Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.225
      1 /*	$NetBSD: tcp_subr.c,v 1.225 2008/03/27 00:18:56 cube Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.225 2008/03/27 00:18:56 cube Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcp_congctl.h>
    155 #include <netinet/tcpip.h>
    156 
    157 #ifdef IPSEC
    158 #include <netinet6/ipsec.h>
    159 #include <netkey/key.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef FAST_IPSEC
    163 #include <netipsec/ipsec.h>
    164 #include <netipsec/xform.h>
    165 #ifdef INET6
    166 #include <netipsec/ipsec6.h>
    167 #endif
    168  #include <netipsec/key.h>
    169 #endif	/* FAST_IPSEC*/
    170 
    171 
    172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    173 struct	tcpstat tcpstat;	/* tcp statistics */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 /* patchable/settable parameters for tcp */
    177 int 	tcp_mssdflt = TCP_MSS;
    178 int	tcp_minmss = TCP_MINMSS;
    179 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    180 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    181 #if NRND > 0
    182 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    183 #endif
    184 int	tcp_do_sack = 1;	/* selective acknowledgement */
    185 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    186 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    187 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    188 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    189 #ifndef TCP_INIT_WIN
    190 #define	TCP_INIT_WIN	0	/* initial slow start window */
    191 #endif
    192 #ifndef TCP_INIT_WIN_LOCAL
    193 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    194 #endif
    195 int	tcp_init_win = TCP_INIT_WIN;
    196 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    197 int	tcp_mss_ifmtu = 0;
    198 #ifdef TCP_COMPAT_42
    199 int	tcp_compat_42 = 1;
    200 #else
    201 int	tcp_compat_42 = 0;
    202 #endif
    203 int	tcp_rst_ppslim = 100;	/* 100pps */
    204 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    205 int	tcp_do_loopback_cksum = 0;
    206 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    207 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    208 int	tcp_sack_tp_maxholes = 32;
    209 int	tcp_sack_globalmaxholes = 1024;
    210 int	tcp_sack_globalholes = 0;
    211 int	tcp_ecn_maxretries = 1;
    212 
    213 /* tcb hash */
    214 #ifndef TCBHASHSIZE
    215 #define	TCBHASHSIZE	128
    216 #endif
    217 int	tcbhashsize = TCBHASHSIZE;
    218 
    219 /* syn hash parameters */
    220 #define	TCP_SYN_HASH_SIZE	293
    221 #define	TCP_SYN_BUCKET_SIZE	35
    222 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    223 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    224 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    225 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    226 
    227 int	tcp_freeq(struct tcpcb *);
    228 
    229 #ifdef INET
    230 void	tcp_mtudisc_callback(struct in_addr);
    231 #endif
    232 #ifdef INET6
    233 void	tcp6_mtudisc_callback(struct in6_addr *);
    234 #endif
    235 
    236 #ifdef INET6
    237 void	tcp6_mtudisc(struct in6pcb *, int);
    238 #endif
    239 
    240 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
    241     IPL_SOFTNET);
    242 
    243 #ifdef TCP_CSUM_COUNTERS
    244 #include <sys/device.h>
    245 
    246 #if defined(INET)
    247 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    248     NULL, "tcp", "hwcsum bad");
    249 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    250     NULL, "tcp", "hwcsum ok");
    251 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    252     NULL, "tcp", "hwcsum data");
    253 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    254     NULL, "tcp", "swcsum");
    255 
    256 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    257 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    258 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    259 EVCNT_ATTACH_STATIC(tcp_swcsum);
    260 #endif /* defined(INET) */
    261 
    262 #if defined(INET6)
    263 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp6", "hwcsum bad");
    265 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp6", "hwcsum ok");
    267 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp6", "hwcsum data");
    269 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     NULL, "tcp6", "swcsum");
    271 
    272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    275 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    276 #endif /* defined(INET6) */
    277 #endif /* TCP_CSUM_COUNTERS */
    278 
    279 
    280 #ifdef TCP_OUTPUT_COUNTERS
    281 #include <sys/device.h>
    282 
    283 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     NULL, "tcp", "output big header");
    285 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     NULL, "tcp", "output predict hit");
    287 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     NULL, "tcp", "output predict miss");
    289 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     NULL, "tcp", "output copy small");
    291 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     NULL, "tcp", "output copy big");
    293 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    294     NULL, "tcp", "output reference big");
    295 
    296 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    297 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    298 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    299 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    300 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    301 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    302 
    303 #endif /* TCP_OUTPUT_COUNTERS */
    304 
    305 #ifdef TCP_REASS_COUNTERS
    306 #include <sys/device.h>
    307 
    308 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    309     NULL, "tcp_reass", "calls");
    310 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    311     &tcp_reass_, "tcp_reass", "insert into empty queue");
    312 struct evcnt tcp_reass_iteration[8] = {
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    321 };
    322 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    323     &tcp_reass_, "tcp_reass", "prepend to first");
    324 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    325     &tcp_reass_, "tcp_reass", "prepend");
    326 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    327     &tcp_reass_, "tcp_reass", "insert");
    328 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    329     &tcp_reass_, "tcp_reass", "insert at tail");
    330 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    331     &tcp_reass_, "tcp_reass", "append");
    332 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    333     &tcp_reass_, "tcp_reass", "append to tail fragment");
    334 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    335     &tcp_reass_, "tcp_reass", "overlap at end");
    336 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    337     &tcp_reass_, "tcp_reass", "overlap at start");
    338 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    339     &tcp_reass_, "tcp_reass", "duplicate segment");
    340 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    341     &tcp_reass_, "tcp_reass", "duplicate fragment");
    342 
    343 EVCNT_ATTACH_STATIC(tcp_reass_);
    344 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    353 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    354 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    355 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    356 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    357 EVCNT_ATTACH_STATIC(tcp_reass_append);
    358 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    359 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    360 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    361 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    362 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    363 
    364 #endif /* TCP_REASS_COUNTERS */
    365 
    366 #ifdef MBUFTRACE
    367 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    368 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    369 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    370 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
    371 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
    372 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
    373 #endif
    374 
    375 /*
    376  * Tcp initialization
    377  */
    378 void
    379 tcp_init(void)
    380 {
    381 	int hlen;
    382 
    383 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    384 
    385 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    386 #ifdef INET6
    387 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    388 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    389 #endif
    390 	if (max_protohdr < hlen)
    391 		max_protohdr = hlen;
    392 	if (max_linkhdr + hlen > MHLEN)
    393 		panic("tcp_init");
    394 
    395 #ifdef INET
    396 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    397 #endif
    398 #ifdef INET6
    399 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    400 #endif
    401 
    402 	/* Initialize timer state. */
    403 	tcp_timer_init();
    404 
    405 	/* Initialize the compressed state engine. */
    406 	syn_cache_init();
    407 
    408 	/* Initialize the congestion control algorithms. */
    409 	tcp_congctl_init();
    410 
    411 	/* Initialize the TCPCB template. */
    412 	tcp_tcpcb_template();
    413 
    414 	MOWNER_ATTACH(&tcp_tx_mowner);
    415 	MOWNER_ATTACH(&tcp_rx_mowner);
    416 	MOWNER_ATTACH(&tcp_reass_mowner);
    417 	MOWNER_ATTACH(&tcp_sock_mowner);
    418 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
    419 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
    420 	MOWNER_ATTACH(&tcp_mowner);
    421 }
    422 
    423 /*
    424  * Create template to be used to send tcp packets on a connection.
    425  * Call after host entry created, allocates an mbuf and fills
    426  * in a skeletal tcp/ip header, minimizing the amount of work
    427  * necessary when the connection is used.
    428  */
    429 struct mbuf *
    430 tcp_template(struct tcpcb *tp)
    431 {
    432 	struct inpcb *inp = tp->t_inpcb;
    433 #ifdef INET6
    434 	struct in6pcb *in6p = tp->t_in6pcb;
    435 #endif
    436 	struct tcphdr *n;
    437 	struct mbuf *m;
    438 	int hlen;
    439 
    440 	switch (tp->t_family) {
    441 	case AF_INET:
    442 		hlen = sizeof(struct ip);
    443 		if (inp)
    444 			break;
    445 #ifdef INET6
    446 		if (in6p) {
    447 			/* mapped addr case */
    448 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    449 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    450 				break;
    451 		}
    452 #endif
    453 		return NULL;	/*EINVAL*/
    454 #ifdef INET6
    455 	case AF_INET6:
    456 		hlen = sizeof(struct ip6_hdr);
    457 		if (in6p) {
    458 			/* more sainty check? */
    459 			break;
    460 		}
    461 		return NULL;	/*EINVAL*/
    462 #endif
    463 	default:
    464 		hlen = 0;	/*pacify gcc*/
    465 		return NULL;	/*EAFNOSUPPORT*/
    466 	}
    467 #ifdef DIAGNOSTIC
    468 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    469 		panic("mclbytes too small for t_template");
    470 #endif
    471 	m = tp->t_template;
    472 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    473 		;
    474 	else {
    475 		if (m)
    476 			m_freem(m);
    477 		m = tp->t_template = NULL;
    478 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    479 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    480 			MCLGET(m, M_DONTWAIT);
    481 			if ((m->m_flags & M_EXT) == 0) {
    482 				m_free(m);
    483 				m = NULL;
    484 			}
    485 		}
    486 		if (m == NULL)
    487 			return NULL;
    488 		MCLAIM(m, &tcp_mowner);
    489 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    490 	}
    491 
    492 	bzero(mtod(m, void *), m->m_len);
    493 
    494 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
    495 
    496 	switch (tp->t_family) {
    497 	case AF_INET:
    498 	    {
    499 		struct ipovly *ipov;
    500 		mtod(m, struct ip *)->ip_v = 4;
    501 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    502 		ipov = mtod(m, struct ipovly *);
    503 		ipov->ih_pr = IPPROTO_TCP;
    504 		ipov->ih_len = htons(sizeof(struct tcphdr));
    505 		if (inp) {
    506 			ipov->ih_src = inp->inp_laddr;
    507 			ipov->ih_dst = inp->inp_faddr;
    508 		}
    509 #ifdef INET6
    510 		else if (in6p) {
    511 			/* mapped addr case */
    512 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    513 				sizeof(ipov->ih_src));
    514 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    515 				sizeof(ipov->ih_dst));
    516 		}
    517 #endif
    518 		/*
    519 		 * Compute the pseudo-header portion of the checksum
    520 		 * now.  We incrementally add in the TCP option and
    521 		 * payload lengths later, and then compute the TCP
    522 		 * checksum right before the packet is sent off onto
    523 		 * the wire.
    524 		 */
    525 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    526 		    ipov->ih_dst.s_addr,
    527 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    528 		break;
    529 	    }
    530 #ifdef INET6
    531 	case AF_INET6:
    532 	    {
    533 		struct ip6_hdr *ip6;
    534 		mtod(m, struct ip *)->ip_v = 6;
    535 		ip6 = mtod(m, struct ip6_hdr *);
    536 		ip6->ip6_nxt = IPPROTO_TCP;
    537 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    538 		ip6->ip6_src = in6p->in6p_laddr;
    539 		ip6->ip6_dst = in6p->in6p_faddr;
    540 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    541 		if (ip6_auto_flowlabel) {
    542 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    543 			ip6->ip6_flow |=
    544 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    545 		}
    546 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    547 		ip6->ip6_vfc |= IPV6_VERSION;
    548 
    549 		/*
    550 		 * Compute the pseudo-header portion of the checksum
    551 		 * now.  We incrementally add in the TCP option and
    552 		 * payload lengths later, and then compute the TCP
    553 		 * checksum right before the packet is sent off onto
    554 		 * the wire.
    555 		 */
    556 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    557 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    558 		    htonl(IPPROTO_TCP));
    559 		break;
    560 	    }
    561 #endif
    562 	}
    563 	if (inp) {
    564 		n->th_sport = inp->inp_lport;
    565 		n->th_dport = inp->inp_fport;
    566 	}
    567 #ifdef INET6
    568 	else if (in6p) {
    569 		n->th_sport = in6p->in6p_lport;
    570 		n->th_dport = in6p->in6p_fport;
    571 	}
    572 #endif
    573 	n->th_seq = 0;
    574 	n->th_ack = 0;
    575 	n->th_x2 = 0;
    576 	n->th_off = 5;
    577 	n->th_flags = 0;
    578 	n->th_win = 0;
    579 	n->th_urp = 0;
    580 	return (m);
    581 }
    582 
    583 /*
    584  * Send a single message to the TCP at address specified by
    585  * the given TCP/IP header.  If m == 0, then we make a copy
    586  * of the tcpiphdr at ti and send directly to the addressed host.
    587  * This is used to force keep alive messages out using the TCP
    588  * template for a connection tp->t_template.  If flags are given
    589  * then we send a message back to the TCP which originated the
    590  * segment ti, and discard the mbuf containing it and any other
    591  * attached mbufs.
    592  *
    593  * In any case the ack and sequence number of the transmitted
    594  * segment are as specified by the parameters.
    595  */
    596 int
    597 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    598     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    599 {
    600 #ifdef INET6
    601 	struct rtentry *rt;
    602 #endif
    603 	struct route *ro;
    604 	int error, tlen, win = 0;
    605 	int hlen;
    606 	struct ip *ip;
    607 #ifdef INET6
    608 	struct ip6_hdr *ip6;
    609 #endif
    610 	int family;	/* family on packet, not inpcb/in6pcb! */
    611 	struct tcphdr *th;
    612 	struct socket *so;
    613 
    614 	if (tp != NULL && (flags & TH_RST) == 0) {
    615 #ifdef DIAGNOSTIC
    616 		if (tp->t_inpcb && tp->t_in6pcb)
    617 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    618 #endif
    619 #ifdef INET
    620 		if (tp->t_inpcb)
    621 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    622 #endif
    623 #ifdef INET6
    624 		if (tp->t_in6pcb)
    625 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    626 #endif
    627 	}
    628 
    629 	th = NULL;	/* Quell uninitialized warning */
    630 	ip = NULL;
    631 #ifdef INET6
    632 	ip6 = NULL;
    633 #endif
    634 	if (m == 0) {
    635 		if (!template)
    636 			return EINVAL;
    637 
    638 		/* get family information from template */
    639 		switch (mtod(template, struct ip *)->ip_v) {
    640 		case 4:
    641 			family = AF_INET;
    642 			hlen = sizeof(struct ip);
    643 			break;
    644 #ifdef INET6
    645 		case 6:
    646 			family = AF_INET6;
    647 			hlen = sizeof(struct ip6_hdr);
    648 			break;
    649 #endif
    650 		default:
    651 			return EAFNOSUPPORT;
    652 		}
    653 
    654 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    655 		if (m) {
    656 			MCLAIM(m, &tcp_tx_mowner);
    657 			MCLGET(m, M_DONTWAIT);
    658 			if ((m->m_flags & M_EXT) == 0) {
    659 				m_free(m);
    660 				m = NULL;
    661 			}
    662 		}
    663 		if (m == NULL)
    664 			return (ENOBUFS);
    665 
    666 		if (tcp_compat_42)
    667 			tlen = 1;
    668 		else
    669 			tlen = 0;
    670 
    671 		m->m_data += max_linkhdr;
    672 		bcopy(mtod(template, void *), mtod(m, void *),
    673 			template->m_len);
    674 		switch (family) {
    675 		case AF_INET:
    676 			ip = mtod(m, struct ip *);
    677 			th = (struct tcphdr *)(ip + 1);
    678 			break;
    679 #ifdef INET6
    680 		case AF_INET6:
    681 			ip6 = mtod(m, struct ip6_hdr *);
    682 			th = (struct tcphdr *)(ip6 + 1);
    683 			break;
    684 #endif
    685 #if 0
    686 		default:
    687 			/* noone will visit here */
    688 			m_freem(m);
    689 			return EAFNOSUPPORT;
    690 #endif
    691 		}
    692 		flags = TH_ACK;
    693 	} else {
    694 
    695 		if ((m->m_flags & M_PKTHDR) == 0) {
    696 #if 0
    697 			printf("non PKTHDR to tcp_respond\n");
    698 #endif
    699 			m_freem(m);
    700 			return EINVAL;
    701 		}
    702 #ifdef DIAGNOSTIC
    703 		if (!th0)
    704 			panic("th0 == NULL in tcp_respond");
    705 #endif
    706 
    707 		/* get family information from m */
    708 		switch (mtod(m, struct ip *)->ip_v) {
    709 		case 4:
    710 			family = AF_INET;
    711 			hlen = sizeof(struct ip);
    712 			ip = mtod(m, struct ip *);
    713 			break;
    714 #ifdef INET6
    715 		case 6:
    716 			family = AF_INET6;
    717 			hlen = sizeof(struct ip6_hdr);
    718 			ip6 = mtod(m, struct ip6_hdr *);
    719 			break;
    720 #endif
    721 		default:
    722 			m_freem(m);
    723 			return EAFNOSUPPORT;
    724 		}
    725 		/* clear h/w csum flags inherited from rx packet */
    726 		m->m_pkthdr.csum_flags = 0;
    727 
    728 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    729 			tlen = sizeof(*th0);
    730 		else
    731 			tlen = th0->th_off << 2;
    732 
    733 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    734 		    mtod(m, char *) + hlen == (char *)th0) {
    735 			m->m_len = hlen + tlen;
    736 			m_freem(m->m_next);
    737 			m->m_next = NULL;
    738 		} else {
    739 			struct mbuf *n;
    740 
    741 #ifdef DIAGNOSTIC
    742 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    743 				m_freem(m);
    744 				return EMSGSIZE;
    745 			}
    746 #endif
    747 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    748 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    749 				MCLGET(n, M_DONTWAIT);
    750 				if ((n->m_flags & M_EXT) == 0) {
    751 					m_freem(n);
    752 					n = NULL;
    753 				}
    754 			}
    755 			if (!n) {
    756 				m_freem(m);
    757 				return ENOBUFS;
    758 			}
    759 
    760 			MCLAIM(n, &tcp_tx_mowner);
    761 			n->m_data += max_linkhdr;
    762 			n->m_len = hlen + tlen;
    763 			m_copyback(n, 0, hlen, mtod(m, void *));
    764 			m_copyback(n, hlen, tlen, (void *)th0);
    765 
    766 			m_freem(m);
    767 			m = n;
    768 			n = NULL;
    769 		}
    770 
    771 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    772 		switch (family) {
    773 		case AF_INET:
    774 			ip = mtod(m, struct ip *);
    775 			th = (struct tcphdr *)(ip + 1);
    776 			ip->ip_p = IPPROTO_TCP;
    777 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    778 			ip->ip_p = IPPROTO_TCP;
    779 			break;
    780 #ifdef INET6
    781 		case AF_INET6:
    782 			ip6 = mtod(m, struct ip6_hdr *);
    783 			th = (struct tcphdr *)(ip6 + 1);
    784 			ip6->ip6_nxt = IPPROTO_TCP;
    785 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    786 			ip6->ip6_nxt = IPPROTO_TCP;
    787 			break;
    788 #endif
    789 #if 0
    790 		default:
    791 			/* noone will visit here */
    792 			m_freem(m);
    793 			return EAFNOSUPPORT;
    794 #endif
    795 		}
    796 		xchg(th->th_dport, th->th_sport, u_int16_t);
    797 #undef xchg
    798 		tlen = 0;	/*be friendly with the following code*/
    799 	}
    800 	th->th_seq = htonl(seq);
    801 	th->th_ack = htonl(ack);
    802 	th->th_x2 = 0;
    803 	if ((flags & TH_SYN) == 0) {
    804 		if (tp)
    805 			win >>= tp->rcv_scale;
    806 		if (win > TCP_MAXWIN)
    807 			win = TCP_MAXWIN;
    808 		th->th_win = htons((u_int16_t)win);
    809 		th->th_off = sizeof (struct tcphdr) >> 2;
    810 		tlen += sizeof(*th);
    811 	} else
    812 		tlen += th->th_off << 2;
    813 	m->m_len = hlen + tlen;
    814 	m->m_pkthdr.len = hlen + tlen;
    815 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    816 	th->th_flags = flags;
    817 	th->th_urp = 0;
    818 
    819 	switch (family) {
    820 #ifdef INET
    821 	case AF_INET:
    822 	    {
    823 		struct ipovly *ipov = (struct ipovly *)ip;
    824 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    825 		ipov->ih_len = htons((u_int16_t)tlen);
    826 
    827 		th->th_sum = 0;
    828 		th->th_sum = in_cksum(m, hlen + tlen);
    829 		ip->ip_len = htons(hlen + tlen);
    830 		ip->ip_ttl = ip_defttl;
    831 		break;
    832 	    }
    833 #endif
    834 #ifdef INET6
    835 	case AF_INET6:
    836 	    {
    837 		th->th_sum = 0;
    838 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    839 				tlen);
    840 		ip6->ip6_plen = htons(tlen);
    841 		if (tp && tp->t_in6pcb) {
    842 			struct ifnet *oifp;
    843 			ro = &tp->t_in6pcb->in6p_route;
    844 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
    845 			                                           : NULL;
    846 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    847 		} else
    848 			ip6->ip6_hlim = ip6_defhlim;
    849 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    850 		if (ip6_auto_flowlabel) {
    851 			ip6->ip6_flow |=
    852 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    853 		}
    854 		break;
    855 	    }
    856 #endif
    857 	}
    858 
    859 	if (tp && tp->t_inpcb)
    860 		so = tp->t_inpcb->inp_socket;
    861 #ifdef INET6
    862 	else if (tp && tp->t_in6pcb)
    863 		so = tp->t_in6pcb->in6p_socket;
    864 #endif
    865 	else
    866 		so = NULL;
    867 
    868 	if (tp != NULL && tp->t_inpcb != NULL) {
    869 		ro = &tp->t_inpcb->inp_route;
    870 #ifdef DIAGNOSTIC
    871 		if (family != AF_INET)
    872 			panic("tcp_respond: address family mismatch");
    873 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    874 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    875 			    ntohl(ip->ip_dst.s_addr),
    876 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    877 		}
    878 #endif
    879 	}
    880 #ifdef INET6
    881 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    882 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    883 #ifdef DIAGNOSTIC
    884 		if (family == AF_INET) {
    885 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    886 				panic("tcp_respond: not mapped addr");
    887 			if (bcmp(&ip->ip_dst,
    888 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    889 			    sizeof(ip->ip_dst)) != 0) {
    890 				panic("tcp_respond: ip_dst != in6p_faddr");
    891 			}
    892 		} else if (family == AF_INET6) {
    893 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    894 			    &tp->t_in6pcb->in6p_faddr))
    895 				panic("tcp_respond: ip6_dst != in6p_faddr");
    896 		} else
    897 			panic("tcp_respond: address family mismatch");
    898 #endif
    899 	}
    900 #endif
    901 	else
    902 		ro = NULL;
    903 
    904 	switch (family) {
    905 #ifdef INET
    906 	case AF_INET:
    907 		error = ip_output(m, NULL, ro,
    908 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    909 		    (struct ip_moptions *)0, so);
    910 		break;
    911 #endif
    912 #ifdef INET6
    913 	case AF_INET6:
    914 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
    915 		break;
    916 #endif
    917 	default:
    918 		error = EAFNOSUPPORT;
    919 		break;
    920 	}
    921 
    922 	return (error);
    923 }
    924 
    925 /*
    926  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    927  * a bunch of members individually, we maintain this template for the
    928  * static and mostly-static components of the TCPCB, and copy it into
    929  * the new TCPCB instead.
    930  */
    931 static struct tcpcb tcpcb_template = {
    932 	.t_srtt = TCPTV_SRTTBASE,
    933 	.t_rttmin = TCPTV_MIN,
    934 
    935 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    936 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    937 	.snd_numholes = 0,
    938 
    939 	.t_partialacks = -1,
    940 	.t_bytes_acked = 0,
    941 };
    942 
    943 /*
    944  * Updates the TCPCB template whenever a parameter that would affect
    945  * the template is changed.
    946  */
    947 void
    948 tcp_tcpcb_template(void)
    949 {
    950 	struct tcpcb *tp = &tcpcb_template;
    951 	int flags;
    952 
    953 	tp->t_peermss = tcp_mssdflt;
    954 	tp->t_ourmss = tcp_mssdflt;
    955 	tp->t_segsz = tcp_mssdflt;
    956 
    957 	flags = 0;
    958 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    959 		flags |= TF_REQ_SCALE;
    960 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    961 		flags |= TF_REQ_TSTMP;
    962 	tp->t_flags = flags;
    963 
    964 	/*
    965 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    966 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    967 	 * reasonable initial retransmit time.
    968 	 */
    969 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    970 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    971 	    TCPTV_MIN, TCPTV_REXMTMAX);
    972 
    973 	/* Keep Alive */
    974 	tp->t_keepinit = tcp_keepinit;
    975 	tp->t_keepidle = tcp_keepidle;
    976 	tp->t_keepintvl = tcp_keepintvl;
    977 	tp->t_keepcnt = tcp_keepcnt;
    978 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
    979 }
    980 
    981 /*
    982  * Create a new TCP control block, making an
    983  * empty reassembly queue and hooking it to the argument
    984  * protocol control block.
    985  */
    986 /* family selects inpcb, or in6pcb */
    987 struct tcpcb *
    988 tcp_newtcpcb(int family, void *aux)
    989 {
    990 #ifdef INET6
    991 	struct rtentry *rt;
    992 #endif
    993 	struct tcpcb *tp;
    994 	int i;
    995 
    996 	/* XXX Consider using a pool_cache for speed. */
    997 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
    998 	if (tp == NULL)
    999 		return (NULL);
   1000 	memcpy(tp, &tcpcb_template, sizeof(*tp));
   1001 	TAILQ_INIT(&tp->segq);
   1002 	TAILQ_INIT(&tp->timeq);
   1003 	tp->t_family = family;		/* may be overridden later on */
   1004 	TAILQ_INIT(&tp->snd_holes);
   1005 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
   1006 
   1007 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
   1008 	for (i = 0; i < TCPT_NTIMERS; i++) {
   1009 		callout_init(&tp->t_timer[i], 0);
   1010 		TCP_TIMER_INIT(tp, i);
   1011 	}
   1012 	callout_init(&tp->t_delack_ch, 0);
   1013 
   1014 	switch (family) {
   1015 	case AF_INET:
   1016 	    {
   1017 		struct inpcb *inp = (struct inpcb *)aux;
   1018 
   1019 		inp->inp_ip.ip_ttl = ip_defttl;
   1020 		inp->inp_ppcb = (void *)tp;
   1021 
   1022 		tp->t_inpcb = inp;
   1023 		tp->t_mtudisc = ip_mtudisc;
   1024 		break;
   1025 	    }
   1026 #ifdef INET6
   1027 	case AF_INET6:
   1028 	    {
   1029 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1030 
   1031 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1032 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
   1033 			    ? rt->rt_ifp
   1034 			    : NULL);
   1035 		in6p->in6p_ppcb = (void *)tp;
   1036 
   1037 		tp->t_in6pcb = in6p;
   1038 		/* for IPv6, always try to run path MTU discovery */
   1039 		tp->t_mtudisc = 1;
   1040 		break;
   1041 	    }
   1042 #endif /* INET6 */
   1043 	default:
   1044 		for (i = 0; i < TCPT_NTIMERS; i++)
   1045 			callout_destroy(&tp->t_timer[i]);
   1046 		callout_destroy(&tp->t_delack_ch);
   1047 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1048 		return (NULL);
   1049 	}
   1050 
   1051 	/*
   1052 	 * Initialize our timebase.  When we send timestamps, we take
   1053 	 * the delta from tcp_now -- this means each connection always
   1054 	 * gets a timebase of 1, which makes it, among other things,
   1055 	 * more difficult to determine how long a system has been up,
   1056 	 * and thus how many TCP sequence increments have occurred.
   1057 	 *
   1058 	 * We start with 1, because 0 doesn't work with linux, which
   1059 	 * considers timestamp 0 in a SYN packet as a bug and disables
   1060 	 * timestamps.
   1061 	 */
   1062 	tp->ts_timebase = tcp_now - 1;
   1063 
   1064 	tcp_congctl_select(tp, tcp_congctl_global_name);
   1065 
   1066 	return (tp);
   1067 }
   1068 
   1069 /*
   1070  * Drop a TCP connection, reporting
   1071  * the specified error.  If connection is synchronized,
   1072  * then send a RST to peer.
   1073  */
   1074 struct tcpcb *
   1075 tcp_drop(struct tcpcb *tp, int errno)
   1076 {
   1077 	struct socket *so = NULL;
   1078 
   1079 #ifdef DIAGNOSTIC
   1080 	if (tp->t_inpcb && tp->t_in6pcb)
   1081 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1082 #endif
   1083 #ifdef INET
   1084 	if (tp->t_inpcb)
   1085 		so = tp->t_inpcb->inp_socket;
   1086 #endif
   1087 #ifdef INET6
   1088 	if (tp->t_in6pcb)
   1089 		so = tp->t_in6pcb->in6p_socket;
   1090 #endif
   1091 	if (!so)
   1092 		return NULL;
   1093 
   1094 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1095 		tp->t_state = TCPS_CLOSED;
   1096 		(void) tcp_output(tp);
   1097 		tcpstat.tcps_drops++;
   1098 	} else
   1099 		tcpstat.tcps_conndrops++;
   1100 	if (errno == ETIMEDOUT && tp->t_softerror)
   1101 		errno = tp->t_softerror;
   1102 	so->so_error = errno;
   1103 	return (tcp_close(tp));
   1104 }
   1105 
   1106 /*
   1107  * Return whether this tcpcb is marked as dead, indicating
   1108  * to the calling timer function that no further action should
   1109  * be taken, as we are about to release this tcpcb.  The release
   1110  * of the storage will be done if this is the last timer running.
   1111  *
   1112  * This should be called from the callout handler function after
   1113  * callout_ack() is done, so that the number of invoking timer
   1114  * functions is 0.
   1115  */
   1116 int
   1117 tcp_isdead(struct tcpcb *tp)
   1118 {
   1119 	int i, dead = (tp->t_flags & TF_DEAD);
   1120 
   1121 	if (__predict_false(dead)) {
   1122 		if (tcp_timers_invoking(tp) > 0)
   1123 				/* not quite there yet -- count separately? */
   1124 			return dead;
   1125 		tcpstat.tcps_delayed_free++;
   1126 		for (i = 0; i < TCPT_NTIMERS; i++)
   1127 			callout_destroy(&tp->t_timer[i]);
   1128 		callout_destroy(&tp->t_delack_ch);
   1129 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
   1130 	}
   1131 	return dead;
   1132 }
   1133 
   1134 /*
   1135  * Close a TCP control block:
   1136  *	discard all space held by the tcp
   1137  *	discard internet protocol block
   1138  *	wake up any sleepers
   1139  */
   1140 struct tcpcb *
   1141 tcp_close(struct tcpcb *tp)
   1142 {
   1143 	struct inpcb *inp;
   1144 #ifdef INET6
   1145 	struct in6pcb *in6p;
   1146 #endif
   1147 	struct socket *so;
   1148 #ifdef RTV_RTT
   1149 	struct rtentry *rt;
   1150 #endif
   1151 	struct route *ro;
   1152 	int j;
   1153 
   1154 	inp = tp->t_inpcb;
   1155 #ifdef INET6
   1156 	in6p = tp->t_in6pcb;
   1157 #endif
   1158 	so = NULL;
   1159 	ro = NULL;
   1160 	if (inp) {
   1161 		so = inp->inp_socket;
   1162 		ro = &inp->inp_route;
   1163 	}
   1164 #ifdef INET6
   1165 	else if (in6p) {
   1166 		so = in6p->in6p_socket;
   1167 		ro = (struct route *)&in6p->in6p_route;
   1168 	}
   1169 #endif
   1170 
   1171 #ifdef RTV_RTT
   1172 	/*
   1173 	 * If we sent enough data to get some meaningful characteristics,
   1174 	 * save them in the routing entry.  'Enough' is arbitrarily
   1175 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1176 	 * give us 16 rtt samples assuming we only get one sample per
   1177 	 * window (the usual case on a long haul net).  16 samples is
   1178 	 * enough for the srtt filter to converge to within 5% of the correct
   1179 	 * value; fewer samples and we could save a very bogus rtt.
   1180 	 *
   1181 	 * Don't update the default route's characteristics and don't
   1182 	 * update anything that the user "locked".
   1183 	 */
   1184 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1185 	    ro && (rt = rtcache_validate(ro)) != NULL &&
   1186 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
   1187 		u_long i = 0;
   1188 
   1189 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1190 			i = tp->t_srtt *
   1191 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1192 			if (rt->rt_rmx.rmx_rtt && i)
   1193 				/*
   1194 				 * filter this update to half the old & half
   1195 				 * the new values, converting scale.
   1196 				 * See route.h and tcp_var.h for a
   1197 				 * description of the scaling constants.
   1198 				 */
   1199 				rt->rt_rmx.rmx_rtt =
   1200 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1201 			else
   1202 				rt->rt_rmx.rmx_rtt = i;
   1203 		}
   1204 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1205 			i = tp->t_rttvar *
   1206 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1207 			if (rt->rt_rmx.rmx_rttvar && i)
   1208 				rt->rt_rmx.rmx_rttvar =
   1209 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1210 			else
   1211 				rt->rt_rmx.rmx_rttvar = i;
   1212 		}
   1213 		/*
   1214 		 * update the pipelimit (ssthresh) if it has been updated
   1215 		 * already or if a pipesize was specified & the threshhold
   1216 		 * got below half the pipesize.  I.e., wait for bad news
   1217 		 * before we start updating, then update on both good
   1218 		 * and bad news.
   1219 		 */
   1220 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1221 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1222 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1223 			/*
   1224 			 * convert the limit from user data bytes to
   1225 			 * packets then to packet data bytes.
   1226 			 */
   1227 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1228 			if (i < 2)
   1229 				i = 2;
   1230 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1231 			if (rt->rt_rmx.rmx_ssthresh)
   1232 				rt->rt_rmx.rmx_ssthresh =
   1233 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1234 			else
   1235 				rt->rt_rmx.rmx_ssthresh = i;
   1236 		}
   1237 	}
   1238 #endif /* RTV_RTT */
   1239 	/* free the reassembly queue, if any */
   1240 	TCP_REASS_LOCK(tp);
   1241 	(void) tcp_freeq(tp);
   1242 	TCP_REASS_UNLOCK(tp);
   1243 
   1244 	/* free the SACK holes list. */
   1245 	tcp_free_sackholes(tp);
   1246 
   1247 	tcp_congctl_release(tp);
   1248 
   1249 	tcp_canceltimers(tp);
   1250 	TCP_CLEAR_DELACK(tp);
   1251 	syn_cache_cleanup(tp);
   1252 
   1253 	if (tp->t_template) {
   1254 		m_free(tp->t_template);
   1255 		tp->t_template = NULL;
   1256 	}
   1257 	if (tcp_timers_invoking(tp))
   1258 		tp->t_flags |= TF_DEAD;
   1259 	else {
   1260 		for (j = 0; j < TCPT_NTIMERS; j++)
   1261 			callout_destroy(&tp->t_timer[j]);
   1262 		callout_destroy(&tp->t_delack_ch);
   1263 		pool_put(&tcpcb_pool, tp);
   1264 	}
   1265 
   1266 	if (inp) {
   1267 		inp->inp_ppcb = 0;
   1268 		soisdisconnected(so);
   1269 		in_pcbdetach(inp);
   1270 	}
   1271 #ifdef INET6
   1272 	else if (in6p) {
   1273 		in6p->in6p_ppcb = 0;
   1274 		soisdisconnected(so);
   1275 		in6_pcbdetach(in6p);
   1276 	}
   1277 #endif
   1278 	tcpstat.tcps_closed++;
   1279 	return ((struct tcpcb *)0);
   1280 }
   1281 
   1282 int
   1283 tcp_freeq(struct tcpcb *tp)
   1284 {
   1285 	struct ipqent *qe;
   1286 	int rv = 0;
   1287 #ifdef TCPREASS_DEBUG
   1288 	int i = 0;
   1289 #endif
   1290 
   1291 	TCP_REASS_LOCK_CHECK(tp);
   1292 
   1293 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1294 #ifdef TCPREASS_DEBUG
   1295 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1296 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1297 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1298 #endif
   1299 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1300 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1301 		m_freem(qe->ipqe_m);
   1302 		tcpipqent_free(qe);
   1303 		rv = 1;
   1304 	}
   1305 	tp->t_segqlen = 0;
   1306 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1307 	return (rv);
   1308 }
   1309 
   1310 /*
   1311  * Protocol drain routine.  Called when memory is in short supply.
   1312  */
   1313 void
   1314 tcp_drain(void)
   1315 {
   1316 	struct inpcb_hdr *inph;
   1317 	struct tcpcb *tp;
   1318 
   1319 	/*
   1320 	 * Free the sequence queue of all TCP connections.
   1321 	 */
   1322 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1323 		switch (inph->inph_af) {
   1324 		case AF_INET:
   1325 			tp = intotcpcb((struct inpcb *)inph);
   1326 			break;
   1327 #ifdef INET6
   1328 		case AF_INET6:
   1329 			tp = in6totcpcb((struct in6pcb *)inph);
   1330 			break;
   1331 #endif
   1332 		default:
   1333 			tp = NULL;
   1334 			break;
   1335 		}
   1336 		if (tp != NULL) {
   1337 			/*
   1338 			 * We may be called from a device's interrupt
   1339 			 * context.  If the tcpcb is already busy,
   1340 			 * just bail out now.
   1341 			 */
   1342 			if (tcp_reass_lock_try(tp) == 0)
   1343 				continue;
   1344 			if (tcp_freeq(tp))
   1345 				tcpstat.tcps_connsdrained++;
   1346 			TCP_REASS_UNLOCK(tp);
   1347 		}
   1348 	}
   1349 }
   1350 
   1351 /*
   1352  * Notify a tcp user of an asynchronous error;
   1353  * store error as soft error, but wake up user
   1354  * (for now, won't do anything until can select for soft error).
   1355  */
   1356 void
   1357 tcp_notify(struct inpcb *inp, int error)
   1358 {
   1359 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1360 	struct socket *so = inp->inp_socket;
   1361 
   1362 	/*
   1363 	 * Ignore some errors if we are hooked up.
   1364 	 * If connection hasn't completed, has retransmitted several times,
   1365 	 * and receives a second error, give up now.  This is better
   1366 	 * than waiting a long time to establish a connection that
   1367 	 * can never complete.
   1368 	 */
   1369 	if (tp->t_state == TCPS_ESTABLISHED &&
   1370 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1371 	      error == EHOSTDOWN)) {
   1372 		return;
   1373 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1374 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1375 		so->so_error = error;
   1376 	else
   1377 		tp->t_softerror = error;
   1378 	wakeup((void *) &so->so_timeo);
   1379 	sorwakeup(so);
   1380 	sowwakeup(so);
   1381 }
   1382 
   1383 #ifdef INET6
   1384 void
   1385 tcp6_notify(struct in6pcb *in6p, int error)
   1386 {
   1387 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1388 	struct socket *so = in6p->in6p_socket;
   1389 
   1390 	/*
   1391 	 * Ignore some errors if we are hooked up.
   1392 	 * If connection hasn't completed, has retransmitted several times,
   1393 	 * and receives a second error, give up now.  This is better
   1394 	 * than waiting a long time to establish a connection that
   1395 	 * can never complete.
   1396 	 */
   1397 	if (tp->t_state == TCPS_ESTABLISHED &&
   1398 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1399 	      error == EHOSTDOWN)) {
   1400 		return;
   1401 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1402 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1403 		so->so_error = error;
   1404 	else
   1405 		tp->t_softerror = error;
   1406 	wakeup((void *) &so->so_timeo);
   1407 	sorwakeup(so);
   1408 	sowwakeup(so);
   1409 }
   1410 #endif
   1411 
   1412 #ifdef INET6
   1413 void
   1414 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
   1415 {
   1416 	struct tcphdr th;
   1417 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1418 	int nmatch;
   1419 	struct ip6_hdr *ip6;
   1420 	const struct sockaddr_in6 *sa6_src = NULL;
   1421 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
   1422 	struct mbuf *m;
   1423 	int off;
   1424 
   1425 	if (sa->sa_family != AF_INET6 ||
   1426 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1427 		return;
   1428 	if ((unsigned)cmd >= PRC_NCMDS)
   1429 		return;
   1430 	else if (cmd == PRC_QUENCH) {
   1431 		/*
   1432 		 * Don't honor ICMP Source Quench messages meant for
   1433 		 * TCP connections.
   1434 		 */
   1435 		return;
   1436 	} else if (PRC_IS_REDIRECT(cmd))
   1437 		notify = in6_rtchange, d = NULL;
   1438 	else if (cmd == PRC_MSGSIZE)
   1439 		; /* special code is present, see below */
   1440 	else if (cmd == PRC_HOSTDEAD)
   1441 		d = NULL;
   1442 	else if (inet6ctlerrmap[cmd] == 0)
   1443 		return;
   1444 
   1445 	/* if the parameter is from icmp6, decode it. */
   1446 	if (d != NULL) {
   1447 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1448 		m = ip6cp->ip6c_m;
   1449 		ip6 = ip6cp->ip6c_ip6;
   1450 		off = ip6cp->ip6c_off;
   1451 		sa6_src = ip6cp->ip6c_src;
   1452 	} else {
   1453 		m = NULL;
   1454 		ip6 = NULL;
   1455 		sa6_src = &sa6_any;
   1456 		off = 0;
   1457 	}
   1458 
   1459 	if (ip6) {
   1460 		/*
   1461 		 * XXX: We assume that when ip6 is non NULL,
   1462 		 * M and OFF are valid.
   1463 		 */
   1464 
   1465 		/* check if we can safely examine src and dst ports */
   1466 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1467 			if (cmd == PRC_MSGSIZE)
   1468 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1469 			return;
   1470 		}
   1471 
   1472 		bzero(&th, sizeof(th));
   1473 		m_copydata(m, off, sizeof(th), (void *)&th);
   1474 
   1475 		if (cmd == PRC_MSGSIZE) {
   1476 			int valid = 0;
   1477 
   1478 			/*
   1479 			 * Check to see if we have a valid TCP connection
   1480 			 * corresponding to the address in the ICMPv6 message
   1481 			 * payload.
   1482 			 */
   1483 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1484 			    th.th_dport,
   1485 			    (const struct in6_addr *)&sa6_src->sin6_addr,
   1486 			    th.th_sport, 0))
   1487 				valid++;
   1488 
   1489 			/*
   1490 			 * Depending on the value of "valid" and routing table
   1491 			 * size (mtudisc_{hi,lo}wat), we will:
   1492 			 * - recalcurate the new MTU and create the
   1493 			 *   corresponding routing entry, or
   1494 			 * - ignore the MTU change notification.
   1495 			 */
   1496 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1497 
   1498 			/*
   1499 			 * no need to call in6_pcbnotify, it should have been
   1500 			 * called via callback if necessary
   1501 			 */
   1502 			return;
   1503 		}
   1504 
   1505 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1506 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1507 		if (nmatch == 0 && syn_cache_count &&
   1508 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1509 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1510 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1511 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1512 					  sa, &th);
   1513 	} else {
   1514 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1515 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1516 	}
   1517 }
   1518 #endif
   1519 
   1520 #ifdef INET
   1521 /* assumes that ip header and tcp header are contiguous on mbuf */
   1522 void *
   1523 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
   1524 {
   1525 	struct ip *ip = v;
   1526 	struct tcphdr *th;
   1527 	struct icmp *icp;
   1528 	extern const int inetctlerrmap[];
   1529 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1530 	int errno;
   1531 	int nmatch;
   1532 	struct tcpcb *tp;
   1533 	u_int mtu;
   1534 	tcp_seq seq;
   1535 	struct inpcb *inp;
   1536 #ifdef INET6
   1537 	struct in6pcb *in6p;
   1538 	struct in6_addr src6, dst6;
   1539 #endif
   1540 
   1541 	if (sa->sa_family != AF_INET ||
   1542 	    sa->sa_len != sizeof(struct sockaddr_in))
   1543 		return NULL;
   1544 	if ((unsigned)cmd >= PRC_NCMDS)
   1545 		return NULL;
   1546 	errno = inetctlerrmap[cmd];
   1547 	if (cmd == PRC_QUENCH)
   1548 		/*
   1549 		 * Don't honor ICMP Source Quench messages meant for
   1550 		 * TCP connections.
   1551 		 */
   1552 		return NULL;
   1553 	else if (PRC_IS_REDIRECT(cmd))
   1554 		notify = in_rtchange, ip = 0;
   1555 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1556 		/*
   1557 		 * Check to see if we have a valid TCP connection
   1558 		 * corresponding to the address in the ICMP message
   1559 		 * payload.
   1560 		 *
   1561 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1562 		 */
   1563 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1564 #ifdef INET6
   1565 		memset(&src6, 0, sizeof(src6));
   1566 		memset(&dst6, 0, sizeof(dst6));
   1567 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1568 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1569 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1570 #endif
   1571 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1572 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1573 #ifdef INET6
   1574 			in6p = NULL;
   1575 #else
   1576 			;
   1577 #endif
   1578 #ifdef INET6
   1579 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1580 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1581 			;
   1582 #endif
   1583 		else
   1584 			return NULL;
   1585 
   1586 		/*
   1587 		 * Now that we've validated that we are actually communicating
   1588 		 * with the host indicated in the ICMP message, locate the
   1589 		 * ICMP header, recalculate the new MTU, and create the
   1590 		 * corresponding routing entry.
   1591 		 */
   1592 		icp = (struct icmp *)((char *)ip -
   1593 		    offsetof(struct icmp, icmp_ip));
   1594 		if (inp) {
   1595 			if ((tp = intotcpcb(inp)) == NULL)
   1596 				return NULL;
   1597 		}
   1598 #ifdef INET6
   1599 		else if (in6p) {
   1600 			if ((tp = in6totcpcb(in6p)) == NULL)
   1601 				return NULL;
   1602 		}
   1603 #endif
   1604 		else
   1605 			return NULL;
   1606 		seq = ntohl(th->th_seq);
   1607 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1608 			return NULL;
   1609 		/*
   1610 		 * If the ICMP message advertises a Next-Hop MTU
   1611 		 * equal or larger than the maximum packet size we have
   1612 		 * ever sent, drop the message.
   1613 		 */
   1614 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1615 		if (mtu >= tp->t_pmtud_mtu_sent)
   1616 			return NULL;
   1617 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1618 			/*
   1619 			 * Calculate new MTU, and create corresponding
   1620 			 * route (traditional PMTUD).
   1621 			 */
   1622 			tp->t_flags &= ~TF_PMTUD_PEND;
   1623 			icmp_mtudisc(icp, ip->ip_dst);
   1624 		} else {
   1625 			/*
   1626 			 * Record the information got in the ICMP
   1627 			 * message; act on it later.
   1628 			 * If we had already recorded an ICMP message,
   1629 			 * replace the old one only if the new message
   1630 			 * refers to an older TCP segment
   1631 			 */
   1632 			if (tp->t_flags & TF_PMTUD_PEND) {
   1633 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1634 					return NULL;
   1635 			} else
   1636 				tp->t_flags |= TF_PMTUD_PEND;
   1637 			tp->t_pmtud_th_seq = seq;
   1638 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1639 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1640 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1641 		}
   1642 		return NULL;
   1643 	} else if (cmd == PRC_HOSTDEAD)
   1644 		ip = 0;
   1645 	else if (errno == 0)
   1646 		return NULL;
   1647 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1648 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1649 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
   1650 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1651 		if (nmatch == 0 && syn_cache_count &&
   1652 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1653 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1654 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1655 			struct sockaddr_in sin;
   1656 			bzero(&sin, sizeof(sin));
   1657 			sin.sin_len = sizeof(sin);
   1658 			sin.sin_family = AF_INET;
   1659 			sin.sin_port = th->th_sport;
   1660 			sin.sin_addr = ip->ip_src;
   1661 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1662 		}
   1663 
   1664 		/* XXX mapped address case */
   1665 	} else
   1666 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
   1667 		    notify);
   1668 	return NULL;
   1669 }
   1670 
   1671 /*
   1672  * When a source quench is received, we are being notified of congestion.
   1673  * Close the congestion window down to the Loss Window (one segment).
   1674  * We will gradually open it again as we proceed.
   1675  */
   1676 void
   1677 tcp_quench(struct inpcb *inp, int errno)
   1678 {
   1679 	struct tcpcb *tp = intotcpcb(inp);
   1680 
   1681 	if (tp) {
   1682 		tp->snd_cwnd = tp->t_segsz;
   1683 		tp->t_bytes_acked = 0;
   1684 	}
   1685 }
   1686 #endif
   1687 
   1688 #ifdef INET6
   1689 void
   1690 tcp6_quench(struct in6pcb *in6p, int errno)
   1691 {
   1692 	struct tcpcb *tp = in6totcpcb(in6p);
   1693 
   1694 	if (tp) {
   1695 		tp->snd_cwnd = tp->t_segsz;
   1696 		tp->t_bytes_acked = 0;
   1697 	}
   1698 }
   1699 #endif
   1700 
   1701 #ifdef INET
   1702 /*
   1703  * Path MTU Discovery handlers.
   1704  */
   1705 void
   1706 tcp_mtudisc_callback(struct in_addr faddr)
   1707 {
   1708 #ifdef INET6
   1709 	struct in6_addr in6;
   1710 #endif
   1711 
   1712 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1713 #ifdef INET6
   1714 	memset(&in6, 0, sizeof(in6));
   1715 	in6.s6_addr16[5] = 0xffff;
   1716 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1717 	tcp6_mtudisc_callback(&in6);
   1718 #endif
   1719 }
   1720 
   1721 /*
   1722  * On receipt of path MTU corrections, flush old route and replace it
   1723  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1724  * that all packets will be received.
   1725  */
   1726 void
   1727 tcp_mtudisc(struct inpcb *inp, int errno)
   1728 {
   1729 	struct tcpcb *tp = intotcpcb(inp);
   1730 	struct rtentry *rt = in_pcbrtentry(inp);
   1731 
   1732 	if (tp != 0) {
   1733 		if (rt != 0) {
   1734 			/*
   1735 			 * If this was not a host route, remove and realloc.
   1736 			 */
   1737 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1738 				in_rtchange(inp, errno);
   1739 				if ((rt = in_pcbrtentry(inp)) == 0)
   1740 					return;
   1741 			}
   1742 
   1743 			/*
   1744 			 * Slow start out of the error condition.  We
   1745 			 * use the MTU because we know it's smaller
   1746 			 * than the previously transmitted segment.
   1747 			 *
   1748 			 * Note: This is more conservative than the
   1749 			 * suggestion in draft-floyd-incr-init-win-03.
   1750 			 */
   1751 			if (rt->rt_rmx.rmx_mtu != 0)
   1752 				tp->snd_cwnd =
   1753 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1754 				    rt->rt_rmx.rmx_mtu);
   1755 		}
   1756 
   1757 		/*
   1758 		 * Resend unacknowledged packets.
   1759 		 */
   1760 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1761 		tcp_output(tp);
   1762 	}
   1763 }
   1764 #endif
   1765 
   1766 #ifdef INET6
   1767 /*
   1768  * Path MTU Discovery handlers.
   1769  */
   1770 void
   1771 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1772 {
   1773 	struct sockaddr_in6 sin6;
   1774 
   1775 	bzero(&sin6, sizeof(sin6));
   1776 	sin6.sin6_family = AF_INET6;
   1777 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1778 	sin6.sin6_addr = *faddr;
   1779 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1780 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1781 }
   1782 
   1783 void
   1784 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1785 {
   1786 	struct tcpcb *tp = in6totcpcb(in6p);
   1787 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1788 
   1789 	if (tp != 0) {
   1790 		if (rt != 0) {
   1791 			/*
   1792 			 * If this was not a host route, remove and realloc.
   1793 			 */
   1794 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1795 				in6_rtchange(in6p, errno);
   1796 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1797 					return;
   1798 			}
   1799 
   1800 			/*
   1801 			 * Slow start out of the error condition.  We
   1802 			 * use the MTU because we know it's smaller
   1803 			 * than the previously transmitted segment.
   1804 			 *
   1805 			 * Note: This is more conservative than the
   1806 			 * suggestion in draft-floyd-incr-init-win-03.
   1807 			 */
   1808 			if (rt->rt_rmx.rmx_mtu != 0)
   1809 				tp->snd_cwnd =
   1810 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1811 				    rt->rt_rmx.rmx_mtu);
   1812 		}
   1813 
   1814 		/*
   1815 		 * Resend unacknowledged packets.
   1816 		 */
   1817 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1818 		tcp_output(tp);
   1819 	}
   1820 }
   1821 #endif /* INET6 */
   1822 
   1823 /*
   1824  * Compute the MSS to advertise to the peer.  Called only during
   1825  * the 3-way handshake.  If we are the server (peer initiated
   1826  * connection), we are called with a pointer to the interface
   1827  * on which the SYN packet arrived.  If we are the client (we
   1828  * initiated connection), we are called with a pointer to the
   1829  * interface out which this connection should go.
   1830  *
   1831  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1832  * header size from MSS advertisement.  MSS option must hold the maximum
   1833  * segment size we can accept, so it must always be:
   1834  *	 max(if mtu) - ip header - tcp header
   1835  */
   1836 u_long
   1837 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1838 {
   1839 	extern u_long in_maxmtu;
   1840 	u_long mss = 0;
   1841 	u_long hdrsiz;
   1842 
   1843 	/*
   1844 	 * In order to avoid defeating path MTU discovery on the peer,
   1845 	 * we advertise the max MTU of all attached networks as our MSS,
   1846 	 * per RFC 1191, section 3.1.
   1847 	 *
   1848 	 * We provide the option to advertise just the MTU of
   1849 	 * the interface on which we hope this connection will
   1850 	 * be receiving.  If we are responding to a SYN, we
   1851 	 * will have a pretty good idea about this, but when
   1852 	 * initiating a connection there is a bit more doubt.
   1853 	 *
   1854 	 * We also need to ensure that loopback has a large enough
   1855 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1856 	 */
   1857 
   1858 	if (ifp != NULL)
   1859 		switch (af) {
   1860 		case AF_INET:
   1861 			mss = ifp->if_mtu;
   1862 			break;
   1863 #ifdef INET6
   1864 		case AF_INET6:
   1865 			mss = IN6_LINKMTU(ifp);
   1866 			break;
   1867 #endif
   1868 		}
   1869 
   1870 	if (tcp_mss_ifmtu == 0)
   1871 		switch (af) {
   1872 		case AF_INET:
   1873 			mss = max(in_maxmtu, mss);
   1874 			break;
   1875 #ifdef INET6
   1876 		case AF_INET6:
   1877 			mss = max(in6_maxmtu, mss);
   1878 			break;
   1879 #endif
   1880 		}
   1881 
   1882 	switch (af) {
   1883 	case AF_INET:
   1884 		hdrsiz = sizeof(struct ip);
   1885 		break;
   1886 #ifdef INET6
   1887 	case AF_INET6:
   1888 		hdrsiz = sizeof(struct ip6_hdr);
   1889 		break;
   1890 #endif
   1891 	default:
   1892 		hdrsiz = 0;
   1893 		break;
   1894 	}
   1895 	hdrsiz += sizeof(struct tcphdr);
   1896 	if (mss > hdrsiz)
   1897 		mss -= hdrsiz;
   1898 
   1899 	mss = max(tcp_mssdflt, mss);
   1900 	return (mss);
   1901 }
   1902 
   1903 /*
   1904  * Set connection variables based on the peer's advertised MSS.
   1905  * We are passed the TCPCB for the actual connection.  If we
   1906  * are the server, we are called by the compressed state engine
   1907  * when the 3-way handshake is complete.  If we are the client,
   1908  * we are called when we receive the SYN,ACK from the server.
   1909  *
   1910  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1911  * before this routine is called!
   1912  */
   1913 void
   1914 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1915 {
   1916 	struct socket *so;
   1917 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1918 	struct rtentry *rt;
   1919 #endif
   1920 	u_long bufsize;
   1921 	int mss;
   1922 
   1923 #ifdef DIAGNOSTIC
   1924 	if (tp->t_inpcb && tp->t_in6pcb)
   1925 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1926 #endif
   1927 	so = NULL;
   1928 	rt = NULL;
   1929 #ifdef INET
   1930 	if (tp->t_inpcb) {
   1931 		so = tp->t_inpcb->inp_socket;
   1932 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1933 		rt = in_pcbrtentry(tp->t_inpcb);
   1934 #endif
   1935 	}
   1936 #endif
   1937 #ifdef INET6
   1938 	if (tp->t_in6pcb) {
   1939 		so = tp->t_in6pcb->in6p_socket;
   1940 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1941 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1942 #endif
   1943 	}
   1944 #endif
   1945 
   1946 	/*
   1947 	 * As per RFC1122, use the default MSS value, unless they
   1948 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1949 	 */
   1950 	mss = tcp_mssdflt;
   1951 	if (offer)
   1952 		mss = offer;
   1953 	mss = max(mss, 256);		/* sanity */
   1954 	tp->t_peermss = mss;
   1955 	mss -= tcp_optlen(tp);
   1956 #ifdef INET
   1957 	if (tp->t_inpcb)
   1958 		mss -= ip_optlen(tp->t_inpcb);
   1959 #endif
   1960 #ifdef INET6
   1961 	if (tp->t_in6pcb)
   1962 		mss -= ip6_optlen(tp->t_in6pcb);
   1963 #endif
   1964 
   1965 	/*
   1966 	 * If there's a pipesize, change the socket buffer to that size.
   1967 	 * Make the socket buffer an integral number of MSS units.  If
   1968 	 * the MSS is larger than the socket buffer, artificially decrease
   1969 	 * the MSS.
   1970 	 */
   1971 #ifdef RTV_SPIPE
   1972 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1973 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1974 	else
   1975 #endif
   1976 	{
   1977 		KASSERT(so != NULL);
   1978 		bufsize = so->so_snd.sb_hiwat;
   1979 	}
   1980 	if (bufsize < mss)
   1981 		mss = bufsize;
   1982 	else {
   1983 		bufsize = roundup(bufsize, mss);
   1984 		if (bufsize > sb_max)
   1985 			bufsize = sb_max;
   1986 		(void) sbreserve(&so->so_snd, bufsize, so);
   1987 	}
   1988 	tp->t_segsz = mss;
   1989 
   1990 #ifdef RTV_SSTHRESH
   1991 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1992 		/*
   1993 		 * There's some sort of gateway or interface buffer
   1994 		 * limit on the path.  Use this to set the slow
   1995 		 * start threshold, but set the threshold to no less
   1996 		 * than 2 * MSS.
   1997 		 */
   1998 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1999 	}
   2000 #endif
   2001 }
   2002 
   2003 /*
   2004  * Processing necessary when a TCP connection is established.
   2005  */
   2006 void
   2007 tcp_established(struct tcpcb *tp)
   2008 {
   2009 	struct socket *so;
   2010 #ifdef RTV_RPIPE
   2011 	struct rtentry *rt;
   2012 #endif
   2013 	u_long bufsize;
   2014 
   2015 #ifdef DIAGNOSTIC
   2016 	if (tp->t_inpcb && tp->t_in6pcb)
   2017 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2018 #endif
   2019 	so = NULL;
   2020 	rt = NULL;
   2021 #ifdef INET
   2022 	if (tp->t_inpcb) {
   2023 		so = tp->t_inpcb->inp_socket;
   2024 #if defined(RTV_RPIPE)
   2025 		rt = in_pcbrtentry(tp->t_inpcb);
   2026 #endif
   2027 	}
   2028 #endif
   2029 #ifdef INET6
   2030 	if (tp->t_in6pcb) {
   2031 		so = tp->t_in6pcb->in6p_socket;
   2032 #if defined(RTV_RPIPE)
   2033 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2034 #endif
   2035 	}
   2036 #endif
   2037 
   2038 	tp->t_state = TCPS_ESTABLISHED;
   2039 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   2040 
   2041 #ifdef RTV_RPIPE
   2042 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2043 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2044 	else
   2045 #endif
   2046 	{
   2047 		KASSERT(so != NULL);
   2048 		bufsize = so->so_rcv.sb_hiwat;
   2049 	}
   2050 	if (bufsize > tp->t_ourmss) {
   2051 		bufsize = roundup(bufsize, tp->t_ourmss);
   2052 		if (bufsize > sb_max)
   2053 			bufsize = sb_max;
   2054 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2055 	}
   2056 }
   2057 
   2058 /*
   2059  * Check if there's an initial rtt or rttvar.  Convert from the
   2060  * route-table units to scaled multiples of the slow timeout timer.
   2061  * Called only during the 3-way handshake.
   2062  */
   2063 void
   2064 tcp_rmx_rtt(struct tcpcb *tp)
   2065 {
   2066 #ifdef RTV_RTT
   2067 	struct rtentry *rt = NULL;
   2068 	int rtt;
   2069 
   2070 #ifdef DIAGNOSTIC
   2071 	if (tp->t_inpcb && tp->t_in6pcb)
   2072 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2073 #endif
   2074 #ifdef INET
   2075 	if (tp->t_inpcb)
   2076 		rt = in_pcbrtentry(tp->t_inpcb);
   2077 #endif
   2078 #ifdef INET6
   2079 	if (tp->t_in6pcb)
   2080 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2081 #endif
   2082 	if (rt == NULL)
   2083 		return;
   2084 
   2085 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2086 		/*
   2087 		 * XXX The lock bit for MTU indicates that the value
   2088 		 * is also a minimum value; this is subject to time.
   2089 		 */
   2090 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2091 			TCPT_RANGESET(tp->t_rttmin,
   2092 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2093 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2094 		tp->t_srtt = rtt /
   2095 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2096 		if (rt->rt_rmx.rmx_rttvar) {
   2097 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2098 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2099 				(TCP_RTTVAR_SHIFT + 2));
   2100 		} else {
   2101 			/* Default variation is +- 1 rtt */
   2102 			tp->t_rttvar =
   2103 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2104 		}
   2105 		TCPT_RANGESET(tp->t_rxtcur,
   2106 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2107 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2108 	}
   2109 #endif
   2110 }
   2111 
   2112 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2113 #if NRND > 0
   2114 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2115 #endif
   2116 
   2117 /*
   2118  * Get a new sequence value given a tcp control block
   2119  */
   2120 tcp_seq
   2121 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2122 {
   2123 
   2124 #ifdef INET
   2125 	if (tp->t_inpcb != NULL) {
   2126 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2127 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2128 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2129 		    addin));
   2130 	}
   2131 #endif
   2132 #ifdef INET6
   2133 	if (tp->t_in6pcb != NULL) {
   2134 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2135 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2136 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2137 		    addin));
   2138 	}
   2139 #endif
   2140 	/* Not possible. */
   2141 	panic("tcp_new_iss");
   2142 }
   2143 
   2144 /*
   2145  * This routine actually generates a new TCP initial sequence number.
   2146  */
   2147 tcp_seq
   2148 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2149     size_t addrsz, tcp_seq addin)
   2150 {
   2151 	tcp_seq tcp_iss;
   2152 
   2153 #if NRND > 0
   2154 	static bool tcp_iss_gotten_secret;
   2155 
   2156 	/*
   2157 	 * If we haven't been here before, initialize our cryptographic
   2158 	 * hash secret.
   2159 	 */
   2160 	if (tcp_iss_gotten_secret == false) {
   2161 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2162 		    RND_EXTRACT_ANY);
   2163 		tcp_iss_gotten_secret = true;
   2164 	}
   2165 
   2166 	if (tcp_do_rfc1948) {
   2167 		MD5_CTX ctx;
   2168 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2169 
   2170 		/*
   2171 		 * Compute the base value of the ISS.  It is a hash
   2172 		 * of (saddr, sport, daddr, dport, secret).
   2173 		 */
   2174 		MD5Init(&ctx);
   2175 
   2176 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2177 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2178 
   2179 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2180 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2181 
   2182 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2183 
   2184 		MD5Final(hash, &ctx);
   2185 
   2186 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2187 
   2188 		/*
   2189 		 * Now increment our "timer", and add it in to
   2190 		 * the computed value.
   2191 		 *
   2192 		 * XXX Use `addin'?
   2193 		 * XXX TCP_ISSINCR too large to use?
   2194 		 */
   2195 		tcp_iss_seq += TCP_ISSINCR;
   2196 #ifdef TCPISS_DEBUG
   2197 		printf("ISS hash 0x%08x, ", tcp_iss);
   2198 #endif
   2199 		tcp_iss += tcp_iss_seq + addin;
   2200 #ifdef TCPISS_DEBUG
   2201 		printf("new ISS 0x%08x\n", tcp_iss);
   2202 #endif
   2203 	} else
   2204 #endif /* NRND > 0 */
   2205 	{
   2206 		/*
   2207 		 * Randomize.
   2208 		 */
   2209 #if NRND > 0
   2210 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2211 #else
   2212 		tcp_iss = arc4random();
   2213 #endif
   2214 
   2215 		/*
   2216 		 * If we were asked to add some amount to a known value,
   2217 		 * we will take a random value obtained above, mask off
   2218 		 * the upper bits, and add in the known value.  We also
   2219 		 * add in a constant to ensure that we are at least a
   2220 		 * certain distance from the original value.
   2221 		 *
   2222 		 * This is used when an old connection is in timed wait
   2223 		 * and we have a new one coming in, for instance.
   2224 		 */
   2225 		if (addin != 0) {
   2226 #ifdef TCPISS_DEBUG
   2227 			printf("Random %08x, ", tcp_iss);
   2228 #endif
   2229 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2230 			tcp_iss += addin + TCP_ISSINCR;
   2231 #ifdef TCPISS_DEBUG
   2232 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2233 #endif
   2234 		} else {
   2235 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2236 			tcp_iss += tcp_iss_seq;
   2237 			tcp_iss_seq += TCP_ISSINCR;
   2238 #ifdef TCPISS_DEBUG
   2239 			printf("ISS %08x\n", tcp_iss);
   2240 #endif
   2241 		}
   2242 	}
   2243 
   2244 	if (tcp_compat_42) {
   2245 		/*
   2246 		 * Limit it to the positive range for really old TCP
   2247 		 * implementations.
   2248 		 * Just AND off the top bit instead of checking if
   2249 		 * is set first - saves a branch 50% of the time.
   2250 		 */
   2251 		tcp_iss &= 0x7fffffff;		/* XXX */
   2252 	}
   2253 
   2254 	return (tcp_iss);
   2255 }
   2256 
   2257 #if defined(IPSEC) || defined(FAST_IPSEC)
   2258 /* compute ESP/AH header size for TCP, including outer IP header. */
   2259 size_t
   2260 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2261 {
   2262 	struct inpcb *inp;
   2263 	size_t hdrsiz;
   2264 
   2265 	/* XXX mapped addr case (tp->t_in6pcb) */
   2266 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2267 		return 0;
   2268 	switch (tp->t_family) {
   2269 	case AF_INET:
   2270 		/* XXX: should use currect direction. */
   2271 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2272 		break;
   2273 	default:
   2274 		hdrsiz = 0;
   2275 		break;
   2276 	}
   2277 
   2278 	return hdrsiz;
   2279 }
   2280 
   2281 #ifdef INET6
   2282 size_t
   2283 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2284 {
   2285 	struct in6pcb *in6p;
   2286 	size_t hdrsiz;
   2287 
   2288 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2289 		return 0;
   2290 	switch (tp->t_family) {
   2291 	case AF_INET6:
   2292 		/* XXX: should use currect direction. */
   2293 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2294 		break;
   2295 	case AF_INET:
   2296 		/* mapped address case - tricky */
   2297 	default:
   2298 		hdrsiz = 0;
   2299 		break;
   2300 	}
   2301 
   2302 	return hdrsiz;
   2303 }
   2304 #endif
   2305 #endif /*IPSEC*/
   2306 
   2307 /*
   2308  * Determine the length of the TCP options for this connection.
   2309  *
   2310  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2311  *       all of the space?  Otherwise we can't exactly be incrementing
   2312  *       cwnd by an amount that varies depending on the amount we last
   2313  *       had to SACK!
   2314  */
   2315 
   2316 u_int
   2317 tcp_optlen(struct tcpcb *tp)
   2318 {
   2319 	u_int optlen;
   2320 
   2321 	optlen = 0;
   2322 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2323 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2324 		optlen += TCPOLEN_TSTAMP_APPA;
   2325 
   2326 #ifdef TCP_SIGNATURE
   2327 	if (tp->t_flags & TF_SIGNATURE)
   2328 		optlen += TCPOLEN_SIGNATURE + 2;
   2329 #endif /* TCP_SIGNATURE */
   2330 
   2331 	return optlen;
   2332 }
   2333 
   2334 u_int
   2335 tcp_hdrsz(struct tcpcb *tp)
   2336 {
   2337 	u_int hlen;
   2338 
   2339 	switch (tp->t_family) {
   2340 #ifdef INET6
   2341 	case AF_INET6:
   2342 		hlen = sizeof(struct ip6_hdr);
   2343 		break;
   2344 #endif
   2345 	case AF_INET:
   2346 		hlen = sizeof(struct ip);
   2347 		break;
   2348 	default:
   2349 		hlen = 0;
   2350 		break;
   2351 	}
   2352 	hlen += sizeof(struct tcphdr);
   2353 
   2354 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2355 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2356 		hlen += TCPOLEN_TSTAMP_APPA;
   2357 #ifdef TCP_SIGNATURE
   2358 	if (tp->t_flags & TF_SIGNATURE)
   2359 		hlen += TCPOLEN_SIGLEN;
   2360 #endif
   2361 	return hlen;
   2362 }
   2363