Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.228
      1 /*	$NetBSD: tcp_subr.c,v 1.228 2008/04/24 11:38:38 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.228 2008/04/24 11:38:38 ad Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcp_private.h>
    155 #include <netinet/tcp_congctl.h>
    156 #include <netinet/tcpip.h>
    157 
    158 #ifdef IPSEC
    159 #include <netinet6/ipsec.h>
    160 #include <netkey/key.h>
    161 #endif /*IPSEC*/
    162 
    163 #ifdef FAST_IPSEC
    164 #include <netipsec/ipsec.h>
    165 #include <netipsec/xform.h>
    166 #ifdef INET6
    167 #include <netipsec/ipsec6.h>
    168 #endif
    169  #include <netipsec/key.h>
    170 #endif	/* FAST_IPSEC*/
    171 
    172 
    173 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 percpu_t *tcpstat_percpu;
    177 
    178 /* patchable/settable parameters for tcp */
    179 int 	tcp_mssdflt = TCP_MSS;
    180 int	tcp_minmss = TCP_MINMSS;
    181 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    182 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    183 #if NRND > 0
    184 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    185 #endif
    186 int	tcp_do_sack = 1;	/* selective acknowledgement */
    187 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    188 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    189 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    190 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    191 #ifndef TCP_INIT_WIN
    192 #define	TCP_INIT_WIN	0	/* initial slow start window */
    193 #endif
    194 #ifndef TCP_INIT_WIN_LOCAL
    195 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    196 #endif
    197 int	tcp_init_win = TCP_INIT_WIN;
    198 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    199 int	tcp_mss_ifmtu = 0;
    200 #ifdef TCP_COMPAT_42
    201 int	tcp_compat_42 = 1;
    202 #else
    203 int	tcp_compat_42 = 0;
    204 #endif
    205 int	tcp_rst_ppslim = 100;	/* 100pps */
    206 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    207 int	tcp_do_loopback_cksum = 0;
    208 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    209 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    210 int	tcp_sack_tp_maxholes = 32;
    211 int	tcp_sack_globalmaxholes = 1024;
    212 int	tcp_sack_globalholes = 0;
    213 int	tcp_ecn_maxretries = 1;
    214 
    215 /* tcb hash */
    216 #ifndef TCBHASHSIZE
    217 #define	TCBHASHSIZE	128
    218 #endif
    219 int	tcbhashsize = TCBHASHSIZE;
    220 
    221 /* syn hash parameters */
    222 #define	TCP_SYN_HASH_SIZE	293
    223 #define	TCP_SYN_BUCKET_SIZE	35
    224 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    225 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    226 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    227 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    228 
    229 int	tcp_freeq(struct tcpcb *);
    230 
    231 #ifdef INET
    232 void	tcp_mtudisc_callback(struct in_addr);
    233 #endif
    234 #ifdef INET6
    235 void	tcp6_mtudisc_callback(struct in6_addr *);
    236 #endif
    237 
    238 #ifdef INET6
    239 void	tcp6_mtudisc(struct in6pcb *, int);
    240 #endif
    241 
    242 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL,
    243     IPL_SOFTNET);
    244 
    245 #ifdef TCP_CSUM_COUNTERS
    246 #include <sys/device.h>
    247 
    248 #if defined(INET)
    249 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    250     NULL, "tcp", "hwcsum bad");
    251 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    252     NULL, "tcp", "hwcsum ok");
    253 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    254     NULL, "tcp", "hwcsum data");
    255 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    256     NULL, "tcp", "swcsum");
    257 
    258 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    259 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    260 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    261 EVCNT_ATTACH_STATIC(tcp_swcsum);
    262 #endif /* defined(INET) */
    263 
    264 #if defined(INET6)
    265 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp6", "hwcsum bad");
    267 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp6", "hwcsum ok");
    269 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     NULL, "tcp6", "hwcsum data");
    271 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    272     NULL, "tcp6", "swcsum");
    273 
    274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    275 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    276 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    277 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    278 #endif /* defined(INET6) */
    279 #endif /* TCP_CSUM_COUNTERS */
    280 
    281 
    282 #ifdef TCP_OUTPUT_COUNTERS
    283 #include <sys/device.h>
    284 
    285 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     NULL, "tcp", "output big header");
    287 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     NULL, "tcp", "output predict hit");
    289 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     NULL, "tcp", "output predict miss");
    291 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     NULL, "tcp", "output copy small");
    293 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    294     NULL, "tcp", "output copy big");
    295 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    296     NULL, "tcp", "output reference big");
    297 
    298 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    299 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    300 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    301 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    302 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    303 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    304 
    305 #endif /* TCP_OUTPUT_COUNTERS */
    306 
    307 #ifdef TCP_REASS_COUNTERS
    308 #include <sys/device.h>
    309 
    310 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    311     NULL, "tcp_reass", "calls");
    312 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    313     &tcp_reass_, "tcp_reass", "insert into empty queue");
    314 struct evcnt tcp_reass_iteration[8] = {
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    319     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    320     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    322     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    323 };
    324 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    325     &tcp_reass_, "tcp_reass", "prepend to first");
    326 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    327     &tcp_reass_, "tcp_reass", "prepend");
    328 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    329     &tcp_reass_, "tcp_reass", "insert");
    330 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    331     &tcp_reass_, "tcp_reass", "insert at tail");
    332 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    333     &tcp_reass_, "tcp_reass", "append");
    334 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    335     &tcp_reass_, "tcp_reass", "append to tail fragment");
    336 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    337     &tcp_reass_, "tcp_reass", "overlap at end");
    338 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    339     &tcp_reass_, "tcp_reass", "overlap at start");
    340 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    341     &tcp_reass_, "tcp_reass", "duplicate segment");
    342 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    343     &tcp_reass_, "tcp_reass", "duplicate fragment");
    344 
    345 EVCNT_ATTACH_STATIC(tcp_reass_);
    346 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    353 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    354 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    355 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    356 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    357 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    358 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    359 EVCNT_ATTACH_STATIC(tcp_reass_append);
    360 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    361 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    362 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    363 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    364 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    365 
    366 #endif /* TCP_REASS_COUNTERS */
    367 
    368 #ifdef MBUFTRACE
    369 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    370 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    371 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    372 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
    373 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
    374 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
    375 #endif
    376 
    377 /*
    378  * Tcp initialization
    379  */
    380 void
    381 tcp_init(void)
    382 {
    383 	int hlen;
    384 
    385 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    386 
    387 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    388 #ifdef INET6
    389 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    390 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    391 #endif
    392 	if (max_protohdr < hlen)
    393 		max_protohdr = hlen;
    394 	if (max_linkhdr + hlen > MHLEN)
    395 		panic("tcp_init");
    396 
    397 #ifdef INET
    398 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    399 #endif
    400 #ifdef INET6
    401 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    402 #endif
    403 
    404 	/* Initialize timer state. */
    405 	tcp_timer_init();
    406 
    407 	/* Initialize the compressed state engine. */
    408 	syn_cache_init();
    409 
    410 	/* Initialize the congestion control algorithms. */
    411 	tcp_congctl_init();
    412 
    413 	/* Initialize the TCPCB template. */
    414 	tcp_tcpcb_template();
    415 
    416 	MOWNER_ATTACH(&tcp_tx_mowner);
    417 	MOWNER_ATTACH(&tcp_rx_mowner);
    418 	MOWNER_ATTACH(&tcp_reass_mowner);
    419 	MOWNER_ATTACH(&tcp_sock_mowner);
    420 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
    421 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
    422 	MOWNER_ATTACH(&tcp_mowner);
    423 }
    424 
    425 /*
    426  * Create template to be used to send tcp packets on a connection.
    427  * Call after host entry created, allocates an mbuf and fills
    428  * in a skeletal tcp/ip header, minimizing the amount of work
    429  * necessary when the connection is used.
    430  */
    431 struct mbuf *
    432 tcp_template(struct tcpcb *tp)
    433 {
    434 	struct inpcb *inp = tp->t_inpcb;
    435 #ifdef INET6
    436 	struct in6pcb *in6p = tp->t_in6pcb;
    437 #endif
    438 	struct tcphdr *n;
    439 	struct mbuf *m;
    440 	int hlen;
    441 
    442 	switch (tp->t_family) {
    443 	case AF_INET:
    444 		hlen = sizeof(struct ip);
    445 		if (inp)
    446 			break;
    447 #ifdef INET6
    448 		if (in6p) {
    449 			/* mapped addr case */
    450 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    451 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    452 				break;
    453 		}
    454 #endif
    455 		return NULL;	/*EINVAL*/
    456 #ifdef INET6
    457 	case AF_INET6:
    458 		hlen = sizeof(struct ip6_hdr);
    459 		if (in6p) {
    460 			/* more sainty check? */
    461 			break;
    462 		}
    463 		return NULL;	/*EINVAL*/
    464 #endif
    465 	default:
    466 		hlen = 0;	/*pacify gcc*/
    467 		return NULL;	/*EAFNOSUPPORT*/
    468 	}
    469 #ifdef DIAGNOSTIC
    470 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    471 		panic("mclbytes too small for t_template");
    472 #endif
    473 	m = tp->t_template;
    474 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    475 		;
    476 	else {
    477 		if (m)
    478 			m_freem(m);
    479 		m = tp->t_template = NULL;
    480 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    481 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    482 			MCLGET(m, M_DONTWAIT);
    483 			if ((m->m_flags & M_EXT) == 0) {
    484 				m_free(m);
    485 				m = NULL;
    486 			}
    487 		}
    488 		if (m == NULL)
    489 			return NULL;
    490 		MCLAIM(m, &tcp_mowner);
    491 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    492 	}
    493 
    494 	bzero(mtod(m, void *), m->m_len);
    495 
    496 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
    497 
    498 	switch (tp->t_family) {
    499 	case AF_INET:
    500 	    {
    501 		struct ipovly *ipov;
    502 		mtod(m, struct ip *)->ip_v = 4;
    503 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    504 		ipov = mtod(m, struct ipovly *);
    505 		ipov->ih_pr = IPPROTO_TCP;
    506 		ipov->ih_len = htons(sizeof(struct tcphdr));
    507 		if (inp) {
    508 			ipov->ih_src = inp->inp_laddr;
    509 			ipov->ih_dst = inp->inp_faddr;
    510 		}
    511 #ifdef INET6
    512 		else if (in6p) {
    513 			/* mapped addr case */
    514 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    515 				sizeof(ipov->ih_src));
    516 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    517 				sizeof(ipov->ih_dst));
    518 		}
    519 #endif
    520 		/*
    521 		 * Compute the pseudo-header portion of the checksum
    522 		 * now.  We incrementally add in the TCP option and
    523 		 * payload lengths later, and then compute the TCP
    524 		 * checksum right before the packet is sent off onto
    525 		 * the wire.
    526 		 */
    527 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    528 		    ipov->ih_dst.s_addr,
    529 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    530 		break;
    531 	    }
    532 #ifdef INET6
    533 	case AF_INET6:
    534 	    {
    535 		struct ip6_hdr *ip6;
    536 		mtod(m, struct ip *)->ip_v = 6;
    537 		ip6 = mtod(m, struct ip6_hdr *);
    538 		ip6->ip6_nxt = IPPROTO_TCP;
    539 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    540 		ip6->ip6_src = in6p->in6p_laddr;
    541 		ip6->ip6_dst = in6p->in6p_faddr;
    542 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    543 		if (ip6_auto_flowlabel) {
    544 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    545 			ip6->ip6_flow |=
    546 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    547 		}
    548 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    549 		ip6->ip6_vfc |= IPV6_VERSION;
    550 
    551 		/*
    552 		 * Compute the pseudo-header portion of the checksum
    553 		 * now.  We incrementally add in the TCP option and
    554 		 * payload lengths later, and then compute the TCP
    555 		 * checksum right before the packet is sent off onto
    556 		 * the wire.
    557 		 */
    558 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    559 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    560 		    htonl(IPPROTO_TCP));
    561 		break;
    562 	    }
    563 #endif
    564 	}
    565 	if (inp) {
    566 		n->th_sport = inp->inp_lport;
    567 		n->th_dport = inp->inp_fport;
    568 	}
    569 #ifdef INET6
    570 	else if (in6p) {
    571 		n->th_sport = in6p->in6p_lport;
    572 		n->th_dport = in6p->in6p_fport;
    573 	}
    574 #endif
    575 	n->th_seq = 0;
    576 	n->th_ack = 0;
    577 	n->th_x2 = 0;
    578 	n->th_off = 5;
    579 	n->th_flags = 0;
    580 	n->th_win = 0;
    581 	n->th_urp = 0;
    582 	return (m);
    583 }
    584 
    585 /*
    586  * Send a single message to the TCP at address specified by
    587  * the given TCP/IP header.  If m == 0, then we make a copy
    588  * of the tcpiphdr at ti and send directly to the addressed host.
    589  * This is used to force keep alive messages out using the TCP
    590  * template for a connection tp->t_template.  If flags are given
    591  * then we send a message back to the TCP which originated the
    592  * segment ti, and discard the mbuf containing it and any other
    593  * attached mbufs.
    594  *
    595  * In any case the ack and sequence number of the transmitted
    596  * segment are as specified by the parameters.
    597  */
    598 int
    599 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    600     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    601 {
    602 #ifdef INET6
    603 	struct rtentry *rt;
    604 #endif
    605 	struct route *ro;
    606 	int error, tlen, win = 0;
    607 	int hlen;
    608 	struct ip *ip;
    609 #ifdef INET6
    610 	struct ip6_hdr *ip6;
    611 #endif
    612 	int family;	/* family on packet, not inpcb/in6pcb! */
    613 	struct tcphdr *th;
    614 	struct socket *so;
    615 
    616 	if (tp != NULL && (flags & TH_RST) == 0) {
    617 #ifdef DIAGNOSTIC
    618 		if (tp->t_inpcb && tp->t_in6pcb)
    619 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    620 #endif
    621 #ifdef INET
    622 		if (tp->t_inpcb)
    623 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    624 #endif
    625 #ifdef INET6
    626 		if (tp->t_in6pcb)
    627 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    628 #endif
    629 	}
    630 
    631 	th = NULL;	/* Quell uninitialized warning */
    632 	ip = NULL;
    633 #ifdef INET6
    634 	ip6 = NULL;
    635 #endif
    636 	if (m == 0) {
    637 		if (!template)
    638 			return EINVAL;
    639 
    640 		/* get family information from template */
    641 		switch (mtod(template, struct ip *)->ip_v) {
    642 		case 4:
    643 			family = AF_INET;
    644 			hlen = sizeof(struct ip);
    645 			break;
    646 #ifdef INET6
    647 		case 6:
    648 			family = AF_INET6;
    649 			hlen = sizeof(struct ip6_hdr);
    650 			break;
    651 #endif
    652 		default:
    653 			return EAFNOSUPPORT;
    654 		}
    655 
    656 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    657 		if (m) {
    658 			MCLAIM(m, &tcp_tx_mowner);
    659 			MCLGET(m, M_DONTWAIT);
    660 			if ((m->m_flags & M_EXT) == 0) {
    661 				m_free(m);
    662 				m = NULL;
    663 			}
    664 		}
    665 		if (m == NULL)
    666 			return (ENOBUFS);
    667 
    668 		if (tcp_compat_42)
    669 			tlen = 1;
    670 		else
    671 			tlen = 0;
    672 
    673 		m->m_data += max_linkhdr;
    674 		bcopy(mtod(template, void *), mtod(m, void *),
    675 			template->m_len);
    676 		switch (family) {
    677 		case AF_INET:
    678 			ip = mtod(m, struct ip *);
    679 			th = (struct tcphdr *)(ip + 1);
    680 			break;
    681 #ifdef INET6
    682 		case AF_INET6:
    683 			ip6 = mtod(m, struct ip6_hdr *);
    684 			th = (struct tcphdr *)(ip6 + 1);
    685 			break;
    686 #endif
    687 #if 0
    688 		default:
    689 			/* noone will visit here */
    690 			m_freem(m);
    691 			return EAFNOSUPPORT;
    692 #endif
    693 		}
    694 		flags = TH_ACK;
    695 	} else {
    696 
    697 		if ((m->m_flags & M_PKTHDR) == 0) {
    698 #if 0
    699 			printf("non PKTHDR to tcp_respond\n");
    700 #endif
    701 			m_freem(m);
    702 			return EINVAL;
    703 		}
    704 #ifdef DIAGNOSTIC
    705 		if (!th0)
    706 			panic("th0 == NULL in tcp_respond");
    707 #endif
    708 
    709 		/* get family information from m */
    710 		switch (mtod(m, struct ip *)->ip_v) {
    711 		case 4:
    712 			family = AF_INET;
    713 			hlen = sizeof(struct ip);
    714 			ip = mtod(m, struct ip *);
    715 			break;
    716 #ifdef INET6
    717 		case 6:
    718 			family = AF_INET6;
    719 			hlen = sizeof(struct ip6_hdr);
    720 			ip6 = mtod(m, struct ip6_hdr *);
    721 			break;
    722 #endif
    723 		default:
    724 			m_freem(m);
    725 			return EAFNOSUPPORT;
    726 		}
    727 		/* clear h/w csum flags inherited from rx packet */
    728 		m->m_pkthdr.csum_flags = 0;
    729 
    730 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    731 			tlen = sizeof(*th0);
    732 		else
    733 			tlen = th0->th_off << 2;
    734 
    735 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    736 		    mtod(m, char *) + hlen == (char *)th0) {
    737 			m->m_len = hlen + tlen;
    738 			m_freem(m->m_next);
    739 			m->m_next = NULL;
    740 		} else {
    741 			struct mbuf *n;
    742 
    743 #ifdef DIAGNOSTIC
    744 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    745 				m_freem(m);
    746 				return EMSGSIZE;
    747 			}
    748 #endif
    749 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    750 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    751 				MCLGET(n, M_DONTWAIT);
    752 				if ((n->m_flags & M_EXT) == 0) {
    753 					m_freem(n);
    754 					n = NULL;
    755 				}
    756 			}
    757 			if (!n) {
    758 				m_freem(m);
    759 				return ENOBUFS;
    760 			}
    761 
    762 			MCLAIM(n, &tcp_tx_mowner);
    763 			n->m_data += max_linkhdr;
    764 			n->m_len = hlen + tlen;
    765 			m_copyback(n, 0, hlen, mtod(m, void *));
    766 			m_copyback(n, hlen, tlen, (void *)th0);
    767 
    768 			m_freem(m);
    769 			m = n;
    770 			n = NULL;
    771 		}
    772 
    773 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    774 		switch (family) {
    775 		case AF_INET:
    776 			ip = mtod(m, struct ip *);
    777 			th = (struct tcphdr *)(ip + 1);
    778 			ip->ip_p = IPPROTO_TCP;
    779 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    780 			ip->ip_p = IPPROTO_TCP;
    781 			break;
    782 #ifdef INET6
    783 		case AF_INET6:
    784 			ip6 = mtod(m, struct ip6_hdr *);
    785 			th = (struct tcphdr *)(ip6 + 1);
    786 			ip6->ip6_nxt = IPPROTO_TCP;
    787 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    788 			ip6->ip6_nxt = IPPROTO_TCP;
    789 			break;
    790 #endif
    791 #if 0
    792 		default:
    793 			/* noone will visit here */
    794 			m_freem(m);
    795 			return EAFNOSUPPORT;
    796 #endif
    797 		}
    798 		xchg(th->th_dport, th->th_sport, u_int16_t);
    799 #undef xchg
    800 		tlen = 0;	/*be friendly with the following code*/
    801 	}
    802 	th->th_seq = htonl(seq);
    803 	th->th_ack = htonl(ack);
    804 	th->th_x2 = 0;
    805 	if ((flags & TH_SYN) == 0) {
    806 		if (tp)
    807 			win >>= tp->rcv_scale;
    808 		if (win > TCP_MAXWIN)
    809 			win = TCP_MAXWIN;
    810 		th->th_win = htons((u_int16_t)win);
    811 		th->th_off = sizeof (struct tcphdr) >> 2;
    812 		tlen += sizeof(*th);
    813 	} else
    814 		tlen += th->th_off << 2;
    815 	m->m_len = hlen + tlen;
    816 	m->m_pkthdr.len = hlen + tlen;
    817 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    818 	th->th_flags = flags;
    819 	th->th_urp = 0;
    820 
    821 	switch (family) {
    822 #ifdef INET
    823 	case AF_INET:
    824 	    {
    825 		struct ipovly *ipov = (struct ipovly *)ip;
    826 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    827 		ipov->ih_len = htons((u_int16_t)tlen);
    828 
    829 		th->th_sum = 0;
    830 		th->th_sum = in_cksum(m, hlen + tlen);
    831 		ip->ip_len = htons(hlen + tlen);
    832 		ip->ip_ttl = ip_defttl;
    833 		break;
    834 	    }
    835 #endif
    836 #ifdef INET6
    837 	case AF_INET6:
    838 	    {
    839 		th->th_sum = 0;
    840 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    841 				tlen);
    842 		ip6->ip6_plen = htons(tlen);
    843 		if (tp && tp->t_in6pcb) {
    844 			struct ifnet *oifp;
    845 			ro = &tp->t_in6pcb->in6p_route;
    846 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
    847 			                                           : NULL;
    848 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    849 		} else
    850 			ip6->ip6_hlim = ip6_defhlim;
    851 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    852 		if (ip6_auto_flowlabel) {
    853 			ip6->ip6_flow |=
    854 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    855 		}
    856 		break;
    857 	    }
    858 #endif
    859 	}
    860 
    861 	if (tp && tp->t_inpcb)
    862 		so = tp->t_inpcb->inp_socket;
    863 #ifdef INET6
    864 	else if (tp && tp->t_in6pcb)
    865 		so = tp->t_in6pcb->in6p_socket;
    866 #endif
    867 	else
    868 		so = NULL;
    869 
    870 	if (tp != NULL && tp->t_inpcb != NULL) {
    871 		ro = &tp->t_inpcb->inp_route;
    872 #ifdef DIAGNOSTIC
    873 		if (family != AF_INET)
    874 			panic("tcp_respond: address family mismatch");
    875 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    876 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    877 			    ntohl(ip->ip_dst.s_addr),
    878 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    879 		}
    880 #endif
    881 	}
    882 #ifdef INET6
    883 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    884 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    885 #ifdef DIAGNOSTIC
    886 		if (family == AF_INET) {
    887 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    888 				panic("tcp_respond: not mapped addr");
    889 			if (bcmp(&ip->ip_dst,
    890 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    891 			    sizeof(ip->ip_dst)) != 0) {
    892 				panic("tcp_respond: ip_dst != in6p_faddr");
    893 			}
    894 		} else if (family == AF_INET6) {
    895 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    896 			    &tp->t_in6pcb->in6p_faddr))
    897 				panic("tcp_respond: ip6_dst != in6p_faddr");
    898 		} else
    899 			panic("tcp_respond: address family mismatch");
    900 #endif
    901 	}
    902 #endif
    903 	else
    904 		ro = NULL;
    905 
    906 	switch (family) {
    907 #ifdef INET
    908 	case AF_INET:
    909 		error = ip_output(m, NULL, ro,
    910 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    911 		    (struct ip_moptions *)0, so);
    912 		break;
    913 #endif
    914 #ifdef INET6
    915 	case AF_INET6:
    916 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
    917 		break;
    918 #endif
    919 	default:
    920 		error = EAFNOSUPPORT;
    921 		break;
    922 	}
    923 
    924 	return (error);
    925 }
    926 
    927 /*
    928  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    929  * a bunch of members individually, we maintain this template for the
    930  * static and mostly-static components of the TCPCB, and copy it into
    931  * the new TCPCB instead.
    932  */
    933 static struct tcpcb tcpcb_template = {
    934 	.t_srtt = TCPTV_SRTTBASE,
    935 	.t_rttmin = TCPTV_MIN,
    936 
    937 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    938 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    939 	.snd_numholes = 0,
    940 
    941 	.t_partialacks = -1,
    942 	.t_bytes_acked = 0,
    943 };
    944 
    945 /*
    946  * Updates the TCPCB template whenever a parameter that would affect
    947  * the template is changed.
    948  */
    949 void
    950 tcp_tcpcb_template(void)
    951 {
    952 	struct tcpcb *tp = &tcpcb_template;
    953 	int flags;
    954 
    955 	tp->t_peermss = tcp_mssdflt;
    956 	tp->t_ourmss = tcp_mssdflt;
    957 	tp->t_segsz = tcp_mssdflt;
    958 
    959 	flags = 0;
    960 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    961 		flags |= TF_REQ_SCALE;
    962 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    963 		flags |= TF_REQ_TSTMP;
    964 	tp->t_flags = flags;
    965 
    966 	/*
    967 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    968 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    969 	 * reasonable initial retransmit time.
    970 	 */
    971 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    972 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    973 	    TCPTV_MIN, TCPTV_REXMTMAX);
    974 
    975 	/* Keep Alive */
    976 	tp->t_keepinit = tcp_keepinit;
    977 	tp->t_keepidle = tcp_keepidle;
    978 	tp->t_keepintvl = tcp_keepintvl;
    979 	tp->t_keepcnt = tcp_keepcnt;
    980 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
    981 }
    982 
    983 /*
    984  * Create a new TCP control block, making an
    985  * empty reassembly queue and hooking it to the argument
    986  * protocol control block.
    987  */
    988 /* family selects inpcb, or in6pcb */
    989 struct tcpcb *
    990 tcp_newtcpcb(int family, void *aux)
    991 {
    992 #ifdef INET6
    993 	struct rtentry *rt;
    994 #endif
    995 	struct tcpcb *tp;
    996 	int i;
    997 
    998 	/* XXX Consider using a pool_cache for speed. */
    999 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
   1000 	if (tp == NULL)
   1001 		return (NULL);
   1002 	memcpy(tp, &tcpcb_template, sizeof(*tp));
   1003 	TAILQ_INIT(&tp->segq);
   1004 	TAILQ_INIT(&tp->timeq);
   1005 	tp->t_family = family;		/* may be overridden later on */
   1006 	TAILQ_INIT(&tp->snd_holes);
   1007 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
   1008 
   1009 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
   1010 	for (i = 0; i < TCPT_NTIMERS; i++) {
   1011 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
   1012 		TCP_TIMER_INIT(tp, i);
   1013 	}
   1014 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
   1015 
   1016 	switch (family) {
   1017 	case AF_INET:
   1018 	    {
   1019 		struct inpcb *inp = (struct inpcb *)aux;
   1020 
   1021 		inp->inp_ip.ip_ttl = ip_defttl;
   1022 		inp->inp_ppcb = (void *)tp;
   1023 
   1024 		tp->t_inpcb = inp;
   1025 		tp->t_mtudisc = ip_mtudisc;
   1026 		break;
   1027 	    }
   1028 #ifdef INET6
   1029 	case AF_INET6:
   1030 	    {
   1031 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1032 
   1033 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1034 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
   1035 			    ? rt->rt_ifp
   1036 			    : NULL);
   1037 		in6p->in6p_ppcb = (void *)tp;
   1038 
   1039 		tp->t_in6pcb = in6p;
   1040 		/* for IPv6, always try to run path MTU discovery */
   1041 		tp->t_mtudisc = 1;
   1042 		break;
   1043 	    }
   1044 #endif /* INET6 */
   1045 	default:
   1046 		for (i = 0; i < TCPT_NTIMERS; i++)
   1047 			callout_destroy(&tp->t_timer[i]);
   1048 		callout_destroy(&tp->t_delack_ch);
   1049 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1050 		return (NULL);
   1051 	}
   1052 
   1053 	/*
   1054 	 * Initialize our timebase.  When we send timestamps, we take
   1055 	 * the delta from tcp_now -- this means each connection always
   1056 	 * gets a timebase of 1, which makes it, among other things,
   1057 	 * more difficult to determine how long a system has been up,
   1058 	 * and thus how many TCP sequence increments have occurred.
   1059 	 *
   1060 	 * We start with 1, because 0 doesn't work with linux, which
   1061 	 * considers timestamp 0 in a SYN packet as a bug and disables
   1062 	 * timestamps.
   1063 	 */
   1064 	tp->ts_timebase = tcp_now - 1;
   1065 
   1066 	tcp_congctl_select(tp, tcp_congctl_global_name);
   1067 
   1068 	return (tp);
   1069 }
   1070 
   1071 /*
   1072  * Drop a TCP connection, reporting
   1073  * the specified error.  If connection is synchronized,
   1074  * then send a RST to peer.
   1075  */
   1076 struct tcpcb *
   1077 tcp_drop(struct tcpcb *tp, int errno)
   1078 {
   1079 	struct socket *so = NULL;
   1080 
   1081 #ifdef DIAGNOSTIC
   1082 	if (tp->t_inpcb && tp->t_in6pcb)
   1083 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1084 #endif
   1085 #ifdef INET
   1086 	if (tp->t_inpcb)
   1087 		so = tp->t_inpcb->inp_socket;
   1088 #endif
   1089 #ifdef INET6
   1090 	if (tp->t_in6pcb)
   1091 		so = tp->t_in6pcb->in6p_socket;
   1092 #endif
   1093 	if (!so)
   1094 		return NULL;
   1095 
   1096 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1097 		tp->t_state = TCPS_CLOSED;
   1098 		(void) tcp_output(tp);
   1099 		TCP_STATINC(TCP_STAT_DROPS);
   1100 	} else
   1101 		TCP_STATINC(TCP_STAT_CONNDROPS);
   1102 	if (errno == ETIMEDOUT && tp->t_softerror)
   1103 		errno = tp->t_softerror;
   1104 	so->so_error = errno;
   1105 	return (tcp_close(tp));
   1106 }
   1107 
   1108 /*
   1109  * Close a TCP control block:
   1110  *	discard all space held by the tcp
   1111  *	discard internet protocol block
   1112  *	wake up any sleepers
   1113  */
   1114 struct tcpcb *
   1115 tcp_close(struct tcpcb *tp)
   1116 {
   1117 	struct inpcb *inp;
   1118 #ifdef INET6
   1119 	struct in6pcb *in6p;
   1120 #endif
   1121 	struct socket *so;
   1122 #ifdef RTV_RTT
   1123 	struct rtentry *rt;
   1124 #endif
   1125 	struct route *ro;
   1126 	int j;
   1127 
   1128 	inp = tp->t_inpcb;
   1129 #ifdef INET6
   1130 	in6p = tp->t_in6pcb;
   1131 #endif
   1132 	so = NULL;
   1133 	ro = NULL;
   1134 	if (inp) {
   1135 		so = inp->inp_socket;
   1136 		ro = &inp->inp_route;
   1137 	}
   1138 #ifdef INET6
   1139 	else if (in6p) {
   1140 		so = in6p->in6p_socket;
   1141 		ro = (struct route *)&in6p->in6p_route;
   1142 	}
   1143 #endif
   1144 
   1145 #ifdef RTV_RTT
   1146 	/*
   1147 	 * If we sent enough data to get some meaningful characteristics,
   1148 	 * save them in the routing entry.  'Enough' is arbitrarily
   1149 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1150 	 * give us 16 rtt samples assuming we only get one sample per
   1151 	 * window (the usual case on a long haul net).  16 samples is
   1152 	 * enough for the srtt filter to converge to within 5% of the correct
   1153 	 * value; fewer samples and we could save a very bogus rtt.
   1154 	 *
   1155 	 * Don't update the default route's characteristics and don't
   1156 	 * update anything that the user "locked".
   1157 	 */
   1158 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1159 	    ro && (rt = rtcache_validate(ro)) != NULL &&
   1160 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
   1161 		u_long i = 0;
   1162 
   1163 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1164 			i = tp->t_srtt *
   1165 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1166 			if (rt->rt_rmx.rmx_rtt && i)
   1167 				/*
   1168 				 * filter this update to half the old & half
   1169 				 * the new values, converting scale.
   1170 				 * See route.h and tcp_var.h for a
   1171 				 * description of the scaling constants.
   1172 				 */
   1173 				rt->rt_rmx.rmx_rtt =
   1174 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1175 			else
   1176 				rt->rt_rmx.rmx_rtt = i;
   1177 		}
   1178 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1179 			i = tp->t_rttvar *
   1180 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1181 			if (rt->rt_rmx.rmx_rttvar && i)
   1182 				rt->rt_rmx.rmx_rttvar =
   1183 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1184 			else
   1185 				rt->rt_rmx.rmx_rttvar = i;
   1186 		}
   1187 		/*
   1188 		 * update the pipelimit (ssthresh) if it has been updated
   1189 		 * already or if a pipesize was specified & the threshhold
   1190 		 * got below half the pipesize.  I.e., wait for bad news
   1191 		 * before we start updating, then update on both good
   1192 		 * and bad news.
   1193 		 */
   1194 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1195 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1196 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1197 			/*
   1198 			 * convert the limit from user data bytes to
   1199 			 * packets then to packet data bytes.
   1200 			 */
   1201 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1202 			if (i < 2)
   1203 				i = 2;
   1204 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1205 			if (rt->rt_rmx.rmx_ssthresh)
   1206 				rt->rt_rmx.rmx_ssthresh =
   1207 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1208 			else
   1209 				rt->rt_rmx.rmx_ssthresh = i;
   1210 		}
   1211 	}
   1212 #endif /* RTV_RTT */
   1213 	/* free the reassembly queue, if any */
   1214 	TCP_REASS_LOCK(tp);
   1215 	(void) tcp_freeq(tp);
   1216 	TCP_REASS_UNLOCK(tp);
   1217 
   1218 	/* free the SACK holes list. */
   1219 	tcp_free_sackholes(tp);
   1220 
   1221 	tcp_congctl_release(tp);
   1222 
   1223 	tcp_canceltimers(tp);
   1224 	TCP_CLEAR_DELACK(tp);
   1225 	syn_cache_cleanup(tp);
   1226 
   1227 	if (tp->t_template) {
   1228 		m_free(tp->t_template);
   1229 		tp->t_template = NULL;
   1230 	}
   1231 	tp->t_flags |= TF_DEAD;
   1232 	for (j = 0; j < TCPT_NTIMERS; j++) {
   1233 		callout_halt(&tp->t_timer[j], softnet_lock);
   1234 		callout_destroy(&tp->t_timer[j]);
   1235 	}
   1236 	callout_halt(&tp->t_delack_ch, softnet_lock);
   1237 	callout_destroy(&tp->t_delack_ch);
   1238 	pool_put(&tcpcb_pool, tp);
   1239 
   1240 	if (inp) {
   1241 		inp->inp_ppcb = 0;
   1242 		soisdisconnected(so);
   1243 		in_pcbdetach(inp);
   1244 	}
   1245 #ifdef INET6
   1246 	else if (in6p) {
   1247 		in6p->in6p_ppcb = 0;
   1248 		soisdisconnected(so);
   1249 		in6_pcbdetach(in6p);
   1250 	}
   1251 #endif
   1252 	TCP_STATINC(TCP_STAT_CLOSED);
   1253 	return ((struct tcpcb *)0);
   1254 }
   1255 
   1256 int
   1257 tcp_freeq(struct tcpcb *tp)
   1258 {
   1259 	struct ipqent *qe;
   1260 	int rv = 0;
   1261 #ifdef TCPREASS_DEBUG
   1262 	int i = 0;
   1263 #endif
   1264 
   1265 	TCP_REASS_LOCK_CHECK(tp);
   1266 
   1267 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1268 #ifdef TCPREASS_DEBUG
   1269 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1270 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1271 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1272 #endif
   1273 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1274 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1275 		m_freem(qe->ipqe_m);
   1276 		tcpipqent_free(qe);
   1277 		rv = 1;
   1278 	}
   1279 	tp->t_segqlen = 0;
   1280 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1281 	return (rv);
   1282 }
   1283 
   1284 /*
   1285  * Protocol drain routine.  Called when memory is in short supply.
   1286  */
   1287 void
   1288 tcp_drain(void)
   1289 {
   1290 	struct inpcb_hdr *inph;
   1291 	struct tcpcb *tp;
   1292 
   1293 	mutex_enter(softnet_lock);
   1294 	KERNEL_LOCK(1, NULL);
   1295 
   1296 	/*
   1297 	 * Free the sequence queue of all TCP connections.
   1298 	 */
   1299 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1300 		switch (inph->inph_af) {
   1301 		case AF_INET:
   1302 			tp = intotcpcb((struct inpcb *)inph);
   1303 			break;
   1304 #ifdef INET6
   1305 		case AF_INET6:
   1306 			tp = in6totcpcb((struct in6pcb *)inph);
   1307 			break;
   1308 #endif
   1309 		default:
   1310 			tp = NULL;
   1311 			break;
   1312 		}
   1313 		if (tp != NULL) {
   1314 			/*
   1315 			 * We may be called from a device's interrupt
   1316 			 * context.  If the tcpcb is already busy,
   1317 			 * just bail out now.
   1318 			 */
   1319 			if (tcp_reass_lock_try(tp) == 0)
   1320 				continue;
   1321 			if (tcp_freeq(tp))
   1322 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
   1323 			TCP_REASS_UNLOCK(tp);
   1324 		}
   1325 	}
   1326 
   1327 	KERNEL_UNLOCK_ONE(NULL);
   1328 	mutex_exit(softnet_lock);
   1329 }
   1330 
   1331 /*
   1332  * Notify a tcp user of an asynchronous error;
   1333  * store error as soft error, but wake up user
   1334  * (for now, won't do anything until can select for soft error).
   1335  */
   1336 void
   1337 tcp_notify(struct inpcb *inp, int error)
   1338 {
   1339 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1340 	struct socket *so = inp->inp_socket;
   1341 
   1342 	/*
   1343 	 * Ignore some errors if we are hooked up.
   1344 	 * If connection hasn't completed, has retransmitted several times,
   1345 	 * and receives a second error, give up now.  This is better
   1346 	 * than waiting a long time to establish a connection that
   1347 	 * can never complete.
   1348 	 */
   1349 	if (tp->t_state == TCPS_ESTABLISHED &&
   1350 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1351 	      error == EHOSTDOWN)) {
   1352 		return;
   1353 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1354 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1355 		so->so_error = error;
   1356 	else
   1357 		tp->t_softerror = error;
   1358 	cv_broadcast(&so->so_cv);
   1359 	sorwakeup(so);
   1360 	sowwakeup(so);
   1361 }
   1362 
   1363 #ifdef INET6
   1364 void
   1365 tcp6_notify(struct in6pcb *in6p, int error)
   1366 {
   1367 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1368 	struct socket *so = in6p->in6p_socket;
   1369 
   1370 	/*
   1371 	 * Ignore some errors if we are hooked up.
   1372 	 * If connection hasn't completed, has retransmitted several times,
   1373 	 * and receives a second error, give up now.  This is better
   1374 	 * than waiting a long time to establish a connection that
   1375 	 * can never complete.
   1376 	 */
   1377 	if (tp->t_state == TCPS_ESTABLISHED &&
   1378 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1379 	      error == EHOSTDOWN)) {
   1380 		return;
   1381 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1382 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1383 		so->so_error = error;
   1384 	else
   1385 		tp->t_softerror = error;
   1386 	cv_broadcast(&so->so_cv);
   1387 	sorwakeup(so);
   1388 	sowwakeup(so);
   1389 }
   1390 #endif
   1391 
   1392 #ifdef INET6
   1393 void *
   1394 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
   1395 {
   1396 	struct tcphdr th;
   1397 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1398 	int nmatch;
   1399 	struct ip6_hdr *ip6;
   1400 	const struct sockaddr_in6 *sa6_src = NULL;
   1401 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
   1402 	struct mbuf *m;
   1403 	int off;
   1404 
   1405 	if (sa->sa_family != AF_INET6 ||
   1406 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1407 		return NULL;
   1408 	if ((unsigned)cmd >= PRC_NCMDS)
   1409 		return NULL;
   1410 	else if (cmd == PRC_QUENCH) {
   1411 		/*
   1412 		 * Don't honor ICMP Source Quench messages meant for
   1413 		 * TCP connections.
   1414 		 */
   1415 		return NULL;
   1416 	} else if (PRC_IS_REDIRECT(cmd))
   1417 		notify = in6_rtchange, d = NULL;
   1418 	else if (cmd == PRC_MSGSIZE)
   1419 		; /* special code is present, see below */
   1420 	else if (cmd == PRC_HOSTDEAD)
   1421 		d = NULL;
   1422 	else if (inet6ctlerrmap[cmd] == 0)
   1423 		return NULL;
   1424 
   1425 	/* if the parameter is from icmp6, decode it. */
   1426 	if (d != NULL) {
   1427 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1428 		m = ip6cp->ip6c_m;
   1429 		ip6 = ip6cp->ip6c_ip6;
   1430 		off = ip6cp->ip6c_off;
   1431 		sa6_src = ip6cp->ip6c_src;
   1432 	} else {
   1433 		m = NULL;
   1434 		ip6 = NULL;
   1435 		sa6_src = &sa6_any;
   1436 		off = 0;
   1437 	}
   1438 
   1439 	if (ip6) {
   1440 		/*
   1441 		 * XXX: We assume that when ip6 is non NULL,
   1442 		 * M and OFF are valid.
   1443 		 */
   1444 
   1445 		/* check if we can safely examine src and dst ports */
   1446 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1447 			if (cmd == PRC_MSGSIZE)
   1448 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1449 			return NULL;
   1450 		}
   1451 
   1452 		bzero(&th, sizeof(th));
   1453 		m_copydata(m, off, sizeof(th), (void *)&th);
   1454 
   1455 		if (cmd == PRC_MSGSIZE) {
   1456 			int valid = 0;
   1457 
   1458 			/*
   1459 			 * Check to see if we have a valid TCP connection
   1460 			 * corresponding to the address in the ICMPv6 message
   1461 			 * payload.
   1462 			 */
   1463 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1464 			    th.th_dport,
   1465 			    (const struct in6_addr *)&sa6_src->sin6_addr,
   1466 			    th.th_sport, 0))
   1467 				valid++;
   1468 
   1469 			/*
   1470 			 * Depending on the value of "valid" and routing table
   1471 			 * size (mtudisc_{hi,lo}wat), we will:
   1472 			 * - recalcurate the new MTU and create the
   1473 			 *   corresponding routing entry, or
   1474 			 * - ignore the MTU change notification.
   1475 			 */
   1476 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1477 
   1478 			/*
   1479 			 * no need to call in6_pcbnotify, it should have been
   1480 			 * called via callback if necessary
   1481 			 */
   1482 			return NULL;
   1483 		}
   1484 
   1485 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1486 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1487 		if (nmatch == 0 && syn_cache_count &&
   1488 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1489 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1490 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1491 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1492 					  sa, &th);
   1493 	} else {
   1494 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1495 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1496 	}
   1497 
   1498 	return NULL;
   1499 }
   1500 #endif
   1501 
   1502 #ifdef INET
   1503 /* assumes that ip header and tcp header are contiguous on mbuf */
   1504 void *
   1505 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
   1506 {
   1507 	struct ip *ip = v;
   1508 	struct tcphdr *th;
   1509 	struct icmp *icp;
   1510 	extern const int inetctlerrmap[];
   1511 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1512 	int errno;
   1513 	int nmatch;
   1514 	struct tcpcb *tp;
   1515 	u_int mtu;
   1516 	tcp_seq seq;
   1517 	struct inpcb *inp;
   1518 #ifdef INET6
   1519 	struct in6pcb *in6p;
   1520 	struct in6_addr src6, dst6;
   1521 #endif
   1522 
   1523 	if (sa->sa_family != AF_INET ||
   1524 	    sa->sa_len != sizeof(struct sockaddr_in))
   1525 		return NULL;
   1526 	if ((unsigned)cmd >= PRC_NCMDS)
   1527 		return NULL;
   1528 	errno = inetctlerrmap[cmd];
   1529 	if (cmd == PRC_QUENCH)
   1530 		/*
   1531 		 * Don't honor ICMP Source Quench messages meant for
   1532 		 * TCP connections.
   1533 		 */
   1534 		return NULL;
   1535 	else if (PRC_IS_REDIRECT(cmd))
   1536 		notify = in_rtchange, ip = 0;
   1537 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1538 		/*
   1539 		 * Check to see if we have a valid TCP connection
   1540 		 * corresponding to the address in the ICMP message
   1541 		 * payload.
   1542 		 *
   1543 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1544 		 */
   1545 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1546 #ifdef INET6
   1547 		memset(&src6, 0, sizeof(src6));
   1548 		memset(&dst6, 0, sizeof(dst6));
   1549 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1550 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1551 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1552 #endif
   1553 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1554 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1555 #ifdef INET6
   1556 			in6p = NULL;
   1557 #else
   1558 			;
   1559 #endif
   1560 #ifdef INET6
   1561 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1562 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1563 			;
   1564 #endif
   1565 		else
   1566 			return NULL;
   1567 
   1568 		/*
   1569 		 * Now that we've validated that we are actually communicating
   1570 		 * with the host indicated in the ICMP message, locate the
   1571 		 * ICMP header, recalculate the new MTU, and create the
   1572 		 * corresponding routing entry.
   1573 		 */
   1574 		icp = (struct icmp *)((char *)ip -
   1575 		    offsetof(struct icmp, icmp_ip));
   1576 		if (inp) {
   1577 			if ((tp = intotcpcb(inp)) == NULL)
   1578 				return NULL;
   1579 		}
   1580 #ifdef INET6
   1581 		else if (in6p) {
   1582 			if ((tp = in6totcpcb(in6p)) == NULL)
   1583 				return NULL;
   1584 		}
   1585 #endif
   1586 		else
   1587 			return NULL;
   1588 		seq = ntohl(th->th_seq);
   1589 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1590 			return NULL;
   1591 		/*
   1592 		 * If the ICMP message advertises a Next-Hop MTU
   1593 		 * equal or larger than the maximum packet size we have
   1594 		 * ever sent, drop the message.
   1595 		 */
   1596 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1597 		if (mtu >= tp->t_pmtud_mtu_sent)
   1598 			return NULL;
   1599 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1600 			/*
   1601 			 * Calculate new MTU, and create corresponding
   1602 			 * route (traditional PMTUD).
   1603 			 */
   1604 			tp->t_flags &= ~TF_PMTUD_PEND;
   1605 			icmp_mtudisc(icp, ip->ip_dst);
   1606 		} else {
   1607 			/*
   1608 			 * Record the information got in the ICMP
   1609 			 * message; act on it later.
   1610 			 * If we had already recorded an ICMP message,
   1611 			 * replace the old one only if the new message
   1612 			 * refers to an older TCP segment
   1613 			 */
   1614 			if (tp->t_flags & TF_PMTUD_PEND) {
   1615 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1616 					return NULL;
   1617 			} else
   1618 				tp->t_flags |= TF_PMTUD_PEND;
   1619 			tp->t_pmtud_th_seq = seq;
   1620 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1621 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1622 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1623 		}
   1624 		return NULL;
   1625 	} else if (cmd == PRC_HOSTDEAD)
   1626 		ip = 0;
   1627 	else if (errno == 0)
   1628 		return NULL;
   1629 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1630 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1631 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
   1632 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1633 		if (nmatch == 0 && syn_cache_count &&
   1634 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1635 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1636 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1637 			struct sockaddr_in sin;
   1638 			bzero(&sin, sizeof(sin));
   1639 			sin.sin_len = sizeof(sin);
   1640 			sin.sin_family = AF_INET;
   1641 			sin.sin_port = th->th_sport;
   1642 			sin.sin_addr = ip->ip_src;
   1643 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1644 		}
   1645 
   1646 		/* XXX mapped address case */
   1647 	} else
   1648 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
   1649 		    notify);
   1650 	return NULL;
   1651 }
   1652 
   1653 /*
   1654  * When a source quench is received, we are being notified of congestion.
   1655  * Close the congestion window down to the Loss Window (one segment).
   1656  * We will gradually open it again as we proceed.
   1657  */
   1658 void
   1659 tcp_quench(struct inpcb *inp, int errno)
   1660 {
   1661 	struct tcpcb *tp = intotcpcb(inp);
   1662 
   1663 	if (tp) {
   1664 		tp->snd_cwnd = tp->t_segsz;
   1665 		tp->t_bytes_acked = 0;
   1666 	}
   1667 }
   1668 #endif
   1669 
   1670 #ifdef INET6
   1671 void
   1672 tcp6_quench(struct in6pcb *in6p, int errno)
   1673 {
   1674 	struct tcpcb *tp = in6totcpcb(in6p);
   1675 
   1676 	if (tp) {
   1677 		tp->snd_cwnd = tp->t_segsz;
   1678 		tp->t_bytes_acked = 0;
   1679 	}
   1680 }
   1681 #endif
   1682 
   1683 #ifdef INET
   1684 /*
   1685  * Path MTU Discovery handlers.
   1686  */
   1687 void
   1688 tcp_mtudisc_callback(struct in_addr faddr)
   1689 {
   1690 #ifdef INET6
   1691 	struct in6_addr in6;
   1692 #endif
   1693 
   1694 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1695 #ifdef INET6
   1696 	memset(&in6, 0, sizeof(in6));
   1697 	in6.s6_addr16[5] = 0xffff;
   1698 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1699 	tcp6_mtudisc_callback(&in6);
   1700 #endif
   1701 }
   1702 
   1703 /*
   1704  * On receipt of path MTU corrections, flush old route and replace it
   1705  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1706  * that all packets will be received.
   1707  */
   1708 void
   1709 tcp_mtudisc(struct inpcb *inp, int errno)
   1710 {
   1711 	struct tcpcb *tp = intotcpcb(inp);
   1712 	struct rtentry *rt = in_pcbrtentry(inp);
   1713 
   1714 	if (tp != 0) {
   1715 		if (rt != 0) {
   1716 			/*
   1717 			 * If this was not a host route, remove and realloc.
   1718 			 */
   1719 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1720 				in_rtchange(inp, errno);
   1721 				if ((rt = in_pcbrtentry(inp)) == 0)
   1722 					return;
   1723 			}
   1724 
   1725 			/*
   1726 			 * Slow start out of the error condition.  We
   1727 			 * use the MTU because we know it's smaller
   1728 			 * than the previously transmitted segment.
   1729 			 *
   1730 			 * Note: This is more conservative than the
   1731 			 * suggestion in draft-floyd-incr-init-win-03.
   1732 			 */
   1733 			if (rt->rt_rmx.rmx_mtu != 0)
   1734 				tp->snd_cwnd =
   1735 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1736 				    rt->rt_rmx.rmx_mtu);
   1737 		}
   1738 
   1739 		/*
   1740 		 * Resend unacknowledged packets.
   1741 		 */
   1742 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1743 		tcp_output(tp);
   1744 	}
   1745 }
   1746 #endif
   1747 
   1748 #ifdef INET6
   1749 /*
   1750  * Path MTU Discovery handlers.
   1751  */
   1752 void
   1753 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1754 {
   1755 	struct sockaddr_in6 sin6;
   1756 
   1757 	bzero(&sin6, sizeof(sin6));
   1758 	sin6.sin6_family = AF_INET6;
   1759 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1760 	sin6.sin6_addr = *faddr;
   1761 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1762 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1763 }
   1764 
   1765 void
   1766 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1767 {
   1768 	struct tcpcb *tp = in6totcpcb(in6p);
   1769 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1770 
   1771 	if (tp != 0) {
   1772 		if (rt != 0) {
   1773 			/*
   1774 			 * If this was not a host route, remove and realloc.
   1775 			 */
   1776 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1777 				in6_rtchange(in6p, errno);
   1778 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1779 					return;
   1780 			}
   1781 
   1782 			/*
   1783 			 * Slow start out of the error condition.  We
   1784 			 * use the MTU because we know it's smaller
   1785 			 * than the previously transmitted segment.
   1786 			 *
   1787 			 * Note: This is more conservative than the
   1788 			 * suggestion in draft-floyd-incr-init-win-03.
   1789 			 */
   1790 			if (rt->rt_rmx.rmx_mtu != 0)
   1791 				tp->snd_cwnd =
   1792 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1793 				    rt->rt_rmx.rmx_mtu);
   1794 		}
   1795 
   1796 		/*
   1797 		 * Resend unacknowledged packets.
   1798 		 */
   1799 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1800 		tcp_output(tp);
   1801 	}
   1802 }
   1803 #endif /* INET6 */
   1804 
   1805 /*
   1806  * Compute the MSS to advertise to the peer.  Called only during
   1807  * the 3-way handshake.  If we are the server (peer initiated
   1808  * connection), we are called with a pointer to the interface
   1809  * on which the SYN packet arrived.  If we are the client (we
   1810  * initiated connection), we are called with a pointer to the
   1811  * interface out which this connection should go.
   1812  *
   1813  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1814  * header size from MSS advertisement.  MSS option must hold the maximum
   1815  * segment size we can accept, so it must always be:
   1816  *	 max(if mtu) - ip header - tcp header
   1817  */
   1818 u_long
   1819 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1820 {
   1821 	extern u_long in_maxmtu;
   1822 	u_long mss = 0;
   1823 	u_long hdrsiz;
   1824 
   1825 	/*
   1826 	 * In order to avoid defeating path MTU discovery on the peer,
   1827 	 * we advertise the max MTU of all attached networks as our MSS,
   1828 	 * per RFC 1191, section 3.1.
   1829 	 *
   1830 	 * We provide the option to advertise just the MTU of
   1831 	 * the interface on which we hope this connection will
   1832 	 * be receiving.  If we are responding to a SYN, we
   1833 	 * will have a pretty good idea about this, but when
   1834 	 * initiating a connection there is a bit more doubt.
   1835 	 *
   1836 	 * We also need to ensure that loopback has a large enough
   1837 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1838 	 */
   1839 
   1840 	if (ifp != NULL)
   1841 		switch (af) {
   1842 		case AF_INET:
   1843 			mss = ifp->if_mtu;
   1844 			break;
   1845 #ifdef INET6
   1846 		case AF_INET6:
   1847 			mss = IN6_LINKMTU(ifp);
   1848 			break;
   1849 #endif
   1850 		}
   1851 
   1852 	if (tcp_mss_ifmtu == 0)
   1853 		switch (af) {
   1854 		case AF_INET:
   1855 			mss = max(in_maxmtu, mss);
   1856 			break;
   1857 #ifdef INET6
   1858 		case AF_INET6:
   1859 			mss = max(in6_maxmtu, mss);
   1860 			break;
   1861 #endif
   1862 		}
   1863 
   1864 	switch (af) {
   1865 	case AF_INET:
   1866 		hdrsiz = sizeof(struct ip);
   1867 		break;
   1868 #ifdef INET6
   1869 	case AF_INET6:
   1870 		hdrsiz = sizeof(struct ip6_hdr);
   1871 		break;
   1872 #endif
   1873 	default:
   1874 		hdrsiz = 0;
   1875 		break;
   1876 	}
   1877 	hdrsiz += sizeof(struct tcphdr);
   1878 	if (mss > hdrsiz)
   1879 		mss -= hdrsiz;
   1880 
   1881 	mss = max(tcp_mssdflt, mss);
   1882 	return (mss);
   1883 }
   1884 
   1885 /*
   1886  * Set connection variables based on the peer's advertised MSS.
   1887  * We are passed the TCPCB for the actual connection.  If we
   1888  * are the server, we are called by the compressed state engine
   1889  * when the 3-way handshake is complete.  If we are the client,
   1890  * we are called when we receive the SYN,ACK from the server.
   1891  *
   1892  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1893  * before this routine is called!
   1894  */
   1895 void
   1896 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1897 {
   1898 	struct socket *so;
   1899 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1900 	struct rtentry *rt;
   1901 #endif
   1902 	u_long bufsize;
   1903 	int mss;
   1904 
   1905 #ifdef DIAGNOSTIC
   1906 	if (tp->t_inpcb && tp->t_in6pcb)
   1907 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1908 #endif
   1909 	so = NULL;
   1910 	rt = NULL;
   1911 #ifdef INET
   1912 	if (tp->t_inpcb) {
   1913 		so = tp->t_inpcb->inp_socket;
   1914 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1915 		rt = in_pcbrtentry(tp->t_inpcb);
   1916 #endif
   1917 	}
   1918 #endif
   1919 #ifdef INET6
   1920 	if (tp->t_in6pcb) {
   1921 		so = tp->t_in6pcb->in6p_socket;
   1922 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1923 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1924 #endif
   1925 	}
   1926 #endif
   1927 
   1928 	/*
   1929 	 * As per RFC1122, use the default MSS value, unless they
   1930 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1931 	 */
   1932 	mss = tcp_mssdflt;
   1933 	if (offer)
   1934 		mss = offer;
   1935 	mss = max(mss, 256);		/* sanity */
   1936 	tp->t_peermss = mss;
   1937 	mss -= tcp_optlen(tp);
   1938 #ifdef INET
   1939 	if (tp->t_inpcb)
   1940 		mss -= ip_optlen(tp->t_inpcb);
   1941 #endif
   1942 #ifdef INET6
   1943 	if (tp->t_in6pcb)
   1944 		mss -= ip6_optlen(tp->t_in6pcb);
   1945 #endif
   1946 
   1947 	/*
   1948 	 * If there's a pipesize, change the socket buffer to that size.
   1949 	 * Make the socket buffer an integral number of MSS units.  If
   1950 	 * the MSS is larger than the socket buffer, artificially decrease
   1951 	 * the MSS.
   1952 	 */
   1953 #ifdef RTV_SPIPE
   1954 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1955 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1956 	else
   1957 #endif
   1958 	{
   1959 		KASSERT(so != NULL);
   1960 		bufsize = so->so_snd.sb_hiwat;
   1961 	}
   1962 	if (bufsize < mss)
   1963 		mss = bufsize;
   1964 	else {
   1965 		bufsize = roundup(bufsize, mss);
   1966 		if (bufsize > sb_max)
   1967 			bufsize = sb_max;
   1968 		(void) sbreserve(&so->so_snd, bufsize, so);
   1969 	}
   1970 	tp->t_segsz = mss;
   1971 
   1972 #ifdef RTV_SSTHRESH
   1973 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1974 		/*
   1975 		 * There's some sort of gateway or interface buffer
   1976 		 * limit on the path.  Use this to set the slow
   1977 		 * start threshold, but set the threshold to no less
   1978 		 * than 2 * MSS.
   1979 		 */
   1980 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1981 	}
   1982 #endif
   1983 }
   1984 
   1985 /*
   1986  * Processing necessary when a TCP connection is established.
   1987  */
   1988 void
   1989 tcp_established(struct tcpcb *tp)
   1990 {
   1991 	struct socket *so;
   1992 #ifdef RTV_RPIPE
   1993 	struct rtentry *rt;
   1994 #endif
   1995 	u_long bufsize;
   1996 
   1997 #ifdef DIAGNOSTIC
   1998 	if (tp->t_inpcb && tp->t_in6pcb)
   1999 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2000 #endif
   2001 	so = NULL;
   2002 	rt = NULL;
   2003 #ifdef INET
   2004 	if (tp->t_inpcb) {
   2005 		so = tp->t_inpcb->inp_socket;
   2006 #if defined(RTV_RPIPE)
   2007 		rt = in_pcbrtentry(tp->t_inpcb);
   2008 #endif
   2009 	}
   2010 #endif
   2011 #ifdef INET6
   2012 	if (tp->t_in6pcb) {
   2013 		so = tp->t_in6pcb->in6p_socket;
   2014 #if defined(RTV_RPIPE)
   2015 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2016 #endif
   2017 	}
   2018 #endif
   2019 
   2020 	tp->t_state = TCPS_ESTABLISHED;
   2021 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   2022 
   2023 #ifdef RTV_RPIPE
   2024 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2025 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2026 	else
   2027 #endif
   2028 	{
   2029 		KASSERT(so != NULL);
   2030 		bufsize = so->so_rcv.sb_hiwat;
   2031 	}
   2032 	if (bufsize > tp->t_ourmss) {
   2033 		bufsize = roundup(bufsize, tp->t_ourmss);
   2034 		if (bufsize > sb_max)
   2035 			bufsize = sb_max;
   2036 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2037 	}
   2038 }
   2039 
   2040 /*
   2041  * Check if there's an initial rtt or rttvar.  Convert from the
   2042  * route-table units to scaled multiples of the slow timeout timer.
   2043  * Called only during the 3-way handshake.
   2044  */
   2045 void
   2046 tcp_rmx_rtt(struct tcpcb *tp)
   2047 {
   2048 #ifdef RTV_RTT
   2049 	struct rtentry *rt = NULL;
   2050 	int rtt;
   2051 
   2052 #ifdef DIAGNOSTIC
   2053 	if (tp->t_inpcb && tp->t_in6pcb)
   2054 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2055 #endif
   2056 #ifdef INET
   2057 	if (tp->t_inpcb)
   2058 		rt = in_pcbrtentry(tp->t_inpcb);
   2059 #endif
   2060 #ifdef INET6
   2061 	if (tp->t_in6pcb)
   2062 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2063 #endif
   2064 	if (rt == NULL)
   2065 		return;
   2066 
   2067 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2068 		/*
   2069 		 * XXX The lock bit for MTU indicates that the value
   2070 		 * is also a minimum value; this is subject to time.
   2071 		 */
   2072 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2073 			TCPT_RANGESET(tp->t_rttmin,
   2074 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2075 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2076 		tp->t_srtt = rtt /
   2077 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2078 		if (rt->rt_rmx.rmx_rttvar) {
   2079 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2080 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2081 				(TCP_RTTVAR_SHIFT + 2));
   2082 		} else {
   2083 			/* Default variation is +- 1 rtt */
   2084 			tp->t_rttvar =
   2085 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2086 		}
   2087 		TCPT_RANGESET(tp->t_rxtcur,
   2088 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2089 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2090 	}
   2091 #endif
   2092 }
   2093 
   2094 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2095 #if NRND > 0
   2096 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2097 #endif
   2098 
   2099 /*
   2100  * Get a new sequence value given a tcp control block
   2101  */
   2102 tcp_seq
   2103 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2104 {
   2105 
   2106 #ifdef INET
   2107 	if (tp->t_inpcb != NULL) {
   2108 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2109 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2110 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2111 		    addin));
   2112 	}
   2113 #endif
   2114 #ifdef INET6
   2115 	if (tp->t_in6pcb != NULL) {
   2116 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2117 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2118 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2119 		    addin));
   2120 	}
   2121 #endif
   2122 	/* Not possible. */
   2123 	panic("tcp_new_iss");
   2124 }
   2125 
   2126 /*
   2127  * This routine actually generates a new TCP initial sequence number.
   2128  */
   2129 tcp_seq
   2130 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2131     size_t addrsz, tcp_seq addin)
   2132 {
   2133 	tcp_seq tcp_iss;
   2134 
   2135 #if NRND > 0
   2136 	static bool tcp_iss_gotten_secret;
   2137 
   2138 	/*
   2139 	 * If we haven't been here before, initialize our cryptographic
   2140 	 * hash secret.
   2141 	 */
   2142 	if (tcp_iss_gotten_secret == false) {
   2143 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2144 		    RND_EXTRACT_ANY);
   2145 		tcp_iss_gotten_secret = true;
   2146 	}
   2147 
   2148 	if (tcp_do_rfc1948) {
   2149 		MD5_CTX ctx;
   2150 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2151 
   2152 		/*
   2153 		 * Compute the base value of the ISS.  It is a hash
   2154 		 * of (saddr, sport, daddr, dport, secret).
   2155 		 */
   2156 		MD5Init(&ctx);
   2157 
   2158 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2159 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2160 
   2161 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2162 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2163 
   2164 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2165 
   2166 		MD5Final(hash, &ctx);
   2167 
   2168 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2169 
   2170 		/*
   2171 		 * Now increment our "timer", and add it in to
   2172 		 * the computed value.
   2173 		 *
   2174 		 * XXX Use `addin'?
   2175 		 * XXX TCP_ISSINCR too large to use?
   2176 		 */
   2177 		tcp_iss_seq += TCP_ISSINCR;
   2178 #ifdef TCPISS_DEBUG
   2179 		printf("ISS hash 0x%08x, ", tcp_iss);
   2180 #endif
   2181 		tcp_iss += tcp_iss_seq + addin;
   2182 #ifdef TCPISS_DEBUG
   2183 		printf("new ISS 0x%08x\n", tcp_iss);
   2184 #endif
   2185 	} else
   2186 #endif /* NRND > 0 */
   2187 	{
   2188 		/*
   2189 		 * Randomize.
   2190 		 */
   2191 #if NRND > 0
   2192 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2193 #else
   2194 		tcp_iss = arc4random();
   2195 #endif
   2196 
   2197 		/*
   2198 		 * If we were asked to add some amount to a known value,
   2199 		 * we will take a random value obtained above, mask off
   2200 		 * the upper bits, and add in the known value.  We also
   2201 		 * add in a constant to ensure that we are at least a
   2202 		 * certain distance from the original value.
   2203 		 *
   2204 		 * This is used when an old connection is in timed wait
   2205 		 * and we have a new one coming in, for instance.
   2206 		 */
   2207 		if (addin != 0) {
   2208 #ifdef TCPISS_DEBUG
   2209 			printf("Random %08x, ", tcp_iss);
   2210 #endif
   2211 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2212 			tcp_iss += addin + TCP_ISSINCR;
   2213 #ifdef TCPISS_DEBUG
   2214 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2215 #endif
   2216 		} else {
   2217 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2218 			tcp_iss += tcp_iss_seq;
   2219 			tcp_iss_seq += TCP_ISSINCR;
   2220 #ifdef TCPISS_DEBUG
   2221 			printf("ISS %08x\n", tcp_iss);
   2222 #endif
   2223 		}
   2224 	}
   2225 
   2226 	if (tcp_compat_42) {
   2227 		/*
   2228 		 * Limit it to the positive range for really old TCP
   2229 		 * implementations.
   2230 		 * Just AND off the top bit instead of checking if
   2231 		 * is set first - saves a branch 50% of the time.
   2232 		 */
   2233 		tcp_iss &= 0x7fffffff;		/* XXX */
   2234 	}
   2235 
   2236 	return (tcp_iss);
   2237 }
   2238 
   2239 #if defined(IPSEC) || defined(FAST_IPSEC)
   2240 /* compute ESP/AH header size for TCP, including outer IP header. */
   2241 size_t
   2242 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2243 {
   2244 	struct inpcb *inp;
   2245 	size_t hdrsiz;
   2246 
   2247 	/* XXX mapped addr case (tp->t_in6pcb) */
   2248 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2249 		return 0;
   2250 	switch (tp->t_family) {
   2251 	case AF_INET:
   2252 		/* XXX: should use currect direction. */
   2253 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2254 		break;
   2255 	default:
   2256 		hdrsiz = 0;
   2257 		break;
   2258 	}
   2259 
   2260 	return hdrsiz;
   2261 }
   2262 
   2263 #ifdef INET6
   2264 size_t
   2265 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2266 {
   2267 	struct in6pcb *in6p;
   2268 	size_t hdrsiz;
   2269 
   2270 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2271 		return 0;
   2272 	switch (tp->t_family) {
   2273 	case AF_INET6:
   2274 		/* XXX: should use currect direction. */
   2275 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2276 		break;
   2277 	case AF_INET:
   2278 		/* mapped address case - tricky */
   2279 	default:
   2280 		hdrsiz = 0;
   2281 		break;
   2282 	}
   2283 
   2284 	return hdrsiz;
   2285 }
   2286 #endif
   2287 #endif /*IPSEC*/
   2288 
   2289 /*
   2290  * Determine the length of the TCP options for this connection.
   2291  *
   2292  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2293  *       all of the space?  Otherwise we can't exactly be incrementing
   2294  *       cwnd by an amount that varies depending on the amount we last
   2295  *       had to SACK!
   2296  */
   2297 
   2298 u_int
   2299 tcp_optlen(struct tcpcb *tp)
   2300 {
   2301 	u_int optlen;
   2302 
   2303 	optlen = 0;
   2304 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2305 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2306 		optlen += TCPOLEN_TSTAMP_APPA;
   2307 
   2308 #ifdef TCP_SIGNATURE
   2309 	if (tp->t_flags & TF_SIGNATURE)
   2310 		optlen += TCPOLEN_SIGNATURE + 2;
   2311 #endif /* TCP_SIGNATURE */
   2312 
   2313 	return optlen;
   2314 }
   2315 
   2316 u_int
   2317 tcp_hdrsz(struct tcpcb *tp)
   2318 {
   2319 	u_int hlen;
   2320 
   2321 	switch (tp->t_family) {
   2322 #ifdef INET6
   2323 	case AF_INET6:
   2324 		hlen = sizeof(struct ip6_hdr);
   2325 		break;
   2326 #endif
   2327 	case AF_INET:
   2328 		hlen = sizeof(struct ip);
   2329 		break;
   2330 	default:
   2331 		hlen = 0;
   2332 		break;
   2333 	}
   2334 	hlen += sizeof(struct tcphdr);
   2335 
   2336 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2337 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2338 		hlen += TCPOLEN_TSTAMP_APPA;
   2339 #ifdef TCP_SIGNATURE
   2340 	if (tp->t_flags & TF_SIGNATURE)
   2341 		hlen += TCPOLEN_SIGLEN;
   2342 #endif
   2343 	return hlen;
   2344 }
   2345 
   2346 void
   2347 tcp_statinc(u_int stat)
   2348 {
   2349 
   2350 	KASSERT(stat < TCP_NSTATS);
   2351 	TCP_STATINC(stat);
   2352 }
   2353 
   2354 void
   2355 tcp_statadd(u_int stat, uint64_t val)
   2356 {
   2357 
   2358 	KASSERT(stat < TCP_NSTATS);
   2359 	TCP_STATADD(stat, val);
   2360 }
   2361