Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.218
      1 /*	$NetBSD: tcp_subr.c,v 1.218 2007/08/02 02:42:41 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.218 2007/08/02 02:42:41 rmind Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcp_congctl.h>
    155 #include <netinet/tcpip.h>
    156 
    157 #ifdef IPSEC
    158 #include <netinet6/ipsec.h>
    159 #include <netkey/key.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef FAST_IPSEC
    163 #include <netipsec/ipsec.h>
    164 #include <netipsec/xform.h>
    165 #ifdef INET6
    166 #include <netipsec/ipsec6.h>
    167 #endif
    168  #include <netipsec/key.h>
    169 #endif	/* FAST_IPSEC*/
    170 
    171 
    172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    173 struct	tcpstat tcpstat;	/* tcp statistics */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 /* patchable/settable parameters for tcp */
    177 int 	tcp_mssdflt = TCP_MSS;
    178 int	tcp_minmss = TCP_MINMSS;
    179 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    180 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    181 #if NRND > 0
    182 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    183 #endif
    184 int	tcp_do_sack = 1;	/* selective acknowledgement */
    185 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    186 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    187 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    188 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    189 #ifndef TCP_INIT_WIN
    190 #define	TCP_INIT_WIN	0	/* initial slow start window */
    191 #endif
    192 #ifndef TCP_INIT_WIN_LOCAL
    193 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    194 #endif
    195 int	tcp_init_win = TCP_INIT_WIN;
    196 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    197 int	tcp_mss_ifmtu = 0;
    198 #ifdef TCP_COMPAT_42
    199 int	tcp_compat_42 = 1;
    200 #else
    201 int	tcp_compat_42 = 0;
    202 #endif
    203 int	tcp_rst_ppslim = 100;	/* 100pps */
    204 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    205 int	tcp_do_loopback_cksum = 0;
    206 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    207 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    208 int	tcp_sack_tp_maxholes = 32;
    209 int	tcp_sack_globalmaxholes = 1024;
    210 int	tcp_sack_globalholes = 0;
    211 int	tcp_ecn_maxretries = 1;
    212 
    213 /* tcb hash */
    214 #ifndef TCBHASHSIZE
    215 #define	TCBHASHSIZE	128
    216 #endif
    217 int	tcbhashsize = TCBHASHSIZE;
    218 
    219 /* syn hash parameters */
    220 #define	TCP_SYN_HASH_SIZE	293
    221 #define	TCP_SYN_BUCKET_SIZE	35
    222 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    223 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    224 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    225 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    226 
    227 int	tcp_freeq(struct tcpcb *);
    228 
    229 #ifdef INET
    230 void	tcp_mtudisc_callback(struct in_addr);
    231 #endif
    232 #ifdef INET6
    233 void	tcp6_mtudisc_callback(struct in6_addr *);
    234 #endif
    235 
    236 #ifdef INET6
    237 void	tcp6_mtudisc(struct in6pcb *, int);
    238 #endif
    239 
    240 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
    241     IPL_SOFTNET);
    242 
    243 #ifdef TCP_CSUM_COUNTERS
    244 #include <sys/device.h>
    245 
    246 #if defined(INET)
    247 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    248     NULL, "tcp", "hwcsum bad");
    249 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    250     NULL, "tcp", "hwcsum ok");
    251 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    252     NULL, "tcp", "hwcsum data");
    253 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    254     NULL, "tcp", "swcsum");
    255 
    256 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    257 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    258 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    259 EVCNT_ATTACH_STATIC(tcp_swcsum);
    260 #endif /* defined(INET) */
    261 
    262 #if defined(INET6)
    263 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp6", "hwcsum bad");
    265 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp6", "hwcsum ok");
    267 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp6", "hwcsum data");
    269 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     NULL, "tcp6", "swcsum");
    271 
    272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    275 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    276 #endif /* defined(INET6) */
    277 #endif /* TCP_CSUM_COUNTERS */
    278 
    279 
    280 #ifdef TCP_OUTPUT_COUNTERS
    281 #include <sys/device.h>
    282 
    283 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     NULL, "tcp", "output big header");
    285 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     NULL, "tcp", "output predict hit");
    287 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     NULL, "tcp", "output predict miss");
    289 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     NULL, "tcp", "output copy small");
    291 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     NULL, "tcp", "output copy big");
    293 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    294     NULL, "tcp", "output reference big");
    295 
    296 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    297 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    298 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    299 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    300 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    301 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    302 
    303 #endif /* TCP_OUTPUT_COUNTERS */
    304 
    305 #ifdef TCP_REASS_COUNTERS
    306 #include <sys/device.h>
    307 
    308 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    309     NULL, "tcp_reass", "calls");
    310 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    311     &tcp_reass_, "tcp_reass", "insert into empty queue");
    312 struct evcnt tcp_reass_iteration[8] = {
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    321 };
    322 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    323     &tcp_reass_, "tcp_reass", "prepend to first");
    324 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    325     &tcp_reass_, "tcp_reass", "prepend");
    326 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    327     &tcp_reass_, "tcp_reass", "insert");
    328 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    329     &tcp_reass_, "tcp_reass", "insert at tail");
    330 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    331     &tcp_reass_, "tcp_reass", "append");
    332 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    333     &tcp_reass_, "tcp_reass", "append to tail fragment");
    334 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    335     &tcp_reass_, "tcp_reass", "overlap at end");
    336 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    337     &tcp_reass_, "tcp_reass", "overlap at start");
    338 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    339     &tcp_reass_, "tcp_reass", "duplicate segment");
    340 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    341     &tcp_reass_, "tcp_reass", "duplicate fragment");
    342 
    343 EVCNT_ATTACH_STATIC(tcp_reass_);
    344 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    353 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    354 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    355 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    356 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    357 EVCNT_ATTACH_STATIC(tcp_reass_append);
    358 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    359 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    360 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    361 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    362 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    363 
    364 #endif /* TCP_REASS_COUNTERS */
    365 
    366 #ifdef MBUFTRACE
    367 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    368 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    369 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    370 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
    371 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
    372 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
    373 #endif
    374 
    375 /*
    376  * Tcp initialization
    377  */
    378 void
    379 tcp_init(void)
    380 {
    381 	int hlen;
    382 
    383 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    384 
    385 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    386 #ifdef INET6
    387 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    388 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    389 #endif
    390 	if (max_protohdr < hlen)
    391 		max_protohdr = hlen;
    392 	if (max_linkhdr + hlen > MHLEN)
    393 		panic("tcp_init");
    394 
    395 #ifdef INET
    396 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    397 #endif
    398 #ifdef INET6
    399 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    400 #endif
    401 
    402 	/* Initialize timer state. */
    403 	tcp_timer_init();
    404 
    405 	/* Initialize the compressed state engine. */
    406 	syn_cache_init();
    407 
    408 	/* Initialize the congestion control algorithms. */
    409 	tcp_congctl_init();
    410 
    411 	/* Initialize the TCPCB template. */
    412 	tcp_tcpcb_template();
    413 
    414 	MOWNER_ATTACH(&tcp_tx_mowner);
    415 	MOWNER_ATTACH(&tcp_rx_mowner);
    416 	MOWNER_ATTACH(&tcp_reass_mowner);
    417 	MOWNER_ATTACH(&tcp_sock_mowner);
    418 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
    419 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
    420 	MOWNER_ATTACH(&tcp_mowner);
    421 }
    422 
    423 /*
    424  * Create template to be used to send tcp packets on a connection.
    425  * Call after host entry created, allocates an mbuf and fills
    426  * in a skeletal tcp/ip header, minimizing the amount of work
    427  * necessary when the connection is used.
    428  */
    429 struct mbuf *
    430 tcp_template(struct tcpcb *tp)
    431 {
    432 	struct inpcb *inp = tp->t_inpcb;
    433 #ifdef INET6
    434 	struct in6pcb *in6p = tp->t_in6pcb;
    435 #endif
    436 	struct tcphdr *n;
    437 	struct mbuf *m;
    438 	int hlen;
    439 
    440 	switch (tp->t_family) {
    441 	case AF_INET:
    442 		hlen = sizeof(struct ip);
    443 		if (inp)
    444 			break;
    445 #ifdef INET6
    446 		if (in6p) {
    447 			/* mapped addr case */
    448 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    449 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    450 				break;
    451 		}
    452 #endif
    453 		return NULL;	/*EINVAL*/
    454 #ifdef INET6
    455 	case AF_INET6:
    456 		hlen = sizeof(struct ip6_hdr);
    457 		if (in6p) {
    458 			/* more sainty check? */
    459 			break;
    460 		}
    461 		return NULL;	/*EINVAL*/
    462 #endif
    463 	default:
    464 		hlen = 0;	/*pacify gcc*/
    465 		return NULL;	/*EAFNOSUPPORT*/
    466 	}
    467 #ifdef DIAGNOSTIC
    468 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    469 		panic("mclbytes too small for t_template");
    470 #endif
    471 	m = tp->t_template;
    472 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    473 		;
    474 	else {
    475 		if (m)
    476 			m_freem(m);
    477 		m = tp->t_template = NULL;
    478 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    479 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    480 			MCLGET(m, M_DONTWAIT);
    481 			if ((m->m_flags & M_EXT) == 0) {
    482 				m_free(m);
    483 				m = NULL;
    484 			}
    485 		}
    486 		if (m == NULL)
    487 			return NULL;
    488 		MCLAIM(m, &tcp_mowner);
    489 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    490 	}
    491 
    492 	bzero(mtod(m, void *), m->m_len);
    493 
    494 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
    495 
    496 	switch (tp->t_family) {
    497 	case AF_INET:
    498 	    {
    499 		struct ipovly *ipov;
    500 		mtod(m, struct ip *)->ip_v = 4;
    501 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    502 		ipov = mtod(m, struct ipovly *);
    503 		ipov->ih_pr = IPPROTO_TCP;
    504 		ipov->ih_len = htons(sizeof(struct tcphdr));
    505 		if (inp) {
    506 			ipov->ih_src = inp->inp_laddr;
    507 			ipov->ih_dst = inp->inp_faddr;
    508 		}
    509 #ifdef INET6
    510 		else if (in6p) {
    511 			/* mapped addr case */
    512 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    513 				sizeof(ipov->ih_src));
    514 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    515 				sizeof(ipov->ih_dst));
    516 		}
    517 #endif
    518 		/*
    519 		 * Compute the pseudo-header portion of the checksum
    520 		 * now.  We incrementally add in the TCP option and
    521 		 * payload lengths later, and then compute the TCP
    522 		 * checksum right before the packet is sent off onto
    523 		 * the wire.
    524 		 */
    525 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    526 		    ipov->ih_dst.s_addr,
    527 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    528 		break;
    529 	    }
    530 #ifdef INET6
    531 	case AF_INET6:
    532 	    {
    533 		struct ip6_hdr *ip6;
    534 		mtod(m, struct ip *)->ip_v = 6;
    535 		ip6 = mtod(m, struct ip6_hdr *);
    536 		ip6->ip6_nxt = IPPROTO_TCP;
    537 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    538 		ip6->ip6_src = in6p->in6p_laddr;
    539 		ip6->ip6_dst = in6p->in6p_faddr;
    540 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    541 		if (ip6_auto_flowlabel) {
    542 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    543 			ip6->ip6_flow |=
    544 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    545 		}
    546 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    547 		ip6->ip6_vfc |= IPV6_VERSION;
    548 
    549 		/*
    550 		 * Compute the pseudo-header portion of the checksum
    551 		 * now.  We incrementally add in the TCP option and
    552 		 * payload lengths later, and then compute the TCP
    553 		 * checksum right before the packet is sent off onto
    554 		 * the wire.
    555 		 */
    556 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    557 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    558 		    htonl(IPPROTO_TCP));
    559 		break;
    560 	    }
    561 #endif
    562 	}
    563 	if (inp) {
    564 		n->th_sport = inp->inp_lport;
    565 		n->th_dport = inp->inp_fport;
    566 	}
    567 #ifdef INET6
    568 	else if (in6p) {
    569 		n->th_sport = in6p->in6p_lport;
    570 		n->th_dport = in6p->in6p_fport;
    571 	}
    572 #endif
    573 	n->th_seq = 0;
    574 	n->th_ack = 0;
    575 	n->th_x2 = 0;
    576 	n->th_off = 5;
    577 	n->th_flags = 0;
    578 	n->th_win = 0;
    579 	n->th_urp = 0;
    580 	return (m);
    581 }
    582 
    583 /*
    584  * Send a single message to the TCP at address specified by
    585  * the given TCP/IP header.  If m == 0, then we make a copy
    586  * of the tcpiphdr at ti and send directly to the addressed host.
    587  * This is used to force keep alive messages out using the TCP
    588  * template for a connection tp->t_template.  If flags are given
    589  * then we send a message back to the TCP which originated the
    590  * segment ti, and discard the mbuf containing it and any other
    591  * attached mbufs.
    592  *
    593  * In any case the ack and sequence number of the transmitted
    594  * segment are as specified by the parameters.
    595  */
    596 int
    597 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    598     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    599 {
    600 	struct route *ro;
    601 	int error, tlen, win = 0;
    602 	int hlen;
    603 	struct ip *ip;
    604 #ifdef INET6
    605 	struct ip6_hdr *ip6;
    606 #endif
    607 	int family;	/* family on packet, not inpcb/in6pcb! */
    608 	struct tcphdr *th;
    609 	struct socket *so;
    610 
    611 	if (tp != NULL && (flags & TH_RST) == 0) {
    612 #ifdef DIAGNOSTIC
    613 		if (tp->t_inpcb && tp->t_in6pcb)
    614 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    615 #endif
    616 #ifdef INET
    617 		if (tp->t_inpcb)
    618 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    619 #endif
    620 #ifdef INET6
    621 		if (tp->t_in6pcb)
    622 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    623 #endif
    624 	}
    625 
    626 	th = NULL;	/* Quell uninitialized warning */
    627 	ip = NULL;
    628 #ifdef INET6
    629 	ip6 = NULL;
    630 #endif
    631 	if (m == 0) {
    632 		if (!template)
    633 			return EINVAL;
    634 
    635 		/* get family information from template */
    636 		switch (mtod(template, struct ip *)->ip_v) {
    637 		case 4:
    638 			family = AF_INET;
    639 			hlen = sizeof(struct ip);
    640 			break;
    641 #ifdef INET6
    642 		case 6:
    643 			family = AF_INET6;
    644 			hlen = sizeof(struct ip6_hdr);
    645 			break;
    646 #endif
    647 		default:
    648 			return EAFNOSUPPORT;
    649 		}
    650 
    651 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    652 		if (m) {
    653 			MCLAIM(m, &tcp_tx_mowner);
    654 			MCLGET(m, M_DONTWAIT);
    655 			if ((m->m_flags & M_EXT) == 0) {
    656 				m_free(m);
    657 				m = NULL;
    658 			}
    659 		}
    660 		if (m == NULL)
    661 			return (ENOBUFS);
    662 
    663 		if (tcp_compat_42)
    664 			tlen = 1;
    665 		else
    666 			tlen = 0;
    667 
    668 		m->m_data += max_linkhdr;
    669 		bcopy(mtod(template, void *), mtod(m, void *),
    670 			template->m_len);
    671 		switch (family) {
    672 		case AF_INET:
    673 			ip = mtod(m, struct ip *);
    674 			th = (struct tcphdr *)(ip + 1);
    675 			break;
    676 #ifdef INET6
    677 		case AF_INET6:
    678 			ip6 = mtod(m, struct ip6_hdr *);
    679 			th = (struct tcphdr *)(ip6 + 1);
    680 			break;
    681 #endif
    682 #if 0
    683 		default:
    684 			/* noone will visit here */
    685 			m_freem(m);
    686 			return EAFNOSUPPORT;
    687 #endif
    688 		}
    689 		flags = TH_ACK;
    690 	} else {
    691 
    692 		if ((m->m_flags & M_PKTHDR) == 0) {
    693 #if 0
    694 			printf("non PKTHDR to tcp_respond\n");
    695 #endif
    696 			m_freem(m);
    697 			return EINVAL;
    698 		}
    699 #ifdef DIAGNOSTIC
    700 		if (!th0)
    701 			panic("th0 == NULL in tcp_respond");
    702 #endif
    703 
    704 		/* get family information from m */
    705 		switch (mtod(m, struct ip *)->ip_v) {
    706 		case 4:
    707 			family = AF_INET;
    708 			hlen = sizeof(struct ip);
    709 			ip = mtod(m, struct ip *);
    710 			break;
    711 #ifdef INET6
    712 		case 6:
    713 			family = AF_INET6;
    714 			hlen = sizeof(struct ip6_hdr);
    715 			ip6 = mtod(m, struct ip6_hdr *);
    716 			break;
    717 #endif
    718 		default:
    719 			m_freem(m);
    720 			return EAFNOSUPPORT;
    721 		}
    722 		/* clear h/w csum flags inherited from rx packet */
    723 		m->m_pkthdr.csum_flags = 0;
    724 
    725 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    726 			tlen = sizeof(*th0);
    727 		else
    728 			tlen = th0->th_off << 2;
    729 
    730 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    731 		    mtod(m, char *) + hlen == (char *)th0) {
    732 			m->m_len = hlen + tlen;
    733 			m_freem(m->m_next);
    734 			m->m_next = NULL;
    735 		} else {
    736 			struct mbuf *n;
    737 
    738 #ifdef DIAGNOSTIC
    739 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    740 				m_freem(m);
    741 				return EMSGSIZE;
    742 			}
    743 #endif
    744 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    745 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    746 				MCLGET(n, M_DONTWAIT);
    747 				if ((n->m_flags & M_EXT) == 0) {
    748 					m_freem(n);
    749 					n = NULL;
    750 				}
    751 			}
    752 			if (!n) {
    753 				m_freem(m);
    754 				return ENOBUFS;
    755 			}
    756 
    757 			MCLAIM(n, &tcp_tx_mowner);
    758 			n->m_data += max_linkhdr;
    759 			n->m_len = hlen + tlen;
    760 			m_copyback(n, 0, hlen, mtod(m, void *));
    761 			m_copyback(n, hlen, tlen, (void *)th0);
    762 
    763 			m_freem(m);
    764 			m = n;
    765 			n = NULL;
    766 		}
    767 
    768 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    769 		switch (family) {
    770 		case AF_INET:
    771 			ip = mtod(m, struct ip *);
    772 			th = (struct tcphdr *)(ip + 1);
    773 			ip->ip_p = IPPROTO_TCP;
    774 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    775 			ip->ip_p = IPPROTO_TCP;
    776 			break;
    777 #ifdef INET6
    778 		case AF_INET6:
    779 			ip6 = mtod(m, struct ip6_hdr *);
    780 			th = (struct tcphdr *)(ip6 + 1);
    781 			ip6->ip6_nxt = IPPROTO_TCP;
    782 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    783 			ip6->ip6_nxt = IPPROTO_TCP;
    784 			break;
    785 #endif
    786 #if 0
    787 		default:
    788 			/* noone will visit here */
    789 			m_freem(m);
    790 			return EAFNOSUPPORT;
    791 #endif
    792 		}
    793 		xchg(th->th_dport, th->th_sport, u_int16_t);
    794 #undef xchg
    795 		tlen = 0;	/*be friendly with the following code*/
    796 	}
    797 	th->th_seq = htonl(seq);
    798 	th->th_ack = htonl(ack);
    799 	th->th_x2 = 0;
    800 	if ((flags & TH_SYN) == 0) {
    801 		if (tp)
    802 			win >>= tp->rcv_scale;
    803 		if (win > TCP_MAXWIN)
    804 			win = TCP_MAXWIN;
    805 		th->th_win = htons((u_int16_t)win);
    806 		th->th_off = sizeof (struct tcphdr) >> 2;
    807 		tlen += sizeof(*th);
    808 	} else
    809 		tlen += th->th_off << 2;
    810 	m->m_len = hlen + tlen;
    811 	m->m_pkthdr.len = hlen + tlen;
    812 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    813 	th->th_flags = flags;
    814 	th->th_urp = 0;
    815 
    816 	switch (family) {
    817 #ifdef INET
    818 	case AF_INET:
    819 	    {
    820 		struct ipovly *ipov = (struct ipovly *)ip;
    821 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    822 		ipov->ih_len = htons((u_int16_t)tlen);
    823 
    824 		th->th_sum = 0;
    825 		th->th_sum = in_cksum(m, hlen + tlen);
    826 		ip->ip_len = htons(hlen + tlen);
    827 		ip->ip_ttl = ip_defttl;
    828 		break;
    829 	    }
    830 #endif
    831 #ifdef INET6
    832 	case AF_INET6:
    833 	    {
    834 		th->th_sum = 0;
    835 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    836 				tlen);
    837 		ip6->ip6_plen = htons(tlen);
    838 		if (tp && tp->t_in6pcb) {
    839 			struct ifnet *oifp;
    840 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    841 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    842 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    843 		} else
    844 			ip6->ip6_hlim = ip6_defhlim;
    845 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    846 		if (ip6_auto_flowlabel) {
    847 			ip6->ip6_flow |=
    848 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    849 		}
    850 		break;
    851 	    }
    852 #endif
    853 	}
    854 
    855 	if (tp && tp->t_inpcb)
    856 		so = tp->t_inpcb->inp_socket;
    857 #ifdef INET6
    858 	else if (tp && tp->t_in6pcb)
    859 		so = tp->t_in6pcb->in6p_socket;
    860 #endif
    861 	else
    862 		so = NULL;
    863 
    864 	if (tp != NULL && tp->t_inpcb != NULL) {
    865 		ro = &tp->t_inpcb->inp_route;
    866 #ifdef DIAGNOSTIC
    867 		if (family != AF_INET)
    868 			panic("tcp_respond: address family mismatch");
    869 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    870 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    871 			    ntohl(ip->ip_dst.s_addr),
    872 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    873 		}
    874 #endif
    875 	}
    876 #ifdef INET6
    877 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    878 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    879 #ifdef DIAGNOSTIC
    880 		if (family == AF_INET) {
    881 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    882 				panic("tcp_respond: not mapped addr");
    883 			if (bcmp(&ip->ip_dst,
    884 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    885 			    sizeof(ip->ip_dst)) != 0) {
    886 				panic("tcp_respond: ip_dst != in6p_faddr");
    887 			}
    888 		} else if (family == AF_INET6) {
    889 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    890 			    &tp->t_in6pcb->in6p_faddr))
    891 				panic("tcp_respond: ip6_dst != in6p_faddr");
    892 		} else
    893 			panic("tcp_respond: address family mismatch");
    894 #endif
    895 	}
    896 #endif
    897 	else
    898 		ro = NULL;
    899 
    900 	switch (family) {
    901 #ifdef INET
    902 	case AF_INET:
    903 		error = ip_output(m, NULL, ro,
    904 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    905 		    (struct ip_moptions *)0, so);
    906 		break;
    907 #endif
    908 #ifdef INET6
    909 	case AF_INET6:
    910 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
    911 		break;
    912 #endif
    913 	default:
    914 		error = EAFNOSUPPORT;
    915 		break;
    916 	}
    917 
    918 	return (error);
    919 }
    920 
    921 /*
    922  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    923  * a bunch of members individually, we maintain this template for the
    924  * static and mostly-static components of the TCPCB, and copy it into
    925  * the new TCPCB instead.
    926  */
    927 static struct tcpcb tcpcb_template = {
    928 	.t_srtt = TCPTV_SRTTBASE,
    929 	.t_rttmin = TCPTV_MIN,
    930 
    931 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    932 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    933 	.snd_numholes = 0,
    934 
    935 	.t_partialacks = -1,
    936 	.t_bytes_acked = 0,
    937 };
    938 
    939 /*
    940  * Updates the TCPCB template whenever a parameter that would affect
    941  * the template is changed.
    942  */
    943 void
    944 tcp_tcpcb_template(void)
    945 {
    946 	struct tcpcb *tp = &tcpcb_template;
    947 	int flags;
    948 
    949 	tp->t_peermss = tcp_mssdflt;
    950 	tp->t_ourmss = tcp_mssdflt;
    951 	tp->t_segsz = tcp_mssdflt;
    952 
    953 	flags = 0;
    954 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    955 		flags |= TF_REQ_SCALE;
    956 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    957 		flags |= TF_REQ_TSTMP;
    958 	tp->t_flags = flags;
    959 
    960 	/*
    961 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    962 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    963 	 * reasonable initial retransmit time.
    964 	 */
    965 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    966 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    967 	    TCPTV_MIN, TCPTV_REXMTMAX);
    968 
    969 	/* Keep Alive */
    970 	tp->t_keepinit = tcp_keepinit;
    971 	tp->t_keepidle = tcp_keepidle;
    972 	tp->t_keepintvl = tcp_keepintvl;
    973 	tp->t_keepcnt = tcp_keepcnt;
    974 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
    975 }
    976 
    977 /*
    978  * Create a new TCP control block, making an
    979  * empty reassembly queue and hooking it to the argument
    980  * protocol control block.
    981  */
    982 /* family selects inpcb, or in6pcb */
    983 struct tcpcb *
    984 tcp_newtcpcb(int family, void *aux)
    985 {
    986 	struct tcpcb *tp;
    987 	int i;
    988 
    989 	/* XXX Consider using a pool_cache for speed. */
    990 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
    991 	if (tp == NULL)
    992 		return (NULL);
    993 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    994 	TAILQ_INIT(&tp->segq);
    995 	TAILQ_INIT(&tp->timeq);
    996 	tp->t_family = family;		/* may be overridden later on */
    997 	TAILQ_INIT(&tp->snd_holes);
    998 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    999 
   1000 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
   1001 	for (i = 0; i < TCPT_NTIMERS; i++) {
   1002 		callout_init(&tp->t_timer[i], 0);
   1003 		TCP_TIMER_INIT(tp, i);
   1004 	}
   1005 	callout_init(&tp->t_delack_ch, 0);
   1006 
   1007 	switch (family) {
   1008 	case AF_INET:
   1009 	    {
   1010 		struct inpcb *inp = (struct inpcb *)aux;
   1011 
   1012 		inp->inp_ip.ip_ttl = ip_defttl;
   1013 		inp->inp_ppcb = (void *)tp;
   1014 
   1015 		tp->t_inpcb = inp;
   1016 		tp->t_mtudisc = ip_mtudisc;
   1017 		break;
   1018 	    }
   1019 #ifdef INET6
   1020 	case AF_INET6:
   1021 	    {
   1022 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1023 
   1024 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1025 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
   1026 					       : NULL);
   1027 		in6p->in6p_ppcb = (void *)tp;
   1028 
   1029 		tp->t_in6pcb = in6p;
   1030 		/* for IPv6, always try to run path MTU discovery */
   1031 		tp->t_mtudisc = 1;
   1032 		break;
   1033 	    }
   1034 #endif /* INET6 */
   1035 	default:
   1036 		for (i = 0; i < TCPT_NTIMERS; i++)
   1037 			callout_destroy(&tp->t_timer[i]);
   1038 		callout_destroy(&tp->t_delack_ch);
   1039 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1040 		return (NULL);
   1041 	}
   1042 
   1043 	/*
   1044 	 * Initialize our timebase.  When we send timestamps, we take
   1045 	 * the delta from tcp_now -- this means each connection always
   1046 	 * gets a timebase of 0, which makes it, among other things,
   1047 	 * more difficult to determine how long a system has been up,
   1048 	 * and thus how many TCP sequence increments have occurred.
   1049 	 */
   1050 	tp->ts_timebase = tcp_now;
   1051 
   1052 	tp->t_congctl = tcp_congctl_global;
   1053 	tp->t_congctl->refcnt++;
   1054 
   1055 	return (tp);
   1056 }
   1057 
   1058 /*
   1059  * Drop a TCP connection, reporting
   1060  * the specified error.  If connection is synchronized,
   1061  * then send a RST to peer.
   1062  */
   1063 struct tcpcb *
   1064 tcp_drop(struct tcpcb *tp, int errno)
   1065 {
   1066 	struct socket *so = NULL;
   1067 
   1068 #ifdef DIAGNOSTIC
   1069 	if (tp->t_inpcb && tp->t_in6pcb)
   1070 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1071 #endif
   1072 #ifdef INET
   1073 	if (tp->t_inpcb)
   1074 		so = tp->t_inpcb->inp_socket;
   1075 #endif
   1076 #ifdef INET6
   1077 	if (tp->t_in6pcb)
   1078 		so = tp->t_in6pcb->in6p_socket;
   1079 #endif
   1080 	if (!so)
   1081 		return NULL;
   1082 
   1083 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1084 		tp->t_state = TCPS_CLOSED;
   1085 		(void) tcp_output(tp);
   1086 		tcpstat.tcps_drops++;
   1087 	} else
   1088 		tcpstat.tcps_conndrops++;
   1089 	if (errno == ETIMEDOUT && tp->t_softerror)
   1090 		errno = tp->t_softerror;
   1091 	so->so_error = errno;
   1092 	return (tcp_close(tp));
   1093 }
   1094 
   1095 /*
   1096  * Return whether this tcpcb is marked as dead, indicating
   1097  * to the calling timer function that no further action should
   1098  * be taken, as we are about to release this tcpcb.  The release
   1099  * of the storage will be done if this is the last timer running.
   1100  *
   1101  * This should be called from the callout handler function after
   1102  * callout_ack() is done, so that the number of invoking timer
   1103  * functions is 0.
   1104  */
   1105 int
   1106 tcp_isdead(struct tcpcb *tp)
   1107 {
   1108 	int i, dead = (tp->t_flags & TF_DEAD);
   1109 
   1110 	if (__predict_false(dead)) {
   1111 		if (tcp_timers_invoking(tp) > 0)
   1112 				/* not quite there yet -- count separately? */
   1113 			return dead;
   1114 		tcpstat.tcps_delayed_free++;
   1115 		for (i = 0; i < TCPT_NTIMERS; i++)
   1116 			callout_destroy(&tp->t_timer[i]);
   1117 		callout_destroy(&tp->t_delack_ch);
   1118 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
   1119 	}
   1120 	return dead;
   1121 }
   1122 
   1123 /*
   1124  * Close a TCP control block:
   1125  *	discard all space held by the tcp
   1126  *	discard internet protocol block
   1127  *	wake up any sleepers
   1128  */
   1129 struct tcpcb *
   1130 tcp_close(struct tcpcb *tp)
   1131 {
   1132 	struct inpcb *inp;
   1133 #ifdef INET6
   1134 	struct in6pcb *in6p;
   1135 #endif
   1136 	struct socket *so;
   1137 #ifdef RTV_RTT
   1138 	struct rtentry *rt;
   1139 #endif
   1140 	struct route *ro;
   1141 	int j;
   1142 
   1143 	inp = tp->t_inpcb;
   1144 #ifdef INET6
   1145 	in6p = tp->t_in6pcb;
   1146 #endif
   1147 	so = NULL;
   1148 	ro = NULL;
   1149 	if (inp) {
   1150 		so = inp->inp_socket;
   1151 		ro = &inp->inp_route;
   1152 	}
   1153 #ifdef INET6
   1154 	else if (in6p) {
   1155 		so = in6p->in6p_socket;
   1156 		ro = (struct route *)&in6p->in6p_route;
   1157 	}
   1158 #endif
   1159 
   1160 #ifdef RTV_RTT
   1161 	/*
   1162 	 * If we sent enough data to get some meaningful characteristics,
   1163 	 * save them in the routing entry.  'Enough' is arbitrarily
   1164 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1165 	 * give us 16 rtt samples assuming we only get one sample per
   1166 	 * window (the usual case on a long haul net).  16 samples is
   1167 	 * enough for the srtt filter to converge to within 5% of the correct
   1168 	 * value; fewer samples and we could save a very bogus rtt.
   1169 	 *
   1170 	 * Don't update the default route's characteristics and don't
   1171 	 * update anything that the user "locked".
   1172 	 */
   1173 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1174 	    ro && (rt = ro->ro_rt) &&
   1175 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
   1176 		u_long i = 0;
   1177 
   1178 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1179 			i = tp->t_srtt *
   1180 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1181 			if (rt->rt_rmx.rmx_rtt && i)
   1182 				/*
   1183 				 * filter this update to half the old & half
   1184 				 * the new values, converting scale.
   1185 				 * See route.h and tcp_var.h for a
   1186 				 * description of the scaling constants.
   1187 				 */
   1188 				rt->rt_rmx.rmx_rtt =
   1189 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1190 			else
   1191 				rt->rt_rmx.rmx_rtt = i;
   1192 		}
   1193 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1194 			i = tp->t_rttvar *
   1195 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1196 			if (rt->rt_rmx.rmx_rttvar && i)
   1197 				rt->rt_rmx.rmx_rttvar =
   1198 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1199 			else
   1200 				rt->rt_rmx.rmx_rttvar = i;
   1201 		}
   1202 		/*
   1203 		 * update the pipelimit (ssthresh) if it has been updated
   1204 		 * already or if a pipesize was specified & the threshhold
   1205 		 * got below half the pipesize.  I.e., wait for bad news
   1206 		 * before we start updating, then update on both good
   1207 		 * and bad news.
   1208 		 */
   1209 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1210 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1211 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1212 			/*
   1213 			 * convert the limit from user data bytes to
   1214 			 * packets then to packet data bytes.
   1215 			 */
   1216 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1217 			if (i < 2)
   1218 				i = 2;
   1219 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1220 			if (rt->rt_rmx.rmx_ssthresh)
   1221 				rt->rt_rmx.rmx_ssthresh =
   1222 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1223 			else
   1224 				rt->rt_rmx.rmx_ssthresh = i;
   1225 		}
   1226 	}
   1227 #endif /* RTV_RTT */
   1228 	/* free the reassembly queue, if any */
   1229 	TCP_REASS_LOCK(tp);
   1230 	(void) tcp_freeq(tp);
   1231 	TCP_REASS_UNLOCK(tp);
   1232 
   1233 	/* free the SACK holes list. */
   1234 	tcp_free_sackholes(tp);
   1235 
   1236 	tp->t_congctl->refcnt--;
   1237 
   1238 	tcp_canceltimers(tp);
   1239 	TCP_CLEAR_DELACK(tp);
   1240 	syn_cache_cleanup(tp);
   1241 
   1242 	if (tp->t_template) {
   1243 		m_free(tp->t_template);
   1244 		tp->t_template = NULL;
   1245 	}
   1246 	if (tcp_timers_invoking(tp))
   1247 		tp->t_flags |= TF_DEAD;
   1248 	else {
   1249 		for (j = 0; j < TCPT_NTIMERS; j++)
   1250 			callout_destroy(&tp->t_timer[j]);
   1251 		callout_destroy(&tp->t_delack_ch);
   1252 		pool_put(&tcpcb_pool, tp);
   1253 	}
   1254 
   1255 	if (inp) {
   1256 		inp->inp_ppcb = 0;
   1257 		soisdisconnected(so);
   1258 		in_pcbdetach(inp);
   1259 	}
   1260 #ifdef INET6
   1261 	else if (in6p) {
   1262 		in6p->in6p_ppcb = 0;
   1263 		soisdisconnected(so);
   1264 		in6_pcbdetach(in6p);
   1265 	}
   1266 #endif
   1267 	tcpstat.tcps_closed++;
   1268 	return ((struct tcpcb *)0);
   1269 }
   1270 
   1271 int
   1272 tcp_freeq(tp)
   1273 	struct tcpcb *tp;
   1274 {
   1275 	struct ipqent *qe;
   1276 	int rv = 0;
   1277 #ifdef TCPREASS_DEBUG
   1278 	int i = 0;
   1279 #endif
   1280 
   1281 	TCP_REASS_LOCK_CHECK(tp);
   1282 
   1283 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1284 #ifdef TCPREASS_DEBUG
   1285 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1286 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1287 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1288 #endif
   1289 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1290 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1291 		m_freem(qe->ipqe_m);
   1292 		tcpipqent_free(qe);
   1293 		rv = 1;
   1294 	}
   1295 	tp->t_segqlen = 0;
   1296 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1297 	return (rv);
   1298 }
   1299 
   1300 /*
   1301  * Protocol drain routine.  Called when memory is in short supply.
   1302  */
   1303 void
   1304 tcp_drain(void)
   1305 {
   1306 	struct inpcb_hdr *inph;
   1307 	struct tcpcb *tp;
   1308 
   1309 	/*
   1310 	 * Free the sequence queue of all TCP connections.
   1311 	 */
   1312 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1313 		switch (inph->inph_af) {
   1314 		case AF_INET:
   1315 			tp = intotcpcb((struct inpcb *)inph);
   1316 			break;
   1317 #ifdef INET6
   1318 		case AF_INET6:
   1319 			tp = in6totcpcb((struct in6pcb *)inph);
   1320 			break;
   1321 #endif
   1322 		default:
   1323 			tp = NULL;
   1324 			break;
   1325 		}
   1326 		if (tp != NULL) {
   1327 			/*
   1328 			 * We may be called from a device's interrupt
   1329 			 * context.  If the tcpcb is already busy,
   1330 			 * just bail out now.
   1331 			 */
   1332 			if (tcp_reass_lock_try(tp) == 0)
   1333 				continue;
   1334 			if (tcp_freeq(tp))
   1335 				tcpstat.tcps_connsdrained++;
   1336 			TCP_REASS_UNLOCK(tp);
   1337 		}
   1338 	}
   1339 }
   1340 
   1341 /*
   1342  * Notify a tcp user of an asynchronous error;
   1343  * store error as soft error, but wake up user
   1344  * (for now, won't do anything until can select for soft error).
   1345  */
   1346 void
   1347 tcp_notify(struct inpcb *inp, int error)
   1348 {
   1349 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1350 	struct socket *so = inp->inp_socket;
   1351 
   1352 	/*
   1353 	 * Ignore some errors if we are hooked up.
   1354 	 * If connection hasn't completed, has retransmitted several times,
   1355 	 * and receives a second error, give up now.  This is better
   1356 	 * than waiting a long time to establish a connection that
   1357 	 * can never complete.
   1358 	 */
   1359 	if (tp->t_state == TCPS_ESTABLISHED &&
   1360 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1361 	      error == EHOSTDOWN)) {
   1362 		return;
   1363 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1364 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1365 		so->so_error = error;
   1366 	else
   1367 		tp->t_softerror = error;
   1368 	wakeup((void *) &so->so_timeo);
   1369 	sorwakeup(so);
   1370 	sowwakeup(so);
   1371 }
   1372 
   1373 #ifdef INET6
   1374 void
   1375 tcp6_notify(struct in6pcb *in6p, int error)
   1376 {
   1377 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1378 	struct socket *so = in6p->in6p_socket;
   1379 
   1380 	/*
   1381 	 * Ignore some errors if we are hooked up.
   1382 	 * If connection hasn't completed, has retransmitted several times,
   1383 	 * and receives a second error, give up now.  This is better
   1384 	 * than waiting a long time to establish a connection that
   1385 	 * can never complete.
   1386 	 */
   1387 	if (tp->t_state == TCPS_ESTABLISHED &&
   1388 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1389 	      error == EHOSTDOWN)) {
   1390 		return;
   1391 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1392 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1393 		so->so_error = error;
   1394 	else
   1395 		tp->t_softerror = error;
   1396 	wakeup((void *) &so->so_timeo);
   1397 	sorwakeup(so);
   1398 	sowwakeup(so);
   1399 }
   1400 #endif
   1401 
   1402 #ifdef INET6
   1403 void
   1404 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
   1405 {
   1406 	struct tcphdr th;
   1407 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1408 	int nmatch;
   1409 	struct ip6_hdr *ip6;
   1410 	const struct sockaddr_in6 *sa6_src = NULL;
   1411 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
   1412 	struct mbuf *m;
   1413 	int off;
   1414 
   1415 	if (sa->sa_family != AF_INET6 ||
   1416 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1417 		return;
   1418 	if ((unsigned)cmd >= PRC_NCMDS)
   1419 		return;
   1420 	else if (cmd == PRC_QUENCH) {
   1421 		/*
   1422 		 * Don't honor ICMP Source Quench messages meant for
   1423 		 * TCP connections.
   1424 		 */
   1425 		return;
   1426 	} else if (PRC_IS_REDIRECT(cmd))
   1427 		notify = in6_rtchange, d = NULL;
   1428 	else if (cmd == PRC_MSGSIZE)
   1429 		; /* special code is present, see below */
   1430 	else if (cmd == PRC_HOSTDEAD)
   1431 		d = NULL;
   1432 	else if (inet6ctlerrmap[cmd] == 0)
   1433 		return;
   1434 
   1435 	/* if the parameter is from icmp6, decode it. */
   1436 	if (d != NULL) {
   1437 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1438 		m = ip6cp->ip6c_m;
   1439 		ip6 = ip6cp->ip6c_ip6;
   1440 		off = ip6cp->ip6c_off;
   1441 		sa6_src = ip6cp->ip6c_src;
   1442 	} else {
   1443 		m = NULL;
   1444 		ip6 = NULL;
   1445 		sa6_src = &sa6_any;
   1446 		off = 0;
   1447 	}
   1448 
   1449 	if (ip6) {
   1450 		/*
   1451 		 * XXX: We assume that when ip6 is non NULL,
   1452 		 * M and OFF are valid.
   1453 		 */
   1454 
   1455 		/* check if we can safely examine src and dst ports */
   1456 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1457 			if (cmd == PRC_MSGSIZE)
   1458 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1459 			return;
   1460 		}
   1461 
   1462 		bzero(&th, sizeof(th));
   1463 		m_copydata(m, off, sizeof(th), (void *)&th);
   1464 
   1465 		if (cmd == PRC_MSGSIZE) {
   1466 			int valid = 0;
   1467 
   1468 			/*
   1469 			 * Check to see if we have a valid TCP connection
   1470 			 * corresponding to the address in the ICMPv6 message
   1471 			 * payload.
   1472 			 */
   1473 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1474 			    th.th_dport,
   1475 			    (const struct in6_addr *)&sa6_src->sin6_addr,
   1476 			    th.th_sport, 0))
   1477 				valid++;
   1478 
   1479 			/*
   1480 			 * Depending on the value of "valid" and routing table
   1481 			 * size (mtudisc_{hi,lo}wat), we will:
   1482 			 * - recalcurate the new MTU and create the
   1483 			 *   corresponding routing entry, or
   1484 			 * - ignore the MTU change notification.
   1485 			 */
   1486 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1487 
   1488 			/*
   1489 			 * no need to call in6_pcbnotify, it should have been
   1490 			 * called via callback if necessary
   1491 			 */
   1492 			return;
   1493 		}
   1494 
   1495 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1496 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1497 		if (nmatch == 0 && syn_cache_count &&
   1498 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1499 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1500 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1501 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1502 					  sa, &th);
   1503 	} else {
   1504 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1505 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1506 	}
   1507 }
   1508 #endif
   1509 
   1510 #ifdef INET
   1511 /* assumes that ip header and tcp header are contiguous on mbuf */
   1512 void *
   1513 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
   1514 {
   1515 	struct ip *ip = v;
   1516 	struct tcphdr *th;
   1517 	struct icmp *icp;
   1518 	extern const int inetctlerrmap[];
   1519 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1520 	int errno;
   1521 	int nmatch;
   1522 	struct tcpcb *tp;
   1523 	u_int mtu;
   1524 	tcp_seq seq;
   1525 	struct inpcb *inp;
   1526 #ifdef INET6
   1527 	struct in6pcb *in6p;
   1528 	struct in6_addr src6, dst6;
   1529 #endif
   1530 
   1531 	if (sa->sa_family != AF_INET ||
   1532 	    sa->sa_len != sizeof(struct sockaddr_in))
   1533 		return NULL;
   1534 	if ((unsigned)cmd >= PRC_NCMDS)
   1535 		return NULL;
   1536 	errno = inetctlerrmap[cmd];
   1537 	if (cmd == PRC_QUENCH)
   1538 		/*
   1539 		 * Don't honor ICMP Source Quench messages meant for
   1540 		 * TCP connections.
   1541 		 */
   1542 		return NULL;
   1543 	else if (PRC_IS_REDIRECT(cmd))
   1544 		notify = in_rtchange, ip = 0;
   1545 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1546 		/*
   1547 		 * Check to see if we have a valid TCP connection
   1548 		 * corresponding to the address in the ICMP message
   1549 		 * payload.
   1550 		 *
   1551 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1552 		 */
   1553 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1554 #ifdef INET6
   1555 		memset(&src6, 0, sizeof(src6));
   1556 		memset(&dst6, 0, sizeof(dst6));
   1557 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1558 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1559 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1560 #endif
   1561 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1562 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1563 #ifdef INET6
   1564 			in6p = NULL;
   1565 #else
   1566 			;
   1567 #endif
   1568 #ifdef INET6
   1569 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1570 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1571 			;
   1572 #endif
   1573 		else
   1574 			return NULL;
   1575 
   1576 		/*
   1577 		 * Now that we've validated that we are actually communicating
   1578 		 * with the host indicated in the ICMP message, locate the
   1579 		 * ICMP header, recalculate the new MTU, and create the
   1580 		 * corresponding routing entry.
   1581 		 */
   1582 		icp = (struct icmp *)((char *)ip -
   1583 		    offsetof(struct icmp, icmp_ip));
   1584 		if (inp) {
   1585 			if ((tp = intotcpcb(inp)) == NULL)
   1586 				return NULL;
   1587 		}
   1588 #ifdef INET6
   1589 		else if (in6p) {
   1590 			if ((tp = in6totcpcb(in6p)) == NULL)
   1591 				return NULL;
   1592 		}
   1593 #endif
   1594 		else
   1595 			return NULL;
   1596 		seq = ntohl(th->th_seq);
   1597 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1598 			return NULL;
   1599 		/*
   1600 		 * If the ICMP message advertises a Next-Hop MTU
   1601 		 * equal or larger than the maximum packet size we have
   1602 		 * ever sent, drop the message.
   1603 		 */
   1604 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1605 		if (mtu >= tp->t_pmtud_mtu_sent)
   1606 			return NULL;
   1607 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1608 			/*
   1609 			 * Calculate new MTU, and create corresponding
   1610 			 * route (traditional PMTUD).
   1611 			 */
   1612 			tp->t_flags &= ~TF_PMTUD_PEND;
   1613 			icmp_mtudisc(icp, ip->ip_dst);
   1614 		} else {
   1615 			/*
   1616 			 * Record the information got in the ICMP
   1617 			 * message; act on it later.
   1618 			 * If we had already recorded an ICMP message,
   1619 			 * replace the old one only if the new message
   1620 			 * refers to an older TCP segment
   1621 			 */
   1622 			if (tp->t_flags & TF_PMTUD_PEND) {
   1623 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1624 					return NULL;
   1625 			} else
   1626 				tp->t_flags |= TF_PMTUD_PEND;
   1627 			tp->t_pmtud_th_seq = seq;
   1628 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1629 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1630 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1631 		}
   1632 		return NULL;
   1633 	} else if (cmd == PRC_HOSTDEAD)
   1634 		ip = 0;
   1635 	else if (errno == 0)
   1636 		return NULL;
   1637 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1638 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1639 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
   1640 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1641 		if (nmatch == 0 && syn_cache_count &&
   1642 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1643 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1644 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1645 			struct sockaddr_in sin;
   1646 			bzero(&sin, sizeof(sin));
   1647 			sin.sin_len = sizeof(sin);
   1648 			sin.sin_family = AF_INET;
   1649 			sin.sin_port = th->th_sport;
   1650 			sin.sin_addr = ip->ip_src;
   1651 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1652 		}
   1653 
   1654 		/* XXX mapped address case */
   1655 	} else
   1656 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
   1657 		    notify);
   1658 	return NULL;
   1659 }
   1660 
   1661 /*
   1662  * When a source quench is received, we are being notified of congestion.
   1663  * Close the congestion window down to the Loss Window (one segment).
   1664  * We will gradually open it again as we proceed.
   1665  */
   1666 void
   1667 tcp_quench(struct inpcb *inp, int errno)
   1668 {
   1669 	struct tcpcb *tp = intotcpcb(inp);
   1670 
   1671 	if (tp) {
   1672 		tp->snd_cwnd = tp->t_segsz;
   1673 		tp->t_bytes_acked = 0;
   1674 	}
   1675 }
   1676 #endif
   1677 
   1678 #ifdef INET6
   1679 void
   1680 tcp6_quench(struct in6pcb *in6p, int errno)
   1681 {
   1682 	struct tcpcb *tp = in6totcpcb(in6p);
   1683 
   1684 	if (tp) {
   1685 		tp->snd_cwnd = tp->t_segsz;
   1686 		tp->t_bytes_acked = 0;
   1687 	}
   1688 }
   1689 #endif
   1690 
   1691 #ifdef INET
   1692 /*
   1693  * Path MTU Discovery handlers.
   1694  */
   1695 void
   1696 tcp_mtudisc_callback(struct in_addr faddr)
   1697 {
   1698 #ifdef INET6
   1699 	struct in6_addr in6;
   1700 #endif
   1701 
   1702 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1703 #ifdef INET6
   1704 	memset(&in6, 0, sizeof(in6));
   1705 	in6.s6_addr16[5] = 0xffff;
   1706 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1707 	tcp6_mtudisc_callback(&in6);
   1708 #endif
   1709 }
   1710 
   1711 /*
   1712  * On receipt of path MTU corrections, flush old route and replace it
   1713  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1714  * that all packets will be received.
   1715  */
   1716 void
   1717 tcp_mtudisc(struct inpcb *inp, int errno)
   1718 {
   1719 	struct tcpcb *tp = intotcpcb(inp);
   1720 	struct rtentry *rt = in_pcbrtentry(inp);
   1721 
   1722 	if (tp != 0) {
   1723 		if (rt != 0) {
   1724 			/*
   1725 			 * If this was not a host route, remove and realloc.
   1726 			 */
   1727 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1728 				in_rtchange(inp, errno);
   1729 				if ((rt = in_pcbrtentry(inp)) == 0)
   1730 					return;
   1731 			}
   1732 
   1733 			/*
   1734 			 * Slow start out of the error condition.  We
   1735 			 * use the MTU because we know it's smaller
   1736 			 * than the previously transmitted segment.
   1737 			 *
   1738 			 * Note: This is more conservative than the
   1739 			 * suggestion in draft-floyd-incr-init-win-03.
   1740 			 */
   1741 			if (rt->rt_rmx.rmx_mtu != 0)
   1742 				tp->snd_cwnd =
   1743 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1744 				    rt->rt_rmx.rmx_mtu);
   1745 		}
   1746 
   1747 		/*
   1748 		 * Resend unacknowledged packets.
   1749 		 */
   1750 		tp->snd_nxt = tp->snd_una;
   1751 		tcp_output(tp);
   1752 	}
   1753 }
   1754 #endif
   1755 
   1756 #ifdef INET6
   1757 /*
   1758  * Path MTU Discovery handlers.
   1759  */
   1760 void
   1761 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1762 {
   1763 	struct sockaddr_in6 sin6;
   1764 
   1765 	bzero(&sin6, sizeof(sin6));
   1766 	sin6.sin6_family = AF_INET6;
   1767 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1768 	sin6.sin6_addr = *faddr;
   1769 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1770 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1771 }
   1772 
   1773 void
   1774 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1775 {
   1776 	struct tcpcb *tp = in6totcpcb(in6p);
   1777 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1778 
   1779 	if (tp != 0) {
   1780 		if (rt != 0) {
   1781 			/*
   1782 			 * If this was not a host route, remove and realloc.
   1783 			 */
   1784 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1785 				in6_rtchange(in6p, errno);
   1786 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1787 					return;
   1788 			}
   1789 
   1790 			/*
   1791 			 * Slow start out of the error condition.  We
   1792 			 * use the MTU because we know it's smaller
   1793 			 * than the previously transmitted segment.
   1794 			 *
   1795 			 * Note: This is more conservative than the
   1796 			 * suggestion in draft-floyd-incr-init-win-03.
   1797 			 */
   1798 			if (rt->rt_rmx.rmx_mtu != 0)
   1799 				tp->snd_cwnd =
   1800 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1801 				    rt->rt_rmx.rmx_mtu);
   1802 		}
   1803 
   1804 		/*
   1805 		 * Resend unacknowledged packets.
   1806 		 */
   1807 		tp->snd_nxt = tp->snd_una;
   1808 		tcp_output(tp);
   1809 	}
   1810 }
   1811 #endif /* INET6 */
   1812 
   1813 /*
   1814  * Compute the MSS to advertise to the peer.  Called only during
   1815  * the 3-way handshake.  If we are the server (peer initiated
   1816  * connection), we are called with a pointer to the interface
   1817  * on which the SYN packet arrived.  If we are the client (we
   1818  * initiated connection), we are called with a pointer to the
   1819  * interface out which this connection should go.
   1820  *
   1821  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1822  * header size from MSS advertisement.  MSS option must hold the maximum
   1823  * segment size we can accept, so it must always be:
   1824  *	 max(if mtu) - ip header - tcp header
   1825  */
   1826 u_long
   1827 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1828 {
   1829 	extern u_long in_maxmtu;
   1830 	u_long mss = 0;
   1831 	u_long hdrsiz;
   1832 
   1833 	/*
   1834 	 * In order to avoid defeating path MTU discovery on the peer,
   1835 	 * we advertise the max MTU of all attached networks as our MSS,
   1836 	 * per RFC 1191, section 3.1.
   1837 	 *
   1838 	 * We provide the option to advertise just the MTU of
   1839 	 * the interface on which we hope this connection will
   1840 	 * be receiving.  If we are responding to a SYN, we
   1841 	 * will have a pretty good idea about this, but when
   1842 	 * initiating a connection there is a bit more doubt.
   1843 	 *
   1844 	 * We also need to ensure that loopback has a large enough
   1845 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1846 	 */
   1847 
   1848 	if (ifp != NULL)
   1849 		switch (af) {
   1850 		case AF_INET:
   1851 			mss = ifp->if_mtu;
   1852 			break;
   1853 #ifdef INET6
   1854 		case AF_INET6:
   1855 			mss = IN6_LINKMTU(ifp);
   1856 			break;
   1857 #endif
   1858 		}
   1859 
   1860 	if (tcp_mss_ifmtu == 0)
   1861 		switch (af) {
   1862 		case AF_INET:
   1863 			mss = max(in_maxmtu, mss);
   1864 			break;
   1865 #ifdef INET6
   1866 		case AF_INET6:
   1867 			mss = max(in6_maxmtu, mss);
   1868 			break;
   1869 #endif
   1870 		}
   1871 
   1872 	switch (af) {
   1873 	case AF_INET:
   1874 		hdrsiz = sizeof(struct ip);
   1875 		break;
   1876 #ifdef INET6
   1877 	case AF_INET6:
   1878 		hdrsiz = sizeof(struct ip6_hdr);
   1879 		break;
   1880 #endif
   1881 	default:
   1882 		hdrsiz = 0;
   1883 		break;
   1884 	}
   1885 	hdrsiz += sizeof(struct tcphdr);
   1886 	if (mss > hdrsiz)
   1887 		mss -= hdrsiz;
   1888 
   1889 	mss = max(tcp_mssdflt, mss);
   1890 	return (mss);
   1891 }
   1892 
   1893 /*
   1894  * Set connection variables based on the peer's advertised MSS.
   1895  * We are passed the TCPCB for the actual connection.  If we
   1896  * are the server, we are called by the compressed state engine
   1897  * when the 3-way handshake is complete.  If we are the client,
   1898  * we are called when we receive the SYN,ACK from the server.
   1899  *
   1900  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1901  * before this routine is called!
   1902  */
   1903 void
   1904 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1905 {
   1906 	struct socket *so;
   1907 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1908 	struct rtentry *rt;
   1909 #endif
   1910 	u_long bufsize;
   1911 	int mss;
   1912 
   1913 #ifdef DIAGNOSTIC
   1914 	if (tp->t_inpcb && tp->t_in6pcb)
   1915 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1916 #endif
   1917 	so = NULL;
   1918 	rt = NULL;
   1919 #ifdef INET
   1920 	if (tp->t_inpcb) {
   1921 		so = tp->t_inpcb->inp_socket;
   1922 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1923 		rt = in_pcbrtentry(tp->t_inpcb);
   1924 #endif
   1925 	}
   1926 #endif
   1927 #ifdef INET6
   1928 	if (tp->t_in6pcb) {
   1929 		so = tp->t_in6pcb->in6p_socket;
   1930 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1931 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1932 #endif
   1933 	}
   1934 #endif
   1935 
   1936 	/*
   1937 	 * As per RFC1122, use the default MSS value, unless they
   1938 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1939 	 */
   1940 	mss = tcp_mssdflt;
   1941 	if (offer)
   1942 		mss = offer;
   1943 	mss = max(mss, 256);		/* sanity */
   1944 	tp->t_peermss = mss;
   1945 	mss -= tcp_optlen(tp);
   1946 #ifdef INET
   1947 	if (tp->t_inpcb)
   1948 		mss -= ip_optlen(tp->t_inpcb);
   1949 #endif
   1950 #ifdef INET6
   1951 	if (tp->t_in6pcb)
   1952 		mss -= ip6_optlen(tp->t_in6pcb);
   1953 #endif
   1954 
   1955 	/*
   1956 	 * If there's a pipesize, change the socket buffer to that size.
   1957 	 * Make the socket buffer an integral number of MSS units.  If
   1958 	 * the MSS is larger than the socket buffer, artificially decrease
   1959 	 * the MSS.
   1960 	 */
   1961 #ifdef RTV_SPIPE
   1962 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1963 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1964 	else
   1965 #endif
   1966 	{
   1967 		KASSERT(so != NULL);
   1968 		bufsize = so->so_snd.sb_hiwat;
   1969 	}
   1970 	if (bufsize < mss)
   1971 		mss = bufsize;
   1972 	else {
   1973 		bufsize = roundup(bufsize, mss);
   1974 		if (bufsize > sb_max)
   1975 			bufsize = sb_max;
   1976 		(void) sbreserve(&so->so_snd, bufsize, so);
   1977 	}
   1978 	tp->t_segsz = mss;
   1979 
   1980 #ifdef RTV_SSTHRESH
   1981 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1982 		/*
   1983 		 * There's some sort of gateway or interface buffer
   1984 		 * limit on the path.  Use this to set the slow
   1985 		 * start threshold, but set the threshold to no less
   1986 		 * than 2 * MSS.
   1987 		 */
   1988 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1989 	}
   1990 #endif
   1991 }
   1992 
   1993 /*
   1994  * Processing necessary when a TCP connection is established.
   1995  */
   1996 void
   1997 tcp_established(struct tcpcb *tp)
   1998 {
   1999 	struct socket *so;
   2000 #ifdef RTV_RPIPE
   2001 	struct rtentry *rt;
   2002 #endif
   2003 	u_long bufsize;
   2004 
   2005 #ifdef DIAGNOSTIC
   2006 	if (tp->t_inpcb && tp->t_in6pcb)
   2007 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2008 #endif
   2009 	so = NULL;
   2010 	rt = NULL;
   2011 #ifdef INET
   2012 	if (tp->t_inpcb) {
   2013 		so = tp->t_inpcb->inp_socket;
   2014 #if defined(RTV_RPIPE)
   2015 		rt = in_pcbrtentry(tp->t_inpcb);
   2016 #endif
   2017 	}
   2018 #endif
   2019 #ifdef INET6
   2020 	if (tp->t_in6pcb) {
   2021 		so = tp->t_in6pcb->in6p_socket;
   2022 #if defined(RTV_RPIPE)
   2023 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2024 #endif
   2025 	}
   2026 #endif
   2027 
   2028 	tp->t_state = TCPS_ESTABLISHED;
   2029 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   2030 
   2031 #ifdef RTV_RPIPE
   2032 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2033 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2034 	else
   2035 #endif
   2036 	{
   2037 		KASSERT(so != NULL);
   2038 		bufsize = so->so_rcv.sb_hiwat;
   2039 	}
   2040 	if (bufsize > tp->t_ourmss) {
   2041 		bufsize = roundup(bufsize, tp->t_ourmss);
   2042 		if (bufsize > sb_max)
   2043 			bufsize = sb_max;
   2044 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2045 	}
   2046 }
   2047 
   2048 /*
   2049  * Check if there's an initial rtt or rttvar.  Convert from the
   2050  * route-table units to scaled multiples of the slow timeout timer.
   2051  * Called only during the 3-way handshake.
   2052  */
   2053 void
   2054 tcp_rmx_rtt(struct tcpcb *tp)
   2055 {
   2056 #ifdef RTV_RTT
   2057 	struct rtentry *rt = NULL;
   2058 	int rtt;
   2059 
   2060 #ifdef DIAGNOSTIC
   2061 	if (tp->t_inpcb && tp->t_in6pcb)
   2062 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2063 #endif
   2064 #ifdef INET
   2065 	if (tp->t_inpcb)
   2066 		rt = in_pcbrtentry(tp->t_inpcb);
   2067 #endif
   2068 #ifdef INET6
   2069 	if (tp->t_in6pcb)
   2070 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2071 #endif
   2072 	if (rt == NULL)
   2073 		return;
   2074 
   2075 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2076 		/*
   2077 		 * XXX The lock bit for MTU indicates that the value
   2078 		 * is also a minimum value; this is subject to time.
   2079 		 */
   2080 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2081 			TCPT_RANGESET(tp->t_rttmin,
   2082 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2083 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2084 		tp->t_srtt = rtt /
   2085 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2086 		if (rt->rt_rmx.rmx_rttvar) {
   2087 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2088 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2089 				(TCP_RTTVAR_SHIFT + 2));
   2090 		} else {
   2091 			/* Default variation is +- 1 rtt */
   2092 			tp->t_rttvar =
   2093 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2094 		}
   2095 		TCPT_RANGESET(tp->t_rxtcur,
   2096 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2097 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2098 	}
   2099 #endif
   2100 }
   2101 
   2102 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2103 #if NRND > 0
   2104 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2105 #endif
   2106 
   2107 /*
   2108  * Get a new sequence value given a tcp control block
   2109  */
   2110 tcp_seq
   2111 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2112 {
   2113 
   2114 #ifdef INET
   2115 	if (tp->t_inpcb != NULL) {
   2116 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2117 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2118 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2119 		    addin));
   2120 	}
   2121 #endif
   2122 #ifdef INET6
   2123 	if (tp->t_in6pcb != NULL) {
   2124 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2125 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2126 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2127 		    addin));
   2128 	}
   2129 #endif
   2130 	/* Not possible. */
   2131 	panic("tcp_new_iss");
   2132 }
   2133 
   2134 /*
   2135  * This routine actually generates a new TCP initial sequence number.
   2136  */
   2137 tcp_seq
   2138 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2139     size_t addrsz, tcp_seq addin)
   2140 {
   2141 	tcp_seq tcp_iss;
   2142 
   2143 #if NRND > 0
   2144 	static int beenhere;
   2145 
   2146 	/*
   2147 	 * If we haven't been here before, initialize our cryptographic
   2148 	 * hash secret.
   2149 	 */
   2150 	if (beenhere == 0) {
   2151 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2152 		    RND_EXTRACT_ANY);
   2153 		beenhere = 1;
   2154 	}
   2155 
   2156 	if (tcp_do_rfc1948) {
   2157 		MD5_CTX ctx;
   2158 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2159 
   2160 		/*
   2161 		 * Compute the base value of the ISS.  It is a hash
   2162 		 * of (saddr, sport, daddr, dport, secret).
   2163 		 */
   2164 		MD5Init(&ctx);
   2165 
   2166 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2167 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2168 
   2169 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2170 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2171 
   2172 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2173 
   2174 		MD5Final(hash, &ctx);
   2175 
   2176 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2177 
   2178 		/*
   2179 		 * Now increment our "timer", and add it in to
   2180 		 * the computed value.
   2181 		 *
   2182 		 * XXX Use `addin'?
   2183 		 * XXX TCP_ISSINCR too large to use?
   2184 		 */
   2185 		tcp_iss_seq += TCP_ISSINCR;
   2186 #ifdef TCPISS_DEBUG
   2187 		printf("ISS hash 0x%08x, ", tcp_iss);
   2188 #endif
   2189 		tcp_iss += tcp_iss_seq + addin;
   2190 #ifdef TCPISS_DEBUG
   2191 		printf("new ISS 0x%08x\n", tcp_iss);
   2192 #endif
   2193 	} else
   2194 #endif /* NRND > 0 */
   2195 	{
   2196 		/*
   2197 		 * Randomize.
   2198 		 */
   2199 #if NRND > 0
   2200 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2201 #else
   2202 		tcp_iss = arc4random();
   2203 #endif
   2204 
   2205 		/*
   2206 		 * If we were asked to add some amount to a known value,
   2207 		 * we will take a random value obtained above, mask off
   2208 		 * the upper bits, and add in the known value.  We also
   2209 		 * add in a constant to ensure that we are at least a
   2210 		 * certain distance from the original value.
   2211 		 *
   2212 		 * This is used when an old connection is in timed wait
   2213 		 * and we have a new one coming in, for instance.
   2214 		 */
   2215 		if (addin != 0) {
   2216 #ifdef TCPISS_DEBUG
   2217 			printf("Random %08x, ", tcp_iss);
   2218 #endif
   2219 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2220 			tcp_iss += addin + TCP_ISSINCR;
   2221 #ifdef TCPISS_DEBUG
   2222 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2223 #endif
   2224 		} else {
   2225 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2226 			tcp_iss += tcp_iss_seq;
   2227 			tcp_iss_seq += TCP_ISSINCR;
   2228 #ifdef TCPISS_DEBUG
   2229 			printf("ISS %08x\n", tcp_iss);
   2230 #endif
   2231 		}
   2232 	}
   2233 
   2234 	if (tcp_compat_42) {
   2235 		/*
   2236 		 * Limit it to the positive range for really old TCP
   2237 		 * implementations.
   2238 		 * Just AND off the top bit instead of checking if
   2239 		 * is set first - saves a branch 50% of the time.
   2240 		 */
   2241 		tcp_iss &= 0x7fffffff;		/* XXX */
   2242 	}
   2243 
   2244 	return (tcp_iss);
   2245 }
   2246 
   2247 #if defined(IPSEC) || defined(FAST_IPSEC)
   2248 /* compute ESP/AH header size for TCP, including outer IP header. */
   2249 size_t
   2250 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2251 {
   2252 	struct inpcb *inp;
   2253 	size_t hdrsiz;
   2254 
   2255 	/* XXX mapped addr case (tp->t_in6pcb) */
   2256 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2257 		return 0;
   2258 	switch (tp->t_family) {
   2259 	case AF_INET:
   2260 		/* XXX: should use currect direction. */
   2261 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2262 		break;
   2263 	default:
   2264 		hdrsiz = 0;
   2265 		break;
   2266 	}
   2267 
   2268 	return hdrsiz;
   2269 }
   2270 
   2271 #ifdef INET6
   2272 size_t
   2273 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2274 {
   2275 	struct in6pcb *in6p;
   2276 	size_t hdrsiz;
   2277 
   2278 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2279 		return 0;
   2280 	switch (tp->t_family) {
   2281 	case AF_INET6:
   2282 		/* XXX: should use currect direction. */
   2283 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2284 		break;
   2285 	case AF_INET:
   2286 		/* mapped address case - tricky */
   2287 	default:
   2288 		hdrsiz = 0;
   2289 		break;
   2290 	}
   2291 
   2292 	return hdrsiz;
   2293 }
   2294 #endif
   2295 #endif /*IPSEC*/
   2296 
   2297 /*
   2298  * Determine the length of the TCP options for this connection.
   2299  *
   2300  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2301  *       all of the space?  Otherwise we can't exactly be incrementing
   2302  *       cwnd by an amount that varies depending on the amount we last
   2303  *       had to SACK!
   2304  */
   2305 
   2306 u_int
   2307 tcp_optlen(struct tcpcb *tp)
   2308 {
   2309 	u_int optlen;
   2310 
   2311 	optlen = 0;
   2312 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2313 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2314 		optlen += TCPOLEN_TSTAMP_APPA;
   2315 
   2316 #ifdef TCP_SIGNATURE
   2317 	if (tp->t_flags & TF_SIGNATURE)
   2318 		optlen += TCPOLEN_SIGNATURE + 2;
   2319 #endif /* TCP_SIGNATURE */
   2320 
   2321 	return optlen;
   2322 }
   2323 
   2324 u_int
   2325 tcp_hdrsz(struct tcpcb *tp)
   2326 {
   2327 	u_int hlen;
   2328 
   2329 	switch (tp->t_family) {
   2330 #ifdef INET6
   2331 	case AF_INET6:
   2332 		hlen = sizeof(struct ip6_hdr);
   2333 		break;
   2334 #endif
   2335 	case AF_INET:
   2336 		hlen = sizeof(struct ip);
   2337 		break;
   2338 	default:
   2339 		hlen = 0;
   2340 		break;
   2341 	}
   2342 	hlen += sizeof(struct tcphdr);
   2343 
   2344 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2345 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2346 		hlen += TCPOLEN_TSTAMP_APPA;
   2347 #ifdef TCP_SIGNATURE
   2348 	if (tp->t_flags & TF_SIGNATURE)
   2349 		hlen += TCPOLEN_SIGLEN;
   2350 #endif
   2351 	return hlen;
   2352 }
   2353