tcp_subr.c revision 1.225 1 /* $NetBSD: tcp_subr.c,v 1.225 2008/03/27 00:18:56 cube Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.225 2008/03/27 00:18:56 cube Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcp_congctl.h>
155 #include <netinet/tcpip.h>
156
157 #ifdef IPSEC
158 #include <netinet6/ipsec.h>
159 #include <netkey/key.h>
160 #endif /*IPSEC*/
161
162 #ifdef FAST_IPSEC
163 #include <netipsec/ipsec.h>
164 #include <netipsec/xform.h>
165 #ifdef INET6
166 #include <netipsec/ipsec6.h>
167 #endif
168 #include <netipsec/key.h>
169 #endif /* FAST_IPSEC*/
170
171
172 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
173 struct tcpstat tcpstat; /* tcp statistics */
174 u_int32_t tcp_now; /* for RFC 1323 timestamps */
175
176 /* patchable/settable parameters for tcp */
177 int tcp_mssdflt = TCP_MSS;
178 int tcp_minmss = TCP_MINMSS;
179 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
180 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
181 #if NRND > 0
182 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
183 #endif
184 int tcp_do_sack = 1; /* selective acknowledgement */
185 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
186 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
187 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
188 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
189 #ifndef TCP_INIT_WIN
190 #define TCP_INIT_WIN 0 /* initial slow start window */
191 #endif
192 #ifndef TCP_INIT_WIN_LOCAL
193 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
194 #endif
195 int tcp_init_win = TCP_INIT_WIN;
196 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
197 int tcp_mss_ifmtu = 0;
198 #ifdef TCP_COMPAT_42
199 int tcp_compat_42 = 1;
200 #else
201 int tcp_compat_42 = 0;
202 #endif
203 int tcp_rst_ppslim = 100; /* 100pps */
204 int tcp_ackdrop_ppslim = 100; /* 100pps */
205 int tcp_do_loopback_cksum = 0;
206 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
207 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
208 int tcp_sack_tp_maxholes = 32;
209 int tcp_sack_globalmaxholes = 1024;
210 int tcp_sack_globalholes = 0;
211 int tcp_ecn_maxretries = 1;
212
213 /* tcb hash */
214 #ifndef TCBHASHSIZE
215 #define TCBHASHSIZE 128
216 #endif
217 int tcbhashsize = TCBHASHSIZE;
218
219 /* syn hash parameters */
220 #define TCP_SYN_HASH_SIZE 293
221 #define TCP_SYN_BUCKET_SIZE 35
222 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
223 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
224 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
225 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
226
227 int tcp_freeq(struct tcpcb *);
228
229 #ifdef INET
230 void tcp_mtudisc_callback(struct in_addr);
231 #endif
232 #ifdef INET6
233 void tcp6_mtudisc_callback(struct in6_addr *);
234 #endif
235
236 #ifdef INET6
237 void tcp6_mtudisc(struct in6pcb *, int);
238 #endif
239
240 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
241 IPL_SOFTNET);
242
243 #ifdef TCP_CSUM_COUNTERS
244 #include <sys/device.h>
245
246 #if defined(INET)
247 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248 NULL, "tcp", "hwcsum bad");
249 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250 NULL, "tcp", "hwcsum ok");
251 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp", "hwcsum data");
253 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 NULL, "tcp", "swcsum");
255
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
257 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
259 EVCNT_ATTACH_STATIC(tcp_swcsum);
260 #endif /* defined(INET) */
261
262 #if defined(INET6)
263 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp6", "hwcsum bad");
265 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp6", "hwcsum ok");
267 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp6", "hwcsum data");
269 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 NULL, "tcp6", "swcsum");
271
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
275 EVCNT_ATTACH_STATIC(tcp6_swcsum);
276 #endif /* defined(INET6) */
277 #endif /* TCP_CSUM_COUNTERS */
278
279
280 #ifdef TCP_OUTPUT_COUNTERS
281 #include <sys/device.h>
282
283 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 NULL, "tcp", "output big header");
285 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 NULL, "tcp", "output predict hit");
287 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 NULL, "tcp", "output predict miss");
289 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 NULL, "tcp", "output copy small");
291 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 NULL, "tcp", "output copy big");
293 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 NULL, "tcp", "output reference big");
295
296 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
297 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
298 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
299 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
300 EVCNT_ATTACH_STATIC(tcp_output_copybig);
301 EVCNT_ATTACH_STATIC(tcp_output_refbig);
302
303 #endif /* TCP_OUTPUT_COUNTERS */
304
305 #ifdef TCP_REASS_COUNTERS
306 #include <sys/device.h>
307
308 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 NULL, "tcp_reass", "calls");
310 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "insert into empty queue");
312 struct evcnt tcp_reass_iteration[8] = {
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
318 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
320 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
321 };
322 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323 &tcp_reass_, "tcp_reass", "prepend to first");
324 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325 &tcp_reass_, "tcp_reass", "prepend");
326 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327 &tcp_reass_, "tcp_reass", "insert");
328 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329 &tcp_reass_, "tcp_reass", "insert at tail");
330 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331 &tcp_reass_, "tcp_reass", "append");
332 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333 &tcp_reass_, "tcp_reass", "append to tail fragment");
334 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335 &tcp_reass_, "tcp_reass", "overlap at end");
336 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337 &tcp_reass_, "tcp_reass", "overlap at start");
338 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339 &tcp_reass_, "tcp_reass", "duplicate segment");
340 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341 &tcp_reass_, "tcp_reass", "duplicate fragment");
342
343 EVCNT_ATTACH_STATIC(tcp_reass_);
344 EVCNT_ATTACH_STATIC(tcp_reass_empty);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
353 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
354 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
355 EVCNT_ATTACH_STATIC(tcp_reass_insert);
356 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
357 EVCNT_ATTACH_STATIC(tcp_reass_append);
358 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
359 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
360 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
361 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
362 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
363
364 #endif /* TCP_REASS_COUNTERS */
365
366 #ifdef MBUFTRACE
367 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
368 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
369 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
370 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
371 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
372 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
373 #endif
374
375 /*
376 * Tcp initialization
377 */
378 void
379 tcp_init(void)
380 {
381 int hlen;
382
383 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
384
385 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
386 #ifdef INET6
387 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
388 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
389 #endif
390 if (max_protohdr < hlen)
391 max_protohdr = hlen;
392 if (max_linkhdr + hlen > MHLEN)
393 panic("tcp_init");
394
395 #ifdef INET
396 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
397 #endif
398 #ifdef INET6
399 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
400 #endif
401
402 /* Initialize timer state. */
403 tcp_timer_init();
404
405 /* Initialize the compressed state engine. */
406 syn_cache_init();
407
408 /* Initialize the congestion control algorithms. */
409 tcp_congctl_init();
410
411 /* Initialize the TCPCB template. */
412 tcp_tcpcb_template();
413
414 MOWNER_ATTACH(&tcp_tx_mowner);
415 MOWNER_ATTACH(&tcp_rx_mowner);
416 MOWNER_ATTACH(&tcp_reass_mowner);
417 MOWNER_ATTACH(&tcp_sock_mowner);
418 MOWNER_ATTACH(&tcp_sock_tx_mowner);
419 MOWNER_ATTACH(&tcp_sock_rx_mowner);
420 MOWNER_ATTACH(&tcp_mowner);
421 }
422
423 /*
424 * Create template to be used to send tcp packets on a connection.
425 * Call after host entry created, allocates an mbuf and fills
426 * in a skeletal tcp/ip header, minimizing the amount of work
427 * necessary when the connection is used.
428 */
429 struct mbuf *
430 tcp_template(struct tcpcb *tp)
431 {
432 struct inpcb *inp = tp->t_inpcb;
433 #ifdef INET6
434 struct in6pcb *in6p = tp->t_in6pcb;
435 #endif
436 struct tcphdr *n;
437 struct mbuf *m;
438 int hlen;
439
440 switch (tp->t_family) {
441 case AF_INET:
442 hlen = sizeof(struct ip);
443 if (inp)
444 break;
445 #ifdef INET6
446 if (in6p) {
447 /* mapped addr case */
448 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
449 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
450 break;
451 }
452 #endif
453 return NULL; /*EINVAL*/
454 #ifdef INET6
455 case AF_INET6:
456 hlen = sizeof(struct ip6_hdr);
457 if (in6p) {
458 /* more sainty check? */
459 break;
460 }
461 return NULL; /*EINVAL*/
462 #endif
463 default:
464 hlen = 0; /*pacify gcc*/
465 return NULL; /*EAFNOSUPPORT*/
466 }
467 #ifdef DIAGNOSTIC
468 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
469 panic("mclbytes too small for t_template");
470 #endif
471 m = tp->t_template;
472 if (m && m->m_len == hlen + sizeof(struct tcphdr))
473 ;
474 else {
475 if (m)
476 m_freem(m);
477 m = tp->t_template = NULL;
478 MGETHDR(m, M_DONTWAIT, MT_HEADER);
479 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
480 MCLGET(m, M_DONTWAIT);
481 if ((m->m_flags & M_EXT) == 0) {
482 m_free(m);
483 m = NULL;
484 }
485 }
486 if (m == NULL)
487 return NULL;
488 MCLAIM(m, &tcp_mowner);
489 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
490 }
491
492 bzero(mtod(m, void *), m->m_len);
493
494 n = (struct tcphdr *)(mtod(m, char *) + hlen);
495
496 switch (tp->t_family) {
497 case AF_INET:
498 {
499 struct ipovly *ipov;
500 mtod(m, struct ip *)->ip_v = 4;
501 mtod(m, struct ip *)->ip_hl = hlen >> 2;
502 ipov = mtod(m, struct ipovly *);
503 ipov->ih_pr = IPPROTO_TCP;
504 ipov->ih_len = htons(sizeof(struct tcphdr));
505 if (inp) {
506 ipov->ih_src = inp->inp_laddr;
507 ipov->ih_dst = inp->inp_faddr;
508 }
509 #ifdef INET6
510 else if (in6p) {
511 /* mapped addr case */
512 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
513 sizeof(ipov->ih_src));
514 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
515 sizeof(ipov->ih_dst));
516 }
517 #endif
518 /*
519 * Compute the pseudo-header portion of the checksum
520 * now. We incrementally add in the TCP option and
521 * payload lengths later, and then compute the TCP
522 * checksum right before the packet is sent off onto
523 * the wire.
524 */
525 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
526 ipov->ih_dst.s_addr,
527 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
528 break;
529 }
530 #ifdef INET6
531 case AF_INET6:
532 {
533 struct ip6_hdr *ip6;
534 mtod(m, struct ip *)->ip_v = 6;
535 ip6 = mtod(m, struct ip6_hdr *);
536 ip6->ip6_nxt = IPPROTO_TCP;
537 ip6->ip6_plen = htons(sizeof(struct tcphdr));
538 ip6->ip6_src = in6p->in6p_laddr;
539 ip6->ip6_dst = in6p->in6p_faddr;
540 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
541 if (ip6_auto_flowlabel) {
542 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
543 ip6->ip6_flow |=
544 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
545 }
546 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
547 ip6->ip6_vfc |= IPV6_VERSION;
548
549 /*
550 * Compute the pseudo-header portion of the checksum
551 * now. We incrementally add in the TCP option and
552 * payload lengths later, and then compute the TCP
553 * checksum right before the packet is sent off onto
554 * the wire.
555 */
556 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
557 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
558 htonl(IPPROTO_TCP));
559 break;
560 }
561 #endif
562 }
563 if (inp) {
564 n->th_sport = inp->inp_lport;
565 n->th_dport = inp->inp_fport;
566 }
567 #ifdef INET6
568 else if (in6p) {
569 n->th_sport = in6p->in6p_lport;
570 n->th_dport = in6p->in6p_fport;
571 }
572 #endif
573 n->th_seq = 0;
574 n->th_ack = 0;
575 n->th_x2 = 0;
576 n->th_off = 5;
577 n->th_flags = 0;
578 n->th_win = 0;
579 n->th_urp = 0;
580 return (m);
581 }
582
583 /*
584 * Send a single message to the TCP at address specified by
585 * the given TCP/IP header. If m == 0, then we make a copy
586 * of the tcpiphdr at ti and send directly to the addressed host.
587 * This is used to force keep alive messages out using the TCP
588 * template for a connection tp->t_template. If flags are given
589 * then we send a message back to the TCP which originated the
590 * segment ti, and discard the mbuf containing it and any other
591 * attached mbufs.
592 *
593 * In any case the ack and sequence number of the transmitted
594 * segment are as specified by the parameters.
595 */
596 int
597 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
598 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
599 {
600 #ifdef INET6
601 struct rtentry *rt;
602 #endif
603 struct route *ro;
604 int error, tlen, win = 0;
605 int hlen;
606 struct ip *ip;
607 #ifdef INET6
608 struct ip6_hdr *ip6;
609 #endif
610 int family; /* family on packet, not inpcb/in6pcb! */
611 struct tcphdr *th;
612 struct socket *so;
613
614 if (tp != NULL && (flags & TH_RST) == 0) {
615 #ifdef DIAGNOSTIC
616 if (tp->t_inpcb && tp->t_in6pcb)
617 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
618 #endif
619 #ifdef INET
620 if (tp->t_inpcb)
621 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
622 #endif
623 #ifdef INET6
624 if (tp->t_in6pcb)
625 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
626 #endif
627 }
628
629 th = NULL; /* Quell uninitialized warning */
630 ip = NULL;
631 #ifdef INET6
632 ip6 = NULL;
633 #endif
634 if (m == 0) {
635 if (!template)
636 return EINVAL;
637
638 /* get family information from template */
639 switch (mtod(template, struct ip *)->ip_v) {
640 case 4:
641 family = AF_INET;
642 hlen = sizeof(struct ip);
643 break;
644 #ifdef INET6
645 case 6:
646 family = AF_INET6;
647 hlen = sizeof(struct ip6_hdr);
648 break;
649 #endif
650 default:
651 return EAFNOSUPPORT;
652 }
653
654 MGETHDR(m, M_DONTWAIT, MT_HEADER);
655 if (m) {
656 MCLAIM(m, &tcp_tx_mowner);
657 MCLGET(m, M_DONTWAIT);
658 if ((m->m_flags & M_EXT) == 0) {
659 m_free(m);
660 m = NULL;
661 }
662 }
663 if (m == NULL)
664 return (ENOBUFS);
665
666 if (tcp_compat_42)
667 tlen = 1;
668 else
669 tlen = 0;
670
671 m->m_data += max_linkhdr;
672 bcopy(mtod(template, void *), mtod(m, void *),
673 template->m_len);
674 switch (family) {
675 case AF_INET:
676 ip = mtod(m, struct ip *);
677 th = (struct tcphdr *)(ip + 1);
678 break;
679 #ifdef INET6
680 case AF_INET6:
681 ip6 = mtod(m, struct ip6_hdr *);
682 th = (struct tcphdr *)(ip6 + 1);
683 break;
684 #endif
685 #if 0
686 default:
687 /* noone will visit here */
688 m_freem(m);
689 return EAFNOSUPPORT;
690 #endif
691 }
692 flags = TH_ACK;
693 } else {
694
695 if ((m->m_flags & M_PKTHDR) == 0) {
696 #if 0
697 printf("non PKTHDR to tcp_respond\n");
698 #endif
699 m_freem(m);
700 return EINVAL;
701 }
702 #ifdef DIAGNOSTIC
703 if (!th0)
704 panic("th0 == NULL in tcp_respond");
705 #endif
706
707 /* get family information from m */
708 switch (mtod(m, struct ip *)->ip_v) {
709 case 4:
710 family = AF_INET;
711 hlen = sizeof(struct ip);
712 ip = mtod(m, struct ip *);
713 break;
714 #ifdef INET6
715 case 6:
716 family = AF_INET6;
717 hlen = sizeof(struct ip6_hdr);
718 ip6 = mtod(m, struct ip6_hdr *);
719 break;
720 #endif
721 default:
722 m_freem(m);
723 return EAFNOSUPPORT;
724 }
725 /* clear h/w csum flags inherited from rx packet */
726 m->m_pkthdr.csum_flags = 0;
727
728 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
729 tlen = sizeof(*th0);
730 else
731 tlen = th0->th_off << 2;
732
733 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
734 mtod(m, char *) + hlen == (char *)th0) {
735 m->m_len = hlen + tlen;
736 m_freem(m->m_next);
737 m->m_next = NULL;
738 } else {
739 struct mbuf *n;
740
741 #ifdef DIAGNOSTIC
742 if (max_linkhdr + hlen + tlen > MCLBYTES) {
743 m_freem(m);
744 return EMSGSIZE;
745 }
746 #endif
747 MGETHDR(n, M_DONTWAIT, MT_HEADER);
748 if (n && max_linkhdr + hlen + tlen > MHLEN) {
749 MCLGET(n, M_DONTWAIT);
750 if ((n->m_flags & M_EXT) == 0) {
751 m_freem(n);
752 n = NULL;
753 }
754 }
755 if (!n) {
756 m_freem(m);
757 return ENOBUFS;
758 }
759
760 MCLAIM(n, &tcp_tx_mowner);
761 n->m_data += max_linkhdr;
762 n->m_len = hlen + tlen;
763 m_copyback(n, 0, hlen, mtod(m, void *));
764 m_copyback(n, hlen, tlen, (void *)th0);
765
766 m_freem(m);
767 m = n;
768 n = NULL;
769 }
770
771 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
772 switch (family) {
773 case AF_INET:
774 ip = mtod(m, struct ip *);
775 th = (struct tcphdr *)(ip + 1);
776 ip->ip_p = IPPROTO_TCP;
777 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
778 ip->ip_p = IPPROTO_TCP;
779 break;
780 #ifdef INET6
781 case AF_INET6:
782 ip6 = mtod(m, struct ip6_hdr *);
783 th = (struct tcphdr *)(ip6 + 1);
784 ip6->ip6_nxt = IPPROTO_TCP;
785 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
786 ip6->ip6_nxt = IPPROTO_TCP;
787 break;
788 #endif
789 #if 0
790 default:
791 /* noone will visit here */
792 m_freem(m);
793 return EAFNOSUPPORT;
794 #endif
795 }
796 xchg(th->th_dport, th->th_sport, u_int16_t);
797 #undef xchg
798 tlen = 0; /*be friendly with the following code*/
799 }
800 th->th_seq = htonl(seq);
801 th->th_ack = htonl(ack);
802 th->th_x2 = 0;
803 if ((flags & TH_SYN) == 0) {
804 if (tp)
805 win >>= tp->rcv_scale;
806 if (win > TCP_MAXWIN)
807 win = TCP_MAXWIN;
808 th->th_win = htons((u_int16_t)win);
809 th->th_off = sizeof (struct tcphdr) >> 2;
810 tlen += sizeof(*th);
811 } else
812 tlen += th->th_off << 2;
813 m->m_len = hlen + tlen;
814 m->m_pkthdr.len = hlen + tlen;
815 m->m_pkthdr.rcvif = (struct ifnet *) 0;
816 th->th_flags = flags;
817 th->th_urp = 0;
818
819 switch (family) {
820 #ifdef INET
821 case AF_INET:
822 {
823 struct ipovly *ipov = (struct ipovly *)ip;
824 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
825 ipov->ih_len = htons((u_int16_t)tlen);
826
827 th->th_sum = 0;
828 th->th_sum = in_cksum(m, hlen + tlen);
829 ip->ip_len = htons(hlen + tlen);
830 ip->ip_ttl = ip_defttl;
831 break;
832 }
833 #endif
834 #ifdef INET6
835 case AF_INET6:
836 {
837 th->th_sum = 0;
838 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
839 tlen);
840 ip6->ip6_plen = htons(tlen);
841 if (tp && tp->t_in6pcb) {
842 struct ifnet *oifp;
843 ro = &tp->t_in6pcb->in6p_route;
844 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
845 : NULL;
846 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
847 } else
848 ip6->ip6_hlim = ip6_defhlim;
849 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
850 if (ip6_auto_flowlabel) {
851 ip6->ip6_flow |=
852 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
853 }
854 break;
855 }
856 #endif
857 }
858
859 if (tp && tp->t_inpcb)
860 so = tp->t_inpcb->inp_socket;
861 #ifdef INET6
862 else if (tp && tp->t_in6pcb)
863 so = tp->t_in6pcb->in6p_socket;
864 #endif
865 else
866 so = NULL;
867
868 if (tp != NULL && tp->t_inpcb != NULL) {
869 ro = &tp->t_inpcb->inp_route;
870 #ifdef DIAGNOSTIC
871 if (family != AF_INET)
872 panic("tcp_respond: address family mismatch");
873 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
874 panic("tcp_respond: ip_dst %x != inp_faddr %x",
875 ntohl(ip->ip_dst.s_addr),
876 ntohl(tp->t_inpcb->inp_faddr.s_addr));
877 }
878 #endif
879 }
880 #ifdef INET6
881 else if (tp != NULL && tp->t_in6pcb != NULL) {
882 ro = (struct route *)&tp->t_in6pcb->in6p_route;
883 #ifdef DIAGNOSTIC
884 if (family == AF_INET) {
885 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
886 panic("tcp_respond: not mapped addr");
887 if (bcmp(&ip->ip_dst,
888 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
889 sizeof(ip->ip_dst)) != 0) {
890 panic("tcp_respond: ip_dst != in6p_faddr");
891 }
892 } else if (family == AF_INET6) {
893 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
894 &tp->t_in6pcb->in6p_faddr))
895 panic("tcp_respond: ip6_dst != in6p_faddr");
896 } else
897 panic("tcp_respond: address family mismatch");
898 #endif
899 }
900 #endif
901 else
902 ro = NULL;
903
904 switch (family) {
905 #ifdef INET
906 case AF_INET:
907 error = ip_output(m, NULL, ro,
908 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
909 (struct ip_moptions *)0, so);
910 break;
911 #endif
912 #ifdef INET6
913 case AF_INET6:
914 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
915 break;
916 #endif
917 default:
918 error = EAFNOSUPPORT;
919 break;
920 }
921
922 return (error);
923 }
924
925 /*
926 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
927 * a bunch of members individually, we maintain this template for the
928 * static and mostly-static components of the TCPCB, and copy it into
929 * the new TCPCB instead.
930 */
931 static struct tcpcb tcpcb_template = {
932 .t_srtt = TCPTV_SRTTBASE,
933 .t_rttmin = TCPTV_MIN,
934
935 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
936 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
937 .snd_numholes = 0,
938
939 .t_partialacks = -1,
940 .t_bytes_acked = 0,
941 };
942
943 /*
944 * Updates the TCPCB template whenever a parameter that would affect
945 * the template is changed.
946 */
947 void
948 tcp_tcpcb_template(void)
949 {
950 struct tcpcb *tp = &tcpcb_template;
951 int flags;
952
953 tp->t_peermss = tcp_mssdflt;
954 tp->t_ourmss = tcp_mssdflt;
955 tp->t_segsz = tcp_mssdflt;
956
957 flags = 0;
958 if (tcp_do_rfc1323 && tcp_do_win_scale)
959 flags |= TF_REQ_SCALE;
960 if (tcp_do_rfc1323 && tcp_do_timestamps)
961 flags |= TF_REQ_TSTMP;
962 tp->t_flags = flags;
963
964 /*
965 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
966 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
967 * reasonable initial retransmit time.
968 */
969 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
970 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
971 TCPTV_MIN, TCPTV_REXMTMAX);
972
973 /* Keep Alive */
974 tp->t_keepinit = tcp_keepinit;
975 tp->t_keepidle = tcp_keepidle;
976 tp->t_keepintvl = tcp_keepintvl;
977 tp->t_keepcnt = tcp_keepcnt;
978 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
979 }
980
981 /*
982 * Create a new TCP control block, making an
983 * empty reassembly queue and hooking it to the argument
984 * protocol control block.
985 */
986 /* family selects inpcb, or in6pcb */
987 struct tcpcb *
988 tcp_newtcpcb(int family, void *aux)
989 {
990 #ifdef INET6
991 struct rtentry *rt;
992 #endif
993 struct tcpcb *tp;
994 int i;
995
996 /* XXX Consider using a pool_cache for speed. */
997 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
998 if (tp == NULL)
999 return (NULL);
1000 memcpy(tp, &tcpcb_template, sizeof(*tp));
1001 TAILQ_INIT(&tp->segq);
1002 TAILQ_INIT(&tp->timeq);
1003 tp->t_family = family; /* may be overridden later on */
1004 TAILQ_INIT(&tp->snd_holes);
1005 LIST_INIT(&tp->t_sc); /* XXX can template this */
1006
1007 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1008 for (i = 0; i < TCPT_NTIMERS; i++) {
1009 callout_init(&tp->t_timer[i], 0);
1010 TCP_TIMER_INIT(tp, i);
1011 }
1012 callout_init(&tp->t_delack_ch, 0);
1013
1014 switch (family) {
1015 case AF_INET:
1016 {
1017 struct inpcb *inp = (struct inpcb *)aux;
1018
1019 inp->inp_ip.ip_ttl = ip_defttl;
1020 inp->inp_ppcb = (void *)tp;
1021
1022 tp->t_inpcb = inp;
1023 tp->t_mtudisc = ip_mtudisc;
1024 break;
1025 }
1026 #ifdef INET6
1027 case AF_INET6:
1028 {
1029 struct in6pcb *in6p = (struct in6pcb *)aux;
1030
1031 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1032 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1033 ? rt->rt_ifp
1034 : NULL);
1035 in6p->in6p_ppcb = (void *)tp;
1036
1037 tp->t_in6pcb = in6p;
1038 /* for IPv6, always try to run path MTU discovery */
1039 tp->t_mtudisc = 1;
1040 break;
1041 }
1042 #endif /* INET6 */
1043 default:
1044 for (i = 0; i < TCPT_NTIMERS; i++)
1045 callout_destroy(&tp->t_timer[i]);
1046 callout_destroy(&tp->t_delack_ch);
1047 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1048 return (NULL);
1049 }
1050
1051 /*
1052 * Initialize our timebase. When we send timestamps, we take
1053 * the delta from tcp_now -- this means each connection always
1054 * gets a timebase of 1, which makes it, among other things,
1055 * more difficult to determine how long a system has been up,
1056 * and thus how many TCP sequence increments have occurred.
1057 *
1058 * We start with 1, because 0 doesn't work with linux, which
1059 * considers timestamp 0 in a SYN packet as a bug and disables
1060 * timestamps.
1061 */
1062 tp->ts_timebase = tcp_now - 1;
1063
1064 tcp_congctl_select(tp, tcp_congctl_global_name);
1065
1066 return (tp);
1067 }
1068
1069 /*
1070 * Drop a TCP connection, reporting
1071 * the specified error. If connection is synchronized,
1072 * then send a RST to peer.
1073 */
1074 struct tcpcb *
1075 tcp_drop(struct tcpcb *tp, int errno)
1076 {
1077 struct socket *so = NULL;
1078
1079 #ifdef DIAGNOSTIC
1080 if (tp->t_inpcb && tp->t_in6pcb)
1081 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1082 #endif
1083 #ifdef INET
1084 if (tp->t_inpcb)
1085 so = tp->t_inpcb->inp_socket;
1086 #endif
1087 #ifdef INET6
1088 if (tp->t_in6pcb)
1089 so = tp->t_in6pcb->in6p_socket;
1090 #endif
1091 if (!so)
1092 return NULL;
1093
1094 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1095 tp->t_state = TCPS_CLOSED;
1096 (void) tcp_output(tp);
1097 tcpstat.tcps_drops++;
1098 } else
1099 tcpstat.tcps_conndrops++;
1100 if (errno == ETIMEDOUT && tp->t_softerror)
1101 errno = tp->t_softerror;
1102 so->so_error = errno;
1103 return (tcp_close(tp));
1104 }
1105
1106 /*
1107 * Return whether this tcpcb is marked as dead, indicating
1108 * to the calling timer function that no further action should
1109 * be taken, as we are about to release this tcpcb. The release
1110 * of the storage will be done if this is the last timer running.
1111 *
1112 * This should be called from the callout handler function after
1113 * callout_ack() is done, so that the number of invoking timer
1114 * functions is 0.
1115 */
1116 int
1117 tcp_isdead(struct tcpcb *tp)
1118 {
1119 int i, dead = (tp->t_flags & TF_DEAD);
1120
1121 if (__predict_false(dead)) {
1122 if (tcp_timers_invoking(tp) > 0)
1123 /* not quite there yet -- count separately? */
1124 return dead;
1125 tcpstat.tcps_delayed_free++;
1126 for (i = 0; i < TCPT_NTIMERS; i++)
1127 callout_destroy(&tp->t_timer[i]);
1128 callout_destroy(&tp->t_delack_ch);
1129 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_timer.c */
1130 }
1131 return dead;
1132 }
1133
1134 /*
1135 * Close a TCP control block:
1136 * discard all space held by the tcp
1137 * discard internet protocol block
1138 * wake up any sleepers
1139 */
1140 struct tcpcb *
1141 tcp_close(struct tcpcb *tp)
1142 {
1143 struct inpcb *inp;
1144 #ifdef INET6
1145 struct in6pcb *in6p;
1146 #endif
1147 struct socket *so;
1148 #ifdef RTV_RTT
1149 struct rtentry *rt;
1150 #endif
1151 struct route *ro;
1152 int j;
1153
1154 inp = tp->t_inpcb;
1155 #ifdef INET6
1156 in6p = tp->t_in6pcb;
1157 #endif
1158 so = NULL;
1159 ro = NULL;
1160 if (inp) {
1161 so = inp->inp_socket;
1162 ro = &inp->inp_route;
1163 }
1164 #ifdef INET6
1165 else if (in6p) {
1166 so = in6p->in6p_socket;
1167 ro = (struct route *)&in6p->in6p_route;
1168 }
1169 #endif
1170
1171 #ifdef RTV_RTT
1172 /*
1173 * If we sent enough data to get some meaningful characteristics,
1174 * save them in the routing entry. 'Enough' is arbitrarily
1175 * defined as the sendpipesize (default 4K) * 16. This would
1176 * give us 16 rtt samples assuming we only get one sample per
1177 * window (the usual case on a long haul net). 16 samples is
1178 * enough for the srtt filter to converge to within 5% of the correct
1179 * value; fewer samples and we could save a very bogus rtt.
1180 *
1181 * Don't update the default route's characteristics and don't
1182 * update anything that the user "locked".
1183 */
1184 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1185 ro && (rt = rtcache_validate(ro)) != NULL &&
1186 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1187 u_long i = 0;
1188
1189 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1190 i = tp->t_srtt *
1191 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1192 if (rt->rt_rmx.rmx_rtt && i)
1193 /*
1194 * filter this update to half the old & half
1195 * the new values, converting scale.
1196 * See route.h and tcp_var.h for a
1197 * description of the scaling constants.
1198 */
1199 rt->rt_rmx.rmx_rtt =
1200 (rt->rt_rmx.rmx_rtt + i) / 2;
1201 else
1202 rt->rt_rmx.rmx_rtt = i;
1203 }
1204 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1205 i = tp->t_rttvar *
1206 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1207 if (rt->rt_rmx.rmx_rttvar && i)
1208 rt->rt_rmx.rmx_rttvar =
1209 (rt->rt_rmx.rmx_rttvar + i) / 2;
1210 else
1211 rt->rt_rmx.rmx_rttvar = i;
1212 }
1213 /*
1214 * update the pipelimit (ssthresh) if it has been updated
1215 * already or if a pipesize was specified & the threshhold
1216 * got below half the pipesize. I.e., wait for bad news
1217 * before we start updating, then update on both good
1218 * and bad news.
1219 */
1220 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1221 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1222 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1223 /*
1224 * convert the limit from user data bytes to
1225 * packets then to packet data bytes.
1226 */
1227 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1228 if (i < 2)
1229 i = 2;
1230 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1231 if (rt->rt_rmx.rmx_ssthresh)
1232 rt->rt_rmx.rmx_ssthresh =
1233 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1234 else
1235 rt->rt_rmx.rmx_ssthresh = i;
1236 }
1237 }
1238 #endif /* RTV_RTT */
1239 /* free the reassembly queue, if any */
1240 TCP_REASS_LOCK(tp);
1241 (void) tcp_freeq(tp);
1242 TCP_REASS_UNLOCK(tp);
1243
1244 /* free the SACK holes list. */
1245 tcp_free_sackholes(tp);
1246
1247 tcp_congctl_release(tp);
1248
1249 tcp_canceltimers(tp);
1250 TCP_CLEAR_DELACK(tp);
1251 syn_cache_cleanup(tp);
1252
1253 if (tp->t_template) {
1254 m_free(tp->t_template);
1255 tp->t_template = NULL;
1256 }
1257 if (tcp_timers_invoking(tp))
1258 tp->t_flags |= TF_DEAD;
1259 else {
1260 for (j = 0; j < TCPT_NTIMERS; j++)
1261 callout_destroy(&tp->t_timer[j]);
1262 callout_destroy(&tp->t_delack_ch);
1263 pool_put(&tcpcb_pool, tp);
1264 }
1265
1266 if (inp) {
1267 inp->inp_ppcb = 0;
1268 soisdisconnected(so);
1269 in_pcbdetach(inp);
1270 }
1271 #ifdef INET6
1272 else if (in6p) {
1273 in6p->in6p_ppcb = 0;
1274 soisdisconnected(so);
1275 in6_pcbdetach(in6p);
1276 }
1277 #endif
1278 tcpstat.tcps_closed++;
1279 return ((struct tcpcb *)0);
1280 }
1281
1282 int
1283 tcp_freeq(struct tcpcb *tp)
1284 {
1285 struct ipqent *qe;
1286 int rv = 0;
1287 #ifdef TCPREASS_DEBUG
1288 int i = 0;
1289 #endif
1290
1291 TCP_REASS_LOCK_CHECK(tp);
1292
1293 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1294 #ifdef TCPREASS_DEBUG
1295 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1296 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1297 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1298 #endif
1299 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1300 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1301 m_freem(qe->ipqe_m);
1302 tcpipqent_free(qe);
1303 rv = 1;
1304 }
1305 tp->t_segqlen = 0;
1306 KASSERT(TAILQ_EMPTY(&tp->timeq));
1307 return (rv);
1308 }
1309
1310 /*
1311 * Protocol drain routine. Called when memory is in short supply.
1312 */
1313 void
1314 tcp_drain(void)
1315 {
1316 struct inpcb_hdr *inph;
1317 struct tcpcb *tp;
1318
1319 /*
1320 * Free the sequence queue of all TCP connections.
1321 */
1322 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1323 switch (inph->inph_af) {
1324 case AF_INET:
1325 tp = intotcpcb((struct inpcb *)inph);
1326 break;
1327 #ifdef INET6
1328 case AF_INET6:
1329 tp = in6totcpcb((struct in6pcb *)inph);
1330 break;
1331 #endif
1332 default:
1333 tp = NULL;
1334 break;
1335 }
1336 if (tp != NULL) {
1337 /*
1338 * We may be called from a device's interrupt
1339 * context. If the tcpcb is already busy,
1340 * just bail out now.
1341 */
1342 if (tcp_reass_lock_try(tp) == 0)
1343 continue;
1344 if (tcp_freeq(tp))
1345 tcpstat.tcps_connsdrained++;
1346 TCP_REASS_UNLOCK(tp);
1347 }
1348 }
1349 }
1350
1351 /*
1352 * Notify a tcp user of an asynchronous error;
1353 * store error as soft error, but wake up user
1354 * (for now, won't do anything until can select for soft error).
1355 */
1356 void
1357 tcp_notify(struct inpcb *inp, int error)
1358 {
1359 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1360 struct socket *so = inp->inp_socket;
1361
1362 /*
1363 * Ignore some errors if we are hooked up.
1364 * If connection hasn't completed, has retransmitted several times,
1365 * and receives a second error, give up now. This is better
1366 * than waiting a long time to establish a connection that
1367 * can never complete.
1368 */
1369 if (tp->t_state == TCPS_ESTABLISHED &&
1370 (error == EHOSTUNREACH || error == ENETUNREACH ||
1371 error == EHOSTDOWN)) {
1372 return;
1373 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1374 tp->t_rxtshift > 3 && tp->t_softerror)
1375 so->so_error = error;
1376 else
1377 tp->t_softerror = error;
1378 wakeup((void *) &so->so_timeo);
1379 sorwakeup(so);
1380 sowwakeup(so);
1381 }
1382
1383 #ifdef INET6
1384 void
1385 tcp6_notify(struct in6pcb *in6p, int error)
1386 {
1387 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1388 struct socket *so = in6p->in6p_socket;
1389
1390 /*
1391 * Ignore some errors if we are hooked up.
1392 * If connection hasn't completed, has retransmitted several times,
1393 * and receives a second error, give up now. This is better
1394 * than waiting a long time to establish a connection that
1395 * can never complete.
1396 */
1397 if (tp->t_state == TCPS_ESTABLISHED &&
1398 (error == EHOSTUNREACH || error == ENETUNREACH ||
1399 error == EHOSTDOWN)) {
1400 return;
1401 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1402 tp->t_rxtshift > 3 && tp->t_softerror)
1403 so->so_error = error;
1404 else
1405 tp->t_softerror = error;
1406 wakeup((void *) &so->so_timeo);
1407 sorwakeup(so);
1408 sowwakeup(so);
1409 }
1410 #endif
1411
1412 #ifdef INET6
1413 void
1414 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1415 {
1416 struct tcphdr th;
1417 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1418 int nmatch;
1419 struct ip6_hdr *ip6;
1420 const struct sockaddr_in6 *sa6_src = NULL;
1421 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1422 struct mbuf *m;
1423 int off;
1424
1425 if (sa->sa_family != AF_INET6 ||
1426 sa->sa_len != sizeof(struct sockaddr_in6))
1427 return;
1428 if ((unsigned)cmd >= PRC_NCMDS)
1429 return;
1430 else if (cmd == PRC_QUENCH) {
1431 /*
1432 * Don't honor ICMP Source Quench messages meant for
1433 * TCP connections.
1434 */
1435 return;
1436 } else if (PRC_IS_REDIRECT(cmd))
1437 notify = in6_rtchange, d = NULL;
1438 else if (cmd == PRC_MSGSIZE)
1439 ; /* special code is present, see below */
1440 else if (cmd == PRC_HOSTDEAD)
1441 d = NULL;
1442 else if (inet6ctlerrmap[cmd] == 0)
1443 return;
1444
1445 /* if the parameter is from icmp6, decode it. */
1446 if (d != NULL) {
1447 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1448 m = ip6cp->ip6c_m;
1449 ip6 = ip6cp->ip6c_ip6;
1450 off = ip6cp->ip6c_off;
1451 sa6_src = ip6cp->ip6c_src;
1452 } else {
1453 m = NULL;
1454 ip6 = NULL;
1455 sa6_src = &sa6_any;
1456 off = 0;
1457 }
1458
1459 if (ip6) {
1460 /*
1461 * XXX: We assume that when ip6 is non NULL,
1462 * M and OFF are valid.
1463 */
1464
1465 /* check if we can safely examine src and dst ports */
1466 if (m->m_pkthdr.len < off + sizeof(th)) {
1467 if (cmd == PRC_MSGSIZE)
1468 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1469 return;
1470 }
1471
1472 bzero(&th, sizeof(th));
1473 m_copydata(m, off, sizeof(th), (void *)&th);
1474
1475 if (cmd == PRC_MSGSIZE) {
1476 int valid = 0;
1477
1478 /*
1479 * Check to see if we have a valid TCP connection
1480 * corresponding to the address in the ICMPv6 message
1481 * payload.
1482 */
1483 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1484 th.th_dport,
1485 (const struct in6_addr *)&sa6_src->sin6_addr,
1486 th.th_sport, 0))
1487 valid++;
1488
1489 /*
1490 * Depending on the value of "valid" and routing table
1491 * size (mtudisc_{hi,lo}wat), we will:
1492 * - recalcurate the new MTU and create the
1493 * corresponding routing entry, or
1494 * - ignore the MTU change notification.
1495 */
1496 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1497
1498 /*
1499 * no need to call in6_pcbnotify, it should have been
1500 * called via callback if necessary
1501 */
1502 return;
1503 }
1504
1505 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1506 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1507 if (nmatch == 0 && syn_cache_count &&
1508 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1509 inet6ctlerrmap[cmd] == ENETUNREACH ||
1510 inet6ctlerrmap[cmd] == EHOSTDOWN))
1511 syn_cache_unreach((const struct sockaddr *)sa6_src,
1512 sa, &th);
1513 } else {
1514 (void) in6_pcbnotify(&tcbtable, sa, 0,
1515 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1516 }
1517 }
1518 #endif
1519
1520 #ifdef INET
1521 /* assumes that ip header and tcp header are contiguous on mbuf */
1522 void *
1523 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1524 {
1525 struct ip *ip = v;
1526 struct tcphdr *th;
1527 struct icmp *icp;
1528 extern const int inetctlerrmap[];
1529 void (*notify)(struct inpcb *, int) = tcp_notify;
1530 int errno;
1531 int nmatch;
1532 struct tcpcb *tp;
1533 u_int mtu;
1534 tcp_seq seq;
1535 struct inpcb *inp;
1536 #ifdef INET6
1537 struct in6pcb *in6p;
1538 struct in6_addr src6, dst6;
1539 #endif
1540
1541 if (sa->sa_family != AF_INET ||
1542 sa->sa_len != sizeof(struct sockaddr_in))
1543 return NULL;
1544 if ((unsigned)cmd >= PRC_NCMDS)
1545 return NULL;
1546 errno = inetctlerrmap[cmd];
1547 if (cmd == PRC_QUENCH)
1548 /*
1549 * Don't honor ICMP Source Quench messages meant for
1550 * TCP connections.
1551 */
1552 return NULL;
1553 else if (PRC_IS_REDIRECT(cmd))
1554 notify = in_rtchange, ip = 0;
1555 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1556 /*
1557 * Check to see if we have a valid TCP connection
1558 * corresponding to the address in the ICMP message
1559 * payload.
1560 *
1561 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1562 */
1563 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1564 #ifdef INET6
1565 memset(&src6, 0, sizeof(src6));
1566 memset(&dst6, 0, sizeof(dst6));
1567 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1568 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1569 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1570 #endif
1571 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1572 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1573 #ifdef INET6
1574 in6p = NULL;
1575 #else
1576 ;
1577 #endif
1578 #ifdef INET6
1579 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1580 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1581 ;
1582 #endif
1583 else
1584 return NULL;
1585
1586 /*
1587 * Now that we've validated that we are actually communicating
1588 * with the host indicated in the ICMP message, locate the
1589 * ICMP header, recalculate the new MTU, and create the
1590 * corresponding routing entry.
1591 */
1592 icp = (struct icmp *)((char *)ip -
1593 offsetof(struct icmp, icmp_ip));
1594 if (inp) {
1595 if ((tp = intotcpcb(inp)) == NULL)
1596 return NULL;
1597 }
1598 #ifdef INET6
1599 else if (in6p) {
1600 if ((tp = in6totcpcb(in6p)) == NULL)
1601 return NULL;
1602 }
1603 #endif
1604 else
1605 return NULL;
1606 seq = ntohl(th->th_seq);
1607 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1608 return NULL;
1609 /*
1610 * If the ICMP message advertises a Next-Hop MTU
1611 * equal or larger than the maximum packet size we have
1612 * ever sent, drop the message.
1613 */
1614 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1615 if (mtu >= tp->t_pmtud_mtu_sent)
1616 return NULL;
1617 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1618 /*
1619 * Calculate new MTU, and create corresponding
1620 * route (traditional PMTUD).
1621 */
1622 tp->t_flags &= ~TF_PMTUD_PEND;
1623 icmp_mtudisc(icp, ip->ip_dst);
1624 } else {
1625 /*
1626 * Record the information got in the ICMP
1627 * message; act on it later.
1628 * If we had already recorded an ICMP message,
1629 * replace the old one only if the new message
1630 * refers to an older TCP segment
1631 */
1632 if (tp->t_flags & TF_PMTUD_PEND) {
1633 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1634 return NULL;
1635 } else
1636 tp->t_flags |= TF_PMTUD_PEND;
1637 tp->t_pmtud_th_seq = seq;
1638 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1639 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1640 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1641 }
1642 return NULL;
1643 } else if (cmd == PRC_HOSTDEAD)
1644 ip = 0;
1645 else if (errno == 0)
1646 return NULL;
1647 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1648 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1649 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1650 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1651 if (nmatch == 0 && syn_cache_count &&
1652 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1653 inetctlerrmap[cmd] == ENETUNREACH ||
1654 inetctlerrmap[cmd] == EHOSTDOWN)) {
1655 struct sockaddr_in sin;
1656 bzero(&sin, sizeof(sin));
1657 sin.sin_len = sizeof(sin);
1658 sin.sin_family = AF_INET;
1659 sin.sin_port = th->th_sport;
1660 sin.sin_addr = ip->ip_src;
1661 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1662 }
1663
1664 /* XXX mapped address case */
1665 } else
1666 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1667 notify);
1668 return NULL;
1669 }
1670
1671 /*
1672 * When a source quench is received, we are being notified of congestion.
1673 * Close the congestion window down to the Loss Window (one segment).
1674 * We will gradually open it again as we proceed.
1675 */
1676 void
1677 tcp_quench(struct inpcb *inp, int errno)
1678 {
1679 struct tcpcb *tp = intotcpcb(inp);
1680
1681 if (tp) {
1682 tp->snd_cwnd = tp->t_segsz;
1683 tp->t_bytes_acked = 0;
1684 }
1685 }
1686 #endif
1687
1688 #ifdef INET6
1689 void
1690 tcp6_quench(struct in6pcb *in6p, int errno)
1691 {
1692 struct tcpcb *tp = in6totcpcb(in6p);
1693
1694 if (tp) {
1695 tp->snd_cwnd = tp->t_segsz;
1696 tp->t_bytes_acked = 0;
1697 }
1698 }
1699 #endif
1700
1701 #ifdef INET
1702 /*
1703 * Path MTU Discovery handlers.
1704 */
1705 void
1706 tcp_mtudisc_callback(struct in_addr faddr)
1707 {
1708 #ifdef INET6
1709 struct in6_addr in6;
1710 #endif
1711
1712 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1713 #ifdef INET6
1714 memset(&in6, 0, sizeof(in6));
1715 in6.s6_addr16[5] = 0xffff;
1716 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1717 tcp6_mtudisc_callback(&in6);
1718 #endif
1719 }
1720
1721 /*
1722 * On receipt of path MTU corrections, flush old route and replace it
1723 * with the new one. Retransmit all unacknowledged packets, to ensure
1724 * that all packets will be received.
1725 */
1726 void
1727 tcp_mtudisc(struct inpcb *inp, int errno)
1728 {
1729 struct tcpcb *tp = intotcpcb(inp);
1730 struct rtentry *rt = in_pcbrtentry(inp);
1731
1732 if (tp != 0) {
1733 if (rt != 0) {
1734 /*
1735 * If this was not a host route, remove and realloc.
1736 */
1737 if ((rt->rt_flags & RTF_HOST) == 0) {
1738 in_rtchange(inp, errno);
1739 if ((rt = in_pcbrtentry(inp)) == 0)
1740 return;
1741 }
1742
1743 /*
1744 * Slow start out of the error condition. We
1745 * use the MTU because we know it's smaller
1746 * than the previously transmitted segment.
1747 *
1748 * Note: This is more conservative than the
1749 * suggestion in draft-floyd-incr-init-win-03.
1750 */
1751 if (rt->rt_rmx.rmx_mtu != 0)
1752 tp->snd_cwnd =
1753 TCP_INITIAL_WINDOW(tcp_init_win,
1754 rt->rt_rmx.rmx_mtu);
1755 }
1756
1757 /*
1758 * Resend unacknowledged packets.
1759 */
1760 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1761 tcp_output(tp);
1762 }
1763 }
1764 #endif
1765
1766 #ifdef INET6
1767 /*
1768 * Path MTU Discovery handlers.
1769 */
1770 void
1771 tcp6_mtudisc_callback(struct in6_addr *faddr)
1772 {
1773 struct sockaddr_in6 sin6;
1774
1775 bzero(&sin6, sizeof(sin6));
1776 sin6.sin6_family = AF_INET6;
1777 sin6.sin6_len = sizeof(struct sockaddr_in6);
1778 sin6.sin6_addr = *faddr;
1779 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1780 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1781 }
1782
1783 void
1784 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1785 {
1786 struct tcpcb *tp = in6totcpcb(in6p);
1787 struct rtentry *rt = in6_pcbrtentry(in6p);
1788
1789 if (tp != 0) {
1790 if (rt != 0) {
1791 /*
1792 * If this was not a host route, remove and realloc.
1793 */
1794 if ((rt->rt_flags & RTF_HOST) == 0) {
1795 in6_rtchange(in6p, errno);
1796 if ((rt = in6_pcbrtentry(in6p)) == 0)
1797 return;
1798 }
1799
1800 /*
1801 * Slow start out of the error condition. We
1802 * use the MTU because we know it's smaller
1803 * than the previously transmitted segment.
1804 *
1805 * Note: This is more conservative than the
1806 * suggestion in draft-floyd-incr-init-win-03.
1807 */
1808 if (rt->rt_rmx.rmx_mtu != 0)
1809 tp->snd_cwnd =
1810 TCP_INITIAL_WINDOW(tcp_init_win,
1811 rt->rt_rmx.rmx_mtu);
1812 }
1813
1814 /*
1815 * Resend unacknowledged packets.
1816 */
1817 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1818 tcp_output(tp);
1819 }
1820 }
1821 #endif /* INET6 */
1822
1823 /*
1824 * Compute the MSS to advertise to the peer. Called only during
1825 * the 3-way handshake. If we are the server (peer initiated
1826 * connection), we are called with a pointer to the interface
1827 * on which the SYN packet arrived. If we are the client (we
1828 * initiated connection), we are called with a pointer to the
1829 * interface out which this connection should go.
1830 *
1831 * NOTE: Do not subtract IP option/extension header size nor IPsec
1832 * header size from MSS advertisement. MSS option must hold the maximum
1833 * segment size we can accept, so it must always be:
1834 * max(if mtu) - ip header - tcp header
1835 */
1836 u_long
1837 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1838 {
1839 extern u_long in_maxmtu;
1840 u_long mss = 0;
1841 u_long hdrsiz;
1842
1843 /*
1844 * In order to avoid defeating path MTU discovery on the peer,
1845 * we advertise the max MTU of all attached networks as our MSS,
1846 * per RFC 1191, section 3.1.
1847 *
1848 * We provide the option to advertise just the MTU of
1849 * the interface on which we hope this connection will
1850 * be receiving. If we are responding to a SYN, we
1851 * will have a pretty good idea about this, but when
1852 * initiating a connection there is a bit more doubt.
1853 *
1854 * We also need to ensure that loopback has a large enough
1855 * MSS, as the loopback MTU is never included in in_maxmtu.
1856 */
1857
1858 if (ifp != NULL)
1859 switch (af) {
1860 case AF_INET:
1861 mss = ifp->if_mtu;
1862 break;
1863 #ifdef INET6
1864 case AF_INET6:
1865 mss = IN6_LINKMTU(ifp);
1866 break;
1867 #endif
1868 }
1869
1870 if (tcp_mss_ifmtu == 0)
1871 switch (af) {
1872 case AF_INET:
1873 mss = max(in_maxmtu, mss);
1874 break;
1875 #ifdef INET6
1876 case AF_INET6:
1877 mss = max(in6_maxmtu, mss);
1878 break;
1879 #endif
1880 }
1881
1882 switch (af) {
1883 case AF_INET:
1884 hdrsiz = sizeof(struct ip);
1885 break;
1886 #ifdef INET6
1887 case AF_INET6:
1888 hdrsiz = sizeof(struct ip6_hdr);
1889 break;
1890 #endif
1891 default:
1892 hdrsiz = 0;
1893 break;
1894 }
1895 hdrsiz += sizeof(struct tcphdr);
1896 if (mss > hdrsiz)
1897 mss -= hdrsiz;
1898
1899 mss = max(tcp_mssdflt, mss);
1900 return (mss);
1901 }
1902
1903 /*
1904 * Set connection variables based on the peer's advertised MSS.
1905 * We are passed the TCPCB for the actual connection. If we
1906 * are the server, we are called by the compressed state engine
1907 * when the 3-way handshake is complete. If we are the client,
1908 * we are called when we receive the SYN,ACK from the server.
1909 *
1910 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1911 * before this routine is called!
1912 */
1913 void
1914 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1915 {
1916 struct socket *so;
1917 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1918 struct rtentry *rt;
1919 #endif
1920 u_long bufsize;
1921 int mss;
1922
1923 #ifdef DIAGNOSTIC
1924 if (tp->t_inpcb && tp->t_in6pcb)
1925 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1926 #endif
1927 so = NULL;
1928 rt = NULL;
1929 #ifdef INET
1930 if (tp->t_inpcb) {
1931 so = tp->t_inpcb->inp_socket;
1932 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1933 rt = in_pcbrtentry(tp->t_inpcb);
1934 #endif
1935 }
1936 #endif
1937 #ifdef INET6
1938 if (tp->t_in6pcb) {
1939 so = tp->t_in6pcb->in6p_socket;
1940 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1941 rt = in6_pcbrtentry(tp->t_in6pcb);
1942 #endif
1943 }
1944 #endif
1945
1946 /*
1947 * As per RFC1122, use the default MSS value, unless they
1948 * sent us an offer. Do not accept offers less than 256 bytes.
1949 */
1950 mss = tcp_mssdflt;
1951 if (offer)
1952 mss = offer;
1953 mss = max(mss, 256); /* sanity */
1954 tp->t_peermss = mss;
1955 mss -= tcp_optlen(tp);
1956 #ifdef INET
1957 if (tp->t_inpcb)
1958 mss -= ip_optlen(tp->t_inpcb);
1959 #endif
1960 #ifdef INET6
1961 if (tp->t_in6pcb)
1962 mss -= ip6_optlen(tp->t_in6pcb);
1963 #endif
1964
1965 /*
1966 * If there's a pipesize, change the socket buffer to that size.
1967 * Make the socket buffer an integral number of MSS units. If
1968 * the MSS is larger than the socket buffer, artificially decrease
1969 * the MSS.
1970 */
1971 #ifdef RTV_SPIPE
1972 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1973 bufsize = rt->rt_rmx.rmx_sendpipe;
1974 else
1975 #endif
1976 {
1977 KASSERT(so != NULL);
1978 bufsize = so->so_snd.sb_hiwat;
1979 }
1980 if (bufsize < mss)
1981 mss = bufsize;
1982 else {
1983 bufsize = roundup(bufsize, mss);
1984 if (bufsize > sb_max)
1985 bufsize = sb_max;
1986 (void) sbreserve(&so->so_snd, bufsize, so);
1987 }
1988 tp->t_segsz = mss;
1989
1990 #ifdef RTV_SSTHRESH
1991 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1992 /*
1993 * There's some sort of gateway or interface buffer
1994 * limit on the path. Use this to set the slow
1995 * start threshold, but set the threshold to no less
1996 * than 2 * MSS.
1997 */
1998 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1999 }
2000 #endif
2001 }
2002
2003 /*
2004 * Processing necessary when a TCP connection is established.
2005 */
2006 void
2007 tcp_established(struct tcpcb *tp)
2008 {
2009 struct socket *so;
2010 #ifdef RTV_RPIPE
2011 struct rtentry *rt;
2012 #endif
2013 u_long bufsize;
2014
2015 #ifdef DIAGNOSTIC
2016 if (tp->t_inpcb && tp->t_in6pcb)
2017 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2018 #endif
2019 so = NULL;
2020 rt = NULL;
2021 #ifdef INET
2022 if (tp->t_inpcb) {
2023 so = tp->t_inpcb->inp_socket;
2024 #if defined(RTV_RPIPE)
2025 rt = in_pcbrtentry(tp->t_inpcb);
2026 #endif
2027 }
2028 #endif
2029 #ifdef INET6
2030 if (tp->t_in6pcb) {
2031 so = tp->t_in6pcb->in6p_socket;
2032 #if defined(RTV_RPIPE)
2033 rt = in6_pcbrtentry(tp->t_in6pcb);
2034 #endif
2035 }
2036 #endif
2037
2038 tp->t_state = TCPS_ESTABLISHED;
2039 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2040
2041 #ifdef RTV_RPIPE
2042 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2043 bufsize = rt->rt_rmx.rmx_recvpipe;
2044 else
2045 #endif
2046 {
2047 KASSERT(so != NULL);
2048 bufsize = so->so_rcv.sb_hiwat;
2049 }
2050 if (bufsize > tp->t_ourmss) {
2051 bufsize = roundup(bufsize, tp->t_ourmss);
2052 if (bufsize > sb_max)
2053 bufsize = sb_max;
2054 (void) sbreserve(&so->so_rcv, bufsize, so);
2055 }
2056 }
2057
2058 /*
2059 * Check if there's an initial rtt or rttvar. Convert from the
2060 * route-table units to scaled multiples of the slow timeout timer.
2061 * Called only during the 3-way handshake.
2062 */
2063 void
2064 tcp_rmx_rtt(struct tcpcb *tp)
2065 {
2066 #ifdef RTV_RTT
2067 struct rtentry *rt = NULL;
2068 int rtt;
2069
2070 #ifdef DIAGNOSTIC
2071 if (tp->t_inpcb && tp->t_in6pcb)
2072 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2073 #endif
2074 #ifdef INET
2075 if (tp->t_inpcb)
2076 rt = in_pcbrtentry(tp->t_inpcb);
2077 #endif
2078 #ifdef INET6
2079 if (tp->t_in6pcb)
2080 rt = in6_pcbrtentry(tp->t_in6pcb);
2081 #endif
2082 if (rt == NULL)
2083 return;
2084
2085 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2086 /*
2087 * XXX The lock bit for MTU indicates that the value
2088 * is also a minimum value; this is subject to time.
2089 */
2090 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2091 TCPT_RANGESET(tp->t_rttmin,
2092 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2093 TCPTV_MIN, TCPTV_REXMTMAX);
2094 tp->t_srtt = rtt /
2095 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2096 if (rt->rt_rmx.rmx_rttvar) {
2097 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2098 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2099 (TCP_RTTVAR_SHIFT + 2));
2100 } else {
2101 /* Default variation is +- 1 rtt */
2102 tp->t_rttvar =
2103 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2104 }
2105 TCPT_RANGESET(tp->t_rxtcur,
2106 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2107 tp->t_rttmin, TCPTV_REXMTMAX);
2108 }
2109 #endif
2110 }
2111
2112 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2113 #if NRND > 0
2114 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2115 #endif
2116
2117 /*
2118 * Get a new sequence value given a tcp control block
2119 */
2120 tcp_seq
2121 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2122 {
2123
2124 #ifdef INET
2125 if (tp->t_inpcb != NULL) {
2126 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2127 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2128 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2129 addin));
2130 }
2131 #endif
2132 #ifdef INET6
2133 if (tp->t_in6pcb != NULL) {
2134 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2135 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2136 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2137 addin));
2138 }
2139 #endif
2140 /* Not possible. */
2141 panic("tcp_new_iss");
2142 }
2143
2144 /*
2145 * This routine actually generates a new TCP initial sequence number.
2146 */
2147 tcp_seq
2148 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2149 size_t addrsz, tcp_seq addin)
2150 {
2151 tcp_seq tcp_iss;
2152
2153 #if NRND > 0
2154 static bool tcp_iss_gotten_secret;
2155
2156 /*
2157 * If we haven't been here before, initialize our cryptographic
2158 * hash secret.
2159 */
2160 if (tcp_iss_gotten_secret == false) {
2161 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2162 RND_EXTRACT_ANY);
2163 tcp_iss_gotten_secret = true;
2164 }
2165
2166 if (tcp_do_rfc1948) {
2167 MD5_CTX ctx;
2168 u_int8_t hash[16]; /* XXX MD5 knowledge */
2169
2170 /*
2171 * Compute the base value of the ISS. It is a hash
2172 * of (saddr, sport, daddr, dport, secret).
2173 */
2174 MD5Init(&ctx);
2175
2176 MD5Update(&ctx, (u_char *) laddr, addrsz);
2177 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2178
2179 MD5Update(&ctx, (u_char *) faddr, addrsz);
2180 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2181
2182 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2183
2184 MD5Final(hash, &ctx);
2185
2186 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2187
2188 /*
2189 * Now increment our "timer", and add it in to
2190 * the computed value.
2191 *
2192 * XXX Use `addin'?
2193 * XXX TCP_ISSINCR too large to use?
2194 */
2195 tcp_iss_seq += TCP_ISSINCR;
2196 #ifdef TCPISS_DEBUG
2197 printf("ISS hash 0x%08x, ", tcp_iss);
2198 #endif
2199 tcp_iss += tcp_iss_seq + addin;
2200 #ifdef TCPISS_DEBUG
2201 printf("new ISS 0x%08x\n", tcp_iss);
2202 #endif
2203 } else
2204 #endif /* NRND > 0 */
2205 {
2206 /*
2207 * Randomize.
2208 */
2209 #if NRND > 0
2210 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2211 #else
2212 tcp_iss = arc4random();
2213 #endif
2214
2215 /*
2216 * If we were asked to add some amount to a known value,
2217 * we will take a random value obtained above, mask off
2218 * the upper bits, and add in the known value. We also
2219 * add in a constant to ensure that we are at least a
2220 * certain distance from the original value.
2221 *
2222 * This is used when an old connection is in timed wait
2223 * and we have a new one coming in, for instance.
2224 */
2225 if (addin != 0) {
2226 #ifdef TCPISS_DEBUG
2227 printf("Random %08x, ", tcp_iss);
2228 #endif
2229 tcp_iss &= TCP_ISS_RANDOM_MASK;
2230 tcp_iss += addin + TCP_ISSINCR;
2231 #ifdef TCPISS_DEBUG
2232 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2233 #endif
2234 } else {
2235 tcp_iss &= TCP_ISS_RANDOM_MASK;
2236 tcp_iss += tcp_iss_seq;
2237 tcp_iss_seq += TCP_ISSINCR;
2238 #ifdef TCPISS_DEBUG
2239 printf("ISS %08x\n", tcp_iss);
2240 #endif
2241 }
2242 }
2243
2244 if (tcp_compat_42) {
2245 /*
2246 * Limit it to the positive range for really old TCP
2247 * implementations.
2248 * Just AND off the top bit instead of checking if
2249 * is set first - saves a branch 50% of the time.
2250 */
2251 tcp_iss &= 0x7fffffff; /* XXX */
2252 }
2253
2254 return (tcp_iss);
2255 }
2256
2257 #if defined(IPSEC) || defined(FAST_IPSEC)
2258 /* compute ESP/AH header size for TCP, including outer IP header. */
2259 size_t
2260 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2261 {
2262 struct inpcb *inp;
2263 size_t hdrsiz;
2264
2265 /* XXX mapped addr case (tp->t_in6pcb) */
2266 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2267 return 0;
2268 switch (tp->t_family) {
2269 case AF_INET:
2270 /* XXX: should use currect direction. */
2271 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2272 break;
2273 default:
2274 hdrsiz = 0;
2275 break;
2276 }
2277
2278 return hdrsiz;
2279 }
2280
2281 #ifdef INET6
2282 size_t
2283 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2284 {
2285 struct in6pcb *in6p;
2286 size_t hdrsiz;
2287
2288 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2289 return 0;
2290 switch (tp->t_family) {
2291 case AF_INET6:
2292 /* XXX: should use currect direction. */
2293 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2294 break;
2295 case AF_INET:
2296 /* mapped address case - tricky */
2297 default:
2298 hdrsiz = 0;
2299 break;
2300 }
2301
2302 return hdrsiz;
2303 }
2304 #endif
2305 #endif /*IPSEC*/
2306
2307 /*
2308 * Determine the length of the TCP options for this connection.
2309 *
2310 * XXX: What do we do for SACK, when we add that? Just reserve
2311 * all of the space? Otherwise we can't exactly be incrementing
2312 * cwnd by an amount that varies depending on the amount we last
2313 * had to SACK!
2314 */
2315
2316 u_int
2317 tcp_optlen(struct tcpcb *tp)
2318 {
2319 u_int optlen;
2320
2321 optlen = 0;
2322 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2323 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2324 optlen += TCPOLEN_TSTAMP_APPA;
2325
2326 #ifdef TCP_SIGNATURE
2327 if (tp->t_flags & TF_SIGNATURE)
2328 optlen += TCPOLEN_SIGNATURE + 2;
2329 #endif /* TCP_SIGNATURE */
2330
2331 return optlen;
2332 }
2333
2334 u_int
2335 tcp_hdrsz(struct tcpcb *tp)
2336 {
2337 u_int hlen;
2338
2339 switch (tp->t_family) {
2340 #ifdef INET6
2341 case AF_INET6:
2342 hlen = sizeof(struct ip6_hdr);
2343 break;
2344 #endif
2345 case AF_INET:
2346 hlen = sizeof(struct ip);
2347 break;
2348 default:
2349 hlen = 0;
2350 break;
2351 }
2352 hlen += sizeof(struct tcphdr);
2353
2354 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2355 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2356 hlen += TCPOLEN_TSTAMP_APPA;
2357 #ifdef TCP_SIGNATURE
2358 if (tp->t_flags & TF_SIGNATURE)
2359 hlen += TCPOLEN_SIGLEN;
2360 #endif
2361 return hlen;
2362 }
2363