tcp_subr.c revision 1.221 1 /* $NetBSD: tcp_subr.c,v 1.221 2008/01/14 04:19:10 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.221 2008/01/14 04:19:10 dyoung Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168 #include <netipsec/key.h>
169 #endif /* FAST_IPSEC*/
170
171
172 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
173 struct tcpstat tcpstat; /* tcp statistics */
174 u_int32_t tcp_now; /* for RFC 1323 timestamps */
175
176 /* patchable/settable parameters for tcp */
177 int tcp_mssdflt = TCP_MSS;
178 int tcp_minmss = TCP_MINMSS;
179 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
180 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
181 #if NRND > 0
182 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
183 #endif
184 int tcp_do_sack = 1; /* selective acknowledgement */
185 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
186 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
187 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
188 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
189 #ifndef TCP_INIT_WIN
190 #define TCP_INIT_WIN 0 /* initial slow start window */
191 #endif
192 #ifndef TCP_INIT_WIN_LOCAL
193 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
194 #endif
195 int tcp_init_win = TCP_INIT_WIN;
196 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
197 int tcp_mss_ifmtu = 0;
198 #ifdef TCP_COMPAT_42
199 int tcp_compat_42 = 1;
200 #else
201 int tcp_compat_42 = 0;
202 #endif
203 int tcp_rst_ppslim = 100; /* 100pps */
204 int tcp_ackdrop_ppslim = 100; /* 100pps */
205 int tcp_do_loopback_cksum = 0;
206 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
207 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
208 int tcp_sack_tp_maxholes = 32;
209 int tcp_sack_globalmaxholes = 1024;
210 int tcp_sack_globalholes = 0;
211 int tcp_ecn_maxretries = 1;
212
213 /* tcb hash */
214 #ifndef TCBHASHSIZE
215 #define TCBHASHSIZE 128
216 #endif
217 int tcbhashsize = TCBHASHSIZE;
218
219 /* syn hash parameters */
220 #define TCP_SYN_HASH_SIZE 293
221 #define TCP_SYN_BUCKET_SIZE 35
222 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
223 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
224 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
225 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
226
227 int tcp_freeq(struct tcpcb *);
228
229 #ifdef INET
230 void tcp_mtudisc_callback(struct in_addr);
231 #endif
232 #ifdef INET6
233 void tcp6_mtudisc_callback(struct in6_addr *);
234 #endif
235
236 #ifdef INET6
237 void tcp6_mtudisc(struct in6pcb *, int);
238 #endif
239
240 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
241 IPL_SOFTNET);
242
243 #ifdef TCP_CSUM_COUNTERS
244 #include <sys/device.h>
245
246 #if defined(INET)
247 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248 NULL, "tcp", "hwcsum bad");
249 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250 NULL, "tcp", "hwcsum ok");
251 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp", "hwcsum data");
253 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 NULL, "tcp", "swcsum");
255
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
257 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
259 EVCNT_ATTACH_STATIC(tcp_swcsum);
260 #endif /* defined(INET) */
261
262 #if defined(INET6)
263 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp6", "hwcsum bad");
265 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp6", "hwcsum ok");
267 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp6", "hwcsum data");
269 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 NULL, "tcp6", "swcsum");
271
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
275 EVCNT_ATTACH_STATIC(tcp6_swcsum);
276 #endif /* defined(INET6) */
277 #endif /* TCP_CSUM_COUNTERS */
278
279
280 #ifdef TCP_OUTPUT_COUNTERS
281 #include <sys/device.h>
282
283 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 NULL, "tcp", "output big header");
285 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 NULL, "tcp", "output predict hit");
287 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 NULL, "tcp", "output predict miss");
289 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 NULL, "tcp", "output copy small");
291 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 NULL, "tcp", "output copy big");
293 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 NULL, "tcp", "output reference big");
295
296 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
297 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
298 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
299 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
300 EVCNT_ATTACH_STATIC(tcp_output_copybig);
301 EVCNT_ATTACH_STATIC(tcp_output_refbig);
302
303 #endif /* TCP_OUTPUT_COUNTERS */
304
305 #ifdef TCP_REASS_COUNTERS
306 #include <sys/device.h>
307
308 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 NULL, "tcp_reass", "calls");
310 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "insert into empty queue");
312 struct evcnt tcp_reass_iteration[8] = {
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
318 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
320 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
321 };
322 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323 &tcp_reass_, "tcp_reass", "prepend to first");
324 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325 &tcp_reass_, "tcp_reass", "prepend");
326 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327 &tcp_reass_, "tcp_reass", "insert");
328 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329 &tcp_reass_, "tcp_reass", "insert at tail");
330 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331 &tcp_reass_, "tcp_reass", "append");
332 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333 &tcp_reass_, "tcp_reass", "append to tail fragment");
334 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335 &tcp_reass_, "tcp_reass", "overlap at end");
336 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337 &tcp_reass_, "tcp_reass", "overlap at start");
338 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339 &tcp_reass_, "tcp_reass", "duplicate segment");
340 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341 &tcp_reass_, "tcp_reass", "duplicate fragment");
342
343 EVCNT_ATTACH_STATIC(tcp_reass_);
344 EVCNT_ATTACH_STATIC(tcp_reass_empty);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
353 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
354 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
355 EVCNT_ATTACH_STATIC(tcp_reass_insert);
356 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
357 EVCNT_ATTACH_STATIC(tcp_reass_append);
358 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
359 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
360 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
361 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
362 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
363
364 #endif /* TCP_REASS_COUNTERS */
365
366 #ifdef MBUFTRACE
367 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
368 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
369 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
370 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
371 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
372 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
373 #endif
374
375 /*
376 * Tcp initialization
377 */
378 void
379 tcp_init(void)
380 {
381 int hlen;
382
383 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
384
385 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
386 #ifdef INET6
387 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
388 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
389 #endif
390 if (max_protohdr < hlen)
391 max_protohdr = hlen;
392 if (max_linkhdr + hlen > MHLEN)
393 panic("tcp_init");
394
395 #ifdef INET
396 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
397 #endif
398 #ifdef INET6
399 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
400 #endif
401
402 /* Initialize timer state. */
403 tcp_timer_init();
404
405 /* Initialize the compressed state engine. */
406 syn_cache_init();
407
408 /* Initialize the congestion control algorithms. */
409 tcp_congctl_init();
410
411 /* Initialize the TCPCB template. */
412 tcp_tcpcb_template();
413
414 MOWNER_ATTACH(&tcp_tx_mowner);
415 MOWNER_ATTACH(&tcp_rx_mowner);
416 MOWNER_ATTACH(&tcp_reass_mowner);
417 MOWNER_ATTACH(&tcp_sock_mowner);
418 MOWNER_ATTACH(&tcp_sock_tx_mowner);
419 MOWNER_ATTACH(&tcp_sock_rx_mowner);
420 MOWNER_ATTACH(&tcp_mowner);
421 }
422
423 /*
424 * Create template to be used to send tcp packets on a connection.
425 * Call after host entry created, allocates an mbuf and fills
426 * in a skeletal tcp/ip header, minimizing the amount of work
427 * necessary when the connection is used.
428 */
429 struct mbuf *
430 tcp_template(struct tcpcb *tp)
431 {
432 struct inpcb *inp = tp->t_inpcb;
433 #ifdef INET6
434 struct in6pcb *in6p = tp->t_in6pcb;
435 #endif
436 struct tcphdr *n;
437 struct mbuf *m;
438 int hlen;
439
440 switch (tp->t_family) {
441 case AF_INET:
442 hlen = sizeof(struct ip);
443 if (inp)
444 break;
445 #ifdef INET6
446 if (in6p) {
447 /* mapped addr case */
448 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
449 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
450 break;
451 }
452 #endif
453 return NULL; /*EINVAL*/
454 #ifdef INET6
455 case AF_INET6:
456 hlen = sizeof(struct ip6_hdr);
457 if (in6p) {
458 /* more sainty check? */
459 break;
460 }
461 return NULL; /*EINVAL*/
462 #endif
463 default:
464 hlen = 0; /*pacify gcc*/
465 return NULL; /*EAFNOSUPPORT*/
466 }
467 #ifdef DIAGNOSTIC
468 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
469 panic("mclbytes too small for t_template");
470 #endif
471 m = tp->t_template;
472 if (m && m->m_len == hlen + sizeof(struct tcphdr))
473 ;
474 else {
475 if (m)
476 m_freem(m);
477 m = tp->t_template = NULL;
478 MGETHDR(m, M_DONTWAIT, MT_HEADER);
479 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
480 MCLGET(m, M_DONTWAIT);
481 if ((m->m_flags & M_EXT) == 0) {
482 m_free(m);
483 m = NULL;
484 }
485 }
486 if (m == NULL)
487 return NULL;
488 MCLAIM(m, &tcp_mowner);
489 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
490 }
491
492 bzero(mtod(m, void *), m->m_len);
493
494 n = (struct tcphdr *)(mtod(m, char *) + hlen);
495
496 switch (tp->t_family) {
497 case AF_INET:
498 {
499 struct ipovly *ipov;
500 mtod(m, struct ip *)->ip_v = 4;
501 mtod(m, struct ip *)->ip_hl = hlen >> 2;
502 ipov = mtod(m, struct ipovly *);
503 ipov->ih_pr = IPPROTO_TCP;
504 ipov->ih_len = htons(sizeof(struct tcphdr));
505 if (inp) {
506 ipov->ih_src = inp->inp_laddr;
507 ipov->ih_dst = inp->inp_faddr;
508 }
509 #ifdef INET6
510 else if (in6p) {
511 /* mapped addr case */
512 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
513 sizeof(ipov->ih_src));
514 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
515 sizeof(ipov->ih_dst));
516 }
517 #endif
518 /*
519 * Compute the pseudo-header portion of the checksum
520 * now. We incrementally add in the TCP option and
521 * payload lengths later, and then compute the TCP
522 * checksum right before the packet is sent off onto
523 * the wire.
524 */
525 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
526 ipov->ih_dst.s_addr,
527 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
528 break;
529 }
530 #ifdef INET6
531 case AF_INET6:
532 {
533 struct ip6_hdr *ip6;
534 mtod(m, struct ip *)->ip_v = 6;
535 ip6 = mtod(m, struct ip6_hdr *);
536 ip6->ip6_nxt = IPPROTO_TCP;
537 ip6->ip6_plen = htons(sizeof(struct tcphdr));
538 ip6->ip6_src = in6p->in6p_laddr;
539 ip6->ip6_dst = in6p->in6p_faddr;
540 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
541 if (ip6_auto_flowlabel) {
542 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
543 ip6->ip6_flow |=
544 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
545 }
546 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
547 ip6->ip6_vfc |= IPV6_VERSION;
548
549 /*
550 * Compute the pseudo-header portion of the checksum
551 * now. We incrementally add in the TCP option and
552 * payload lengths later, and then compute the TCP
553 * checksum right before the packet is sent off onto
554 * the wire.
555 */
556 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
557 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
558 htonl(IPPROTO_TCP));
559 break;
560 }
561 #endif
562 }
563 if (inp) {
564 n->th_sport = inp->inp_lport;
565 n->th_dport = inp->inp_fport;
566 }
567 #ifdef INET6
568 else if (in6p) {
569 n->th_sport = in6p->in6p_lport;
570 n->th_dport = in6p->in6p_fport;
571 }
572 #endif
573 n->th_seq = 0;
574 n->th_ack = 0;
575 n->th_x2 = 0;
576 n->th_off = 5;
577 n->th_flags = 0;
578 n->th_win = 0;
579 n->th_urp = 0;
580 return (m);
581 }
582
583 /*
584 * Send a single message to the TCP at address specified by
585 * the given TCP/IP header. If m == 0, then we make a copy
586 * of the tcpiphdr at ti and send directly to the addressed host.
587 * This is used to force keep alive messages out using the TCP
588 * template for a connection tp->t_template. If flags are given
589 * then we send a message back to the TCP which originated the
590 * segment ti, and discard the mbuf containing it and any other
591 * attached mbufs.
592 *
593 * In any case the ack and sequence number of the transmitted
594 * segment are as specified by the parameters.
595 */
596 int
597 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
598 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
599 {
600 #ifdef INET6
601 struct rtentry *rt;
602 #endif
603 struct route *ro;
604 int error, tlen, win = 0;
605 int hlen;
606 struct ip *ip;
607 #ifdef INET6
608 struct ip6_hdr *ip6;
609 #endif
610 int family; /* family on packet, not inpcb/in6pcb! */
611 struct tcphdr *th;
612 struct socket *so;
613
614 if (tp != NULL && (flags & TH_RST) == 0) {
615 #ifdef DIAGNOSTIC
616 if (tp->t_inpcb && tp->t_in6pcb)
617 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
618 #endif
619 #ifdef INET
620 if (tp->t_inpcb)
621 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
622 #endif
623 #ifdef INET6
624 if (tp->t_in6pcb)
625 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
626 #endif
627 }
628
629 th = NULL; /* Quell uninitialized warning */
630 ip = NULL;
631 #ifdef INET6
632 ip6 = NULL;
633 #endif
634 if (m == 0) {
635 if (!template)
636 return EINVAL;
637
638 /* get family information from template */
639 switch (mtod(template, struct ip *)->ip_v) {
640 case 4:
641 family = AF_INET;
642 hlen = sizeof(struct ip);
643 break;
644 #ifdef INET6
645 case 6:
646 family = AF_INET6;
647 hlen = sizeof(struct ip6_hdr);
648 break;
649 #endif
650 default:
651 return EAFNOSUPPORT;
652 }
653
654 MGETHDR(m, M_DONTWAIT, MT_HEADER);
655 if (m) {
656 MCLAIM(m, &tcp_tx_mowner);
657 MCLGET(m, M_DONTWAIT);
658 if ((m->m_flags & M_EXT) == 0) {
659 m_free(m);
660 m = NULL;
661 }
662 }
663 if (m == NULL)
664 return (ENOBUFS);
665
666 if (tcp_compat_42)
667 tlen = 1;
668 else
669 tlen = 0;
670
671 m->m_data += max_linkhdr;
672 bcopy(mtod(template, void *), mtod(m, void *),
673 template->m_len);
674 switch (family) {
675 case AF_INET:
676 ip = mtod(m, struct ip *);
677 th = (struct tcphdr *)(ip + 1);
678 break;
679 #ifdef INET6
680 case AF_INET6:
681 ip6 = mtod(m, struct ip6_hdr *);
682 th = (struct tcphdr *)(ip6 + 1);
683 break;
684 #endif
685 #if 0
686 default:
687 /* noone will visit here */
688 m_freem(m);
689 return EAFNOSUPPORT;
690 #endif
691 }
692 flags = TH_ACK;
693 } else {
694
695 if ((m->m_flags & M_PKTHDR) == 0) {
696 #if 0
697 printf("non PKTHDR to tcp_respond\n");
698 #endif
699 m_freem(m);
700 return EINVAL;
701 }
702 #ifdef DIAGNOSTIC
703 if (!th0)
704 panic("th0 == NULL in tcp_respond");
705 #endif
706
707 /* get family information from m */
708 switch (mtod(m, struct ip *)->ip_v) {
709 case 4:
710 family = AF_INET;
711 hlen = sizeof(struct ip);
712 ip = mtod(m, struct ip *);
713 break;
714 #ifdef INET6
715 case 6:
716 family = AF_INET6;
717 hlen = sizeof(struct ip6_hdr);
718 ip6 = mtod(m, struct ip6_hdr *);
719 break;
720 #endif
721 default:
722 m_freem(m);
723 return EAFNOSUPPORT;
724 }
725 /* clear h/w csum flags inherited from rx packet */
726 m->m_pkthdr.csum_flags = 0;
727
728 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
729 tlen = sizeof(*th0);
730 else
731 tlen = th0->th_off << 2;
732
733 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
734 mtod(m, char *) + hlen == (char *)th0) {
735 m->m_len = hlen + tlen;
736 m_freem(m->m_next);
737 m->m_next = NULL;
738 } else {
739 struct mbuf *n;
740
741 #ifdef DIAGNOSTIC
742 if (max_linkhdr + hlen + tlen > MCLBYTES) {
743 m_freem(m);
744 return EMSGSIZE;
745 }
746 #endif
747 MGETHDR(n, M_DONTWAIT, MT_HEADER);
748 if (n && max_linkhdr + hlen + tlen > MHLEN) {
749 MCLGET(n, M_DONTWAIT);
750 if ((n->m_flags & M_EXT) == 0) {
751 m_freem(n);
752 n = NULL;
753 }
754 }
755 if (!n) {
756 m_freem(m);
757 return ENOBUFS;
758 }
759
760 MCLAIM(n, &tcp_tx_mowner);
761 n->m_data += max_linkhdr;
762 n->m_len = hlen + tlen;
763 m_copyback(n, 0, hlen, mtod(m, void *));
764 m_copyback(n, hlen, tlen, (void *)th0);
765
766 m_freem(m);
767 m = n;
768 n = NULL;
769 }
770
771 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
772 switch (family) {
773 case AF_INET:
774 ip = mtod(m, struct ip *);
775 th = (struct tcphdr *)(ip + 1);
776 ip->ip_p = IPPROTO_TCP;
777 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
778 ip->ip_p = IPPROTO_TCP;
779 break;
780 #ifdef INET6
781 case AF_INET6:
782 ip6 = mtod(m, struct ip6_hdr *);
783 th = (struct tcphdr *)(ip6 + 1);
784 ip6->ip6_nxt = IPPROTO_TCP;
785 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
786 ip6->ip6_nxt = IPPROTO_TCP;
787 break;
788 #endif
789 #if 0
790 default:
791 /* noone will visit here */
792 m_freem(m);
793 return EAFNOSUPPORT;
794 #endif
795 }
796 xchg(th->th_dport, th->th_sport, u_int16_t);
797 #undef xchg
798 tlen = 0; /*be friendly with the following code*/
799 }
800 th->th_seq = htonl(seq);
801 th->th_ack = htonl(ack);
802 th->th_x2 = 0;
803 if ((flags & TH_SYN) == 0) {
804 if (tp)
805 win >>= tp->rcv_scale;
806 if (win > TCP_MAXWIN)
807 win = TCP_MAXWIN;
808 th->th_win = htons((u_int16_t)win);
809 th->th_off = sizeof (struct tcphdr) >> 2;
810 tlen += sizeof(*th);
811 } else
812 tlen += th->th_off << 2;
813 m->m_len = hlen + tlen;
814 m->m_pkthdr.len = hlen + tlen;
815 m->m_pkthdr.rcvif = (struct ifnet *) 0;
816 th->th_flags = flags;
817 th->th_urp = 0;
818
819 switch (family) {
820 #ifdef INET
821 case AF_INET:
822 {
823 struct ipovly *ipov = (struct ipovly *)ip;
824 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
825 ipov->ih_len = htons((u_int16_t)tlen);
826
827 th->th_sum = 0;
828 th->th_sum = in_cksum(m, hlen + tlen);
829 ip->ip_len = htons(hlen + tlen);
830 ip->ip_ttl = ip_defttl;
831 break;
832 }
833 #endif
834 #ifdef INET6
835 case AF_INET6:
836 {
837 th->th_sum = 0;
838 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
839 tlen);
840 ip6->ip6_plen = htons(tlen);
841 if (tp && tp->t_in6pcb) {
842 struct ifnet *oifp;
843 ro = &tp->t_in6pcb->in6p_route;
844 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
845 : NULL;
846 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
847 } else
848 ip6->ip6_hlim = ip6_defhlim;
849 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
850 if (ip6_auto_flowlabel) {
851 ip6->ip6_flow |=
852 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
853 }
854 break;
855 }
856 #endif
857 }
858
859 if (tp && tp->t_inpcb)
860 so = tp->t_inpcb->inp_socket;
861 #ifdef INET6
862 else if (tp && tp->t_in6pcb)
863 so = tp->t_in6pcb->in6p_socket;
864 #endif
865 else
866 so = NULL;
867
868 if (tp != NULL && tp->t_inpcb != NULL) {
869 ro = &tp->t_inpcb->inp_route;
870 #ifdef DIAGNOSTIC
871 if (family != AF_INET)
872 panic("tcp_respond: address family mismatch");
873 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
874 panic("tcp_respond: ip_dst %x != inp_faddr %x",
875 ntohl(ip->ip_dst.s_addr),
876 ntohl(tp->t_inpcb->inp_faddr.s_addr));
877 }
878 #endif
879 }
880 #ifdef INET6
881 else if (tp != NULL && tp->t_in6pcb != NULL) {
882 ro = (struct route *)&tp->t_in6pcb->in6p_route;
883 #ifdef DIAGNOSTIC
884 if (family == AF_INET) {
885 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
886 panic("tcp_respond: not mapped addr");
887 if (bcmp(&ip->ip_dst,
888 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
889 sizeof(ip->ip_dst)) != 0) {
890 panic("tcp_respond: ip_dst != in6p_faddr");
891 }
892 } else if (family == AF_INET6) {
893 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
894 &tp->t_in6pcb->in6p_faddr))
895 panic("tcp_respond: ip6_dst != in6p_faddr");
896 } else
897 panic("tcp_respond: address family mismatch");
898 #endif
899 }
900 #endif
901 else
902 ro = NULL;
903
904 switch (family) {
905 #ifdef INET
906 case AF_INET:
907 error = ip_output(m, NULL, ro,
908 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
909 (struct ip_moptions *)0, so);
910 break;
911 #endif
912 #ifdef INET6
913 case AF_INET6:
914 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
915 break;
916 #endif
917 default:
918 error = EAFNOSUPPORT;
919 break;
920 }
921
922 return (error);
923 }
924
925 /*
926 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
927 * a bunch of members individually, we maintain this template for the
928 * static and mostly-static components of the TCPCB, and copy it into
929 * the new TCPCB instead.
930 */
931 static struct tcpcb tcpcb_template = {
932 .t_srtt = TCPTV_SRTTBASE,
933 .t_rttmin = TCPTV_MIN,
934
935 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
936 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
937 .snd_numholes = 0,
938
939 .t_partialacks = -1,
940 .t_bytes_acked = 0,
941 };
942
943 /*
944 * Updates the TCPCB template whenever a parameter that would affect
945 * the template is changed.
946 */
947 void
948 tcp_tcpcb_template(void)
949 {
950 struct tcpcb *tp = &tcpcb_template;
951 int flags;
952
953 tp->t_peermss = tcp_mssdflt;
954 tp->t_ourmss = tcp_mssdflt;
955 tp->t_segsz = tcp_mssdflt;
956
957 flags = 0;
958 if (tcp_do_rfc1323 && tcp_do_win_scale)
959 flags |= TF_REQ_SCALE;
960 if (tcp_do_rfc1323 && tcp_do_timestamps)
961 flags |= TF_REQ_TSTMP;
962 tp->t_flags = flags;
963
964 /*
965 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
966 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
967 * reasonable initial retransmit time.
968 */
969 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
970 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
971 TCPTV_MIN, TCPTV_REXMTMAX);
972
973 /* Keep Alive */
974 tp->t_keepinit = tcp_keepinit;
975 tp->t_keepidle = tcp_keepidle;
976 tp->t_keepintvl = tcp_keepintvl;
977 tp->t_keepcnt = tcp_keepcnt;
978 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
979 }
980
981 /*
982 * Create a new TCP control block, making an
983 * empty reassembly queue and hooking it to the argument
984 * protocol control block.
985 */
986 /* family selects inpcb, or in6pcb */
987 struct tcpcb *
988 tcp_newtcpcb(int family, void *aux)
989 {
990 #ifdef INET6
991 struct rtentry *rt;
992 #endif
993 struct tcpcb *tp;
994 int i;
995
996 /* XXX Consider using a pool_cache for speed. */
997 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
998 if (tp == NULL)
999 return (NULL);
1000 memcpy(tp, &tcpcb_template, sizeof(*tp));
1001 TAILQ_INIT(&tp->segq);
1002 TAILQ_INIT(&tp->timeq);
1003 tp->t_family = family; /* may be overridden later on */
1004 TAILQ_INIT(&tp->snd_holes);
1005 LIST_INIT(&tp->t_sc); /* XXX can template this */
1006
1007 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1008 for (i = 0; i < TCPT_NTIMERS; i++) {
1009 callout_init(&tp->t_timer[i], 0);
1010 TCP_TIMER_INIT(tp, i);
1011 }
1012 callout_init(&tp->t_delack_ch, 0);
1013
1014 switch (family) {
1015 case AF_INET:
1016 {
1017 struct inpcb *inp = (struct inpcb *)aux;
1018
1019 inp->inp_ip.ip_ttl = ip_defttl;
1020 inp->inp_ppcb = (void *)tp;
1021
1022 tp->t_inpcb = inp;
1023 tp->t_mtudisc = ip_mtudisc;
1024 break;
1025 }
1026 #ifdef INET6
1027 case AF_INET6:
1028 {
1029 struct in6pcb *in6p = (struct in6pcb *)aux;
1030
1031 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1032 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1033 ? rt->rt_ifp
1034 : NULL);
1035 in6p->in6p_ppcb = (void *)tp;
1036
1037 tp->t_in6pcb = in6p;
1038 /* for IPv6, always try to run path MTU discovery */
1039 tp->t_mtudisc = 1;
1040 break;
1041 }
1042 #endif /* INET6 */
1043 default:
1044 for (i = 0; i < TCPT_NTIMERS; i++)
1045 callout_destroy(&tp->t_timer[i]);
1046 callout_destroy(&tp->t_delack_ch);
1047 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1048 return (NULL);
1049 }
1050
1051 /*
1052 * Initialize our timebase. When we send timestamps, we take
1053 * the delta from tcp_now -- this means each connection always
1054 * gets a timebase of 0, which makes it, among other things,
1055 * more difficult to determine how long a system has been up,
1056 * and thus how many TCP sequence increments have occurred.
1057 */
1058 tp->ts_timebase = tcp_now;
1059
1060 tp->t_congctl = tcp_congctl_global;
1061 tp->t_congctl->refcnt++;
1062
1063 return (tp);
1064 }
1065
1066 /*
1067 * Drop a TCP connection, reporting
1068 * the specified error. If connection is synchronized,
1069 * then send a RST to peer.
1070 */
1071 struct tcpcb *
1072 tcp_drop(struct tcpcb *tp, int errno)
1073 {
1074 struct socket *so = NULL;
1075
1076 #ifdef DIAGNOSTIC
1077 if (tp->t_inpcb && tp->t_in6pcb)
1078 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1079 #endif
1080 #ifdef INET
1081 if (tp->t_inpcb)
1082 so = tp->t_inpcb->inp_socket;
1083 #endif
1084 #ifdef INET6
1085 if (tp->t_in6pcb)
1086 so = tp->t_in6pcb->in6p_socket;
1087 #endif
1088 if (!so)
1089 return NULL;
1090
1091 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1092 tp->t_state = TCPS_CLOSED;
1093 (void) tcp_output(tp);
1094 tcpstat.tcps_drops++;
1095 } else
1096 tcpstat.tcps_conndrops++;
1097 if (errno == ETIMEDOUT && tp->t_softerror)
1098 errno = tp->t_softerror;
1099 so->so_error = errno;
1100 return (tcp_close(tp));
1101 }
1102
1103 /*
1104 * Return whether this tcpcb is marked as dead, indicating
1105 * to the calling timer function that no further action should
1106 * be taken, as we are about to release this tcpcb. The release
1107 * of the storage will be done if this is the last timer running.
1108 *
1109 * This should be called from the callout handler function after
1110 * callout_ack() is done, so that the number of invoking timer
1111 * functions is 0.
1112 */
1113 int
1114 tcp_isdead(struct tcpcb *tp)
1115 {
1116 int i, dead = (tp->t_flags & TF_DEAD);
1117
1118 if (__predict_false(dead)) {
1119 if (tcp_timers_invoking(tp) > 0)
1120 /* not quite there yet -- count separately? */
1121 return dead;
1122 tcpstat.tcps_delayed_free++;
1123 for (i = 0; i < TCPT_NTIMERS; i++)
1124 callout_destroy(&tp->t_timer[i]);
1125 callout_destroy(&tp->t_delack_ch);
1126 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_timer.c */
1127 }
1128 return dead;
1129 }
1130
1131 /*
1132 * Close a TCP control block:
1133 * discard all space held by the tcp
1134 * discard internet protocol block
1135 * wake up any sleepers
1136 */
1137 struct tcpcb *
1138 tcp_close(struct tcpcb *tp)
1139 {
1140 struct inpcb *inp;
1141 #ifdef INET6
1142 struct in6pcb *in6p;
1143 #endif
1144 struct socket *so;
1145 #ifdef RTV_RTT
1146 struct rtentry *rt;
1147 #endif
1148 struct route *ro;
1149 int j;
1150
1151 inp = tp->t_inpcb;
1152 #ifdef INET6
1153 in6p = tp->t_in6pcb;
1154 #endif
1155 so = NULL;
1156 ro = NULL;
1157 if (inp) {
1158 so = inp->inp_socket;
1159 ro = &inp->inp_route;
1160 }
1161 #ifdef INET6
1162 else if (in6p) {
1163 so = in6p->in6p_socket;
1164 ro = (struct route *)&in6p->in6p_route;
1165 }
1166 #endif
1167
1168 #ifdef RTV_RTT
1169 /*
1170 * If we sent enough data to get some meaningful characteristics,
1171 * save them in the routing entry. 'Enough' is arbitrarily
1172 * defined as the sendpipesize (default 4K) * 16. This would
1173 * give us 16 rtt samples assuming we only get one sample per
1174 * window (the usual case on a long haul net). 16 samples is
1175 * enough for the srtt filter to converge to within 5% of the correct
1176 * value; fewer samples and we could save a very bogus rtt.
1177 *
1178 * Don't update the default route's characteristics and don't
1179 * update anything that the user "locked".
1180 */
1181 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1182 ro && (rt = rtcache_validate(ro)) != NULL &&
1183 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1184 u_long i = 0;
1185
1186 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1187 i = tp->t_srtt *
1188 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1189 if (rt->rt_rmx.rmx_rtt && i)
1190 /*
1191 * filter this update to half the old & half
1192 * the new values, converting scale.
1193 * See route.h and tcp_var.h for a
1194 * description of the scaling constants.
1195 */
1196 rt->rt_rmx.rmx_rtt =
1197 (rt->rt_rmx.rmx_rtt + i) / 2;
1198 else
1199 rt->rt_rmx.rmx_rtt = i;
1200 }
1201 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1202 i = tp->t_rttvar *
1203 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1204 if (rt->rt_rmx.rmx_rttvar && i)
1205 rt->rt_rmx.rmx_rttvar =
1206 (rt->rt_rmx.rmx_rttvar + i) / 2;
1207 else
1208 rt->rt_rmx.rmx_rttvar = i;
1209 }
1210 /*
1211 * update the pipelimit (ssthresh) if it has been updated
1212 * already or if a pipesize was specified & the threshhold
1213 * got below half the pipesize. I.e., wait for bad news
1214 * before we start updating, then update on both good
1215 * and bad news.
1216 */
1217 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1218 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1219 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1220 /*
1221 * convert the limit from user data bytes to
1222 * packets then to packet data bytes.
1223 */
1224 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1225 if (i < 2)
1226 i = 2;
1227 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1228 if (rt->rt_rmx.rmx_ssthresh)
1229 rt->rt_rmx.rmx_ssthresh =
1230 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1231 else
1232 rt->rt_rmx.rmx_ssthresh = i;
1233 }
1234 }
1235 #endif /* RTV_RTT */
1236 /* free the reassembly queue, if any */
1237 TCP_REASS_LOCK(tp);
1238 (void) tcp_freeq(tp);
1239 TCP_REASS_UNLOCK(tp);
1240
1241 /* free the SACK holes list. */
1242 tcp_free_sackholes(tp);
1243
1244 tp->t_congctl->refcnt--;
1245
1246 tcp_canceltimers(tp);
1247 TCP_CLEAR_DELACK(tp);
1248 syn_cache_cleanup(tp);
1249
1250 if (tp->t_template) {
1251 m_free(tp->t_template);
1252 tp->t_template = NULL;
1253 }
1254 if (tcp_timers_invoking(tp))
1255 tp->t_flags |= TF_DEAD;
1256 else {
1257 for (j = 0; j < TCPT_NTIMERS; j++)
1258 callout_destroy(&tp->t_timer[j]);
1259 callout_destroy(&tp->t_delack_ch);
1260 pool_put(&tcpcb_pool, tp);
1261 }
1262
1263 if (inp) {
1264 inp->inp_ppcb = 0;
1265 soisdisconnected(so);
1266 in_pcbdetach(inp);
1267 }
1268 #ifdef INET6
1269 else if (in6p) {
1270 in6p->in6p_ppcb = 0;
1271 soisdisconnected(so);
1272 in6_pcbdetach(in6p);
1273 }
1274 #endif
1275 tcpstat.tcps_closed++;
1276 return ((struct tcpcb *)0);
1277 }
1278
1279 int
1280 tcp_freeq(tp)
1281 struct tcpcb *tp;
1282 {
1283 struct ipqent *qe;
1284 int rv = 0;
1285 #ifdef TCPREASS_DEBUG
1286 int i = 0;
1287 #endif
1288
1289 TCP_REASS_LOCK_CHECK(tp);
1290
1291 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1292 #ifdef TCPREASS_DEBUG
1293 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1294 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1295 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1296 #endif
1297 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1298 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1299 m_freem(qe->ipqe_m);
1300 tcpipqent_free(qe);
1301 rv = 1;
1302 }
1303 tp->t_segqlen = 0;
1304 KASSERT(TAILQ_EMPTY(&tp->timeq));
1305 return (rv);
1306 }
1307
1308 /*
1309 * Protocol drain routine. Called when memory is in short supply.
1310 */
1311 void
1312 tcp_drain(void)
1313 {
1314 struct inpcb_hdr *inph;
1315 struct tcpcb *tp;
1316
1317 /*
1318 * Free the sequence queue of all TCP connections.
1319 */
1320 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1321 switch (inph->inph_af) {
1322 case AF_INET:
1323 tp = intotcpcb((struct inpcb *)inph);
1324 break;
1325 #ifdef INET6
1326 case AF_INET6:
1327 tp = in6totcpcb((struct in6pcb *)inph);
1328 break;
1329 #endif
1330 default:
1331 tp = NULL;
1332 break;
1333 }
1334 if (tp != NULL) {
1335 /*
1336 * We may be called from a device's interrupt
1337 * context. If the tcpcb is already busy,
1338 * just bail out now.
1339 */
1340 if (tcp_reass_lock_try(tp) == 0)
1341 continue;
1342 if (tcp_freeq(tp))
1343 tcpstat.tcps_connsdrained++;
1344 TCP_REASS_UNLOCK(tp);
1345 }
1346 }
1347 }
1348
1349 /*
1350 * Notify a tcp user of an asynchronous error;
1351 * store error as soft error, but wake up user
1352 * (for now, won't do anything until can select for soft error).
1353 */
1354 void
1355 tcp_notify(struct inpcb *inp, int error)
1356 {
1357 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1358 struct socket *so = inp->inp_socket;
1359
1360 /*
1361 * Ignore some errors if we are hooked up.
1362 * If connection hasn't completed, has retransmitted several times,
1363 * and receives a second error, give up now. This is better
1364 * than waiting a long time to establish a connection that
1365 * can never complete.
1366 */
1367 if (tp->t_state == TCPS_ESTABLISHED &&
1368 (error == EHOSTUNREACH || error == ENETUNREACH ||
1369 error == EHOSTDOWN)) {
1370 return;
1371 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1372 tp->t_rxtshift > 3 && tp->t_softerror)
1373 so->so_error = error;
1374 else
1375 tp->t_softerror = error;
1376 wakeup((void *) &so->so_timeo);
1377 sorwakeup(so);
1378 sowwakeup(so);
1379 }
1380
1381 #ifdef INET6
1382 void
1383 tcp6_notify(struct in6pcb *in6p, int error)
1384 {
1385 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1386 struct socket *so = in6p->in6p_socket;
1387
1388 /*
1389 * Ignore some errors if we are hooked up.
1390 * If connection hasn't completed, has retransmitted several times,
1391 * and receives a second error, give up now. This is better
1392 * than waiting a long time to establish a connection that
1393 * can never complete.
1394 */
1395 if (tp->t_state == TCPS_ESTABLISHED &&
1396 (error == EHOSTUNREACH || error == ENETUNREACH ||
1397 error == EHOSTDOWN)) {
1398 return;
1399 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1400 tp->t_rxtshift > 3 && tp->t_softerror)
1401 so->so_error = error;
1402 else
1403 tp->t_softerror = error;
1404 wakeup((void *) &so->so_timeo);
1405 sorwakeup(so);
1406 sowwakeup(so);
1407 }
1408 #endif
1409
1410 #ifdef INET6
1411 void
1412 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1413 {
1414 struct tcphdr th;
1415 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1416 int nmatch;
1417 struct ip6_hdr *ip6;
1418 const struct sockaddr_in6 *sa6_src = NULL;
1419 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1420 struct mbuf *m;
1421 int off;
1422
1423 if (sa->sa_family != AF_INET6 ||
1424 sa->sa_len != sizeof(struct sockaddr_in6))
1425 return;
1426 if ((unsigned)cmd >= PRC_NCMDS)
1427 return;
1428 else if (cmd == PRC_QUENCH) {
1429 /*
1430 * Don't honor ICMP Source Quench messages meant for
1431 * TCP connections.
1432 */
1433 return;
1434 } else if (PRC_IS_REDIRECT(cmd))
1435 notify = in6_rtchange, d = NULL;
1436 else if (cmd == PRC_MSGSIZE)
1437 ; /* special code is present, see below */
1438 else if (cmd == PRC_HOSTDEAD)
1439 d = NULL;
1440 else if (inet6ctlerrmap[cmd] == 0)
1441 return;
1442
1443 /* if the parameter is from icmp6, decode it. */
1444 if (d != NULL) {
1445 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1446 m = ip6cp->ip6c_m;
1447 ip6 = ip6cp->ip6c_ip6;
1448 off = ip6cp->ip6c_off;
1449 sa6_src = ip6cp->ip6c_src;
1450 } else {
1451 m = NULL;
1452 ip6 = NULL;
1453 sa6_src = &sa6_any;
1454 off = 0;
1455 }
1456
1457 if (ip6) {
1458 /*
1459 * XXX: We assume that when ip6 is non NULL,
1460 * M and OFF are valid.
1461 */
1462
1463 /* check if we can safely examine src and dst ports */
1464 if (m->m_pkthdr.len < off + sizeof(th)) {
1465 if (cmd == PRC_MSGSIZE)
1466 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1467 return;
1468 }
1469
1470 bzero(&th, sizeof(th));
1471 m_copydata(m, off, sizeof(th), (void *)&th);
1472
1473 if (cmd == PRC_MSGSIZE) {
1474 int valid = 0;
1475
1476 /*
1477 * Check to see if we have a valid TCP connection
1478 * corresponding to the address in the ICMPv6 message
1479 * payload.
1480 */
1481 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1482 th.th_dport,
1483 (const struct in6_addr *)&sa6_src->sin6_addr,
1484 th.th_sport, 0))
1485 valid++;
1486
1487 /*
1488 * Depending on the value of "valid" and routing table
1489 * size (mtudisc_{hi,lo}wat), we will:
1490 * - recalcurate the new MTU and create the
1491 * corresponding routing entry, or
1492 * - ignore the MTU change notification.
1493 */
1494 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1495
1496 /*
1497 * no need to call in6_pcbnotify, it should have been
1498 * called via callback if necessary
1499 */
1500 return;
1501 }
1502
1503 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1504 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1505 if (nmatch == 0 && syn_cache_count &&
1506 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1507 inet6ctlerrmap[cmd] == ENETUNREACH ||
1508 inet6ctlerrmap[cmd] == EHOSTDOWN))
1509 syn_cache_unreach((const struct sockaddr *)sa6_src,
1510 sa, &th);
1511 } else {
1512 (void) in6_pcbnotify(&tcbtable, sa, 0,
1513 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1514 }
1515 }
1516 #endif
1517
1518 #ifdef INET
1519 /* assumes that ip header and tcp header are contiguous on mbuf */
1520 void *
1521 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1522 {
1523 struct ip *ip = v;
1524 struct tcphdr *th;
1525 struct icmp *icp;
1526 extern const int inetctlerrmap[];
1527 void (*notify)(struct inpcb *, int) = tcp_notify;
1528 int errno;
1529 int nmatch;
1530 struct tcpcb *tp;
1531 u_int mtu;
1532 tcp_seq seq;
1533 struct inpcb *inp;
1534 #ifdef INET6
1535 struct in6pcb *in6p;
1536 struct in6_addr src6, dst6;
1537 #endif
1538
1539 if (sa->sa_family != AF_INET ||
1540 sa->sa_len != sizeof(struct sockaddr_in))
1541 return NULL;
1542 if ((unsigned)cmd >= PRC_NCMDS)
1543 return NULL;
1544 errno = inetctlerrmap[cmd];
1545 if (cmd == PRC_QUENCH)
1546 /*
1547 * Don't honor ICMP Source Quench messages meant for
1548 * TCP connections.
1549 */
1550 return NULL;
1551 else if (PRC_IS_REDIRECT(cmd))
1552 notify = in_rtchange, ip = 0;
1553 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1554 /*
1555 * Check to see if we have a valid TCP connection
1556 * corresponding to the address in the ICMP message
1557 * payload.
1558 *
1559 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1560 */
1561 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1562 #ifdef INET6
1563 memset(&src6, 0, sizeof(src6));
1564 memset(&dst6, 0, sizeof(dst6));
1565 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1566 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1567 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1568 #endif
1569 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1570 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1571 #ifdef INET6
1572 in6p = NULL;
1573 #else
1574 ;
1575 #endif
1576 #ifdef INET6
1577 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1578 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1579 ;
1580 #endif
1581 else
1582 return NULL;
1583
1584 /*
1585 * Now that we've validated that we are actually communicating
1586 * with the host indicated in the ICMP message, locate the
1587 * ICMP header, recalculate the new MTU, and create the
1588 * corresponding routing entry.
1589 */
1590 icp = (struct icmp *)((char *)ip -
1591 offsetof(struct icmp, icmp_ip));
1592 if (inp) {
1593 if ((tp = intotcpcb(inp)) == NULL)
1594 return NULL;
1595 }
1596 #ifdef INET6
1597 else if (in6p) {
1598 if ((tp = in6totcpcb(in6p)) == NULL)
1599 return NULL;
1600 }
1601 #endif
1602 else
1603 return NULL;
1604 seq = ntohl(th->th_seq);
1605 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1606 return NULL;
1607 /*
1608 * If the ICMP message advertises a Next-Hop MTU
1609 * equal or larger than the maximum packet size we have
1610 * ever sent, drop the message.
1611 */
1612 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1613 if (mtu >= tp->t_pmtud_mtu_sent)
1614 return NULL;
1615 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1616 /*
1617 * Calculate new MTU, and create corresponding
1618 * route (traditional PMTUD).
1619 */
1620 tp->t_flags &= ~TF_PMTUD_PEND;
1621 icmp_mtudisc(icp, ip->ip_dst);
1622 } else {
1623 /*
1624 * Record the information got in the ICMP
1625 * message; act on it later.
1626 * If we had already recorded an ICMP message,
1627 * replace the old one only if the new message
1628 * refers to an older TCP segment
1629 */
1630 if (tp->t_flags & TF_PMTUD_PEND) {
1631 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1632 return NULL;
1633 } else
1634 tp->t_flags |= TF_PMTUD_PEND;
1635 tp->t_pmtud_th_seq = seq;
1636 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1637 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1638 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1639 }
1640 return NULL;
1641 } else if (cmd == PRC_HOSTDEAD)
1642 ip = 0;
1643 else if (errno == 0)
1644 return NULL;
1645 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1646 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1647 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1648 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1649 if (nmatch == 0 && syn_cache_count &&
1650 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1651 inetctlerrmap[cmd] == ENETUNREACH ||
1652 inetctlerrmap[cmd] == EHOSTDOWN)) {
1653 struct sockaddr_in sin;
1654 bzero(&sin, sizeof(sin));
1655 sin.sin_len = sizeof(sin);
1656 sin.sin_family = AF_INET;
1657 sin.sin_port = th->th_sport;
1658 sin.sin_addr = ip->ip_src;
1659 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1660 }
1661
1662 /* XXX mapped address case */
1663 } else
1664 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1665 notify);
1666 return NULL;
1667 }
1668
1669 /*
1670 * When a source quench is received, we are being notified of congestion.
1671 * Close the congestion window down to the Loss Window (one segment).
1672 * We will gradually open it again as we proceed.
1673 */
1674 void
1675 tcp_quench(struct inpcb *inp, int errno)
1676 {
1677 struct tcpcb *tp = intotcpcb(inp);
1678
1679 if (tp) {
1680 tp->snd_cwnd = tp->t_segsz;
1681 tp->t_bytes_acked = 0;
1682 }
1683 }
1684 #endif
1685
1686 #ifdef INET6
1687 void
1688 tcp6_quench(struct in6pcb *in6p, int errno)
1689 {
1690 struct tcpcb *tp = in6totcpcb(in6p);
1691
1692 if (tp) {
1693 tp->snd_cwnd = tp->t_segsz;
1694 tp->t_bytes_acked = 0;
1695 }
1696 }
1697 #endif
1698
1699 #ifdef INET
1700 /*
1701 * Path MTU Discovery handlers.
1702 */
1703 void
1704 tcp_mtudisc_callback(struct in_addr faddr)
1705 {
1706 #ifdef INET6
1707 struct in6_addr in6;
1708 #endif
1709
1710 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1711 #ifdef INET6
1712 memset(&in6, 0, sizeof(in6));
1713 in6.s6_addr16[5] = 0xffff;
1714 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1715 tcp6_mtudisc_callback(&in6);
1716 #endif
1717 }
1718
1719 /*
1720 * On receipt of path MTU corrections, flush old route and replace it
1721 * with the new one. Retransmit all unacknowledged packets, to ensure
1722 * that all packets will be received.
1723 */
1724 void
1725 tcp_mtudisc(struct inpcb *inp, int errno)
1726 {
1727 struct tcpcb *tp = intotcpcb(inp);
1728 struct rtentry *rt = in_pcbrtentry(inp);
1729
1730 if (tp != 0) {
1731 if (rt != 0) {
1732 /*
1733 * If this was not a host route, remove and realloc.
1734 */
1735 if ((rt->rt_flags & RTF_HOST) == 0) {
1736 in_rtchange(inp, errno);
1737 if ((rt = in_pcbrtentry(inp)) == 0)
1738 return;
1739 }
1740
1741 /*
1742 * Slow start out of the error condition. We
1743 * use the MTU because we know it's smaller
1744 * than the previously transmitted segment.
1745 *
1746 * Note: This is more conservative than the
1747 * suggestion in draft-floyd-incr-init-win-03.
1748 */
1749 if (rt->rt_rmx.rmx_mtu != 0)
1750 tp->snd_cwnd =
1751 TCP_INITIAL_WINDOW(tcp_init_win,
1752 rt->rt_rmx.rmx_mtu);
1753 }
1754
1755 /*
1756 * Resend unacknowledged packets.
1757 */
1758 tp->snd_nxt = tp->snd_una;
1759 tcp_output(tp);
1760 }
1761 }
1762 #endif
1763
1764 #ifdef INET6
1765 /*
1766 * Path MTU Discovery handlers.
1767 */
1768 void
1769 tcp6_mtudisc_callback(struct in6_addr *faddr)
1770 {
1771 struct sockaddr_in6 sin6;
1772
1773 bzero(&sin6, sizeof(sin6));
1774 sin6.sin6_family = AF_INET6;
1775 sin6.sin6_len = sizeof(struct sockaddr_in6);
1776 sin6.sin6_addr = *faddr;
1777 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1778 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1779 }
1780
1781 void
1782 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1783 {
1784 struct tcpcb *tp = in6totcpcb(in6p);
1785 struct rtentry *rt = in6_pcbrtentry(in6p);
1786
1787 if (tp != 0) {
1788 if (rt != 0) {
1789 /*
1790 * If this was not a host route, remove and realloc.
1791 */
1792 if ((rt->rt_flags & RTF_HOST) == 0) {
1793 in6_rtchange(in6p, errno);
1794 if ((rt = in6_pcbrtentry(in6p)) == 0)
1795 return;
1796 }
1797
1798 /*
1799 * Slow start out of the error condition. We
1800 * use the MTU because we know it's smaller
1801 * than the previously transmitted segment.
1802 *
1803 * Note: This is more conservative than the
1804 * suggestion in draft-floyd-incr-init-win-03.
1805 */
1806 if (rt->rt_rmx.rmx_mtu != 0)
1807 tp->snd_cwnd =
1808 TCP_INITIAL_WINDOW(tcp_init_win,
1809 rt->rt_rmx.rmx_mtu);
1810 }
1811
1812 /*
1813 * Resend unacknowledged packets.
1814 */
1815 tp->snd_nxt = tp->snd_una;
1816 tcp_output(tp);
1817 }
1818 }
1819 #endif /* INET6 */
1820
1821 /*
1822 * Compute the MSS to advertise to the peer. Called only during
1823 * the 3-way handshake. If we are the server (peer initiated
1824 * connection), we are called with a pointer to the interface
1825 * on which the SYN packet arrived. If we are the client (we
1826 * initiated connection), we are called with a pointer to the
1827 * interface out which this connection should go.
1828 *
1829 * NOTE: Do not subtract IP option/extension header size nor IPsec
1830 * header size from MSS advertisement. MSS option must hold the maximum
1831 * segment size we can accept, so it must always be:
1832 * max(if mtu) - ip header - tcp header
1833 */
1834 u_long
1835 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1836 {
1837 extern u_long in_maxmtu;
1838 u_long mss = 0;
1839 u_long hdrsiz;
1840
1841 /*
1842 * In order to avoid defeating path MTU discovery on the peer,
1843 * we advertise the max MTU of all attached networks as our MSS,
1844 * per RFC 1191, section 3.1.
1845 *
1846 * We provide the option to advertise just the MTU of
1847 * the interface on which we hope this connection will
1848 * be receiving. If we are responding to a SYN, we
1849 * will have a pretty good idea about this, but when
1850 * initiating a connection there is a bit more doubt.
1851 *
1852 * We also need to ensure that loopback has a large enough
1853 * MSS, as the loopback MTU is never included in in_maxmtu.
1854 */
1855
1856 if (ifp != NULL)
1857 switch (af) {
1858 case AF_INET:
1859 mss = ifp->if_mtu;
1860 break;
1861 #ifdef INET6
1862 case AF_INET6:
1863 mss = IN6_LINKMTU(ifp);
1864 break;
1865 #endif
1866 }
1867
1868 if (tcp_mss_ifmtu == 0)
1869 switch (af) {
1870 case AF_INET:
1871 mss = max(in_maxmtu, mss);
1872 break;
1873 #ifdef INET6
1874 case AF_INET6:
1875 mss = max(in6_maxmtu, mss);
1876 break;
1877 #endif
1878 }
1879
1880 switch (af) {
1881 case AF_INET:
1882 hdrsiz = sizeof(struct ip);
1883 break;
1884 #ifdef INET6
1885 case AF_INET6:
1886 hdrsiz = sizeof(struct ip6_hdr);
1887 break;
1888 #endif
1889 default:
1890 hdrsiz = 0;
1891 break;
1892 }
1893 hdrsiz += sizeof(struct tcphdr);
1894 if (mss > hdrsiz)
1895 mss -= hdrsiz;
1896
1897 mss = max(tcp_mssdflt, mss);
1898 return (mss);
1899 }
1900
1901 /*
1902 * Set connection variables based on the peer's advertised MSS.
1903 * We are passed the TCPCB for the actual connection. If we
1904 * are the server, we are called by the compressed state engine
1905 * when the 3-way handshake is complete. If we are the client,
1906 * we are called when we receive the SYN,ACK from the server.
1907 *
1908 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1909 * before this routine is called!
1910 */
1911 void
1912 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1913 {
1914 struct socket *so;
1915 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1916 struct rtentry *rt;
1917 #endif
1918 u_long bufsize;
1919 int mss;
1920
1921 #ifdef DIAGNOSTIC
1922 if (tp->t_inpcb && tp->t_in6pcb)
1923 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1924 #endif
1925 so = NULL;
1926 rt = NULL;
1927 #ifdef INET
1928 if (tp->t_inpcb) {
1929 so = tp->t_inpcb->inp_socket;
1930 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1931 rt = in_pcbrtentry(tp->t_inpcb);
1932 #endif
1933 }
1934 #endif
1935 #ifdef INET6
1936 if (tp->t_in6pcb) {
1937 so = tp->t_in6pcb->in6p_socket;
1938 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1939 rt = in6_pcbrtentry(tp->t_in6pcb);
1940 #endif
1941 }
1942 #endif
1943
1944 /*
1945 * As per RFC1122, use the default MSS value, unless they
1946 * sent us an offer. Do not accept offers less than 256 bytes.
1947 */
1948 mss = tcp_mssdflt;
1949 if (offer)
1950 mss = offer;
1951 mss = max(mss, 256); /* sanity */
1952 tp->t_peermss = mss;
1953 mss -= tcp_optlen(tp);
1954 #ifdef INET
1955 if (tp->t_inpcb)
1956 mss -= ip_optlen(tp->t_inpcb);
1957 #endif
1958 #ifdef INET6
1959 if (tp->t_in6pcb)
1960 mss -= ip6_optlen(tp->t_in6pcb);
1961 #endif
1962
1963 /*
1964 * If there's a pipesize, change the socket buffer to that size.
1965 * Make the socket buffer an integral number of MSS units. If
1966 * the MSS is larger than the socket buffer, artificially decrease
1967 * the MSS.
1968 */
1969 #ifdef RTV_SPIPE
1970 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1971 bufsize = rt->rt_rmx.rmx_sendpipe;
1972 else
1973 #endif
1974 {
1975 KASSERT(so != NULL);
1976 bufsize = so->so_snd.sb_hiwat;
1977 }
1978 if (bufsize < mss)
1979 mss = bufsize;
1980 else {
1981 bufsize = roundup(bufsize, mss);
1982 if (bufsize > sb_max)
1983 bufsize = sb_max;
1984 (void) sbreserve(&so->so_snd, bufsize, so);
1985 }
1986 tp->t_segsz = mss;
1987
1988 #ifdef RTV_SSTHRESH
1989 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1990 /*
1991 * There's some sort of gateway or interface buffer
1992 * limit on the path. Use this to set the slow
1993 * start threshold, but set the threshold to no less
1994 * than 2 * MSS.
1995 */
1996 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1997 }
1998 #endif
1999 }
2000
2001 /*
2002 * Processing necessary when a TCP connection is established.
2003 */
2004 void
2005 tcp_established(struct tcpcb *tp)
2006 {
2007 struct socket *so;
2008 #ifdef RTV_RPIPE
2009 struct rtentry *rt;
2010 #endif
2011 u_long bufsize;
2012
2013 #ifdef DIAGNOSTIC
2014 if (tp->t_inpcb && tp->t_in6pcb)
2015 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2016 #endif
2017 so = NULL;
2018 rt = NULL;
2019 #ifdef INET
2020 if (tp->t_inpcb) {
2021 so = tp->t_inpcb->inp_socket;
2022 #if defined(RTV_RPIPE)
2023 rt = in_pcbrtentry(tp->t_inpcb);
2024 #endif
2025 }
2026 #endif
2027 #ifdef INET6
2028 if (tp->t_in6pcb) {
2029 so = tp->t_in6pcb->in6p_socket;
2030 #if defined(RTV_RPIPE)
2031 rt = in6_pcbrtentry(tp->t_in6pcb);
2032 #endif
2033 }
2034 #endif
2035
2036 tp->t_state = TCPS_ESTABLISHED;
2037 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2038
2039 #ifdef RTV_RPIPE
2040 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2041 bufsize = rt->rt_rmx.rmx_recvpipe;
2042 else
2043 #endif
2044 {
2045 KASSERT(so != NULL);
2046 bufsize = so->so_rcv.sb_hiwat;
2047 }
2048 if (bufsize > tp->t_ourmss) {
2049 bufsize = roundup(bufsize, tp->t_ourmss);
2050 if (bufsize > sb_max)
2051 bufsize = sb_max;
2052 (void) sbreserve(&so->so_rcv, bufsize, so);
2053 }
2054 }
2055
2056 /*
2057 * Check if there's an initial rtt or rttvar. Convert from the
2058 * route-table units to scaled multiples of the slow timeout timer.
2059 * Called only during the 3-way handshake.
2060 */
2061 void
2062 tcp_rmx_rtt(struct tcpcb *tp)
2063 {
2064 #ifdef RTV_RTT
2065 struct rtentry *rt = NULL;
2066 int rtt;
2067
2068 #ifdef DIAGNOSTIC
2069 if (tp->t_inpcb && tp->t_in6pcb)
2070 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2071 #endif
2072 #ifdef INET
2073 if (tp->t_inpcb)
2074 rt = in_pcbrtentry(tp->t_inpcb);
2075 #endif
2076 #ifdef INET6
2077 if (tp->t_in6pcb)
2078 rt = in6_pcbrtentry(tp->t_in6pcb);
2079 #endif
2080 if (rt == NULL)
2081 return;
2082
2083 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2084 /*
2085 * XXX The lock bit for MTU indicates that the value
2086 * is also a minimum value; this is subject to time.
2087 */
2088 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2089 TCPT_RANGESET(tp->t_rttmin,
2090 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2091 TCPTV_MIN, TCPTV_REXMTMAX);
2092 tp->t_srtt = rtt /
2093 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2094 if (rt->rt_rmx.rmx_rttvar) {
2095 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2096 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2097 (TCP_RTTVAR_SHIFT + 2));
2098 } else {
2099 /* Default variation is +- 1 rtt */
2100 tp->t_rttvar =
2101 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2102 }
2103 TCPT_RANGESET(tp->t_rxtcur,
2104 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2105 tp->t_rttmin, TCPTV_REXMTMAX);
2106 }
2107 #endif
2108 }
2109
2110 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2111 #if NRND > 0
2112 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2113 #endif
2114
2115 /*
2116 * Get a new sequence value given a tcp control block
2117 */
2118 tcp_seq
2119 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2120 {
2121
2122 #ifdef INET
2123 if (tp->t_inpcb != NULL) {
2124 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2125 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2126 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2127 addin));
2128 }
2129 #endif
2130 #ifdef INET6
2131 if (tp->t_in6pcb != NULL) {
2132 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2133 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2134 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2135 addin));
2136 }
2137 #endif
2138 /* Not possible. */
2139 panic("tcp_new_iss");
2140 }
2141
2142 /*
2143 * This routine actually generates a new TCP initial sequence number.
2144 */
2145 tcp_seq
2146 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2147 size_t addrsz, tcp_seq addin)
2148 {
2149 tcp_seq tcp_iss;
2150
2151 #if NRND > 0
2152 static int beenhere;
2153
2154 /*
2155 * If we haven't been here before, initialize our cryptographic
2156 * hash secret.
2157 */
2158 if (beenhere == 0) {
2159 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2160 RND_EXTRACT_ANY);
2161 beenhere = 1;
2162 }
2163
2164 if (tcp_do_rfc1948) {
2165 MD5_CTX ctx;
2166 u_int8_t hash[16]; /* XXX MD5 knowledge */
2167
2168 /*
2169 * Compute the base value of the ISS. It is a hash
2170 * of (saddr, sport, daddr, dport, secret).
2171 */
2172 MD5Init(&ctx);
2173
2174 MD5Update(&ctx, (u_char *) laddr, addrsz);
2175 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2176
2177 MD5Update(&ctx, (u_char *) faddr, addrsz);
2178 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2179
2180 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2181
2182 MD5Final(hash, &ctx);
2183
2184 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2185
2186 /*
2187 * Now increment our "timer", and add it in to
2188 * the computed value.
2189 *
2190 * XXX Use `addin'?
2191 * XXX TCP_ISSINCR too large to use?
2192 */
2193 tcp_iss_seq += TCP_ISSINCR;
2194 #ifdef TCPISS_DEBUG
2195 printf("ISS hash 0x%08x, ", tcp_iss);
2196 #endif
2197 tcp_iss += tcp_iss_seq + addin;
2198 #ifdef TCPISS_DEBUG
2199 printf("new ISS 0x%08x\n", tcp_iss);
2200 #endif
2201 } else
2202 #endif /* NRND > 0 */
2203 {
2204 /*
2205 * Randomize.
2206 */
2207 #if NRND > 0
2208 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2209 #else
2210 tcp_iss = arc4random();
2211 #endif
2212
2213 /*
2214 * If we were asked to add some amount to a known value,
2215 * we will take a random value obtained above, mask off
2216 * the upper bits, and add in the known value. We also
2217 * add in a constant to ensure that we are at least a
2218 * certain distance from the original value.
2219 *
2220 * This is used when an old connection is in timed wait
2221 * and we have a new one coming in, for instance.
2222 */
2223 if (addin != 0) {
2224 #ifdef TCPISS_DEBUG
2225 printf("Random %08x, ", tcp_iss);
2226 #endif
2227 tcp_iss &= TCP_ISS_RANDOM_MASK;
2228 tcp_iss += addin + TCP_ISSINCR;
2229 #ifdef TCPISS_DEBUG
2230 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2231 #endif
2232 } else {
2233 tcp_iss &= TCP_ISS_RANDOM_MASK;
2234 tcp_iss += tcp_iss_seq;
2235 tcp_iss_seq += TCP_ISSINCR;
2236 #ifdef TCPISS_DEBUG
2237 printf("ISS %08x\n", tcp_iss);
2238 #endif
2239 }
2240 }
2241
2242 if (tcp_compat_42) {
2243 /*
2244 * Limit it to the positive range for really old TCP
2245 * implementations.
2246 * Just AND off the top bit instead of checking if
2247 * is set first - saves a branch 50% of the time.
2248 */
2249 tcp_iss &= 0x7fffffff; /* XXX */
2250 }
2251
2252 return (tcp_iss);
2253 }
2254
2255 #if defined(IPSEC) || defined(FAST_IPSEC)
2256 /* compute ESP/AH header size for TCP, including outer IP header. */
2257 size_t
2258 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2259 {
2260 struct inpcb *inp;
2261 size_t hdrsiz;
2262
2263 /* XXX mapped addr case (tp->t_in6pcb) */
2264 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2265 return 0;
2266 switch (tp->t_family) {
2267 case AF_INET:
2268 /* XXX: should use currect direction. */
2269 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2270 break;
2271 default:
2272 hdrsiz = 0;
2273 break;
2274 }
2275
2276 return hdrsiz;
2277 }
2278
2279 #ifdef INET6
2280 size_t
2281 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2282 {
2283 struct in6pcb *in6p;
2284 size_t hdrsiz;
2285
2286 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2287 return 0;
2288 switch (tp->t_family) {
2289 case AF_INET6:
2290 /* XXX: should use currect direction. */
2291 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2292 break;
2293 case AF_INET:
2294 /* mapped address case - tricky */
2295 default:
2296 hdrsiz = 0;
2297 break;
2298 }
2299
2300 return hdrsiz;
2301 }
2302 #endif
2303 #endif /*IPSEC*/
2304
2305 /*
2306 * Determine the length of the TCP options for this connection.
2307 *
2308 * XXX: What do we do for SACK, when we add that? Just reserve
2309 * all of the space? Otherwise we can't exactly be incrementing
2310 * cwnd by an amount that varies depending on the amount we last
2311 * had to SACK!
2312 */
2313
2314 u_int
2315 tcp_optlen(struct tcpcb *tp)
2316 {
2317 u_int optlen;
2318
2319 optlen = 0;
2320 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2321 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2322 optlen += TCPOLEN_TSTAMP_APPA;
2323
2324 #ifdef TCP_SIGNATURE
2325 if (tp->t_flags & TF_SIGNATURE)
2326 optlen += TCPOLEN_SIGNATURE + 2;
2327 #endif /* TCP_SIGNATURE */
2328
2329 return optlen;
2330 }
2331
2332 u_int
2333 tcp_hdrsz(struct tcpcb *tp)
2334 {
2335 u_int hlen;
2336
2337 switch (tp->t_family) {
2338 #ifdef INET6
2339 case AF_INET6:
2340 hlen = sizeof(struct ip6_hdr);
2341 break;
2342 #endif
2343 case AF_INET:
2344 hlen = sizeof(struct ip);
2345 break;
2346 default:
2347 hlen = 0;
2348 break;
2349 }
2350 hlen += sizeof(struct tcphdr);
2351
2352 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2353 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2354 hlen += TCPOLEN_TSTAMP_APPA;
2355 #ifdef TCP_SIGNATURE
2356 if (tp->t_flags & TF_SIGNATURE)
2357 hlen += TCPOLEN_SIGLEN;
2358 #endif
2359 return hlen;
2360 }
2361