 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "hwcsum bad");
    248 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    249     NULL, "tcp", "hwcsum ok");
    250 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    251     NULL, "tcp", "hwcsum data");
    252 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    253     NULL, "tcp", "swcsum");
    254 
    255 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    256 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    257 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    258 EVCNT_ATTACH_STATIC(tcp_swcsum);
    259 #endif /* defined(INET) */
    260 
    261 #if defined(INET6)
    262 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    263     NULL, "tcp6", "hwcsum bad");
    264 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    265     NULL, "tcp6", "hwcsum ok");
    266 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    267     NULL, "tcp6", "hwcsum data");
    268 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    269     NULL, "tcp6", "swcsum");
    270 
    271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    274 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    275 #endif /* defined(INET6) */
    276 #endif /* TCP_CSUM_COUNTERS */
    277 
    278 
    279 #ifdef TCP_OUTPUT_COUNTERS
    280 #include <sys/device.h>
    281 
    282 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    283     NULL, "tcp", "output big header");
    284 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    285     NULL, "tcp", "output predict hit");
    286 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    287     NULL, "tcp", "output predict miss");
    288 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    289     NULL, "tcp", "output copy small");
    290 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    291     NULL, "tcp", "output copy big");
    292 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    293     NULL, "tcp", "output reference big");
    294 
    295 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    296 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    297 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    298 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    299 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    300 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    301 
    302 #endif /* TCP_OUTPUT_COUNTERS */
    303 
    304 #ifdef TCP_REASS_COUNTERS
    305 #include <sys/device.h>
    306 
    307 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    308     NULL, "tcp_reass", "calls");
    309 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    310     &tcp_reass_, "tcp_reass", "insert into empty queue");
    311 struct evcnt tcp_reass_iteration[8] = {
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    320 };
    321 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    322     &tcp_reass_, "tcp_reass", "prepend to first");
    323 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    324     &tcp_reass_, "tcp_reass", "prepend");
    325 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    326     &tcp_reass_, "tcp_reass", "insert");
    327 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    328     &tcp_reass_, "tcp_reass", "insert at tail");
    329 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    330     &tcp_reass_, "tcp_reass", "append");
    331 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    332     &tcp_reass_, "tcp_reass", "append to tail fragment");
    333 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    334     &tcp_reass_, "tcp_reass", "overlap at end");
    335 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    336     &tcp_reass_, "tcp_reass", "overlap at start");
    337 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    338     &tcp_reass_, "tcp_reass", "duplicate segment");
    339 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    340     &tcp_reass_, "tcp_reass", "duplicate fragment");
    341 
    342 EVCNT_ATTACH_STATIC(tcp_reass_);
    343 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    352 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    353 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    354 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    355 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    356 EVCNT_ATTACH_STATIC(tcp_reass_append);
    357 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    358 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    359 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    360 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    361 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    362 
    363 #endif /* TCP_REASS_COUNTERS */
    364 
    365 #ifdef MBUFTRACE
    366 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    367 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    368 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    369 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
    370 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
    371 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
    372 #endif
    373 
    374 /*
    375  * Tcp initialization
    376  */
    377 void
    378 tcp_init(void)
    379 {
    380 	int hlen;
    381 
    382 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    383 
    384 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    385 #ifdef INET6
    386 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    387 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    388 #endif
    389 	if (max_protohdr < hlen)
    390 		max_protohdr = hlen;
    391 	if (max_linkhdr + hlen > MHLEN)
    392 		panic("tcp_init");
    393 
    394 #ifdef INET
    395 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    396 #endif
    397 #ifdef INET6
    398 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    399 #endif
    400 
    401 	/* Initialize timer state. */
    402 	tcp_timer_init();
    403 
    404 	/* Initialize the compressed state engine. */
    405 	syn_cache_init();
    406 
    407 	/* Initialize the congestion control algorithms. */
    408 	tcp_congctl_init();
    409 
    410 	/* Initialize the TCPCB template. */
    411 	tcp_tcpcb_template();
    412 
    413 	MOWNER_ATTACH(&tcp_tx_mowner);
    414 	MOWNER_ATTACH(&tcp_rx_mowner);
    415 	MOWNER_ATTACH(&tcp_reass_mowner);
    416 	MOWNER_ATTACH(&tcp_sock_mowner);
    417 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
    418 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
    419 	MOWNER_ATTACH(&tcp_mowner);
    420 }
    421 
    422 /*
    423  * Create template to be used to send tcp packets on a connection.
    424  * Call after host entry created, allocates an mbuf and fills
    425  * in a skeletal tcp/ip header, minimizing the amount of work
    426  * necessary when the connection is used.
    427  */
    428 struct mbuf *
    429 tcp_template(struct tcpcb *tp)
    430 {
    431 	struct inpcb *inp = tp->t_inpcb;
    432 #ifdef INET6
    433 	struct in6pcb *in6p = tp->t_in6pcb;
    434 #endif
    435 	struct tcphdr *n;
    436 	struct mbuf *m;
    437 	int hlen;
    438 
    439 	switch (tp->t_family) {
    440 	case AF_INET:
    441 		hlen = sizeof(struct ip);
    442 		if (inp)
    443 			break;
    444 #ifdef INET6
    445 		if (in6p) {
    446 			/* mapped addr case */
    447 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    448 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    449 				break;
    450 		}
    451 #endif
    452 		return NULL;	/*EINVAL*/
    453 #ifdef INET6
    454 	case AF_INET6:
    455 		hlen = sizeof(struct ip6_hdr);
    456 		if (in6p) {
    457 			/* more sainty check? */
    458 			break;
    459 		}
    460 		return NULL;	/*EINVAL*/
    461 #endif
    462 	default:
    463 		hlen = 0;	/*pacify gcc*/
    464 		return NULL;	/*EAFNOSUPPORT*/
    465 	}
    466 #ifdef DIAGNOSTIC
    467 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    468 		panic("mclbytes too small for t_template");
    469 #endif
    470 	m = tp->t_template;
    471 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    472 		;
    473 	else {
    474 		if (m)
    475 			m_freem(m);
    476 		m = tp->t_template = NULL;
    477 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    478 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    479 			MCLGET(m, M_DONTWAIT);
    480 			if ((m->m_flags & M_EXT) == 0) {
    481 				m_free(m);
    482 				m = NULL;
    483 			}
    484 		}
    485 		if (m == NULL)
    486 			return NULL;
    487 		MCLAIM(m, &tcp_mowner);
    488 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    489 	}
    490 
    491 	bzero(mtod(m, void *), m->m_len);
    492 
    493 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
    494 
    495 	switch (tp->t_family) {
    496 	case AF_INET:
    497 	    {
    498 		struct ipovly *ipov;
    499 		mtod(m, struct ip *)->ip_v = 4;
    500 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    501 		ipov = mtod(m, struct ipovly *);
    502 		ipov->ih_pr = IPPROTO_TCP;
    503 		ipov->ih_len = htons(sizeof(struct tcphdr));
    504 		if (inp) {
    505 			ipov->ih_src = inp->inp_laddr;
    506 			ipov->ih_dst = inp->inp_faddr;
    507 		}
    508 #ifdef INET6
    509 		else if (in6p) {
    510 			/* mapped addr case */
    511 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    512 				sizeof(ipov->ih_src));
    513 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    514 				sizeof(ipov->ih_dst));
    515 		}
    516 #endif
    517 		/*
    518 		 * Compute the pseudo-header portion of the checksum
    519 		 * now.  We incrementally add in the TCP option and
    520 		 * payload lengths later, and then compute the TCP
    521 		 * checksum right before the packet is sent off onto
    522 		 * the wire.
    523 		 */
    524 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    525 		    ipov->ih_dst.s_addr,
    526 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    527 		break;
    528 	    }
    529 #ifdef INET6
    530 	case AF_INET6:
    531 	    {
    532 		struct ip6_hdr *ip6;
    533 		mtod(m, struct ip *)->ip_v = 6;
    534 		ip6 = mtod(m, struct ip6_hdr *);
    535 		ip6->ip6_nxt = IPPROTO_TCP;
    536 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    537 		ip6->ip6_src = in6p->in6p_laddr;
    538 		ip6->ip6_dst = in6p->in6p_faddr;
    539 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    540 		if (ip6_auto_flowlabel) {
    541 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    542 			ip6->ip6_flow |=
    543 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    544 		}
    545 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    546 		ip6->ip6_vfc |= IPV6_VERSION;
    547 
    548 		/*
    549 		 * Compute the pseudo-header portion of the checksum
    550 		 * now.  We incrementally add in the TCP option and
    551 		 * payload lengths later, and then compute the TCP
    552 		 * checksum right before the packet is sent off onto
    553 		 * the wire.
    554 		 */
    555 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    556 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    557 		    htonl(IPPROTO_TCP));
    558 		break;
    559 	    }
    560 #endif
    561 	}
    562 	if (inp) {
    563 		n->th_sport = inp->inp_lport;
    564 		n->th_dport = inp->inp_fport;
    565 	}
    566 #ifdef INET6
    567 	else if (in6p) {
    568 		n->th_sport = in6p->in6p_lport;
    569 		n->th_dport = in6p->in6p_fport;
    570 	}
    571 #endif
    572 	n->th_seq = 0;
    573 	n->th_ack = 0;
    574 	n->th_x2 = 0;
    575 	n->th_off = 5;
    576 	n->th_flags = 0;
    577 	n->th_win = 0;
    578 	n->th_urp = 0;
    579 	return (m);
    580 }
    581 
    582 /*
    583  * Send a single message to the TCP at address specified by
    584  * the given TCP/IP header.  If m == 0, then we make a copy
    585  * of the tcpiphdr at ti and send directly to the addressed host.
    586  * This is used to force keep alive messages out using the TCP
    587  * template for a connection tp->t_template.  If flags are given
    588  * then we send a message back to the TCP which originated the
    589  * segment ti, and discard the mbuf containing it and any other
    590  * attached mbufs.
    591  *
    592  * In any case the ack and sequence number of the transmitted
    593  * segment are as specified by the parameters.
    594  */
    595 int
    596 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    597     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    598 {
    599 	struct route *ro;
    600 	int error, tlen, win = 0;
    601 	int hlen;
    602 	struct ip *ip;
    603 #ifdef INET6
    604 	struct ip6_hdr *ip6;
    605 #endif
    606 	int family;	/* family on packet, not inpcb/in6pcb! */
    607 	struct tcphdr *th;
    608 	struct socket *so;
    609 
    610 	if (tp != NULL && (flags & TH_RST) == 0) {
    611 #ifdef DIAGNOSTIC
    612 		if (tp->t_inpcb && tp->t_in6pcb)
    613 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    614 #endif
    615 #ifdef INET
    616 		if (tp->t_inpcb)
    617 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    618 #endif
    619 #ifdef INET6
    620 		if (tp->t_in6pcb)
    621 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    622 #endif
    623 	}
    624 
    625 	th = NULL;	/* Quell uninitialized warning */
    626 	ip = NULL;
    627 #ifdef INET6
    628 	ip6 = NULL;
    629 #endif
    630 	if (m == 0) {
    631 		if (!template)
    632 			return EINVAL;
    633 
    634 		/* get family information from template */
    635 		switch (mtod(template, struct ip *)->ip_v) {
    636 		case 4:
    637 			family = AF_INET;
    638 			hlen = sizeof(struct ip);
    639 			break;
    640 #ifdef INET6
    641 		case 6:
    642 			family = AF_INET6;
    643 			hlen = sizeof(struct ip6_hdr);
    644 			break;
    645 #endif
    646 		default:
    647 			return EAFNOSUPPORT;
    648 		}
    649 
    650 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    651 		if (m) {
    652 			MCLAIM(m, &tcp_tx_mowner);
    653 			MCLGET(m, M_DONTWAIT);
    654 			if ((m->m_flags & M_EXT) == 0) {
    655 				m_free(m);
    656 				m = NULL;
    657 			}
    658 		}
    659 		if (m == NULL)
    660 			return (ENOBUFS);
    661 
    662 		if (tcp_compat_42)
    663 			tlen = 1;
    664 		else
    665 			tlen = 0;
    666 
    667 		m->m_data += max_linkhdr;
    668 		bcopy(mtod(template, void *), mtod(m, void *),
    669 			template->m_len);
    670 		switch (family) {
    671 		case AF_INET:
    672 			ip = mtod(m, struct ip *);
    673 			th = (struct tcphdr *)(ip + 1);
    674 			break;
    675 #ifdef INET6
    676 		case AF_INET6:
    677 			ip6 = mtod(m, struct ip6_hdr *);
    678 			th = (struct tcphdr *)(ip6 + 1);
    679 			break;
    680 #endif
    681 #if 0
    682 		default:
    683 			/* noone will visit here */
    684 			m_freem(m);
    685 			return EAFNOSUPPORT;
    686 #endif
    687 		}
    688 		flags = TH_ACK;
    689 	} else {
    690 
    691 		if ((m->m_flags & M_PKTHDR) == 0) {
    692 #if 0
    693 			printf("non PKTHDR to tcp_respond\n");
    694 #endif
    695 			m_freem(m);
    696 			return EINVAL;
    697 		}
    698 #ifdef DIAGNOSTIC
    699 		if (!th0)
    700 			panic("th0 == NULL in tcp_respond");
    701 #endif
    702 
    703 		/* get family information from m */
    704 		switch (mtod(m, struct ip *)->ip_v) {
    705 		case 4:
    706 			family = AF_INET;
    707 			hlen = sizeof(struct ip);
    708 			ip = mtod(m, struct ip *);
    709 			break;
    710 #ifdef INET6
    711 		case 6:
    712 			family = AF_INET6;
    713 			hlen = sizeof(struct ip6_hdr);
    714 			ip6 = mtod(m, struct ip6_hdr *);
    715 			break;
    716 #endif
    717 		default:
    718 			m_freem(m);
    719 			return EAFNOSUPPORT;
    720 		}
    721 		/* clear h/w csum flags inherited from rx packet */
    722 		m->m_pkthdr.csum_flags = 0;
    723 
    724 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    725 			tlen = sizeof(*th0);
    726 		else
    727 			tlen = th0->th_off << 2;
    728 
    729 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    730 		    mtod(m, char *) + hlen == (char *)th0) {
    731 			m->m_len = hlen + tlen;
    732 			m_freem(m->m_next);
    733 			m->m_next = NULL;
    734 		} else {
    735 			struct mbuf *n;
    736 
    737 #ifdef DIAGNOSTIC
    738 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    739 				m_freem(m);
    740 				return EMSGSIZE;
    741 			}
    742 #endif
    743 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    744 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    745 				MCLGET(n, M_DONTWAIT);
    746 				if ((n->m_flags & M_EXT) == 0) {
    747 					m_freem(n);
    748 					n = NULL;
    749 				}
    750 			}
    751 			if (!n) {
    752 				m_freem(m);
    753 				return ENOBUFS;
    754 			}
    755 
    756 			MCLAIM(n, &tcp_tx_mowner);
    757 			n->m_data += max_linkhdr;
    758 			n->m_len = hlen + tlen;
    759 			m_copyback(n, 0, hlen, mtod(m, void *));
    760 			m_copyback(n, hlen, tlen, (void *)th0);
    761 
    762 			m_freem(m);
    763 			m = n;
    764 			n = NULL;
    765 		}
    766 
    767 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    768 		switch (family) {
    769 		case AF_INET:
    770 			ip = mtod(m, struct ip *);
    771 			th = (struct tcphdr *)(ip + 1);
    772 			ip->ip_p = IPPROTO_TCP;
    773 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    774 			ip->ip_p = IPPROTO_TCP;
    775 			break;
    776 #ifdef INET6
    777 		case AF_INET6:
    778 			ip6 = mtod(m, struct ip6_hdr *);
    779 			th = (struct tcphdr *)(ip6 + 1);
    780 			ip6->ip6_nxt = IPPROTO_TCP;
    781 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    782 			ip6->ip6_nxt = IPPROTO_TCP;
    783 			break;
    784 #endif
    785 #if 0
    786 		default:
    787 			/* noone will visit here */
    788 			m_freem(m);
    789 			return EAFNOSUPPORT;
    790 #endif
    791 		}
    792 		xchg(th->th_dport, th->th_sport, u_int16_t);
    793 #undef xchg
    794 		tlen = 0;	/*be friendly with the following code*/
    795 	}
    796 	th->th_seq = htonl(seq);
    797 	th->th_ack = htonl(ack);
    798 	th->th_x2 = 0;
    799 	if ((flags & TH_SYN) == 0) {
    800 		if (tp)
    801 			win >>= tp->rcv_scale;
    802 		if (win > TCP_MAXWIN)
    803 			win = TCP_MAXWIN;
    804 		th->th_win = htons((u_int16_t)win);
    805 		th->th_off = sizeof (struct tcphdr) >> 2;
    806 		tlen += sizeof(*th);
    807 	} else
    808 		tlen += th->th_off << 2;
    809 	m->m_len = hlen + tlen;
    810 	m->m_pkthdr.len = hlen + tlen;
    811 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    812 	th->th_flags = flags;
    813 	th->th_urp = 0;
    814 
    815 	switch (family) {
    816 #ifdef INET
    817 	case AF_INET:
    818 	    {
    819 		struct ipovly *ipov = (struct ipovly *)ip;
    820 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    821 		ipov->ih_len = htons((u_int16_t)tlen);
    822 
    823 		th->th_sum = 0;
    824 		th->th_sum = in_cksum(m, hlen + tlen);
    825 		ip->ip_len = htons(hlen + tlen);
    826 		ip->ip_ttl = ip_defttl;
    827 		break;
    828 	    }
    829 #endif
    830 #ifdef INET6
    831 	case AF_INET6:
    832 	    {
    833 		th->th_sum = 0;
    834 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    835 				tlen);
    836 		ip6->ip6_plen = htons(tlen);
    837 		if (tp && tp->t_in6pcb) {
    838 			struct ifnet *oifp;
    839 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    840 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    841 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    842 		} else
    843 			ip6->ip6_hlim = ip6_defhlim;
    844 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    845 		if (ip6_auto_flowlabel) {
    846 			ip6->ip6_flow |=
    847 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    848 		}
    849 		break;
    850 	    }
    851 #endif
    852 	}
    853 
    854 	if (tp && tp->t_inpcb)
    855 		so = tp->t_inpcb->inp_socket;
    856 #ifdef INET6
    857 	else if (tp && tp->t_in6pcb)
    858 		so = tp->t_in6pcb->in6p_socket;
    859 #endif
    860 	else
    861 		so = NULL;
    862 
    863 	if (tp != NULL && tp->t_inpcb != NULL) {
    864 		ro = &tp->t_inpcb->inp_route;
    865 #ifdef DIAGNOSTIC
    866 		if (family != AF_INET)
    867 			panic("tcp_respond: address family mismatch");
    868 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    869 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    870 			    ntohl(ip->ip_dst.s_addr),
    871 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    872 		}
    873 #endif
    874 	}
    875 #ifdef INET6
    876 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    877 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    878 #ifdef DIAGNOSTIC
    879 		if (family == AF_INET) {
    880 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    881 				panic("tcp_respond: not mapped addr");
    882 			if (bcmp(&ip->ip_dst,
    883 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    884 			    sizeof(ip->ip_dst)) != 0) {
    885 				panic("tcp_respond: ip_dst != in6p_faddr");
    886 			}
    887 		} else if (family == AF_INET6) {
    888 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    889 			    &tp->t_in6pcb->in6p_faddr))
    890 				panic("tcp_respond: ip6_dst != in6p_faddr");
    891 		} else
    892 			panic("tcp_respond: address family mismatch");
    893 #endif
    894 	}
    895 #endif
    896 	else
    897 		ro = NULL;
    898 
    899 	switch (family) {
    900 #ifdef INET
    901 	case AF_INET:
    902 		error = ip_output(m, NULL, ro,
    903 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    904 		    (struct ip_moptions *)0, so);
    905 		break;
    906 #endif
    907 #ifdef INET6
    908 	case AF_INET6:
    909 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
    910 		break;
    911 #endif
    912 	default:
    913 		error = EAFNOSUPPORT;
    914 		break;
    915 	}
    916 
    917 	return (error);
    918 }
    919 
    920 /*
    921  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    922  * a bunch of members individually, we maintain this template for the
    923  * static and mostly-static components of the TCPCB, and copy it into
    924  * the new TCPCB instead.
    925  */
    926 static struct tcpcb tcpcb_template = {
    927 	.t_srtt = TCPTV_SRTTBASE,
    928 	.t_rttmin = TCPTV_MIN,
    929 
    930 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    931 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    932 	.snd_numholes = 0,
    933 
    934 	.t_partialacks = -1,
    935 	.t_bytes_acked = 0,
    936 };
    937 
    938 /*
    939  * Updates the TCPCB template whenever a parameter that would affect
    940  * the template is changed.
    941  */
    942 void
    943 tcp_tcpcb_template(void)
    944 {
    945 	struct tcpcb *tp = &tcpcb_template;
    946 	int flags;
    947 
    948 	tp->t_peermss = tcp_mssdflt;
    949 	tp->t_ourmss = tcp_mssdflt;
    950 	tp->t_segsz = tcp_mssdflt;
    951 
    952 	flags = 0;
    953 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    954 		flags |= TF_REQ_SCALE;
    955 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    956 		flags |= TF_REQ_TSTMP;
    957 	tp->t_flags = flags;
    958 
    959 	/*
    960 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    961 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    962 	 * reasonable initial retransmit time.
    963 	 */
    964 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    965 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    966 	    TCPTV_MIN, TCPTV_REXMTMAX);
    967 
    968 	/* Keep Alive */
    969 	tp->t_keepinit = tcp_keepinit;
    970 	tp->t_keepidle = tcp_keepidle;
    971 	tp->t_keepintvl = tcp_keepintvl;
    972 	tp->t_keepcnt = tcp_keepcnt;
    973 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
    974 }
    975 
    976 /*
    977  * Create a new TCP control block, making an
    978  * empty reassembly queue and hooking it to the argument
    979  * protocol control block.
    980  */
    981 /* family selects inpcb, or in6pcb */
    982 struct tcpcb *
    983 tcp_newtcpcb(int family, void *aux)
    984 {
    985 	struct tcpcb *tp;
    986 	int i;
    987 
    988 	/* XXX Consider using a pool_cache for speed. */
    989 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
    990 	if (tp == NULL)
    991 		return (NULL);
    992 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    993 	TAILQ_INIT(&tp->segq);
    994 	TAILQ_INIT(&tp->timeq);
    995 	tp->t_family = family;		/* may be overridden later on */
    996 	TAILQ_INIT(&tp->snd_holes);
    997 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    998 
    999 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
   1000 	for (i = 0; i < TCPT_NTIMERS; i++) {
   1001 		callout_init(&tp->t_timer[i], 0);
   1002 		TCP_TIMER_INIT(tp, i);
   1003 	}
   1004 	callout_init(&tp->t_delack_ch, 0);
   1005 
   1006 	switch (family) {
   1007 	case AF_INET:
   1008 	    {
   1009 		struct inpcb *inp = (struct inpcb *)aux;
   1010 
   1011 		inp->inp_ip.ip_ttl = ip_defttl;
   1012 		inp->inp_ppcb = (void *)tp;
   1013 
   1014 		tp->t_inpcb = inp;
   1015 		tp->t_mtudisc = ip_mtudisc;
   1016 		break;
   1017 	    }
   1018 #ifdef INET6
   1019 	case AF_INET6:
   1020 	    {
   1021 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1022 
   1023 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1024 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
   1025 					       : NULL);
   1026 		in6p->in6p_ppcb = (void *)tp;
   1027 
   1028 		tp->t_in6pcb = in6p;
   1029 		/* for IPv6, always try to run path MTU discovery */
   1030 		tp->t_mtudisc = 1;
   1031 		break;
   1032 	    }
   1033 #endif /* INET6 */
   1034 	default:
   1035 		for (i = 0; i < TCPT_NTIMERS; i++)
   1036 			callout_destroy(&tp->t_timer[i]);
   1037 		callout_destroy(&tp->t_delack_ch);
   1038 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1039 		return (NULL);
   1040 	}
   1041 
   1042 	/*
   1043 	 * Initialize our timebase.  When we send timestamps, we take
   1044 	 * the delta from tcp_now -- this means each connection always
   1045 	 * gets a timebase of 0, which makes it, among other things,
   1046 	 * more difficult to determine how long a system has been up,
   1047 	 * and thus how many TCP sequence increments have occurred.
   1048 	 */
   1049 	tp->ts_timebase = tcp_now;
   1050 
   1051 	tp->t_congctl = tcp_congctl_global;
   1052 	tp->t_congctl->refcnt++;
   1053 
   1054 	return (tp);
   1055 }
   1056 
   1057 /*
   1058  * Drop a TCP connection, reporting
   1059  * the specified error.  If connection is synchronized,
   1060  * then send a RST to peer.
   1061  */
   1062 struct tcpcb *
   1063 tcp_drop(struct tcpcb *tp, int errno)
   1064 {
   1065 	struct socket *so = NULL;
   1066 
   1067 #ifdef DIAGNOSTIC
   1068 	if (tp->t_inpcb && tp->t_in6pcb)
   1069 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1070 #endif
   1071 #ifdef INET
   1072 	if (tp->t_inpcb)
   1073 		so = tp->t_inpcb->inp_socket;
   1074 #endif
   1075 #ifdef INET6
   1076 	if (tp->t_in6pcb)
   1077 		so = tp->t_in6pcb->in6p_socket;
   1078 #endif
   1079 	if (!so)
   1080 		return NULL;
   1081 
   1082 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1083 		tp->t_state = TCPS_CLOSED;
   1084 		(void) tcp_output(tp);
   1085 		tcpstat.tcps_drops++;
   1086 	} else
   1087 		tcpstat.tcps_conndrops++;
   1088 	if (errno == ETIMEDOUT && tp->t_softerror)
   1089 		errno = tp->t_softerror;
   1090 	so->so_error = errno;
   1091 	return (tcp_close(tp));
   1092 }
   1093 
   1094 /*
   1095  * Return whether this tcpcb is marked as dead, indicating
   1096  * to the calling timer function that no further action should
   1097  * be taken, as we are about to release this tcpcb.  The release
   1098  * of the storage will be done if this is the last timer running.
   1099  *
   1100  * This should be called from the callout handler function after
   1101  * callout_ack() is done, so that the number of invoking timer
   1102  * functions is 0.
   1103  */
   1104 int
   1105 tcp_isdead(struct tcpcb *tp)
   1106 {
   1107 	int i, dead = (tp->t_flags & TF_DEAD);
   1108 
   1109 	if (__predict_false(dead)) {
   1110 		if (tcp_timers_invoking(tp) > 0)
   1111 				/* not quite there yet -- count separately? */
   1112 			return dead;
   1113 		tcpstat.tcps_delayed_free++;
   1114 		for (i = 0; i < TCPT_NTIMERS; i++)
   1115 			callout_destroy(&tp->t_timer[i]);
   1116 		callout_destroy(&tp->t_delack_ch);
   1117 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
   1118 	}
   1119 	return dead;
   1120 }
   1121 
   1122 /*
   1123  * Close a TCP control block:
   1124  *	discard all space held by the tcp
   1125  *	discard internet protocol block
   1126  *	wake up any sleepers
   1127  */
   1128 struct tcpcb *
   1129 tcp_close(struct tcpcb *tp)
   1130 {
   1131 	struct inpcb *inp;
   1132 #ifdef INET6
   1133 	struct in6pcb *in6p;
   1134 #endif
   1135 	struct socket *so;
   1136 #ifdef RTV_RTT
   1137 	struct rtentry *rt;
   1138 #endif
   1139 	struct route *ro;
   1140 	int j;
   1141 
   1142 	inp = tp->t_inpcb;
   1143 #ifdef INET6
   1144 	in6p = tp->t_in6pcb;
   1145 #endif
   1146 	so = NULL;
   1147 	ro = NULL;
   1148 	if (inp) {
   1149 		so = inp->inp_socket;
   1150 		ro = &inp->inp_route;
   1151 	}
   1152 #ifdef INET6
   1153 	else if (in6p) {
   1154 		so = in6p->in6p_socket;
   1155 		ro = (struct route *)&in6p->in6p_route;
   1156 	}
   1157 #endif
   1158 
   1159 #ifdef RTV_RTT
   1160 	/*
   1161 	 * If we sent enough data to get some meaningful characteristics,
   1162 	 * save them in the routing entry.  'Enough' is arbitrarily
   1163 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1164 	 * give us 16 rtt samples assuming we only get one sample per
   1165 	 * window (the usual case on a long haul net).  16 samples is
   1166 	 * enough for the srtt filter to converge to within 5% of the correct
   1167 	 * value; fewer samples and we could save a very bogus rtt.
   1168 	 *
   1169 	 * Don't update the default route's characteristics and don't
   1170 	 * update anything that the user "locked".
   1171 	 */
   1172 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1173 	    ro && (rt = ro->ro_rt) &&
   1174 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1175 		u_long i = 0;
   1176 
   1177 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1178 			i = tp->t_srtt *
   1179 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1180 			if (rt->rt_rmx.rmx_rtt && i)
   1181 				/*
   1182 				 * filter this update to half the old & half
   1183 				 * the new values, converting scale.
   1184 				 * See route.h and tcp_var.h for a
   1185 				 * description of the scaling constants.
   1186 				 */
   1187 				rt->rt_rmx.rmx_rtt =
   1188 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1189 			else
   1190 				rt->rt_rmx.rmx_rtt = i;
   1191 		}
   1192 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1193 			i = tp->t_rttvar *
   1194 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1195 			if (rt->rt_rmx.rmx_rttvar && i)
   1196 				rt->rt_rmx.rmx_rttvar =
   1197 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1198 			else
   1199 				rt->rt_rmx.rmx_rttvar = i;
   1200 		}
   1201 		/*
   1202 		 * update the pipelimit (ssthresh) if it has been updated
   1203 		 * already or if a pipesize was specified & the threshhold
   1204 		 * got below half the pipesize.  I.e., wait for bad news
   1205 		 * before we start updating, then update on both good
   1206 		 * and bad news.
   1207 		 */
   1208 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1209 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1210 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1211 			/*
   1212 			 * convert the limit from user data bytes to
   1213 			 * packets then to packet data bytes.
   1214 			 */
   1215 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1216 			if (i < 2)
   1217 				i = 2;
   1218 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1219 			if (rt->rt_rmx.rmx_ssthresh)
   1220 				rt->rt_rmx.rmx_ssthresh =
   1221 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1222 			else
   1223 				rt->rt_rmx.rmx_ssthresh = i;
   1224 		}
   1225 	}
   1226 #endif /* RTV_RTT */
   1227 	/* free the reassembly queue, if any */
   1228 	TCP_REASS_LOCK(tp);
   1229 	(void) tcp_freeq(tp);
   1230 	TCP_REASS_UNLOCK(tp);
   1231 
   1232 	/* free the SACK holes list. */
   1233 	tcp_free_sackholes(tp);
   1234 
   1235 	tp->t_congctl->refcnt--;
   1236 
   1237 	tcp_canceltimers(tp);
   1238 	TCP_CLEAR_DELACK(tp);
   1239 	syn_cache_cleanup(tp);
   1240 
   1241 	if (tp->t_template) {
   1242 		m_free(tp->t_template);
   1243 		tp->t_template = NULL;
   1244 	}
   1245 	if (tcp_timers_invoking(tp))
   1246 		tp->t_flags |= TF_DEAD;
   1247 	else {
   1248 		for (j = 0; j < TCPT_NTIMERS; j++)
   1249 			callout_destroy(&tp->t_timer[j]);
   1250 		callout_destroy(&tp->t_delack_ch);
   1251 		pool_put(&tcpcb_pool, tp);
   1252 	}
   1253 
   1254 	if (inp) {
   1255 		inp->inp_ppcb = 0;
   1256 		soisdisconnected(so);
   1257 		in_pcbdetach(inp);
   1258 	}
   1259 #ifdef INET6
   1260 	else if (in6p) {
   1261 		in6p->in6p_ppcb = 0;
   1262 		soisdisconnected(so);
   1263 		in6_pcbdetach(in6p);
   1264 	}
   1265 #endif
   1266 	tcpstat.tcps_closed++;
   1267 	return ((struct tcpcb *)0);
   1268 }
   1269 
   1270 int
   1271 tcp_freeq(tp)
   1272 	struct tcpcb *tp;
   1273 {
   1274 	struct ipqent *qe;
   1275 	int rv = 0;
   1276 #ifdef TCPREASS_DEBUG
   1277 	int i = 0;
   1278 #endif
   1279 
   1280 	TCP_REASS_LOCK_CHECK(tp);
   1281 
   1282 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1283 #ifdef TCPREASS_DEBUG
   1284 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1285 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1286 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1287 #endif
   1288 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1289 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1290 		m_freem(qe->ipqe_m);
   1291 		tcpipqent_free(qe);
   1292 		rv = 1;
   1293 	}
   1294 	tp->t_segqlen = 0;
   1295 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1296 	return (rv);
   1297 }
   1298 
   1299 /*
   1300  * Protocol drain routine.  Called when memory is in short supply.
   1301  */
   1302 void
   1303 tcp_drain(void)
   1304 {
   1305 	struct inpcb_hdr *inph;
   1306 	struct tcpcb *tp;
   1307 
   1308 	/*
   1309 	 * Free the sequence queue of all TCP connections.
   1310 	 */
   1311 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1312 		switch (inph->inph_af) {
   1313 		case AF_INET:
   1314 			tp = intotcpcb((struct inpcb *)inph);
   1315 			break;
   1316 #ifdef INET6
   1317 		case AF_INET6:
   1318 			tp = in6totcpcb((struct in6pcb *)inph);
   1319 			break;
   1320 #endif
   1321 		default:
   1322 			tp = NULL;
   1323 			break;
   1324 		}
   1325 		if (tp != NULL) {
   1326 			/*
   1327 			 * We may be called from a device's interrupt
   1328 			 * context.  If the tcpcb is already busy,
   1329 			 * just bail out now.
   1330 			 */
   1331 			if (tcp_reass_lock_try(tp) == 0)
   1332 				continue;
   1333 			if (tcp_freeq(tp))
   1334 				tcpstat.tcps_connsdrained++;
   1335 			TCP_REASS_UNLOCK(tp);
   1336 		}
   1337 	}
   1338 }
   1339 
   1340 /*
   1341  * Notify a tcp user of an asynchronous error;
   1342  * store error as soft error, but wake up user
   1343  * (for now, won't do anything until can select for soft error).
   1344  */
   1345 void
   1346 tcp_notify(struct inpcb *inp, int error)
   1347 {
   1348 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1349 	struct socket *so = inp->inp_socket;
   1350 
   1351 	/*
   1352 	 * Ignore some errors if we are hooked up.
   1353 	 * If connection hasn't completed, has retransmitted several times,
   1354 	 * and receives a second error, give up now.  This is better
   1355 	 * than waiting a long time to establish a connection that
   1356 	 * can never complete.
   1357 	 */
   1358 	if (tp->t_state == TCPS_ESTABLISHED &&
   1359 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1360 	      error == EHOSTDOWN)) {
   1361 		return;
   1362 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1363 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1364 		so->so_error = error;
   1365 	else
   1366 		tp->t_softerror = error;
   1367 	wakeup((void *) &so->so_timeo);
   1368 	sorwakeup(so);
   1369 	sowwakeup(so);
   1370 }
   1371 
   1372 #ifdef INET6
   1373 void
   1374 tcp6_notify(struct in6pcb *in6p, int error)
   1375 {
   1376 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1377 	struct socket *so = in6p->in6p_socket;
   1378 
   1379 	/*
   1380 	 * Ignore some errors if we are hooked up.
   1381 	 * If connection hasn't completed, has retransmitted several times,
   1382 	 * and receives a second error, give up now.  This is better
   1383 	 * than waiting a long time to establish a connection that
   1384 	 * can never complete.
   1385 	 */
   1386 	if (tp->t_state == TCPS_ESTABLISHED &&
   1387 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1388 	      error == EHOSTDOWN)) {
   1389 		return;
   1390 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1391 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1392 		so->so_error = error;
   1393 	else
   1394 		tp->t_softerror = error;
   1395 	wakeup((void *) &so->so_timeo);
   1396 	sorwakeup(so);
   1397 	sowwakeup(so);
   1398 }
   1399 #endif
   1400 
   1401 #ifdef INET6
   1402 void
   1403 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
   1404 {
   1405 	struct tcphdr th;
   1406 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1407 	int nmatch;
   1408 	struct ip6_hdr *ip6;
   1409 	const struct sockaddr_in6 *sa6_src = NULL;
   1410 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
   1411 	struct mbuf *m;
   1412 	int off;
   1413 
   1414 	if (sa->sa_family != AF_INET6 ||
   1415 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1416 		return;
   1417 	if ((unsigned)cmd >= PRC_NCMDS)
   1418 		return;
   1419 	else if (cmd == PRC_QUENCH) {
   1420 		/*
   1421 		 * Don't honor ICMP Source Quench messages meant for
   1422 		 * TCP connections.
   1423 		 */
   1424 		return;
   1425 	} else if (PRC_IS_REDIRECT(cmd))
   1426 		notify = in6_rtchange, d = NULL;
   1427 	else if (cmd == PRC_MSGSIZE)
   1428 		; /* special code is present, see below */
   1429 	else if (cmd == PRC_HOSTDEAD)
   1430 		d = NULL;
   1431 	else if (inet6ctlerrmap[cmd] == 0)
   1432 		return;
   1433 
   1434 	/* if the parameter is from icmp6, decode it. */
   1435 	if (d != NULL) {
   1436 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1437 		m = ip6cp->ip6c_m;
   1438 		ip6 = ip6cp->ip6c_ip6;
   1439 		off = ip6cp->ip6c_off;
   1440 		sa6_src = ip6cp->ip6c_src;
   1441 	} else {
   1442 		m = NULL;
   1443 		ip6 = NULL;
   1444 		sa6_src = &sa6_any;
   1445 		off = 0;
   1446 	}
   1447 
   1448 	if (ip6) {
   1449 		/*
   1450 		 * XXX: We assume that when ip6 is non NULL,
   1451 		 * M and OFF are valid.
   1452 		 */
   1453 
   1454 		/* check if we can safely examine src and dst ports */
   1455 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1456 			if (cmd == PRC_MSGSIZE)
   1457 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1458 			return;
   1459 		}
   1460 
   1461 		bzero(&th, sizeof(th));
   1462 		m_copydata(m, off, sizeof(th), (void *)&th);
   1463 
   1464 		if (cmd == PRC_MSGSIZE) {
   1465 			int valid = 0;
   1466 
   1467 			/*
   1468 			 * Check to see if we have a valid TCP connection
   1469 			 * corresponding to the address in the ICMPv6 message
   1470 			 * payload.
   1471 			 */
   1472 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1473 			    th.th_dport,
   1474 			    (const struct in6_addr *)&sa6_src->sin6_addr,
   1475 			    th.th_sport, 0))
   1476 				valid++;
   1477 
   1478 			/*
   1479 			 * Depending on the value of "valid" and routing table
   1480 			 * size (mtudisc_{hi,lo}wat), we will:
   1481 			 * - recalcurate the new MTU and create the
   1482 			 *   corresponding routing entry, or
   1483 			 * - ignore the MTU change notification.
   1484 			 */
   1485 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1486 
   1487 			/*
   1488 			 * no need to call in6_pcbnotify, it should have been
   1489 			 * called via callback if necessary
   1490 			 */
   1491 			return;
   1492 		}
   1493 
   1494 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1495 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1496 		if (nmatch == 0 && syn_cache_count &&
   1497 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1498 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1499 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1500 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1501 					  sa, &th);
   1502 	} else {
   1503 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1504 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1505 	}
   1506 }
   1507 #endif
   1508 
   1509 #ifdef INET
   1510 /* assumes that ip header and tcp header are contiguous on mbuf */
   1511 void *
   1512 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
   1513 {
   1514 	struct ip *ip = v;
   1515 	struct tcphdr *th;
   1516 	struct icmp *icp;
   1517 	extern const int inetctlerrmap[];
   1518 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1519 	int errno;
   1520 	int nmatch;
   1521 	struct tcpcb *tp;
   1522 	u_int mtu;
   1523 	tcp_seq seq;
   1524 	struct inpcb *inp;
   1525 #ifdef INET6
   1526 	struct in6pcb *in6p;
   1527 	struct in6_addr src6, dst6;
   1528 #endif
   1529 
   1530 	if (sa->sa_family != AF_INET ||
   1531 	    sa->sa_len != sizeof(struct sockaddr_in))
   1532 		return NULL;
   1533 	if ((unsigned)cmd >= PRC_NCMDS)
   1534 		return NULL;
   1535 	errno = inetctlerrmap[cmd];
   1536 	if (cmd == PRC_QUENCH)
   1537 		/*
   1538 		 * Don't honor ICMP Source Quench messages meant for
   1539 		 * TCP connections.
   1540 		 */
   1541 		return NULL;
   1542 	else if (PRC_IS_REDIRECT(cmd))
   1543 		notify = in_rtchange, ip = 0;
   1544 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1545 		/*
   1546 		 * Check to see if we have a valid TCP connection
   1547 		 * corresponding to the address in the ICMP message
   1548 		 * payload.
   1549 		 *
   1550 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1551 		 */
   1552 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1553 #ifdef INET6
   1554 		memset(&src6, 0, sizeof(src6));
   1555 		memset(&dst6, 0, sizeof(dst6));
   1556 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1557 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1558 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1559 #endif
   1560 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1561 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1562 #ifdef INET6
   1563 			in6p = NULL;
   1564 #else
   1565 			;
   1566 #endif
   1567 #ifdef INET6
   1568 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1569 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1570 			;
   1571 #endif
   1572 		else
   1573 			return NULL;
   1574 
   1575 		/*
   1576 		 * Now that we've validated that we are actually communicating
   1577 		 * with the host indicated in the ICMP message, locate the
   1578 		 * ICMP header, recalculate the new MTU, and create the
   1579 		 * corresponding routing entry.
   1580 		 */
   1581 		icp = (struct icmp *)((char *)ip -
   1582 		    offsetof(struct icmp, icmp_ip));
   1583 		if (inp) {
   1584 			if ((tp = intotcpcb(inp)) == NULL)
   1585 				return NULL;
   1586 		}
   1587 #ifdef INET6
   1588 		else if (in6p) {
   1589 			if ((tp = in6totcpcb(in6p)) == NULL)
   1590 				return NULL;
   1591 		}
   1592 #endif
   1593 		else
   1594 			return NULL;
   1595 		seq = ntohl(th->th_seq);
   1596 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1597 			return NULL;
   1598 		/*
   1599 		 * If the ICMP message advertises a Next-Hop MTU
   1600 		 * equal or larger than the maximum packet size we have
   1601 		 * ever sent, drop the message.
   1602 		 */
   1603 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1604 		if (mtu >= tp->t_pmtud_mtu_sent)
   1605 			return NULL;
   1606 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1607 			/*
   1608 			 * Calculate new MTU, and create corresponding
   1609 			 * route (traditional PMTUD).
   1610 			 */
   1611 			tp->t_flags &= ~TF_PMTUD_PEND;
   1612 			icmp_mtudisc(icp, ip->ip_dst);
   1613 		} else {
   1614 			/*
   1615 			 * Record the information got in the ICMP
   1616 			 * message; act on it later.
   1617 			 * If we had already recorded an ICMP message,
   1618 			 * replace the old one only if the new message
   1619 			 * refers to an older TCP segment
   1620 			 */
   1621 			if (tp->t_flags & TF_PMTUD_PEND) {
   1622 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1623 					return NULL;
   1624 			} else
   1625 				tp->t_flags |= TF_PMTUD_PEND;
   1626 			tp->t_pmtud_th_seq = seq;
   1627 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1628 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1629 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1630 		}
   1631 		return NULL;
   1632 	} else if (cmd == PRC_HOSTDEAD)
   1633 		ip = 0;
   1634 	else if (errno == 0)
   1635 		return NULL;
   1636 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1637 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1638 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
   1639 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1640 		if (nmatch == 0 && syn_cache_count &&
   1641 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1642 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1643 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1644 			struct sockaddr_in sin;
   1645 			bzero(&sin, sizeof(sin));
   1646 			sin.sin_len = sizeof(sin);
   1647 			sin.sin_family = AF_INET;
   1648 			sin.sin_port = th->th_sport;
   1649 			sin.sin_addr = ip->ip_src;
   1650 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1651 		}
   1652 
   1653 		/* XXX mapped address case */
   1654 	} else
   1655 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
   1656 		    notify);
   1657 	return NULL;
   1658 }
   1659 
   1660 /*
   1661  * When a source quench is received, we are being notified of congestion.
   1662  * Close the congestion window down to the Loss Window (one segment).
   1663  * We will gradually open it again as we proceed.
   1664  */
   1665 void
   1666 tcp_quench(struct inpcb *inp, int errno)
   1667 {
   1668 	struct tcpcb *tp = intotcpcb(inp);
   1669 
   1670 	if (tp) {
   1671 		tp->snd_cwnd = tp->t_segsz;
   1672 		tp->t_bytes_acked = 0;
   1673 	}
   1674 }
   1675 #endif
   1676 
   1677 #ifdef INET6
   1678 void
   1679 tcp6_quench(struct in6pcb *in6p, int errno)
   1680 {
   1681 	struct tcpcb *tp = in6totcpcb(in6p);
   1682 
   1683 	if (tp) {
   1684 		tp->snd_cwnd = tp->t_segsz;
   1685 		tp->t_bytes_acked = 0;
   1686 	}
   1687 }
   1688 #endif
   1689 
   1690 #ifdef INET
   1691 /*
   1692  * Path MTU Discovery handlers.
   1693  */
   1694 void
   1695 tcp_mtudisc_callback(struct in_addr faddr)
   1696 {
   1697 #ifdef INET6
   1698 	struct in6_addr in6;
   1699 #endif
   1700 
   1701 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1702 #ifdef INET6
   1703 	memset(&in6, 0, sizeof(in6));
   1704 	in6.s6_addr16[5] = 0xffff;
   1705 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1706 	tcp6_mtudisc_callback(&in6);
   1707 #endif
   1708 }
   1709 
   1710 /*
   1711  * On receipt of path MTU corrections, flush old route and replace it
   1712  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1713  * that all packets will be received.
   1714  */
   1715 void
   1716 tcp_mtudisc(struct inpcb *inp, int errno)
   1717 {
   1718 	struct tcpcb *tp = intotcpcb(inp);
   1719 	struct rtentry *rt = in_pcbrtentry(inp);
   1720 
   1721 	if (tp != 0) {
   1722 		if (rt != 0) {
   1723 			/*
   1724 			 * If this was not a host route, remove and realloc.
   1725 			 */
   1726 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1727 				in_rtchange(inp, errno);
   1728 				if ((rt = in_pcbrtentry(inp)) == 0)
   1729 					return;
   1730 			}
   1731 
   1732 			/*
   1733 			 * Slow start out of the error condition.  We
   1734 			 * use the MTU because we know it's smaller
   1735 			 * than the previously transmitted segment.
   1736 			 *
   1737 			 * Note: This is more conservative than the
   1738 			 * suggestion in draft-floyd-incr-init-win-03.
   1739 			 */
   1740 			if (rt->rt_rmx.rmx_mtu != 0)
   1741 				tp->snd_cwnd =
   1742 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1743 				    rt->rt_rmx.rmx_mtu);
   1744 		}
   1745 
   1746 		/*
   1747 		 * Resend unacknowledged packets.
   1748 		 */
   1749 		tp->snd_nxt = tp->snd_una;
   1750 		tcp_output(tp);
   1751 	}
   1752 }
   1753 #endif
   1754 
   1755 #ifdef INET6
   1756 /*
   1757  * Path MTU Discovery handlers.
   1758  */
   1759 void
   1760 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1761 {
   1762 	struct sockaddr_in6 sin6;
   1763 
   1764 	bzero(&sin6, sizeof(sin6));
   1765 	sin6.sin6_family = AF_INET6;
   1766 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1767 	sin6.sin6_addr = *faddr;
   1768 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1769 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1770 }
   1771 
   1772 void
   1773 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1774 {
   1775 	struct tcpcb *tp = in6totcpcb(in6p);
   1776 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1777 
   1778 	if (tp != 0) {
   1779 		if (rt != 0) {
   1780 			/*
   1781 			 * If this was not a host route, remove and realloc.
   1782 			 */
   1783 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1784 				in6_rtchange(in6p, errno);
   1785 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1786 					return;
   1787 			}
   1788 
   1789 			/*
   1790 			 * Slow start out of the error condition.  We
   1791 			 * use the MTU because we know it's smaller
   1792 			 * than the previously transmitted segment.
   1793 			 *
   1794 			 * Note: This is more conservative than the
   1795 			 * suggestion in draft-floyd-incr-init-win-03.
   1796 			 */
   1797 			if (rt->rt_rmx.rmx_mtu != 0)
   1798 				tp->snd_cwnd =
   1799 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1800 				    rt->rt_rmx.rmx_mtu);
   1801 		}
   1802 
   1803 		/*
   1804 		 * Resend unacknowledged packets.
   1805 		 */
   1806 		tp->snd_nxt = tp->snd_una;
   1807 		tcp_output(tp);
   1808 	}
   1809 }
   1810 #endif /* INET6 */
   1811 
   1812 /*
   1813  * Compute the MSS to advertise to the peer.  Called only during
   1814  * the 3-way handshake.  If we are the server (peer initiated
   1815  * connection), we are called with a pointer to the interface
   1816  * on which the SYN packet arrived.  If we are the client (we
   1817  * initiated connection), we are called with a pointer to the
   1818  * interface out which this connection should go.
   1819  *
   1820  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1821  * header size from MSS advertisement.  MSS option must hold the maximum
   1822  * segment size we can accept, so it must always be:
   1823  *	 max(if mtu) - ip header - tcp header
   1824  */
   1825 u_long
   1826 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1827 {
   1828 	extern u_long in_maxmtu;
   1829 	u_long mss = 0;
   1830 	u_long hdrsiz;
   1831 
   1832 	/*
   1833 	 * In order to avoid defeating path MTU discovery on the peer,
   1834 	 * we advertise the max MTU of all attached networks as our MSS,
   1835 	 * per RFC 1191, section 3.1.
   1836 	 *
   1837 	 * We provide the option to advertise just the MTU of
   1838 	 * the interface on which we hope this connection will
   1839 	 * be receiving.  If we are responding to a SYN, we
   1840 	 * will have a pretty good idea about this, but when
   1841 	 * initiating a connection there is a bit more doubt.
   1842 	 *
   1843 	 * We also need to ensure that loopback has a large enough
   1844 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1845 	 */
   1846 
   1847 	if (ifp != NULL)
   1848 		switch (af) {
   1849 		case AF_INET:
   1850 			mss = ifp->if_mtu;
   1851 			break;
   1852 #ifdef INET6
   1853 		case AF_INET6:
   1854 			mss = IN6_LINKMTU(ifp);
   1855 			break;
   1856 #endif
   1857 		}
   1858 
   1859 	if (tcp_mss_ifmtu == 0)
   1860 		switch (af) {
   1861 		case AF_INET:
   1862 			mss = max(in_maxmtu, mss);
   1863 			break;
   1864 #ifdef INET6
   1865 		case AF_INET6:
   1866 			mss = max(in6_maxmtu, mss);
   1867 			break;
   1868 #endif
   1869 		}
   1870 
   1871 	switch (af) {
   1872 	case AF_INET:
   1873 		hdrsiz = sizeof(struct ip);
   1874 		break;
   1875 #ifdef INET6
   1876 	case AF_INET6:
   1877 		hdrsiz = sizeof(struct ip6_hdr);
   1878 		break;
   1879 #endif
   1880 	default:
   1881 		hdrsiz = 0;
   1882 		break;
   1883 	}
   1884 	hdrsiz += sizeof(struct tcphdr);
   1885 	if (mss > hdrsiz)
   1886 		mss -= hdrsiz;
   1887 
   1888 	mss = max(tcp_mssdflt, mss);
   1889 	return (mss);
   1890 }
   1891 
   1892 /*
   1893  * Set connection variables based on the peer's advertised MSS.
   1894  * We are passed the TCPCB for the actual connection.  If we
   1895  * are the server, we are called by the compressed state engine
   1896  * when the 3-way handshake is complete.  If we are the client,
   1897  * we are called when we receive the SYN,ACK from the server.
   1898  *
   1899  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1900  * before this routine is called!
   1901  */
   1902 void
   1903 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1904 {
   1905 	struct socket *so;
   1906 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1907 	struct rtentry *rt;
   1908 #endif
   1909 	u_long bufsize;
   1910 	int mss;
   1911 
   1912 #ifdef DIAGNOSTIC
   1913 	if (tp->t_inpcb && tp->t_in6pcb)
   1914 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1915 #endif
   1916 	so = NULL;
   1917 	rt = NULL;
   1918 #ifdef INET
   1919 	if (tp->t_inpcb) {
   1920 		so = tp->t_inpcb->inp_socket;
   1921 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1922 		rt = in_pcbrtentry(tp->t_inpcb);
   1923 #endif
   1924 	}
   1925 #endif
   1926 #ifdef INET6
   1927 	if (tp->t_in6pcb) {
   1928 		so = tp->t_in6pcb->in6p_socket;
   1929 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1930 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1931 #endif
   1932 	}
   1933 #endif
   1934 
   1935 	/*
   1936 	 * As per RFC1122, use the default MSS value, unless they
   1937 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1938 	 */
   1939 	mss = tcp_mssdflt;
   1940 	if (offer)
   1941 		mss = offer;
   1942 	mss = max(mss, 256);		/* sanity */
   1943 	tp->t_peermss = mss;
   1944 	mss -= tcp_optlen(tp);
   1945 #ifdef INET
   1946 	if (tp->t_inpcb)
   1947 		mss -= ip_optlen(tp->t_inpcb);
   1948 #endif
   1949 #ifdef INET6
   1950 	if (tp->t_in6pcb)
   1951 		mss -= ip6_optlen(tp->t_in6pcb);
   1952 #endif
   1953 
   1954 	/*
   1955 	 * If there's a pipesize, change the socket buffer to that size.
   1956 	 * Make the socket buffer an integral number of MSS units.  If
   1957 	 * the MSS is larger than the socket buffer, artificially decrease
   1958 	 * the MSS.
   1959 	 */
   1960 #ifdef RTV_SPIPE
   1961 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1962 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1963 	else
   1964 #endif
   1965 	{
   1966 		KASSERT(so != NULL);
   1967 		bufsize = so->so_snd.sb_hiwat;
   1968 	}
   1969 	if (bufsize < mss)
   1970 		mss = bufsize;
   1971 	else {
   1972 		bufsize = roundup(bufsize, mss);
   1973 		if (bufsize > sb_max)
   1974 			bufsize = sb_max;
   1975 		(void) sbreserve(&so->so_snd, bufsize, so);
   1976 	}
   1977 	tp->t_segsz = mss;
   1978 
   1979 #ifdef RTV_SSTHRESH
   1980 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1981 		/*
   1982 		 * There's some sort of gateway or interface buffer
   1983 		 * limit on the path.  Use this to set the slow
   1984 		 * start threshold, but set the threshold to no less
   1985 		 * than 2 * MSS.
   1986 		 */
   1987 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1988 	}
   1989 #endif
   1990 }
   1991 
   1992 /*
   1993  * Processing necessary when a TCP connection is established.
   1994  */
   1995 void
   1996 tcp_established(struct tcpcb *tp)
   1997 {
   1998 	struct socket *so;
   1999 #ifdef RTV_RPIPE
   2000 	struct rtentry *rt;
   2001 #endif
   2002 	u_long bufsize;
   2003 
   2004 #ifdef DIAGNOSTIC
   2005 	if (tp->t_inpcb && tp->t_in6pcb)
   2006 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2007 #endif
   2008 	so = NULL;
   2009 	rt = NULL;
   2010 #ifdef INET
   2011 	if (tp->t_inpcb) {
   2012 		so = tp->t_inpcb->inp_socket;
   2013 #if defined(RTV_RPIPE)
   2014 		rt = in_pcbrtentry(tp->t_inpcb);
   2015 #endif
   2016 	}
   2017 #endif
   2018 #ifdef INET6
   2019 	if (tp->t_in6pcb) {
   2020 		so = tp->t_in6pcb->in6p_socket;
   2021 #if defined(RTV_RPIPE)
   2022 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2023 #endif
   2024 	}
   2025 #endif
   2026 
   2027 	tp->t_state = TCPS_ESTABLISHED;
   2028 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   2029 
   2030 #ifdef RTV_RPIPE
   2031 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2032 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2033 	else
   2034 #endif
   2035 	{
   2036 		KASSERT(so != NULL);
   2037 		bufsize = so->so_rcv.sb_hiwat;
   2038 	}
   2039 	if (bufsize > tp->t_ourmss) {
   2040 		bufsize = roundup(bufsize, tp->t_ourmss);
   2041 		if (bufsize > sb_max)
   2042 			bufsize = sb_max;
   2043 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2044 	}
   2045 }
   2046 
   2047 /*
   2048  * Check if there's an initial rtt or rttvar.  Convert from the
   2049  * route-table units to scaled multiples of the slow timeout timer.
   2050  * Called only during the 3-way handshake.
   2051  */
   2052 void
   2053 tcp_rmx_rtt(struct tcpcb *tp)
   2054 {
   2055 #ifdef RTV_RTT
   2056 	struct rtentry *rt = NULL;
   2057 	int rtt;
   2058 
   2059 #ifdef DIAGNOSTIC
   2060 	if (tp->t_inpcb && tp->t_in6pcb)
   2061 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2062 #endif
   2063 #ifdef INET
   2064 	if (tp->t_inpcb)
   2065 		rt = in_pcbrtentry(tp->t_inpcb);
   2066 #endif
   2067 #ifdef INET6
   2068 	if (tp->t_in6pcb)
   2069 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2070 #endif
   2071 	if (rt == NULL)
   2072 		return;
   2073 
   2074 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2075 		/*
   2076 		 * XXX The lock bit for MTU indicates that the value
   2077 		 * is also a minimum value; this is subject to time.
   2078 		 */
   2079 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2080 			TCPT_RANGESET(tp->t_rttmin,
   2081 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2082 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2083 		tp->t_srtt = rtt /
   2084 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2085 		if (rt->rt_rmx.rmx_rttvar) {
   2086 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2087 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2088 				(TCP_RTTVAR_SHIFT + 2));
   2089 		} else {
   2090 			/* Default variation is +- 1 rtt */
   2091 			tp->t_rttvar =
   2092 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2093 		}
   2094 		TCPT_RANGESET(tp->t_rxtcur,
   2095 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2096 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2097 	}
   2098 #endif
   2099 }
   2100 
   2101 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2102 #if NRND > 0
   2103 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2104 #endif
   2105 
   2106 /*
   2107  * Get a new sequence value given a tcp control block
   2108  */
   2109 tcp_seq
   2110 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2111 {
   2112 
   2113 #ifdef INET
   2114 	if (tp->t_inpcb != NULL) {
   2115 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2116 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2117 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2118 		    addin));
   2119 	}
   2120 #endif
   2121 #ifdef INET6
   2122 	if (tp->t_in6pcb != NULL) {
   2123 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2124 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2125 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2126 		    addin));
   2127 	}
   2128 #endif
   2129 	/* Not possible. */
   2130 	panic("tcp_new_iss");
   2131 }
   2132 
   2133 /*
   2134  * This routine actually generates a new TCP initial sequence number.
   2135  */
   2136 tcp_seq
   2137 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2138     size_t addrsz, tcp_seq addin)
   2139 {
   2140 	tcp_seq tcp_iss;
   2141 
   2142 #if NRND > 0
   2143 	static int beenhere;
   2144 
   2145 	/*
   2146 	 * If we haven't been here before, initialize our cryptographic
   2147 	 * hash secret.
   2148 	 */
   2149 	if (beenhere == 0) {
   2150 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2151 		    RND_EXTRACT_ANY);
   2152 		beenhere = 1;
   2153 	}
   2154 
   2155 	if (tcp_do_rfc1948) {
   2156 		MD5_CTX ctx;
   2157 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2158 
   2159 		/*
   2160 		 * Compute the base value of the ISS.  It is a hash
   2161 		 * of (saddr, sport, daddr, dport, secret).
   2162 		 */
   2163 		MD5Init(&ctx);
   2164 
   2165 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2166 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2167 
   2168 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2169 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2170 
   2171 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2172 
   2173 		MD5Final(hash, &ctx);
   2174 
   2175 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2176 
   2177 		/*
   2178 		 * Now increment our "timer", and add it in to
   2179 		 * the computed value.
   2180 		 *
   2181 		 * XXX Use `addin'?
   2182 		 * XXX TCP_ISSINCR too large to use?
   2183 		 */
   2184 		tcp_iss_seq += TCP_ISSINCR;
   2185 #ifdef TCPISS_DEBUG
   2186 		printf("ISS hash 0x%08x, ", tcp_iss);
   2187 #endif
   2188 		tcp_iss += tcp_iss_seq + addin;
   2189 #ifdef TCPISS_DEBUG
   2190 		printf("new ISS 0x%08x\n", tcp_iss);
   2191 #endif
   2192 	} else
   2193 #endif /* NRND > 0 */
   2194 	{
   2195 		/*
   2196 		 * Randomize.
   2197 		 */
   2198 #if NRND > 0
   2199 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2200 #else
   2201 		tcp_iss = arc4random();
   2202 #endif
   2203 
   2204 		/*
   2205 		 * If we were asked to add some amount to a known value,
   2206 		 * we will take a random value obtained above, mask off
   2207 		 * the upper bits, and add in the known value.  We also
   2208 		 * add in a constant to ensure that we are at least a
   2209 		 * certain distance from the original value.
   2210 		 *
   2211 		 * This is used when an old connection is in timed wait
   2212 		 * and we have a new one coming in, for instance.
   2213 		 */
   2214 		if (addin != 0) {
   2215 #ifdef TCPISS_DEBUG
   2216 			printf("Random %08x, ", tcp_iss);
   2217 #endif
   2218 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2219 			tcp_iss += addin + TCP_ISSINCR;
   2220 #ifdef TCPISS_DEBUG
   2221 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2222 #endif
   2223 		} else {
   2224 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2225 			tcp_iss += tcp_iss_seq;
   2226 			tcp_iss_seq += TCP_ISSINCR;
   2227 #ifdef TCPISS_DEBUG
   2228 			printf("ISS %08x\n", tcp_iss);
   2229 #endif
   2230 		}
   2231 	}
   2232 
   2233 	if (tcp_compat_42) {
   2234 		/*
   2235 		 * Limit it to the positive range for really old TCP
   2236 		 * implementations.
   2237 		 * Just AND off the top bit instead of checking if
   2238 		 * is set first - saves a branch 50% of the time.
   2239 		 */
   2240 		tcp_iss &= 0x7fffffff;		/* XXX */
   2241 	}
   2242 
   2243 	return (tcp_iss);
   2244 }
   2245 
   2246 #if defined(IPSEC) || defined(FAST_IPSEC)
   2247 /* compute ESP/AH header size for TCP, including outer IP header. */
   2248 size_t
   2249 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2250 {
   2251 	struct inpcb *inp;
   2252 	size_t hdrsiz;
   2253 
   2254 	/* XXX mapped addr case (tp->t_in6pcb) */
   2255 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2256 		return 0;
   2257 	switch (tp->t_family) {
   2258 	case AF_INET:
   2259 		/* XXX: should use currect direction. */
   2260 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2261 		break;
   2262 	default:
   2263 		hdrsiz = 0;
   2264 		break;
   2265 	}
   2266 
   2267 	return hdrsiz;
   2268 }
   2269 
   2270 #ifdef INET6
   2271 size_t
   2272 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2273 {
   2274 	struct in6pcb *in6p;
   2275 	size_t hdrsiz;
   2276 
   2277 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2278 		return 0;
   2279 	switch (tp->t_family) {
   2280 	case AF_INET6:
   2281 		/* XXX: should use currect direction. */
   2282 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2283 		break;
   2284 	case AF_INET:
   2285 		/* mapped address case - tricky */
   2286 	default:
   2287 		hdrsiz = 0;
   2288 		break;
   2289 	}
   2290 
   2291 	return hdrsiz;
   2292 }
   2293 #endif
   2294 #endif /*IPSEC*/
   2295 
   2296 /*
   2297  * Determine the length of the TCP options for this connection.
   2298  *
   2299  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2300  *       all of the space?  Otherwise we can't exactly be incrementing
   2301  *       cwnd by an amount that varies depending on the amount we last
   2302  *       had to SACK!
   2303  */
   2304 
   2305 u_int
   2306 tcp_optlen(struct tcpcb *tp)
   2307 {
   2308 	u_int optlen;
   2309 
   2310 	optlen = 0;
   2311 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2312 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2313 		optlen += TCPOLEN_TSTAMP_APPA;
   2314 
   2315 #ifdef TCP_SIGNATURE
   2316 	if (tp->t_flags & TF_SIGNATURE)
   2317 		optlen += TCPOLEN_SIGNATURE + 2;
   2318 #endif /* TCP_SIGNATURE */
   2319 
   2320 	return optlen;
   2321 }
   2322 
   2323 u_int
   2324 tcp_hdrsz(struct tcpcb *tp)
   2325 {
   2326 	u_int hlen;
   2327 
   2328 	switch (tp->t_family) {
   2329 #ifdef INET6
   2330 	case AF_INET6:
   2331 		hlen = sizeof(struct ip6_hdr);
   2332 		break;
   2333 #endif
   2334 	case AF_INET:
   2335 		hlen = sizeof(struct ip);
   2336 		break;
   2337 	default:
   2338 		hlen = 0;
   2339 		break;
   2340 	}
   2341 	hlen += sizeof(struct tcphdr);
   2342 
   2343 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2344 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2345 		hlen += TCPOLEN_TSTAMP_APPA;
   2346 #ifdef TCP_SIGNATURE
   2347 	if (tp->t_flags & TF_SIGNATURE)
   2348 		hlen += TCPOLEN_SIGLEN;
   2349 #endif
   2350 	return hlen;
   2351 }
   2352