tcp_subr.c revision 1.218 1 /* $NetBSD: tcp_subr.c,v 1.218 2007/08/02 02:42:41 rmind Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.218 2007/08/02 02:42:41 rmind Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168 #include <netipsec/key.h>
169 #endif /* FAST_IPSEC*/
170
171
172 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
173 struct tcpstat tcpstat; /* tcp statistics */
174 u_int32_t tcp_now; /* for RFC 1323 timestamps */
175
176 /* patchable/settable parameters for tcp */
177 int tcp_mssdflt = TCP_MSS;
178 int tcp_minmss = TCP_MINMSS;
179 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
180 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
181 #if NRND > 0
182 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
183 #endif
184 int tcp_do_sack = 1; /* selective acknowledgement */
185 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
186 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
187 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
188 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
189 #ifndef TCP_INIT_WIN
190 #define TCP_INIT_WIN 0 /* initial slow start window */
191 #endif
192 #ifndef TCP_INIT_WIN_LOCAL
193 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
194 #endif
195 int tcp_init_win = TCP_INIT_WIN;
196 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
197 int tcp_mss_ifmtu = 0;
198 #ifdef TCP_COMPAT_42
199 int tcp_compat_42 = 1;
200 #else
201 int tcp_compat_42 = 0;
202 #endif
203 int tcp_rst_ppslim = 100; /* 100pps */
204 int tcp_ackdrop_ppslim = 100; /* 100pps */
205 int tcp_do_loopback_cksum = 0;
206 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
207 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
208 int tcp_sack_tp_maxholes = 32;
209 int tcp_sack_globalmaxholes = 1024;
210 int tcp_sack_globalholes = 0;
211 int tcp_ecn_maxretries = 1;
212
213 /* tcb hash */
214 #ifndef TCBHASHSIZE
215 #define TCBHASHSIZE 128
216 #endif
217 int tcbhashsize = TCBHASHSIZE;
218
219 /* syn hash parameters */
220 #define TCP_SYN_HASH_SIZE 293
221 #define TCP_SYN_BUCKET_SIZE 35
222 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
223 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
224 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
225 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
226
227 int tcp_freeq(struct tcpcb *);
228
229 #ifdef INET
230 void tcp_mtudisc_callback(struct in_addr);
231 #endif
232 #ifdef INET6
233 void tcp6_mtudisc_callback(struct in6_addr *);
234 #endif
235
236 #ifdef INET6
237 void tcp6_mtudisc(struct in6pcb *, int);
238 #endif
239
240 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
241 IPL_SOFTNET);
242
243 #ifdef TCP_CSUM_COUNTERS
244 #include <sys/device.h>
245
246 #if defined(INET)
247 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248 NULL, "tcp", "hwcsum bad");
249 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250 NULL, "tcp", "hwcsum ok");
251 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp", "hwcsum data");
253 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 NULL, "tcp", "swcsum");
255
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
257 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
259 EVCNT_ATTACH_STATIC(tcp_swcsum);
260 #endif /* defined(INET) */
261
262 #if defined(INET6)
263 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp6", "hwcsum bad");
265 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp6", "hwcsum ok");
267 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp6", "hwcsum data");
269 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 NULL, "tcp6", "swcsum");
271
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
275 EVCNT_ATTACH_STATIC(tcp6_swcsum);
276 #endif /* defined(INET6) */
277 #endif /* TCP_CSUM_COUNTERS */
278
279
280 #ifdef TCP_OUTPUT_COUNTERS
281 #include <sys/device.h>
282
283 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 NULL, "tcp", "output big header");
285 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 NULL, "tcp", "output predict hit");
287 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 NULL, "tcp", "output predict miss");
289 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 NULL, "tcp", "output copy small");
291 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 NULL, "tcp", "output copy big");
293 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 NULL, "tcp", "output reference big");
295
296 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
297 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
298 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
299 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
300 EVCNT_ATTACH_STATIC(tcp_output_copybig);
301 EVCNT_ATTACH_STATIC(tcp_output_refbig);
302
303 #endif /* TCP_OUTPUT_COUNTERS */
304
305 #ifdef TCP_REASS_COUNTERS
306 #include <sys/device.h>
307
308 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 NULL, "tcp_reass", "calls");
310 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "insert into empty queue");
312 struct evcnt tcp_reass_iteration[8] = {
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
318 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
320 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
321 };
322 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323 &tcp_reass_, "tcp_reass", "prepend to first");
324 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325 &tcp_reass_, "tcp_reass", "prepend");
326 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327 &tcp_reass_, "tcp_reass", "insert");
328 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329 &tcp_reass_, "tcp_reass", "insert at tail");
330 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331 &tcp_reass_, "tcp_reass", "append");
332 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333 &tcp_reass_, "tcp_reass", "append to tail fragment");
334 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335 &tcp_reass_, "tcp_reass", "overlap at end");
336 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337 &tcp_reass_, "tcp_reass", "overlap at start");
338 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339 &tcp_reass_, "tcp_reass", "duplicate segment");
340 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341 &tcp_reass_, "tcp_reass", "duplicate fragment");
342
343 EVCNT_ATTACH_STATIC(tcp_reass_);
344 EVCNT_ATTACH_STATIC(tcp_reass_empty);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
353 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
354 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
355 EVCNT_ATTACH_STATIC(tcp_reass_insert);
356 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
357 EVCNT_ATTACH_STATIC(tcp_reass_append);
358 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
359 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
360 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
361 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
362 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
363
364 #endif /* TCP_REASS_COUNTERS */
365
366 #ifdef MBUFTRACE
367 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
368 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
369 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
370 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
371 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
372 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
373 #endif
374
375 /*
376 * Tcp initialization
377 */
378 void
379 tcp_init(void)
380 {
381 int hlen;
382
383 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
384
385 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
386 #ifdef INET6
387 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
388 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
389 #endif
390 if (max_protohdr < hlen)
391 max_protohdr = hlen;
392 if (max_linkhdr + hlen > MHLEN)
393 panic("tcp_init");
394
395 #ifdef INET
396 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
397 #endif
398 #ifdef INET6
399 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
400 #endif
401
402 /* Initialize timer state. */
403 tcp_timer_init();
404
405 /* Initialize the compressed state engine. */
406 syn_cache_init();
407
408 /* Initialize the congestion control algorithms. */
409 tcp_congctl_init();
410
411 /* Initialize the TCPCB template. */
412 tcp_tcpcb_template();
413
414 MOWNER_ATTACH(&tcp_tx_mowner);
415 MOWNER_ATTACH(&tcp_rx_mowner);
416 MOWNER_ATTACH(&tcp_reass_mowner);
417 MOWNER_ATTACH(&tcp_sock_mowner);
418 MOWNER_ATTACH(&tcp_sock_tx_mowner);
419 MOWNER_ATTACH(&tcp_sock_rx_mowner);
420 MOWNER_ATTACH(&tcp_mowner);
421 }
422
423 /*
424 * Create template to be used to send tcp packets on a connection.
425 * Call after host entry created, allocates an mbuf and fills
426 * in a skeletal tcp/ip header, minimizing the amount of work
427 * necessary when the connection is used.
428 */
429 struct mbuf *
430 tcp_template(struct tcpcb *tp)
431 {
432 struct inpcb *inp = tp->t_inpcb;
433 #ifdef INET6
434 struct in6pcb *in6p = tp->t_in6pcb;
435 #endif
436 struct tcphdr *n;
437 struct mbuf *m;
438 int hlen;
439
440 switch (tp->t_family) {
441 case AF_INET:
442 hlen = sizeof(struct ip);
443 if (inp)
444 break;
445 #ifdef INET6
446 if (in6p) {
447 /* mapped addr case */
448 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
449 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
450 break;
451 }
452 #endif
453 return NULL; /*EINVAL*/
454 #ifdef INET6
455 case AF_INET6:
456 hlen = sizeof(struct ip6_hdr);
457 if (in6p) {
458 /* more sainty check? */
459 break;
460 }
461 return NULL; /*EINVAL*/
462 #endif
463 default:
464 hlen = 0; /*pacify gcc*/
465 return NULL; /*EAFNOSUPPORT*/
466 }
467 #ifdef DIAGNOSTIC
468 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
469 panic("mclbytes too small for t_template");
470 #endif
471 m = tp->t_template;
472 if (m && m->m_len == hlen + sizeof(struct tcphdr))
473 ;
474 else {
475 if (m)
476 m_freem(m);
477 m = tp->t_template = NULL;
478 MGETHDR(m, M_DONTWAIT, MT_HEADER);
479 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
480 MCLGET(m, M_DONTWAIT);
481 if ((m->m_flags & M_EXT) == 0) {
482 m_free(m);
483 m = NULL;
484 }
485 }
486 if (m == NULL)
487 return NULL;
488 MCLAIM(m, &tcp_mowner);
489 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
490 }
491
492 bzero(mtod(m, void *), m->m_len);
493
494 n = (struct tcphdr *)(mtod(m, char *) + hlen);
495
496 switch (tp->t_family) {
497 case AF_INET:
498 {
499 struct ipovly *ipov;
500 mtod(m, struct ip *)->ip_v = 4;
501 mtod(m, struct ip *)->ip_hl = hlen >> 2;
502 ipov = mtod(m, struct ipovly *);
503 ipov->ih_pr = IPPROTO_TCP;
504 ipov->ih_len = htons(sizeof(struct tcphdr));
505 if (inp) {
506 ipov->ih_src = inp->inp_laddr;
507 ipov->ih_dst = inp->inp_faddr;
508 }
509 #ifdef INET6
510 else if (in6p) {
511 /* mapped addr case */
512 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
513 sizeof(ipov->ih_src));
514 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
515 sizeof(ipov->ih_dst));
516 }
517 #endif
518 /*
519 * Compute the pseudo-header portion of the checksum
520 * now. We incrementally add in the TCP option and
521 * payload lengths later, and then compute the TCP
522 * checksum right before the packet is sent off onto
523 * the wire.
524 */
525 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
526 ipov->ih_dst.s_addr,
527 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
528 break;
529 }
530 #ifdef INET6
531 case AF_INET6:
532 {
533 struct ip6_hdr *ip6;
534 mtod(m, struct ip *)->ip_v = 6;
535 ip6 = mtod(m, struct ip6_hdr *);
536 ip6->ip6_nxt = IPPROTO_TCP;
537 ip6->ip6_plen = htons(sizeof(struct tcphdr));
538 ip6->ip6_src = in6p->in6p_laddr;
539 ip6->ip6_dst = in6p->in6p_faddr;
540 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
541 if (ip6_auto_flowlabel) {
542 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
543 ip6->ip6_flow |=
544 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
545 }
546 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
547 ip6->ip6_vfc |= IPV6_VERSION;
548
549 /*
550 * Compute the pseudo-header portion of the checksum
551 * now. We incrementally add in the TCP option and
552 * payload lengths later, and then compute the TCP
553 * checksum right before the packet is sent off onto
554 * the wire.
555 */
556 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
557 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
558 htonl(IPPROTO_TCP));
559 break;
560 }
561 #endif
562 }
563 if (inp) {
564 n->th_sport = inp->inp_lport;
565 n->th_dport = inp->inp_fport;
566 }
567 #ifdef INET6
568 else if (in6p) {
569 n->th_sport = in6p->in6p_lport;
570 n->th_dport = in6p->in6p_fport;
571 }
572 #endif
573 n->th_seq = 0;
574 n->th_ack = 0;
575 n->th_x2 = 0;
576 n->th_off = 5;
577 n->th_flags = 0;
578 n->th_win = 0;
579 n->th_urp = 0;
580 return (m);
581 }
582
583 /*
584 * Send a single message to the TCP at address specified by
585 * the given TCP/IP header. If m == 0, then we make a copy
586 * of the tcpiphdr at ti and send directly to the addressed host.
587 * This is used to force keep alive messages out using the TCP
588 * template for a connection tp->t_template. If flags are given
589 * then we send a message back to the TCP which originated the
590 * segment ti, and discard the mbuf containing it and any other
591 * attached mbufs.
592 *
593 * In any case the ack and sequence number of the transmitted
594 * segment are as specified by the parameters.
595 */
596 int
597 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
598 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
599 {
600 struct route *ro;
601 int error, tlen, win = 0;
602 int hlen;
603 struct ip *ip;
604 #ifdef INET6
605 struct ip6_hdr *ip6;
606 #endif
607 int family; /* family on packet, not inpcb/in6pcb! */
608 struct tcphdr *th;
609 struct socket *so;
610
611 if (tp != NULL && (flags & TH_RST) == 0) {
612 #ifdef DIAGNOSTIC
613 if (tp->t_inpcb && tp->t_in6pcb)
614 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
615 #endif
616 #ifdef INET
617 if (tp->t_inpcb)
618 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
619 #endif
620 #ifdef INET6
621 if (tp->t_in6pcb)
622 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
623 #endif
624 }
625
626 th = NULL; /* Quell uninitialized warning */
627 ip = NULL;
628 #ifdef INET6
629 ip6 = NULL;
630 #endif
631 if (m == 0) {
632 if (!template)
633 return EINVAL;
634
635 /* get family information from template */
636 switch (mtod(template, struct ip *)->ip_v) {
637 case 4:
638 family = AF_INET;
639 hlen = sizeof(struct ip);
640 break;
641 #ifdef INET6
642 case 6:
643 family = AF_INET6;
644 hlen = sizeof(struct ip6_hdr);
645 break;
646 #endif
647 default:
648 return EAFNOSUPPORT;
649 }
650
651 MGETHDR(m, M_DONTWAIT, MT_HEADER);
652 if (m) {
653 MCLAIM(m, &tcp_tx_mowner);
654 MCLGET(m, M_DONTWAIT);
655 if ((m->m_flags & M_EXT) == 0) {
656 m_free(m);
657 m = NULL;
658 }
659 }
660 if (m == NULL)
661 return (ENOBUFS);
662
663 if (tcp_compat_42)
664 tlen = 1;
665 else
666 tlen = 0;
667
668 m->m_data += max_linkhdr;
669 bcopy(mtod(template, void *), mtod(m, void *),
670 template->m_len);
671 switch (family) {
672 case AF_INET:
673 ip = mtod(m, struct ip *);
674 th = (struct tcphdr *)(ip + 1);
675 break;
676 #ifdef INET6
677 case AF_INET6:
678 ip6 = mtod(m, struct ip6_hdr *);
679 th = (struct tcphdr *)(ip6 + 1);
680 break;
681 #endif
682 #if 0
683 default:
684 /* noone will visit here */
685 m_freem(m);
686 return EAFNOSUPPORT;
687 #endif
688 }
689 flags = TH_ACK;
690 } else {
691
692 if ((m->m_flags & M_PKTHDR) == 0) {
693 #if 0
694 printf("non PKTHDR to tcp_respond\n");
695 #endif
696 m_freem(m);
697 return EINVAL;
698 }
699 #ifdef DIAGNOSTIC
700 if (!th0)
701 panic("th0 == NULL in tcp_respond");
702 #endif
703
704 /* get family information from m */
705 switch (mtod(m, struct ip *)->ip_v) {
706 case 4:
707 family = AF_INET;
708 hlen = sizeof(struct ip);
709 ip = mtod(m, struct ip *);
710 break;
711 #ifdef INET6
712 case 6:
713 family = AF_INET6;
714 hlen = sizeof(struct ip6_hdr);
715 ip6 = mtod(m, struct ip6_hdr *);
716 break;
717 #endif
718 default:
719 m_freem(m);
720 return EAFNOSUPPORT;
721 }
722 /* clear h/w csum flags inherited from rx packet */
723 m->m_pkthdr.csum_flags = 0;
724
725 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
726 tlen = sizeof(*th0);
727 else
728 tlen = th0->th_off << 2;
729
730 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
731 mtod(m, char *) + hlen == (char *)th0) {
732 m->m_len = hlen + tlen;
733 m_freem(m->m_next);
734 m->m_next = NULL;
735 } else {
736 struct mbuf *n;
737
738 #ifdef DIAGNOSTIC
739 if (max_linkhdr + hlen + tlen > MCLBYTES) {
740 m_freem(m);
741 return EMSGSIZE;
742 }
743 #endif
744 MGETHDR(n, M_DONTWAIT, MT_HEADER);
745 if (n && max_linkhdr + hlen + tlen > MHLEN) {
746 MCLGET(n, M_DONTWAIT);
747 if ((n->m_flags & M_EXT) == 0) {
748 m_freem(n);
749 n = NULL;
750 }
751 }
752 if (!n) {
753 m_freem(m);
754 return ENOBUFS;
755 }
756
757 MCLAIM(n, &tcp_tx_mowner);
758 n->m_data += max_linkhdr;
759 n->m_len = hlen + tlen;
760 m_copyback(n, 0, hlen, mtod(m, void *));
761 m_copyback(n, hlen, tlen, (void *)th0);
762
763 m_freem(m);
764 m = n;
765 n = NULL;
766 }
767
768 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
769 switch (family) {
770 case AF_INET:
771 ip = mtod(m, struct ip *);
772 th = (struct tcphdr *)(ip + 1);
773 ip->ip_p = IPPROTO_TCP;
774 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
775 ip->ip_p = IPPROTO_TCP;
776 break;
777 #ifdef INET6
778 case AF_INET6:
779 ip6 = mtod(m, struct ip6_hdr *);
780 th = (struct tcphdr *)(ip6 + 1);
781 ip6->ip6_nxt = IPPROTO_TCP;
782 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
783 ip6->ip6_nxt = IPPROTO_TCP;
784 break;
785 #endif
786 #if 0
787 default:
788 /* noone will visit here */
789 m_freem(m);
790 return EAFNOSUPPORT;
791 #endif
792 }
793 xchg(th->th_dport, th->th_sport, u_int16_t);
794 #undef xchg
795 tlen = 0; /*be friendly with the following code*/
796 }
797 th->th_seq = htonl(seq);
798 th->th_ack = htonl(ack);
799 th->th_x2 = 0;
800 if ((flags & TH_SYN) == 0) {
801 if (tp)
802 win >>= tp->rcv_scale;
803 if (win > TCP_MAXWIN)
804 win = TCP_MAXWIN;
805 th->th_win = htons((u_int16_t)win);
806 th->th_off = sizeof (struct tcphdr) >> 2;
807 tlen += sizeof(*th);
808 } else
809 tlen += th->th_off << 2;
810 m->m_len = hlen + tlen;
811 m->m_pkthdr.len = hlen + tlen;
812 m->m_pkthdr.rcvif = (struct ifnet *) 0;
813 th->th_flags = flags;
814 th->th_urp = 0;
815
816 switch (family) {
817 #ifdef INET
818 case AF_INET:
819 {
820 struct ipovly *ipov = (struct ipovly *)ip;
821 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
822 ipov->ih_len = htons((u_int16_t)tlen);
823
824 th->th_sum = 0;
825 th->th_sum = in_cksum(m, hlen + tlen);
826 ip->ip_len = htons(hlen + tlen);
827 ip->ip_ttl = ip_defttl;
828 break;
829 }
830 #endif
831 #ifdef INET6
832 case AF_INET6:
833 {
834 th->th_sum = 0;
835 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
836 tlen);
837 ip6->ip6_plen = htons(tlen);
838 if (tp && tp->t_in6pcb) {
839 struct ifnet *oifp;
840 ro = (struct route *)&tp->t_in6pcb->in6p_route;
841 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
842 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
843 } else
844 ip6->ip6_hlim = ip6_defhlim;
845 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
846 if (ip6_auto_flowlabel) {
847 ip6->ip6_flow |=
848 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
849 }
850 break;
851 }
852 #endif
853 }
854
855 if (tp && tp->t_inpcb)
856 so = tp->t_inpcb->inp_socket;
857 #ifdef INET6
858 else if (tp && tp->t_in6pcb)
859 so = tp->t_in6pcb->in6p_socket;
860 #endif
861 else
862 so = NULL;
863
864 if (tp != NULL && tp->t_inpcb != NULL) {
865 ro = &tp->t_inpcb->inp_route;
866 #ifdef DIAGNOSTIC
867 if (family != AF_INET)
868 panic("tcp_respond: address family mismatch");
869 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
870 panic("tcp_respond: ip_dst %x != inp_faddr %x",
871 ntohl(ip->ip_dst.s_addr),
872 ntohl(tp->t_inpcb->inp_faddr.s_addr));
873 }
874 #endif
875 }
876 #ifdef INET6
877 else if (tp != NULL && tp->t_in6pcb != NULL) {
878 ro = (struct route *)&tp->t_in6pcb->in6p_route;
879 #ifdef DIAGNOSTIC
880 if (family == AF_INET) {
881 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
882 panic("tcp_respond: not mapped addr");
883 if (bcmp(&ip->ip_dst,
884 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
885 sizeof(ip->ip_dst)) != 0) {
886 panic("tcp_respond: ip_dst != in6p_faddr");
887 }
888 } else if (family == AF_INET6) {
889 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
890 &tp->t_in6pcb->in6p_faddr))
891 panic("tcp_respond: ip6_dst != in6p_faddr");
892 } else
893 panic("tcp_respond: address family mismatch");
894 #endif
895 }
896 #endif
897 else
898 ro = NULL;
899
900 switch (family) {
901 #ifdef INET
902 case AF_INET:
903 error = ip_output(m, NULL, ro,
904 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
905 (struct ip_moptions *)0, so);
906 break;
907 #endif
908 #ifdef INET6
909 case AF_INET6:
910 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
911 break;
912 #endif
913 default:
914 error = EAFNOSUPPORT;
915 break;
916 }
917
918 return (error);
919 }
920
921 /*
922 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
923 * a bunch of members individually, we maintain this template for the
924 * static and mostly-static components of the TCPCB, and copy it into
925 * the new TCPCB instead.
926 */
927 static struct tcpcb tcpcb_template = {
928 .t_srtt = TCPTV_SRTTBASE,
929 .t_rttmin = TCPTV_MIN,
930
931 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
932 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
933 .snd_numholes = 0,
934
935 .t_partialacks = -1,
936 .t_bytes_acked = 0,
937 };
938
939 /*
940 * Updates the TCPCB template whenever a parameter that would affect
941 * the template is changed.
942 */
943 void
944 tcp_tcpcb_template(void)
945 {
946 struct tcpcb *tp = &tcpcb_template;
947 int flags;
948
949 tp->t_peermss = tcp_mssdflt;
950 tp->t_ourmss = tcp_mssdflt;
951 tp->t_segsz = tcp_mssdflt;
952
953 flags = 0;
954 if (tcp_do_rfc1323 && tcp_do_win_scale)
955 flags |= TF_REQ_SCALE;
956 if (tcp_do_rfc1323 && tcp_do_timestamps)
957 flags |= TF_REQ_TSTMP;
958 tp->t_flags = flags;
959
960 /*
961 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
962 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
963 * reasonable initial retransmit time.
964 */
965 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
966 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
967 TCPTV_MIN, TCPTV_REXMTMAX);
968
969 /* Keep Alive */
970 tp->t_keepinit = tcp_keepinit;
971 tp->t_keepidle = tcp_keepidle;
972 tp->t_keepintvl = tcp_keepintvl;
973 tp->t_keepcnt = tcp_keepcnt;
974 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
975 }
976
977 /*
978 * Create a new TCP control block, making an
979 * empty reassembly queue and hooking it to the argument
980 * protocol control block.
981 */
982 /* family selects inpcb, or in6pcb */
983 struct tcpcb *
984 tcp_newtcpcb(int family, void *aux)
985 {
986 struct tcpcb *tp;
987 int i;
988
989 /* XXX Consider using a pool_cache for speed. */
990 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
991 if (tp == NULL)
992 return (NULL);
993 memcpy(tp, &tcpcb_template, sizeof(*tp));
994 TAILQ_INIT(&tp->segq);
995 TAILQ_INIT(&tp->timeq);
996 tp->t_family = family; /* may be overridden later on */
997 TAILQ_INIT(&tp->snd_holes);
998 LIST_INIT(&tp->t_sc); /* XXX can template this */
999
1000 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1001 for (i = 0; i < TCPT_NTIMERS; i++) {
1002 callout_init(&tp->t_timer[i], 0);
1003 TCP_TIMER_INIT(tp, i);
1004 }
1005 callout_init(&tp->t_delack_ch, 0);
1006
1007 switch (family) {
1008 case AF_INET:
1009 {
1010 struct inpcb *inp = (struct inpcb *)aux;
1011
1012 inp->inp_ip.ip_ttl = ip_defttl;
1013 inp->inp_ppcb = (void *)tp;
1014
1015 tp->t_inpcb = inp;
1016 tp->t_mtudisc = ip_mtudisc;
1017 break;
1018 }
1019 #ifdef INET6
1020 case AF_INET6:
1021 {
1022 struct in6pcb *in6p = (struct in6pcb *)aux;
1023
1024 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1025 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1026 : NULL);
1027 in6p->in6p_ppcb = (void *)tp;
1028
1029 tp->t_in6pcb = in6p;
1030 /* for IPv6, always try to run path MTU discovery */
1031 tp->t_mtudisc = 1;
1032 break;
1033 }
1034 #endif /* INET6 */
1035 default:
1036 for (i = 0; i < TCPT_NTIMERS; i++)
1037 callout_destroy(&tp->t_timer[i]);
1038 callout_destroy(&tp->t_delack_ch);
1039 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1040 return (NULL);
1041 }
1042
1043 /*
1044 * Initialize our timebase. When we send timestamps, we take
1045 * the delta from tcp_now -- this means each connection always
1046 * gets a timebase of 0, which makes it, among other things,
1047 * more difficult to determine how long a system has been up,
1048 * and thus how many TCP sequence increments have occurred.
1049 */
1050 tp->ts_timebase = tcp_now;
1051
1052 tp->t_congctl = tcp_congctl_global;
1053 tp->t_congctl->refcnt++;
1054
1055 return (tp);
1056 }
1057
1058 /*
1059 * Drop a TCP connection, reporting
1060 * the specified error. If connection is synchronized,
1061 * then send a RST to peer.
1062 */
1063 struct tcpcb *
1064 tcp_drop(struct tcpcb *tp, int errno)
1065 {
1066 struct socket *so = NULL;
1067
1068 #ifdef DIAGNOSTIC
1069 if (tp->t_inpcb && tp->t_in6pcb)
1070 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1071 #endif
1072 #ifdef INET
1073 if (tp->t_inpcb)
1074 so = tp->t_inpcb->inp_socket;
1075 #endif
1076 #ifdef INET6
1077 if (tp->t_in6pcb)
1078 so = tp->t_in6pcb->in6p_socket;
1079 #endif
1080 if (!so)
1081 return NULL;
1082
1083 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1084 tp->t_state = TCPS_CLOSED;
1085 (void) tcp_output(tp);
1086 tcpstat.tcps_drops++;
1087 } else
1088 tcpstat.tcps_conndrops++;
1089 if (errno == ETIMEDOUT && tp->t_softerror)
1090 errno = tp->t_softerror;
1091 so->so_error = errno;
1092 return (tcp_close(tp));
1093 }
1094
1095 /*
1096 * Return whether this tcpcb is marked as dead, indicating
1097 * to the calling timer function that no further action should
1098 * be taken, as we are about to release this tcpcb. The release
1099 * of the storage will be done if this is the last timer running.
1100 *
1101 * This should be called from the callout handler function after
1102 * callout_ack() is done, so that the number of invoking timer
1103 * functions is 0.
1104 */
1105 int
1106 tcp_isdead(struct tcpcb *tp)
1107 {
1108 int i, dead = (tp->t_flags & TF_DEAD);
1109
1110 if (__predict_false(dead)) {
1111 if (tcp_timers_invoking(tp) > 0)
1112 /* not quite there yet -- count separately? */
1113 return dead;
1114 tcpstat.tcps_delayed_free++;
1115 for (i = 0; i < TCPT_NTIMERS; i++)
1116 callout_destroy(&tp->t_timer[i]);
1117 callout_destroy(&tp->t_delack_ch);
1118 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_timer.c */
1119 }
1120 return dead;
1121 }
1122
1123 /*
1124 * Close a TCP control block:
1125 * discard all space held by the tcp
1126 * discard internet protocol block
1127 * wake up any sleepers
1128 */
1129 struct tcpcb *
1130 tcp_close(struct tcpcb *tp)
1131 {
1132 struct inpcb *inp;
1133 #ifdef INET6
1134 struct in6pcb *in6p;
1135 #endif
1136 struct socket *so;
1137 #ifdef RTV_RTT
1138 struct rtentry *rt;
1139 #endif
1140 struct route *ro;
1141 int j;
1142
1143 inp = tp->t_inpcb;
1144 #ifdef INET6
1145 in6p = tp->t_in6pcb;
1146 #endif
1147 so = NULL;
1148 ro = NULL;
1149 if (inp) {
1150 so = inp->inp_socket;
1151 ro = &inp->inp_route;
1152 }
1153 #ifdef INET6
1154 else if (in6p) {
1155 so = in6p->in6p_socket;
1156 ro = (struct route *)&in6p->in6p_route;
1157 }
1158 #endif
1159
1160 #ifdef RTV_RTT
1161 /*
1162 * If we sent enough data to get some meaningful characteristics,
1163 * save them in the routing entry. 'Enough' is arbitrarily
1164 * defined as the sendpipesize (default 4K) * 16. This would
1165 * give us 16 rtt samples assuming we only get one sample per
1166 * window (the usual case on a long haul net). 16 samples is
1167 * enough for the srtt filter to converge to within 5% of the correct
1168 * value; fewer samples and we could save a very bogus rtt.
1169 *
1170 * Don't update the default route's characteristics and don't
1171 * update anything that the user "locked".
1172 */
1173 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1174 ro && (rt = ro->ro_rt) &&
1175 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1176 u_long i = 0;
1177
1178 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1179 i = tp->t_srtt *
1180 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1181 if (rt->rt_rmx.rmx_rtt && i)
1182 /*
1183 * filter this update to half the old & half
1184 * the new values, converting scale.
1185 * See route.h and tcp_var.h for a
1186 * description of the scaling constants.
1187 */
1188 rt->rt_rmx.rmx_rtt =
1189 (rt->rt_rmx.rmx_rtt + i) / 2;
1190 else
1191 rt->rt_rmx.rmx_rtt = i;
1192 }
1193 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1194 i = tp->t_rttvar *
1195 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1196 if (rt->rt_rmx.rmx_rttvar && i)
1197 rt->rt_rmx.rmx_rttvar =
1198 (rt->rt_rmx.rmx_rttvar + i) / 2;
1199 else
1200 rt->rt_rmx.rmx_rttvar = i;
1201 }
1202 /*
1203 * update the pipelimit (ssthresh) if it has been updated
1204 * already or if a pipesize was specified & the threshhold
1205 * got below half the pipesize. I.e., wait for bad news
1206 * before we start updating, then update on both good
1207 * and bad news.
1208 */
1209 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1210 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1211 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1212 /*
1213 * convert the limit from user data bytes to
1214 * packets then to packet data bytes.
1215 */
1216 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1217 if (i < 2)
1218 i = 2;
1219 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1220 if (rt->rt_rmx.rmx_ssthresh)
1221 rt->rt_rmx.rmx_ssthresh =
1222 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1223 else
1224 rt->rt_rmx.rmx_ssthresh = i;
1225 }
1226 }
1227 #endif /* RTV_RTT */
1228 /* free the reassembly queue, if any */
1229 TCP_REASS_LOCK(tp);
1230 (void) tcp_freeq(tp);
1231 TCP_REASS_UNLOCK(tp);
1232
1233 /* free the SACK holes list. */
1234 tcp_free_sackholes(tp);
1235
1236 tp->t_congctl->refcnt--;
1237
1238 tcp_canceltimers(tp);
1239 TCP_CLEAR_DELACK(tp);
1240 syn_cache_cleanup(tp);
1241
1242 if (tp->t_template) {
1243 m_free(tp->t_template);
1244 tp->t_template = NULL;
1245 }
1246 if (tcp_timers_invoking(tp))
1247 tp->t_flags |= TF_DEAD;
1248 else {
1249 for (j = 0; j < TCPT_NTIMERS; j++)
1250 callout_destroy(&tp->t_timer[j]);
1251 callout_destroy(&tp->t_delack_ch);
1252 pool_put(&tcpcb_pool, tp);
1253 }
1254
1255 if (inp) {
1256 inp->inp_ppcb = 0;
1257 soisdisconnected(so);
1258 in_pcbdetach(inp);
1259 }
1260 #ifdef INET6
1261 else if (in6p) {
1262 in6p->in6p_ppcb = 0;
1263 soisdisconnected(so);
1264 in6_pcbdetach(in6p);
1265 }
1266 #endif
1267 tcpstat.tcps_closed++;
1268 return ((struct tcpcb *)0);
1269 }
1270
1271 int
1272 tcp_freeq(tp)
1273 struct tcpcb *tp;
1274 {
1275 struct ipqent *qe;
1276 int rv = 0;
1277 #ifdef TCPREASS_DEBUG
1278 int i = 0;
1279 #endif
1280
1281 TCP_REASS_LOCK_CHECK(tp);
1282
1283 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1284 #ifdef TCPREASS_DEBUG
1285 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1286 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1287 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1288 #endif
1289 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1290 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1291 m_freem(qe->ipqe_m);
1292 tcpipqent_free(qe);
1293 rv = 1;
1294 }
1295 tp->t_segqlen = 0;
1296 KASSERT(TAILQ_EMPTY(&tp->timeq));
1297 return (rv);
1298 }
1299
1300 /*
1301 * Protocol drain routine. Called when memory is in short supply.
1302 */
1303 void
1304 tcp_drain(void)
1305 {
1306 struct inpcb_hdr *inph;
1307 struct tcpcb *tp;
1308
1309 /*
1310 * Free the sequence queue of all TCP connections.
1311 */
1312 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1313 switch (inph->inph_af) {
1314 case AF_INET:
1315 tp = intotcpcb((struct inpcb *)inph);
1316 break;
1317 #ifdef INET6
1318 case AF_INET6:
1319 tp = in6totcpcb((struct in6pcb *)inph);
1320 break;
1321 #endif
1322 default:
1323 tp = NULL;
1324 break;
1325 }
1326 if (tp != NULL) {
1327 /*
1328 * We may be called from a device's interrupt
1329 * context. If the tcpcb is already busy,
1330 * just bail out now.
1331 */
1332 if (tcp_reass_lock_try(tp) == 0)
1333 continue;
1334 if (tcp_freeq(tp))
1335 tcpstat.tcps_connsdrained++;
1336 TCP_REASS_UNLOCK(tp);
1337 }
1338 }
1339 }
1340
1341 /*
1342 * Notify a tcp user of an asynchronous error;
1343 * store error as soft error, but wake up user
1344 * (for now, won't do anything until can select for soft error).
1345 */
1346 void
1347 tcp_notify(struct inpcb *inp, int error)
1348 {
1349 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1350 struct socket *so = inp->inp_socket;
1351
1352 /*
1353 * Ignore some errors if we are hooked up.
1354 * If connection hasn't completed, has retransmitted several times,
1355 * and receives a second error, give up now. This is better
1356 * than waiting a long time to establish a connection that
1357 * can never complete.
1358 */
1359 if (tp->t_state == TCPS_ESTABLISHED &&
1360 (error == EHOSTUNREACH || error == ENETUNREACH ||
1361 error == EHOSTDOWN)) {
1362 return;
1363 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1364 tp->t_rxtshift > 3 && tp->t_softerror)
1365 so->so_error = error;
1366 else
1367 tp->t_softerror = error;
1368 wakeup((void *) &so->so_timeo);
1369 sorwakeup(so);
1370 sowwakeup(so);
1371 }
1372
1373 #ifdef INET6
1374 void
1375 tcp6_notify(struct in6pcb *in6p, int error)
1376 {
1377 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1378 struct socket *so = in6p->in6p_socket;
1379
1380 /*
1381 * Ignore some errors if we are hooked up.
1382 * If connection hasn't completed, has retransmitted several times,
1383 * and receives a second error, give up now. This is better
1384 * than waiting a long time to establish a connection that
1385 * can never complete.
1386 */
1387 if (tp->t_state == TCPS_ESTABLISHED &&
1388 (error == EHOSTUNREACH || error == ENETUNREACH ||
1389 error == EHOSTDOWN)) {
1390 return;
1391 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1392 tp->t_rxtshift > 3 && tp->t_softerror)
1393 so->so_error = error;
1394 else
1395 tp->t_softerror = error;
1396 wakeup((void *) &so->so_timeo);
1397 sorwakeup(so);
1398 sowwakeup(so);
1399 }
1400 #endif
1401
1402 #ifdef INET6
1403 void
1404 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1405 {
1406 struct tcphdr th;
1407 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1408 int nmatch;
1409 struct ip6_hdr *ip6;
1410 const struct sockaddr_in6 *sa6_src = NULL;
1411 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1412 struct mbuf *m;
1413 int off;
1414
1415 if (sa->sa_family != AF_INET6 ||
1416 sa->sa_len != sizeof(struct sockaddr_in6))
1417 return;
1418 if ((unsigned)cmd >= PRC_NCMDS)
1419 return;
1420 else if (cmd == PRC_QUENCH) {
1421 /*
1422 * Don't honor ICMP Source Quench messages meant for
1423 * TCP connections.
1424 */
1425 return;
1426 } else if (PRC_IS_REDIRECT(cmd))
1427 notify = in6_rtchange, d = NULL;
1428 else if (cmd == PRC_MSGSIZE)
1429 ; /* special code is present, see below */
1430 else if (cmd == PRC_HOSTDEAD)
1431 d = NULL;
1432 else if (inet6ctlerrmap[cmd] == 0)
1433 return;
1434
1435 /* if the parameter is from icmp6, decode it. */
1436 if (d != NULL) {
1437 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1438 m = ip6cp->ip6c_m;
1439 ip6 = ip6cp->ip6c_ip6;
1440 off = ip6cp->ip6c_off;
1441 sa6_src = ip6cp->ip6c_src;
1442 } else {
1443 m = NULL;
1444 ip6 = NULL;
1445 sa6_src = &sa6_any;
1446 off = 0;
1447 }
1448
1449 if (ip6) {
1450 /*
1451 * XXX: We assume that when ip6 is non NULL,
1452 * M and OFF are valid.
1453 */
1454
1455 /* check if we can safely examine src and dst ports */
1456 if (m->m_pkthdr.len < off + sizeof(th)) {
1457 if (cmd == PRC_MSGSIZE)
1458 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1459 return;
1460 }
1461
1462 bzero(&th, sizeof(th));
1463 m_copydata(m, off, sizeof(th), (void *)&th);
1464
1465 if (cmd == PRC_MSGSIZE) {
1466 int valid = 0;
1467
1468 /*
1469 * Check to see if we have a valid TCP connection
1470 * corresponding to the address in the ICMPv6 message
1471 * payload.
1472 */
1473 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1474 th.th_dport,
1475 (const struct in6_addr *)&sa6_src->sin6_addr,
1476 th.th_sport, 0))
1477 valid++;
1478
1479 /*
1480 * Depending on the value of "valid" and routing table
1481 * size (mtudisc_{hi,lo}wat), we will:
1482 * - recalcurate the new MTU and create the
1483 * corresponding routing entry, or
1484 * - ignore the MTU change notification.
1485 */
1486 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1487
1488 /*
1489 * no need to call in6_pcbnotify, it should have been
1490 * called via callback if necessary
1491 */
1492 return;
1493 }
1494
1495 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1496 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1497 if (nmatch == 0 && syn_cache_count &&
1498 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1499 inet6ctlerrmap[cmd] == ENETUNREACH ||
1500 inet6ctlerrmap[cmd] == EHOSTDOWN))
1501 syn_cache_unreach((const struct sockaddr *)sa6_src,
1502 sa, &th);
1503 } else {
1504 (void) in6_pcbnotify(&tcbtable, sa, 0,
1505 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1506 }
1507 }
1508 #endif
1509
1510 #ifdef INET
1511 /* assumes that ip header and tcp header are contiguous on mbuf */
1512 void *
1513 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1514 {
1515 struct ip *ip = v;
1516 struct tcphdr *th;
1517 struct icmp *icp;
1518 extern const int inetctlerrmap[];
1519 void (*notify)(struct inpcb *, int) = tcp_notify;
1520 int errno;
1521 int nmatch;
1522 struct tcpcb *tp;
1523 u_int mtu;
1524 tcp_seq seq;
1525 struct inpcb *inp;
1526 #ifdef INET6
1527 struct in6pcb *in6p;
1528 struct in6_addr src6, dst6;
1529 #endif
1530
1531 if (sa->sa_family != AF_INET ||
1532 sa->sa_len != sizeof(struct sockaddr_in))
1533 return NULL;
1534 if ((unsigned)cmd >= PRC_NCMDS)
1535 return NULL;
1536 errno = inetctlerrmap[cmd];
1537 if (cmd == PRC_QUENCH)
1538 /*
1539 * Don't honor ICMP Source Quench messages meant for
1540 * TCP connections.
1541 */
1542 return NULL;
1543 else if (PRC_IS_REDIRECT(cmd))
1544 notify = in_rtchange, ip = 0;
1545 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1546 /*
1547 * Check to see if we have a valid TCP connection
1548 * corresponding to the address in the ICMP message
1549 * payload.
1550 *
1551 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1552 */
1553 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1554 #ifdef INET6
1555 memset(&src6, 0, sizeof(src6));
1556 memset(&dst6, 0, sizeof(dst6));
1557 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1558 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1559 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1560 #endif
1561 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1562 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1563 #ifdef INET6
1564 in6p = NULL;
1565 #else
1566 ;
1567 #endif
1568 #ifdef INET6
1569 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1570 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1571 ;
1572 #endif
1573 else
1574 return NULL;
1575
1576 /*
1577 * Now that we've validated that we are actually communicating
1578 * with the host indicated in the ICMP message, locate the
1579 * ICMP header, recalculate the new MTU, and create the
1580 * corresponding routing entry.
1581 */
1582 icp = (struct icmp *)((char *)ip -
1583 offsetof(struct icmp, icmp_ip));
1584 if (inp) {
1585 if ((tp = intotcpcb(inp)) == NULL)
1586 return NULL;
1587 }
1588 #ifdef INET6
1589 else if (in6p) {
1590 if ((tp = in6totcpcb(in6p)) == NULL)
1591 return NULL;
1592 }
1593 #endif
1594 else
1595 return NULL;
1596 seq = ntohl(th->th_seq);
1597 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1598 return NULL;
1599 /*
1600 * If the ICMP message advertises a Next-Hop MTU
1601 * equal or larger than the maximum packet size we have
1602 * ever sent, drop the message.
1603 */
1604 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1605 if (mtu >= tp->t_pmtud_mtu_sent)
1606 return NULL;
1607 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1608 /*
1609 * Calculate new MTU, and create corresponding
1610 * route (traditional PMTUD).
1611 */
1612 tp->t_flags &= ~TF_PMTUD_PEND;
1613 icmp_mtudisc(icp, ip->ip_dst);
1614 } else {
1615 /*
1616 * Record the information got in the ICMP
1617 * message; act on it later.
1618 * If we had already recorded an ICMP message,
1619 * replace the old one only if the new message
1620 * refers to an older TCP segment
1621 */
1622 if (tp->t_flags & TF_PMTUD_PEND) {
1623 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1624 return NULL;
1625 } else
1626 tp->t_flags |= TF_PMTUD_PEND;
1627 tp->t_pmtud_th_seq = seq;
1628 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1629 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1630 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1631 }
1632 return NULL;
1633 } else if (cmd == PRC_HOSTDEAD)
1634 ip = 0;
1635 else if (errno == 0)
1636 return NULL;
1637 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1638 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1639 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1640 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1641 if (nmatch == 0 && syn_cache_count &&
1642 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1643 inetctlerrmap[cmd] == ENETUNREACH ||
1644 inetctlerrmap[cmd] == EHOSTDOWN)) {
1645 struct sockaddr_in sin;
1646 bzero(&sin, sizeof(sin));
1647 sin.sin_len = sizeof(sin);
1648 sin.sin_family = AF_INET;
1649 sin.sin_port = th->th_sport;
1650 sin.sin_addr = ip->ip_src;
1651 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1652 }
1653
1654 /* XXX mapped address case */
1655 } else
1656 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1657 notify);
1658 return NULL;
1659 }
1660
1661 /*
1662 * When a source quench is received, we are being notified of congestion.
1663 * Close the congestion window down to the Loss Window (one segment).
1664 * We will gradually open it again as we proceed.
1665 */
1666 void
1667 tcp_quench(struct inpcb *inp, int errno)
1668 {
1669 struct tcpcb *tp = intotcpcb(inp);
1670
1671 if (tp) {
1672 tp->snd_cwnd = tp->t_segsz;
1673 tp->t_bytes_acked = 0;
1674 }
1675 }
1676 #endif
1677
1678 #ifdef INET6
1679 void
1680 tcp6_quench(struct in6pcb *in6p, int errno)
1681 {
1682 struct tcpcb *tp = in6totcpcb(in6p);
1683
1684 if (tp) {
1685 tp->snd_cwnd = tp->t_segsz;
1686 tp->t_bytes_acked = 0;
1687 }
1688 }
1689 #endif
1690
1691 #ifdef INET
1692 /*
1693 * Path MTU Discovery handlers.
1694 */
1695 void
1696 tcp_mtudisc_callback(struct in_addr faddr)
1697 {
1698 #ifdef INET6
1699 struct in6_addr in6;
1700 #endif
1701
1702 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1703 #ifdef INET6
1704 memset(&in6, 0, sizeof(in6));
1705 in6.s6_addr16[5] = 0xffff;
1706 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1707 tcp6_mtudisc_callback(&in6);
1708 #endif
1709 }
1710
1711 /*
1712 * On receipt of path MTU corrections, flush old route and replace it
1713 * with the new one. Retransmit all unacknowledged packets, to ensure
1714 * that all packets will be received.
1715 */
1716 void
1717 tcp_mtudisc(struct inpcb *inp, int errno)
1718 {
1719 struct tcpcb *tp = intotcpcb(inp);
1720 struct rtentry *rt = in_pcbrtentry(inp);
1721
1722 if (tp != 0) {
1723 if (rt != 0) {
1724 /*
1725 * If this was not a host route, remove and realloc.
1726 */
1727 if ((rt->rt_flags & RTF_HOST) == 0) {
1728 in_rtchange(inp, errno);
1729 if ((rt = in_pcbrtentry(inp)) == 0)
1730 return;
1731 }
1732
1733 /*
1734 * Slow start out of the error condition. We
1735 * use the MTU because we know it's smaller
1736 * than the previously transmitted segment.
1737 *
1738 * Note: This is more conservative than the
1739 * suggestion in draft-floyd-incr-init-win-03.
1740 */
1741 if (rt->rt_rmx.rmx_mtu != 0)
1742 tp->snd_cwnd =
1743 TCP_INITIAL_WINDOW(tcp_init_win,
1744 rt->rt_rmx.rmx_mtu);
1745 }
1746
1747 /*
1748 * Resend unacknowledged packets.
1749 */
1750 tp->snd_nxt = tp->snd_una;
1751 tcp_output(tp);
1752 }
1753 }
1754 #endif
1755
1756 #ifdef INET6
1757 /*
1758 * Path MTU Discovery handlers.
1759 */
1760 void
1761 tcp6_mtudisc_callback(struct in6_addr *faddr)
1762 {
1763 struct sockaddr_in6 sin6;
1764
1765 bzero(&sin6, sizeof(sin6));
1766 sin6.sin6_family = AF_INET6;
1767 sin6.sin6_len = sizeof(struct sockaddr_in6);
1768 sin6.sin6_addr = *faddr;
1769 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1770 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1771 }
1772
1773 void
1774 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1775 {
1776 struct tcpcb *tp = in6totcpcb(in6p);
1777 struct rtentry *rt = in6_pcbrtentry(in6p);
1778
1779 if (tp != 0) {
1780 if (rt != 0) {
1781 /*
1782 * If this was not a host route, remove and realloc.
1783 */
1784 if ((rt->rt_flags & RTF_HOST) == 0) {
1785 in6_rtchange(in6p, errno);
1786 if ((rt = in6_pcbrtentry(in6p)) == 0)
1787 return;
1788 }
1789
1790 /*
1791 * Slow start out of the error condition. We
1792 * use the MTU because we know it's smaller
1793 * than the previously transmitted segment.
1794 *
1795 * Note: This is more conservative than the
1796 * suggestion in draft-floyd-incr-init-win-03.
1797 */
1798 if (rt->rt_rmx.rmx_mtu != 0)
1799 tp->snd_cwnd =
1800 TCP_INITIAL_WINDOW(tcp_init_win,
1801 rt->rt_rmx.rmx_mtu);
1802 }
1803
1804 /*
1805 * Resend unacknowledged packets.
1806 */
1807 tp->snd_nxt = tp->snd_una;
1808 tcp_output(tp);
1809 }
1810 }
1811 #endif /* INET6 */
1812
1813 /*
1814 * Compute the MSS to advertise to the peer. Called only during
1815 * the 3-way handshake. If we are the server (peer initiated
1816 * connection), we are called with a pointer to the interface
1817 * on which the SYN packet arrived. If we are the client (we
1818 * initiated connection), we are called with a pointer to the
1819 * interface out which this connection should go.
1820 *
1821 * NOTE: Do not subtract IP option/extension header size nor IPsec
1822 * header size from MSS advertisement. MSS option must hold the maximum
1823 * segment size we can accept, so it must always be:
1824 * max(if mtu) - ip header - tcp header
1825 */
1826 u_long
1827 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1828 {
1829 extern u_long in_maxmtu;
1830 u_long mss = 0;
1831 u_long hdrsiz;
1832
1833 /*
1834 * In order to avoid defeating path MTU discovery on the peer,
1835 * we advertise the max MTU of all attached networks as our MSS,
1836 * per RFC 1191, section 3.1.
1837 *
1838 * We provide the option to advertise just the MTU of
1839 * the interface on which we hope this connection will
1840 * be receiving. If we are responding to a SYN, we
1841 * will have a pretty good idea about this, but when
1842 * initiating a connection there is a bit more doubt.
1843 *
1844 * We also need to ensure that loopback has a large enough
1845 * MSS, as the loopback MTU is never included in in_maxmtu.
1846 */
1847
1848 if (ifp != NULL)
1849 switch (af) {
1850 case AF_INET:
1851 mss = ifp->if_mtu;
1852 break;
1853 #ifdef INET6
1854 case AF_INET6:
1855 mss = IN6_LINKMTU(ifp);
1856 break;
1857 #endif
1858 }
1859
1860 if (tcp_mss_ifmtu == 0)
1861 switch (af) {
1862 case AF_INET:
1863 mss = max(in_maxmtu, mss);
1864 break;
1865 #ifdef INET6
1866 case AF_INET6:
1867 mss = max(in6_maxmtu, mss);
1868 break;
1869 #endif
1870 }
1871
1872 switch (af) {
1873 case AF_INET:
1874 hdrsiz = sizeof(struct ip);
1875 break;
1876 #ifdef INET6
1877 case AF_INET6:
1878 hdrsiz = sizeof(struct ip6_hdr);
1879 break;
1880 #endif
1881 default:
1882 hdrsiz = 0;
1883 break;
1884 }
1885 hdrsiz += sizeof(struct tcphdr);
1886 if (mss > hdrsiz)
1887 mss -= hdrsiz;
1888
1889 mss = max(tcp_mssdflt, mss);
1890 return (mss);
1891 }
1892
1893 /*
1894 * Set connection variables based on the peer's advertised MSS.
1895 * We are passed the TCPCB for the actual connection. If we
1896 * are the server, we are called by the compressed state engine
1897 * when the 3-way handshake is complete. If we are the client,
1898 * we are called when we receive the SYN,ACK from the server.
1899 *
1900 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1901 * before this routine is called!
1902 */
1903 void
1904 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1905 {
1906 struct socket *so;
1907 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1908 struct rtentry *rt;
1909 #endif
1910 u_long bufsize;
1911 int mss;
1912
1913 #ifdef DIAGNOSTIC
1914 if (tp->t_inpcb && tp->t_in6pcb)
1915 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1916 #endif
1917 so = NULL;
1918 rt = NULL;
1919 #ifdef INET
1920 if (tp->t_inpcb) {
1921 so = tp->t_inpcb->inp_socket;
1922 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1923 rt = in_pcbrtentry(tp->t_inpcb);
1924 #endif
1925 }
1926 #endif
1927 #ifdef INET6
1928 if (tp->t_in6pcb) {
1929 so = tp->t_in6pcb->in6p_socket;
1930 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1931 rt = in6_pcbrtentry(tp->t_in6pcb);
1932 #endif
1933 }
1934 #endif
1935
1936 /*
1937 * As per RFC1122, use the default MSS value, unless they
1938 * sent us an offer. Do not accept offers less than 256 bytes.
1939 */
1940 mss = tcp_mssdflt;
1941 if (offer)
1942 mss = offer;
1943 mss = max(mss, 256); /* sanity */
1944 tp->t_peermss = mss;
1945 mss -= tcp_optlen(tp);
1946 #ifdef INET
1947 if (tp->t_inpcb)
1948 mss -= ip_optlen(tp->t_inpcb);
1949 #endif
1950 #ifdef INET6
1951 if (tp->t_in6pcb)
1952 mss -= ip6_optlen(tp->t_in6pcb);
1953 #endif
1954
1955 /*
1956 * If there's a pipesize, change the socket buffer to that size.
1957 * Make the socket buffer an integral number of MSS units. If
1958 * the MSS is larger than the socket buffer, artificially decrease
1959 * the MSS.
1960 */
1961 #ifdef RTV_SPIPE
1962 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1963 bufsize = rt->rt_rmx.rmx_sendpipe;
1964 else
1965 #endif
1966 {
1967 KASSERT(so != NULL);
1968 bufsize = so->so_snd.sb_hiwat;
1969 }
1970 if (bufsize < mss)
1971 mss = bufsize;
1972 else {
1973 bufsize = roundup(bufsize, mss);
1974 if (bufsize > sb_max)
1975 bufsize = sb_max;
1976 (void) sbreserve(&so->so_snd, bufsize, so);
1977 }
1978 tp->t_segsz = mss;
1979
1980 #ifdef RTV_SSTHRESH
1981 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1982 /*
1983 * There's some sort of gateway or interface buffer
1984 * limit on the path. Use this to set the slow
1985 * start threshold, but set the threshold to no less
1986 * than 2 * MSS.
1987 */
1988 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1989 }
1990 #endif
1991 }
1992
1993 /*
1994 * Processing necessary when a TCP connection is established.
1995 */
1996 void
1997 tcp_established(struct tcpcb *tp)
1998 {
1999 struct socket *so;
2000 #ifdef RTV_RPIPE
2001 struct rtentry *rt;
2002 #endif
2003 u_long bufsize;
2004
2005 #ifdef DIAGNOSTIC
2006 if (tp->t_inpcb && tp->t_in6pcb)
2007 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2008 #endif
2009 so = NULL;
2010 rt = NULL;
2011 #ifdef INET
2012 if (tp->t_inpcb) {
2013 so = tp->t_inpcb->inp_socket;
2014 #if defined(RTV_RPIPE)
2015 rt = in_pcbrtentry(tp->t_inpcb);
2016 #endif
2017 }
2018 #endif
2019 #ifdef INET6
2020 if (tp->t_in6pcb) {
2021 so = tp->t_in6pcb->in6p_socket;
2022 #if defined(RTV_RPIPE)
2023 rt = in6_pcbrtentry(tp->t_in6pcb);
2024 #endif
2025 }
2026 #endif
2027
2028 tp->t_state = TCPS_ESTABLISHED;
2029 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2030
2031 #ifdef RTV_RPIPE
2032 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2033 bufsize = rt->rt_rmx.rmx_recvpipe;
2034 else
2035 #endif
2036 {
2037 KASSERT(so != NULL);
2038 bufsize = so->so_rcv.sb_hiwat;
2039 }
2040 if (bufsize > tp->t_ourmss) {
2041 bufsize = roundup(bufsize, tp->t_ourmss);
2042 if (bufsize > sb_max)
2043 bufsize = sb_max;
2044 (void) sbreserve(&so->so_rcv, bufsize, so);
2045 }
2046 }
2047
2048 /*
2049 * Check if there's an initial rtt or rttvar. Convert from the
2050 * route-table units to scaled multiples of the slow timeout timer.
2051 * Called only during the 3-way handshake.
2052 */
2053 void
2054 tcp_rmx_rtt(struct tcpcb *tp)
2055 {
2056 #ifdef RTV_RTT
2057 struct rtentry *rt = NULL;
2058 int rtt;
2059
2060 #ifdef DIAGNOSTIC
2061 if (tp->t_inpcb && tp->t_in6pcb)
2062 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2063 #endif
2064 #ifdef INET
2065 if (tp->t_inpcb)
2066 rt = in_pcbrtentry(tp->t_inpcb);
2067 #endif
2068 #ifdef INET6
2069 if (tp->t_in6pcb)
2070 rt = in6_pcbrtentry(tp->t_in6pcb);
2071 #endif
2072 if (rt == NULL)
2073 return;
2074
2075 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2076 /*
2077 * XXX The lock bit for MTU indicates that the value
2078 * is also a minimum value; this is subject to time.
2079 */
2080 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2081 TCPT_RANGESET(tp->t_rttmin,
2082 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2083 TCPTV_MIN, TCPTV_REXMTMAX);
2084 tp->t_srtt = rtt /
2085 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2086 if (rt->rt_rmx.rmx_rttvar) {
2087 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2088 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2089 (TCP_RTTVAR_SHIFT + 2));
2090 } else {
2091 /* Default variation is +- 1 rtt */
2092 tp->t_rttvar =
2093 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2094 }
2095 TCPT_RANGESET(tp->t_rxtcur,
2096 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2097 tp->t_rttmin, TCPTV_REXMTMAX);
2098 }
2099 #endif
2100 }
2101
2102 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2103 #if NRND > 0
2104 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2105 #endif
2106
2107 /*
2108 * Get a new sequence value given a tcp control block
2109 */
2110 tcp_seq
2111 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2112 {
2113
2114 #ifdef INET
2115 if (tp->t_inpcb != NULL) {
2116 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2117 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2118 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2119 addin));
2120 }
2121 #endif
2122 #ifdef INET6
2123 if (tp->t_in6pcb != NULL) {
2124 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2125 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2126 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2127 addin));
2128 }
2129 #endif
2130 /* Not possible. */
2131 panic("tcp_new_iss");
2132 }
2133
2134 /*
2135 * This routine actually generates a new TCP initial sequence number.
2136 */
2137 tcp_seq
2138 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2139 size_t addrsz, tcp_seq addin)
2140 {
2141 tcp_seq tcp_iss;
2142
2143 #if NRND > 0
2144 static int beenhere;
2145
2146 /*
2147 * If we haven't been here before, initialize our cryptographic
2148 * hash secret.
2149 */
2150 if (beenhere == 0) {
2151 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2152 RND_EXTRACT_ANY);
2153 beenhere = 1;
2154 }
2155
2156 if (tcp_do_rfc1948) {
2157 MD5_CTX ctx;
2158 u_int8_t hash[16]; /* XXX MD5 knowledge */
2159
2160 /*
2161 * Compute the base value of the ISS. It is a hash
2162 * of (saddr, sport, daddr, dport, secret).
2163 */
2164 MD5Init(&ctx);
2165
2166 MD5Update(&ctx, (u_char *) laddr, addrsz);
2167 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2168
2169 MD5Update(&ctx, (u_char *) faddr, addrsz);
2170 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2171
2172 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2173
2174 MD5Final(hash, &ctx);
2175
2176 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2177
2178 /*
2179 * Now increment our "timer", and add it in to
2180 * the computed value.
2181 *
2182 * XXX Use `addin'?
2183 * XXX TCP_ISSINCR too large to use?
2184 */
2185 tcp_iss_seq += TCP_ISSINCR;
2186 #ifdef TCPISS_DEBUG
2187 printf("ISS hash 0x%08x, ", tcp_iss);
2188 #endif
2189 tcp_iss += tcp_iss_seq + addin;
2190 #ifdef TCPISS_DEBUG
2191 printf("new ISS 0x%08x\n", tcp_iss);
2192 #endif
2193 } else
2194 #endif /* NRND > 0 */
2195 {
2196 /*
2197 * Randomize.
2198 */
2199 #if NRND > 0
2200 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2201 #else
2202 tcp_iss = arc4random();
2203 #endif
2204
2205 /*
2206 * If we were asked to add some amount to a known value,
2207 * we will take a random value obtained above, mask off
2208 * the upper bits, and add in the known value. We also
2209 * add in a constant to ensure that we are at least a
2210 * certain distance from the original value.
2211 *
2212 * This is used when an old connection is in timed wait
2213 * and we have a new one coming in, for instance.
2214 */
2215 if (addin != 0) {
2216 #ifdef TCPISS_DEBUG
2217 printf("Random %08x, ", tcp_iss);
2218 #endif
2219 tcp_iss &= TCP_ISS_RANDOM_MASK;
2220 tcp_iss += addin + TCP_ISSINCR;
2221 #ifdef TCPISS_DEBUG
2222 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2223 #endif
2224 } else {
2225 tcp_iss &= TCP_ISS_RANDOM_MASK;
2226 tcp_iss += tcp_iss_seq;
2227 tcp_iss_seq += TCP_ISSINCR;
2228 #ifdef TCPISS_DEBUG
2229 printf("ISS %08x\n", tcp_iss);
2230 #endif
2231 }
2232 }
2233
2234 if (tcp_compat_42) {
2235 /*
2236 * Limit it to the positive range for really old TCP
2237 * implementations.
2238 * Just AND off the top bit instead of checking if
2239 * is set first - saves a branch 50% of the time.
2240 */
2241 tcp_iss &= 0x7fffffff; /* XXX */
2242 }
2243
2244 return (tcp_iss);
2245 }
2246
2247 #if defined(IPSEC) || defined(FAST_IPSEC)
2248 /* compute ESP/AH header size for TCP, including outer IP header. */
2249 size_t
2250 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2251 {
2252 struct inpcb *inp;
2253 size_t hdrsiz;
2254
2255 /* XXX mapped addr case (tp->t_in6pcb) */
2256 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2257 return 0;
2258 switch (tp->t_family) {
2259 case AF_INET:
2260 /* XXX: should use currect direction. */
2261 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2262 break;
2263 default:
2264 hdrsiz = 0;
2265 break;
2266 }
2267
2268 return hdrsiz;
2269 }
2270
2271 #ifdef INET6
2272 size_t
2273 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2274 {
2275 struct in6pcb *in6p;
2276 size_t hdrsiz;
2277
2278 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2279 return 0;
2280 switch (tp->t_family) {
2281 case AF_INET6:
2282 /* XXX: should use currect direction. */
2283 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2284 break;
2285 case AF_INET:
2286 /* mapped address case - tricky */
2287 default:
2288 hdrsiz = 0;
2289 break;
2290 }
2291
2292 return hdrsiz;
2293 }
2294 #endif
2295 #endif /*IPSEC*/
2296
2297 /*
2298 * Determine the length of the TCP options for this connection.
2299 *
2300 * XXX: What do we do for SACK, when we add that? Just reserve
2301 * all of the space? Otherwise we can't exactly be incrementing
2302 * cwnd by an amount that varies depending on the amount we last
2303 * had to SACK!
2304 */
2305
2306 u_int
2307 tcp_optlen(struct tcpcb *tp)
2308 {
2309 u_int optlen;
2310
2311 optlen = 0;
2312 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2313 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2314 optlen += TCPOLEN_TSTAMP_APPA;
2315
2316 #ifdef TCP_SIGNATURE
2317 if (tp->t_flags & TF_SIGNATURE)
2318 optlen += TCPOLEN_SIGNATURE + 2;
2319 #endif /* TCP_SIGNATURE */
2320
2321 return optlen;
2322 }
2323
2324 u_int
2325 tcp_hdrsz(struct tcpcb *tp)
2326 {
2327 u_int hlen;
2328
2329 switch (tp->t_family) {
2330 #ifdef INET6
2331 case AF_INET6:
2332 hlen = sizeof(struct ip6_hdr);
2333 break;
2334 #endif
2335 case AF_INET:
2336 hlen = sizeof(struct ip);
2337 break;
2338 default:
2339 hlen = 0;
2340 break;
2341 }
2342 hlen += sizeof(struct tcphdr);
2343
2344 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2345 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2346 hlen += TCPOLEN_TSTAMP_APPA;
2347 #ifdef TCP_SIGNATURE
2348 if (tp->t_flags & TF_SIGNATURE)
2349 hlen += TCPOLEN_SIGLEN;
2350 #endif
2351 return hlen;
2352 }
2353