tcp_subr.c revision 1.236 1 /* $NetBSD: tcp_subr.c,v 1.236 2009/03/18 16:00:22 cegger Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.236 2009/03/18 16:00:22 cegger Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #include "rnd.h"
102
103 #include <sys/param.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/protosw.h>
111 #include <sys/errno.h>
112 #include <sys/kernel.h>
113 #include <sys/pool.h>
114 #if NRND > 0
115 #include <sys/md5.h>
116 #include <sys/rnd.h>
117 #endif
118
119 #include <net/route.h>
120 #include <net/if.h>
121
122 #include <netinet/in.h>
123 #include <netinet/in_systm.h>
124 #include <netinet/ip.h>
125 #include <netinet/in_pcb.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_icmp.h>
128
129 #ifdef INET6
130 #ifndef INET
131 #include <netinet/in.h>
132 #endif
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_pcb.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet6/in6_var.h>
137 #include <netinet6/ip6protosw.h>
138 #include <netinet/icmp6.h>
139 #include <netinet6/nd6.h>
140 #endif
141
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcp_private.h>
148 #include <netinet/tcp_congctl.h>
149 #include <netinet/tcpip.h>
150
151 #ifdef IPSEC
152 #include <netinet6/ipsec.h>
153 #include <netkey/key.h>
154 #endif /*IPSEC*/
155
156 #ifdef FAST_IPSEC
157 #include <netipsec/ipsec.h>
158 #include <netipsec/xform.h>
159 #ifdef INET6
160 #include <netipsec/ipsec6.h>
161 #endif
162 #include <netipsec/key.h>
163 #endif /* FAST_IPSEC*/
164
165
166 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
167 u_int32_t tcp_now; /* for RFC 1323 timestamps */
168
169 percpu_t *tcpstat_percpu;
170
171 /* patchable/settable parameters for tcp */
172 int tcp_mssdflt = TCP_MSS;
173 int tcp_minmss = TCP_MINMSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
183 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
184 #ifndef TCP_INIT_WIN
185 #define TCP_INIT_WIN 0 /* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
189 #endif
190 int tcp_init_win = TCP_INIT_WIN;
191 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int tcp_compat_42 = 1;
195 #else
196 int tcp_compat_42 = 0;
197 #endif
198 int tcp_rst_ppslim = 100; /* 100pps */
199 int tcp_ackdrop_ppslim = 100; /* 100pps */
200 int tcp_do_loopback_cksum = 0;
201 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
202 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
203 int tcp_sack_tp_maxholes = 32;
204 int tcp_sack_globalmaxholes = 1024;
205 int tcp_sack_globalholes = 0;
206 int tcp_ecn_maxretries = 1;
207
208 /* tcb hash */
209 #ifndef TCBHASHSIZE
210 #define TCBHASHSIZE 128
211 #endif
212 int tcbhashsize = TCBHASHSIZE;
213
214 /* syn hash parameters */
215 #define TCP_SYN_HASH_SIZE 293
216 #define TCP_SYN_BUCKET_SIZE 35
217 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
218 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
219 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
220 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
221
222 int tcp_freeq(struct tcpcb *);
223
224 #ifdef INET
225 void tcp_mtudisc_callback(struct in_addr);
226 #endif
227 #ifdef INET6
228 void tcp6_mtudisc_callback(struct in6_addr *);
229 #endif
230
231 #ifdef INET6
232 void tcp6_mtudisc(struct in6pcb *, int);
233 #endif
234
235 static struct pool tcpcb_pool;
236
237 #ifdef TCP_CSUM_COUNTERS
238 #include <sys/device.h>
239
240 #if defined(INET)
241 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242 NULL, "tcp", "hwcsum bad");
243 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244 NULL, "tcp", "hwcsum ok");
245 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246 NULL, "tcp", "hwcsum data");
247 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248 NULL, "tcp", "swcsum");
249
250 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
251 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
253 EVCNT_ATTACH_STATIC(tcp_swcsum);
254 #endif /* defined(INET) */
255
256 #if defined(INET6)
257 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp6", "hwcsum bad");
259 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp6", "hwcsum ok");
261 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp6", "hwcsum data");
263 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp6", "swcsum");
265
266 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
269 EVCNT_ATTACH_STATIC(tcp6_swcsum);
270 #endif /* defined(INET6) */
271 #endif /* TCP_CSUM_COUNTERS */
272
273
274 #ifdef TCP_OUTPUT_COUNTERS
275 #include <sys/device.h>
276
277 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 NULL, "tcp", "output big header");
279 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 NULL, "tcp", "output predict hit");
281 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 NULL, "tcp", "output predict miss");
283 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 NULL, "tcp", "output copy small");
285 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 NULL, "tcp", "output copy big");
287 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 NULL, "tcp", "output reference big");
289
290 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
291 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
292 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
293 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
294 EVCNT_ATTACH_STATIC(tcp_output_copybig);
295 EVCNT_ATTACH_STATIC(tcp_output_refbig);
296
297 #endif /* TCP_OUTPUT_COUNTERS */
298
299 #ifdef TCP_REASS_COUNTERS
300 #include <sys/device.h>
301
302 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 NULL, "tcp_reass", "calls");
304 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 &tcp_reass_, "tcp_reass", "insert into empty queue");
306 struct evcnt tcp_reass_iteration[8] = {
307 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
308 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
315 };
316 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
317 &tcp_reass_, "tcp_reass", "prepend to first");
318 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319 &tcp_reass_, "tcp_reass", "prepend");
320 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321 &tcp_reass_, "tcp_reass", "insert");
322 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323 &tcp_reass_, "tcp_reass", "insert at tail");
324 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325 &tcp_reass_, "tcp_reass", "append");
326 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327 &tcp_reass_, "tcp_reass", "append to tail fragment");
328 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329 &tcp_reass_, "tcp_reass", "overlap at end");
330 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331 &tcp_reass_, "tcp_reass", "overlap at start");
332 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333 &tcp_reass_, "tcp_reass", "duplicate segment");
334 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335 &tcp_reass_, "tcp_reass", "duplicate fragment");
336
337 EVCNT_ATTACH_STATIC(tcp_reass_);
338 EVCNT_ATTACH_STATIC(tcp_reass_empty);
339 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
347 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
348 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
349 EVCNT_ATTACH_STATIC(tcp_reass_insert);
350 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
351 EVCNT_ATTACH_STATIC(tcp_reass_append);
352 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
353 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
354 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
355 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
356 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
357
358 #endif /* TCP_REASS_COUNTERS */
359
360 #ifdef MBUFTRACE
361 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
362 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
363 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
364 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
365 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
366 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
367 #endif
368
369 /*
370 * Tcp initialization
371 */
372 void
373 tcp_init(void)
374 {
375 int hlen;
376
377 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
378 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
379 NULL, IPL_SOFTNET);
380
381 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
382 #ifdef INET6
383 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
384 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
385 #endif
386 if (max_protohdr < hlen)
387 max_protohdr = hlen;
388 if (max_linkhdr + hlen > MHLEN)
389 panic("tcp_init");
390
391 #ifdef INET
392 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
393 #endif
394 #ifdef INET6
395 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
396 #endif
397
398 /* Initialize timer state. */
399 tcp_timer_init();
400
401 /* Initialize the compressed state engine. */
402 syn_cache_init();
403
404 /* Initialize the congestion control algorithms. */
405 tcp_congctl_init();
406
407 /* Initialize the TCPCB template. */
408 tcp_tcpcb_template();
409
410 /* Initialize reassembly queue */
411 tcpipqent_init();
412
413 MOWNER_ATTACH(&tcp_tx_mowner);
414 MOWNER_ATTACH(&tcp_rx_mowner);
415 MOWNER_ATTACH(&tcp_reass_mowner);
416 MOWNER_ATTACH(&tcp_sock_mowner);
417 MOWNER_ATTACH(&tcp_sock_tx_mowner);
418 MOWNER_ATTACH(&tcp_sock_rx_mowner);
419 MOWNER_ATTACH(&tcp_mowner);
420
421 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
422 }
423
424 /*
425 * Create template to be used to send tcp packets on a connection.
426 * Call after host entry created, allocates an mbuf and fills
427 * in a skeletal tcp/ip header, minimizing the amount of work
428 * necessary when the connection is used.
429 */
430 struct mbuf *
431 tcp_template(struct tcpcb *tp)
432 {
433 struct inpcb *inp = tp->t_inpcb;
434 #ifdef INET6
435 struct in6pcb *in6p = tp->t_in6pcb;
436 #endif
437 struct tcphdr *n;
438 struct mbuf *m;
439 int hlen;
440
441 switch (tp->t_family) {
442 case AF_INET:
443 hlen = sizeof(struct ip);
444 if (inp)
445 break;
446 #ifdef INET6
447 if (in6p) {
448 /* mapped addr case */
449 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
450 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
451 break;
452 }
453 #endif
454 return NULL; /*EINVAL*/
455 #ifdef INET6
456 case AF_INET6:
457 hlen = sizeof(struct ip6_hdr);
458 if (in6p) {
459 /* more sainty check? */
460 break;
461 }
462 return NULL; /*EINVAL*/
463 #endif
464 default:
465 hlen = 0; /*pacify gcc*/
466 return NULL; /*EAFNOSUPPORT*/
467 }
468 #ifdef DIAGNOSTIC
469 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
470 panic("mclbytes too small for t_template");
471 #endif
472 m = tp->t_template;
473 if (m && m->m_len == hlen + sizeof(struct tcphdr))
474 ;
475 else {
476 if (m)
477 m_freem(m);
478 m = tp->t_template = NULL;
479 MGETHDR(m, M_DONTWAIT, MT_HEADER);
480 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
481 MCLGET(m, M_DONTWAIT);
482 if ((m->m_flags & M_EXT) == 0) {
483 m_free(m);
484 m = NULL;
485 }
486 }
487 if (m == NULL)
488 return NULL;
489 MCLAIM(m, &tcp_mowner);
490 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
491 }
492
493 memset(mtod(m, void *), 0, m->m_len);
494
495 n = (struct tcphdr *)(mtod(m, char *) + hlen);
496
497 switch (tp->t_family) {
498 case AF_INET:
499 {
500 struct ipovly *ipov;
501 mtod(m, struct ip *)->ip_v = 4;
502 mtod(m, struct ip *)->ip_hl = hlen >> 2;
503 ipov = mtod(m, struct ipovly *);
504 ipov->ih_pr = IPPROTO_TCP;
505 ipov->ih_len = htons(sizeof(struct tcphdr));
506 if (inp) {
507 ipov->ih_src = inp->inp_laddr;
508 ipov->ih_dst = inp->inp_faddr;
509 }
510 #ifdef INET6
511 else if (in6p) {
512 /* mapped addr case */
513 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
514 sizeof(ipov->ih_src));
515 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
516 sizeof(ipov->ih_dst));
517 }
518 #endif
519 /*
520 * Compute the pseudo-header portion of the checksum
521 * now. We incrementally add in the TCP option and
522 * payload lengths later, and then compute the TCP
523 * checksum right before the packet is sent off onto
524 * the wire.
525 */
526 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
527 ipov->ih_dst.s_addr,
528 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
529 break;
530 }
531 #ifdef INET6
532 case AF_INET6:
533 {
534 struct ip6_hdr *ip6;
535 mtod(m, struct ip *)->ip_v = 6;
536 ip6 = mtod(m, struct ip6_hdr *);
537 ip6->ip6_nxt = IPPROTO_TCP;
538 ip6->ip6_plen = htons(sizeof(struct tcphdr));
539 ip6->ip6_src = in6p->in6p_laddr;
540 ip6->ip6_dst = in6p->in6p_faddr;
541 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
542 if (ip6_auto_flowlabel) {
543 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
544 ip6->ip6_flow |=
545 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
546 }
547 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
548 ip6->ip6_vfc |= IPV6_VERSION;
549
550 /*
551 * Compute the pseudo-header portion of the checksum
552 * now. We incrementally add in the TCP option and
553 * payload lengths later, and then compute the TCP
554 * checksum right before the packet is sent off onto
555 * the wire.
556 */
557 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
558 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
559 htonl(IPPROTO_TCP));
560 break;
561 }
562 #endif
563 }
564 if (inp) {
565 n->th_sport = inp->inp_lport;
566 n->th_dport = inp->inp_fport;
567 }
568 #ifdef INET6
569 else if (in6p) {
570 n->th_sport = in6p->in6p_lport;
571 n->th_dport = in6p->in6p_fport;
572 }
573 #endif
574 n->th_seq = 0;
575 n->th_ack = 0;
576 n->th_x2 = 0;
577 n->th_off = 5;
578 n->th_flags = 0;
579 n->th_win = 0;
580 n->th_urp = 0;
581 return (m);
582 }
583
584 /*
585 * Send a single message to the TCP at address specified by
586 * the given TCP/IP header. If m == 0, then we make a copy
587 * of the tcpiphdr at ti and send directly to the addressed host.
588 * This is used to force keep alive messages out using the TCP
589 * template for a connection tp->t_template. If flags are given
590 * then we send a message back to the TCP which originated the
591 * segment ti, and discard the mbuf containing it and any other
592 * attached mbufs.
593 *
594 * In any case the ack and sequence number of the transmitted
595 * segment are as specified by the parameters.
596 */
597 int
598 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
599 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
600 {
601 #ifdef INET6
602 struct rtentry *rt;
603 #endif
604 struct route *ro;
605 int error, tlen, win = 0;
606 int hlen;
607 struct ip *ip;
608 #ifdef INET6
609 struct ip6_hdr *ip6;
610 #endif
611 int family; /* family on packet, not inpcb/in6pcb! */
612 struct tcphdr *th;
613 struct socket *so;
614
615 if (tp != NULL && (flags & TH_RST) == 0) {
616 #ifdef DIAGNOSTIC
617 if (tp->t_inpcb && tp->t_in6pcb)
618 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
619 #endif
620 #ifdef INET
621 if (tp->t_inpcb)
622 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
623 #endif
624 #ifdef INET6
625 if (tp->t_in6pcb)
626 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
627 #endif
628 }
629
630 th = NULL; /* Quell uninitialized warning */
631 ip = NULL;
632 #ifdef INET6
633 ip6 = NULL;
634 #endif
635 if (m == 0) {
636 if (!template)
637 return EINVAL;
638
639 /* get family information from template */
640 switch (mtod(template, struct ip *)->ip_v) {
641 case 4:
642 family = AF_INET;
643 hlen = sizeof(struct ip);
644 break;
645 #ifdef INET6
646 case 6:
647 family = AF_INET6;
648 hlen = sizeof(struct ip6_hdr);
649 break;
650 #endif
651 default:
652 return EAFNOSUPPORT;
653 }
654
655 MGETHDR(m, M_DONTWAIT, MT_HEADER);
656 if (m) {
657 MCLAIM(m, &tcp_tx_mowner);
658 MCLGET(m, M_DONTWAIT);
659 if ((m->m_flags & M_EXT) == 0) {
660 m_free(m);
661 m = NULL;
662 }
663 }
664 if (m == NULL)
665 return (ENOBUFS);
666
667 if (tcp_compat_42)
668 tlen = 1;
669 else
670 tlen = 0;
671
672 m->m_data += max_linkhdr;
673 bcopy(mtod(template, void *), mtod(m, void *),
674 template->m_len);
675 switch (family) {
676 case AF_INET:
677 ip = mtod(m, struct ip *);
678 th = (struct tcphdr *)(ip + 1);
679 break;
680 #ifdef INET6
681 case AF_INET6:
682 ip6 = mtod(m, struct ip6_hdr *);
683 th = (struct tcphdr *)(ip6 + 1);
684 break;
685 #endif
686 #if 0
687 default:
688 /* noone will visit here */
689 m_freem(m);
690 return EAFNOSUPPORT;
691 #endif
692 }
693 flags = TH_ACK;
694 } else {
695
696 if ((m->m_flags & M_PKTHDR) == 0) {
697 #if 0
698 printf("non PKTHDR to tcp_respond\n");
699 #endif
700 m_freem(m);
701 return EINVAL;
702 }
703 #ifdef DIAGNOSTIC
704 if (!th0)
705 panic("th0 == NULL in tcp_respond");
706 #endif
707
708 /* get family information from m */
709 switch (mtod(m, struct ip *)->ip_v) {
710 case 4:
711 family = AF_INET;
712 hlen = sizeof(struct ip);
713 ip = mtod(m, struct ip *);
714 break;
715 #ifdef INET6
716 case 6:
717 family = AF_INET6;
718 hlen = sizeof(struct ip6_hdr);
719 ip6 = mtod(m, struct ip6_hdr *);
720 break;
721 #endif
722 default:
723 m_freem(m);
724 return EAFNOSUPPORT;
725 }
726 /* clear h/w csum flags inherited from rx packet */
727 m->m_pkthdr.csum_flags = 0;
728
729 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
730 tlen = sizeof(*th0);
731 else
732 tlen = th0->th_off << 2;
733
734 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
735 mtod(m, char *) + hlen == (char *)th0) {
736 m->m_len = hlen + tlen;
737 m_freem(m->m_next);
738 m->m_next = NULL;
739 } else {
740 struct mbuf *n;
741
742 #ifdef DIAGNOSTIC
743 if (max_linkhdr + hlen + tlen > MCLBYTES) {
744 m_freem(m);
745 return EMSGSIZE;
746 }
747 #endif
748 MGETHDR(n, M_DONTWAIT, MT_HEADER);
749 if (n && max_linkhdr + hlen + tlen > MHLEN) {
750 MCLGET(n, M_DONTWAIT);
751 if ((n->m_flags & M_EXT) == 0) {
752 m_freem(n);
753 n = NULL;
754 }
755 }
756 if (!n) {
757 m_freem(m);
758 return ENOBUFS;
759 }
760
761 MCLAIM(n, &tcp_tx_mowner);
762 n->m_data += max_linkhdr;
763 n->m_len = hlen + tlen;
764 m_copyback(n, 0, hlen, mtod(m, void *));
765 m_copyback(n, hlen, tlen, (void *)th0);
766
767 m_freem(m);
768 m = n;
769 n = NULL;
770 }
771
772 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
773 switch (family) {
774 case AF_INET:
775 ip = mtod(m, struct ip *);
776 th = (struct tcphdr *)(ip + 1);
777 ip->ip_p = IPPROTO_TCP;
778 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
779 ip->ip_p = IPPROTO_TCP;
780 break;
781 #ifdef INET6
782 case AF_INET6:
783 ip6 = mtod(m, struct ip6_hdr *);
784 th = (struct tcphdr *)(ip6 + 1);
785 ip6->ip6_nxt = IPPROTO_TCP;
786 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
787 ip6->ip6_nxt = IPPROTO_TCP;
788 break;
789 #endif
790 #if 0
791 default:
792 /* noone will visit here */
793 m_freem(m);
794 return EAFNOSUPPORT;
795 #endif
796 }
797 xchg(th->th_dport, th->th_sport, u_int16_t);
798 #undef xchg
799 tlen = 0; /*be friendly with the following code*/
800 }
801 th->th_seq = htonl(seq);
802 th->th_ack = htonl(ack);
803 th->th_x2 = 0;
804 if ((flags & TH_SYN) == 0) {
805 if (tp)
806 win >>= tp->rcv_scale;
807 if (win > TCP_MAXWIN)
808 win = TCP_MAXWIN;
809 th->th_win = htons((u_int16_t)win);
810 th->th_off = sizeof (struct tcphdr) >> 2;
811 tlen += sizeof(*th);
812 } else
813 tlen += th->th_off << 2;
814 m->m_len = hlen + tlen;
815 m->m_pkthdr.len = hlen + tlen;
816 m->m_pkthdr.rcvif = (struct ifnet *) 0;
817 th->th_flags = flags;
818 th->th_urp = 0;
819
820 switch (family) {
821 #ifdef INET
822 case AF_INET:
823 {
824 struct ipovly *ipov = (struct ipovly *)ip;
825 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
826 ipov->ih_len = htons((u_int16_t)tlen);
827
828 th->th_sum = 0;
829 th->th_sum = in_cksum(m, hlen + tlen);
830 ip->ip_len = htons(hlen + tlen);
831 ip->ip_ttl = ip_defttl;
832 break;
833 }
834 #endif
835 #ifdef INET6
836 case AF_INET6:
837 {
838 th->th_sum = 0;
839 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
840 tlen);
841 ip6->ip6_plen = htons(tlen);
842 if (tp && tp->t_in6pcb) {
843 struct ifnet *oifp;
844 ro = &tp->t_in6pcb->in6p_route;
845 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
846 : NULL;
847 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
848 } else
849 ip6->ip6_hlim = ip6_defhlim;
850 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
851 if (ip6_auto_flowlabel) {
852 ip6->ip6_flow |=
853 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
854 }
855 break;
856 }
857 #endif
858 }
859
860 if (tp && tp->t_inpcb)
861 so = tp->t_inpcb->inp_socket;
862 #ifdef INET6
863 else if (tp && tp->t_in6pcb)
864 so = tp->t_in6pcb->in6p_socket;
865 #endif
866 else
867 so = NULL;
868
869 if (tp != NULL && tp->t_inpcb != NULL) {
870 ro = &tp->t_inpcb->inp_route;
871 #ifdef DIAGNOSTIC
872 if (family != AF_INET)
873 panic("tcp_respond: address family mismatch");
874 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
875 panic("tcp_respond: ip_dst %x != inp_faddr %x",
876 ntohl(ip->ip_dst.s_addr),
877 ntohl(tp->t_inpcb->inp_faddr.s_addr));
878 }
879 #endif
880 }
881 #ifdef INET6
882 else if (tp != NULL && tp->t_in6pcb != NULL) {
883 ro = (struct route *)&tp->t_in6pcb->in6p_route;
884 #ifdef DIAGNOSTIC
885 if (family == AF_INET) {
886 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
887 panic("tcp_respond: not mapped addr");
888 if (memcmp(&ip->ip_dst,
889 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
890 sizeof(ip->ip_dst)) != 0) {
891 panic("tcp_respond: ip_dst != in6p_faddr");
892 }
893 } else if (family == AF_INET6) {
894 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
895 &tp->t_in6pcb->in6p_faddr))
896 panic("tcp_respond: ip6_dst != in6p_faddr");
897 } else
898 panic("tcp_respond: address family mismatch");
899 #endif
900 }
901 #endif
902 else
903 ro = NULL;
904
905 switch (family) {
906 #ifdef INET
907 case AF_INET:
908 error = ip_output(m, NULL, ro,
909 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
910 (struct ip_moptions *)0, so);
911 break;
912 #endif
913 #ifdef INET6
914 case AF_INET6:
915 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
916 break;
917 #endif
918 default:
919 error = EAFNOSUPPORT;
920 break;
921 }
922
923 return (error);
924 }
925
926 /*
927 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
928 * a bunch of members individually, we maintain this template for the
929 * static and mostly-static components of the TCPCB, and copy it into
930 * the new TCPCB instead.
931 */
932 static struct tcpcb tcpcb_template = {
933 .t_srtt = TCPTV_SRTTBASE,
934 .t_rttmin = TCPTV_MIN,
935
936 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
937 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
938 .snd_numholes = 0,
939
940 .t_partialacks = -1,
941 .t_bytes_acked = 0,
942 };
943
944 /*
945 * Updates the TCPCB template whenever a parameter that would affect
946 * the template is changed.
947 */
948 void
949 tcp_tcpcb_template(void)
950 {
951 struct tcpcb *tp = &tcpcb_template;
952 int flags;
953
954 tp->t_peermss = tcp_mssdflt;
955 tp->t_ourmss = tcp_mssdflt;
956 tp->t_segsz = tcp_mssdflt;
957
958 flags = 0;
959 if (tcp_do_rfc1323 && tcp_do_win_scale)
960 flags |= TF_REQ_SCALE;
961 if (tcp_do_rfc1323 && tcp_do_timestamps)
962 flags |= TF_REQ_TSTMP;
963 tp->t_flags = flags;
964
965 /*
966 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
967 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
968 * reasonable initial retransmit time.
969 */
970 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
971 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
972 TCPTV_MIN, TCPTV_REXMTMAX);
973
974 /* Keep Alive */
975 tp->t_keepinit = tcp_keepinit;
976 tp->t_keepidle = tcp_keepidle;
977 tp->t_keepintvl = tcp_keepintvl;
978 tp->t_keepcnt = tcp_keepcnt;
979 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
980 }
981
982 /*
983 * Create a new TCP control block, making an
984 * empty reassembly queue and hooking it to the argument
985 * protocol control block.
986 */
987 /* family selects inpcb, or in6pcb */
988 struct tcpcb *
989 tcp_newtcpcb(int family, void *aux)
990 {
991 #ifdef INET6
992 struct rtentry *rt;
993 #endif
994 struct tcpcb *tp;
995 int i;
996
997 /* XXX Consider using a pool_cache for speed. */
998 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
999 if (tp == NULL)
1000 return (NULL);
1001 memcpy(tp, &tcpcb_template, sizeof(*tp));
1002 TAILQ_INIT(&tp->segq);
1003 TAILQ_INIT(&tp->timeq);
1004 tp->t_family = family; /* may be overridden later on */
1005 TAILQ_INIT(&tp->snd_holes);
1006 LIST_INIT(&tp->t_sc); /* XXX can template this */
1007
1008 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1009 for (i = 0; i < TCPT_NTIMERS; i++) {
1010 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1011 TCP_TIMER_INIT(tp, i);
1012 }
1013 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1014
1015 switch (family) {
1016 case AF_INET:
1017 {
1018 struct inpcb *inp = (struct inpcb *)aux;
1019
1020 inp->inp_ip.ip_ttl = ip_defttl;
1021 inp->inp_ppcb = (void *)tp;
1022
1023 tp->t_inpcb = inp;
1024 tp->t_mtudisc = ip_mtudisc;
1025 break;
1026 }
1027 #ifdef INET6
1028 case AF_INET6:
1029 {
1030 struct in6pcb *in6p = (struct in6pcb *)aux;
1031
1032 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1033 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1034 ? rt->rt_ifp
1035 : NULL);
1036 in6p->in6p_ppcb = (void *)tp;
1037
1038 tp->t_in6pcb = in6p;
1039 /* for IPv6, always try to run path MTU discovery */
1040 tp->t_mtudisc = 1;
1041 break;
1042 }
1043 #endif /* INET6 */
1044 default:
1045 for (i = 0; i < TCPT_NTIMERS; i++)
1046 callout_destroy(&tp->t_timer[i]);
1047 callout_destroy(&tp->t_delack_ch);
1048 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1049 return (NULL);
1050 }
1051
1052 /*
1053 * Initialize our timebase. When we send timestamps, we take
1054 * the delta from tcp_now -- this means each connection always
1055 * gets a timebase of 1, which makes it, among other things,
1056 * more difficult to determine how long a system has been up,
1057 * and thus how many TCP sequence increments have occurred.
1058 *
1059 * We start with 1, because 0 doesn't work with linux, which
1060 * considers timestamp 0 in a SYN packet as a bug and disables
1061 * timestamps.
1062 */
1063 tp->ts_timebase = tcp_now - 1;
1064
1065 tcp_congctl_select(tp, tcp_congctl_global_name);
1066
1067 return (tp);
1068 }
1069
1070 /*
1071 * Drop a TCP connection, reporting
1072 * the specified error. If connection is synchronized,
1073 * then send a RST to peer.
1074 */
1075 struct tcpcb *
1076 tcp_drop(struct tcpcb *tp, int errno)
1077 {
1078 struct socket *so = NULL;
1079
1080 #ifdef DIAGNOSTIC
1081 if (tp->t_inpcb && tp->t_in6pcb)
1082 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1083 #endif
1084 #ifdef INET
1085 if (tp->t_inpcb)
1086 so = tp->t_inpcb->inp_socket;
1087 #endif
1088 #ifdef INET6
1089 if (tp->t_in6pcb)
1090 so = tp->t_in6pcb->in6p_socket;
1091 #endif
1092 if (!so)
1093 return NULL;
1094
1095 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1096 tp->t_state = TCPS_CLOSED;
1097 (void) tcp_output(tp);
1098 TCP_STATINC(TCP_STAT_DROPS);
1099 } else
1100 TCP_STATINC(TCP_STAT_CONNDROPS);
1101 if (errno == ETIMEDOUT && tp->t_softerror)
1102 errno = tp->t_softerror;
1103 so->so_error = errno;
1104 return (tcp_close(tp));
1105 }
1106
1107 /*
1108 * Close a TCP control block:
1109 * discard all space held by the tcp
1110 * discard internet protocol block
1111 * wake up any sleepers
1112 */
1113 struct tcpcb *
1114 tcp_close(struct tcpcb *tp)
1115 {
1116 struct inpcb *inp;
1117 #ifdef INET6
1118 struct in6pcb *in6p;
1119 #endif
1120 struct socket *so;
1121 #ifdef RTV_RTT
1122 struct rtentry *rt;
1123 #endif
1124 struct route *ro;
1125 int j;
1126
1127 inp = tp->t_inpcb;
1128 #ifdef INET6
1129 in6p = tp->t_in6pcb;
1130 #endif
1131 so = NULL;
1132 ro = NULL;
1133 if (inp) {
1134 so = inp->inp_socket;
1135 ro = &inp->inp_route;
1136 }
1137 #ifdef INET6
1138 else if (in6p) {
1139 so = in6p->in6p_socket;
1140 ro = (struct route *)&in6p->in6p_route;
1141 }
1142 #endif
1143
1144 #ifdef RTV_RTT
1145 /*
1146 * If we sent enough data to get some meaningful characteristics,
1147 * save them in the routing entry. 'Enough' is arbitrarily
1148 * defined as the sendpipesize (default 4K) * 16. This would
1149 * give us 16 rtt samples assuming we only get one sample per
1150 * window (the usual case on a long haul net). 16 samples is
1151 * enough for the srtt filter to converge to within 5% of the correct
1152 * value; fewer samples and we could save a very bogus rtt.
1153 *
1154 * Don't update the default route's characteristics and don't
1155 * update anything that the user "locked".
1156 */
1157 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1158 ro && (rt = rtcache_validate(ro)) != NULL &&
1159 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1160 u_long i = 0;
1161
1162 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1163 i = tp->t_srtt *
1164 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1165 if (rt->rt_rmx.rmx_rtt && i)
1166 /*
1167 * filter this update to half the old & half
1168 * the new values, converting scale.
1169 * See route.h and tcp_var.h for a
1170 * description of the scaling constants.
1171 */
1172 rt->rt_rmx.rmx_rtt =
1173 (rt->rt_rmx.rmx_rtt + i) / 2;
1174 else
1175 rt->rt_rmx.rmx_rtt = i;
1176 }
1177 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1178 i = tp->t_rttvar *
1179 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1180 if (rt->rt_rmx.rmx_rttvar && i)
1181 rt->rt_rmx.rmx_rttvar =
1182 (rt->rt_rmx.rmx_rttvar + i) / 2;
1183 else
1184 rt->rt_rmx.rmx_rttvar = i;
1185 }
1186 /*
1187 * update the pipelimit (ssthresh) if it has been updated
1188 * already or if a pipesize was specified & the threshhold
1189 * got below half the pipesize. I.e., wait for bad news
1190 * before we start updating, then update on both good
1191 * and bad news.
1192 */
1193 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1194 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1195 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1196 /*
1197 * convert the limit from user data bytes to
1198 * packets then to packet data bytes.
1199 */
1200 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1201 if (i < 2)
1202 i = 2;
1203 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1204 if (rt->rt_rmx.rmx_ssthresh)
1205 rt->rt_rmx.rmx_ssthresh =
1206 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1207 else
1208 rt->rt_rmx.rmx_ssthresh = i;
1209 }
1210 }
1211 #endif /* RTV_RTT */
1212 /* free the reassembly queue, if any */
1213 TCP_REASS_LOCK(tp);
1214 (void) tcp_freeq(tp);
1215 TCP_REASS_UNLOCK(tp);
1216
1217 /* free the SACK holes list. */
1218 tcp_free_sackholes(tp);
1219 tcp_congctl_release(tp);
1220 syn_cache_cleanup(tp);
1221
1222 if (tp->t_template) {
1223 m_free(tp->t_template);
1224 tp->t_template = NULL;
1225 }
1226
1227 /*
1228 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1229 * the timers can also drop the lock. We need to prevent access
1230 * to the tcpcb as it's half torn down. Flag the pcb as dead
1231 * (prevents access by timers) and only then detach it.
1232 */
1233 tp->t_flags |= TF_DEAD;
1234 if (inp) {
1235 inp->inp_ppcb = 0;
1236 soisdisconnected(so);
1237 in_pcbdetach(inp);
1238 }
1239 #ifdef INET6
1240 else if (in6p) {
1241 in6p->in6p_ppcb = 0;
1242 soisdisconnected(so);
1243 in6_pcbdetach(in6p);
1244 }
1245 #endif
1246 /*
1247 * pcb is no longer visble elsewhere, so we can safely release
1248 * the lock in callout_halt() if needed.
1249 */
1250 TCP_STATINC(TCP_STAT_CLOSED);
1251 for (j = 0; j < TCPT_NTIMERS; j++) {
1252 callout_halt(&tp->t_timer[j], softnet_lock);
1253 callout_destroy(&tp->t_timer[j]);
1254 }
1255 callout_halt(&tp->t_delack_ch, softnet_lock);
1256 callout_destroy(&tp->t_delack_ch);
1257 pool_put(&tcpcb_pool, tp);
1258
1259 return ((struct tcpcb *)0);
1260 }
1261
1262 int
1263 tcp_freeq(struct tcpcb *tp)
1264 {
1265 struct ipqent *qe;
1266 int rv = 0;
1267 #ifdef TCPREASS_DEBUG
1268 int i = 0;
1269 #endif
1270
1271 TCP_REASS_LOCK_CHECK(tp);
1272
1273 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1274 #ifdef TCPREASS_DEBUG
1275 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1276 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1277 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1278 #endif
1279 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1280 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1281 m_freem(qe->ipqe_m);
1282 tcpipqent_free(qe);
1283 rv = 1;
1284 }
1285 tp->t_segqlen = 0;
1286 KASSERT(TAILQ_EMPTY(&tp->timeq));
1287 return (rv);
1288 }
1289
1290 /*
1291 * Protocol drain routine. Called when memory is in short supply.
1292 * Don't acquire softnet_lock as can be called from hardware
1293 * interrupt handler.
1294 */
1295 void
1296 tcp_drain(void)
1297 {
1298 struct inpcb_hdr *inph;
1299 struct tcpcb *tp;
1300
1301 KERNEL_LOCK(1, NULL);
1302
1303 /*
1304 * Free the sequence queue of all TCP connections.
1305 */
1306 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1307 switch (inph->inph_af) {
1308 case AF_INET:
1309 tp = intotcpcb((struct inpcb *)inph);
1310 break;
1311 #ifdef INET6
1312 case AF_INET6:
1313 tp = in6totcpcb((struct in6pcb *)inph);
1314 break;
1315 #endif
1316 default:
1317 tp = NULL;
1318 break;
1319 }
1320 if (tp != NULL) {
1321 /*
1322 * We may be called from a device's interrupt
1323 * context. If the tcpcb is already busy,
1324 * just bail out now.
1325 */
1326 if (tcp_reass_lock_try(tp) == 0)
1327 continue;
1328 if (tcp_freeq(tp))
1329 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1330 TCP_REASS_UNLOCK(tp);
1331 }
1332 }
1333
1334 KERNEL_UNLOCK_ONE(NULL);
1335 }
1336
1337 /*
1338 * Notify a tcp user of an asynchronous error;
1339 * store error as soft error, but wake up user
1340 * (for now, won't do anything until can select for soft error).
1341 */
1342 void
1343 tcp_notify(struct inpcb *inp, int error)
1344 {
1345 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1346 struct socket *so = inp->inp_socket;
1347
1348 /*
1349 * Ignore some errors if we are hooked up.
1350 * If connection hasn't completed, has retransmitted several times,
1351 * and receives a second error, give up now. This is better
1352 * than waiting a long time to establish a connection that
1353 * can never complete.
1354 */
1355 if (tp->t_state == TCPS_ESTABLISHED &&
1356 (error == EHOSTUNREACH || error == ENETUNREACH ||
1357 error == EHOSTDOWN)) {
1358 return;
1359 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1360 tp->t_rxtshift > 3 && tp->t_softerror)
1361 so->so_error = error;
1362 else
1363 tp->t_softerror = error;
1364 cv_broadcast(&so->so_cv);
1365 sorwakeup(so);
1366 sowwakeup(so);
1367 }
1368
1369 #ifdef INET6
1370 void
1371 tcp6_notify(struct in6pcb *in6p, int error)
1372 {
1373 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1374 struct socket *so = in6p->in6p_socket;
1375
1376 /*
1377 * Ignore some errors if we are hooked up.
1378 * If connection hasn't completed, has retransmitted several times,
1379 * and receives a second error, give up now. This is better
1380 * than waiting a long time to establish a connection that
1381 * can never complete.
1382 */
1383 if (tp->t_state == TCPS_ESTABLISHED &&
1384 (error == EHOSTUNREACH || error == ENETUNREACH ||
1385 error == EHOSTDOWN)) {
1386 return;
1387 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1388 tp->t_rxtshift > 3 && tp->t_softerror)
1389 so->so_error = error;
1390 else
1391 tp->t_softerror = error;
1392 cv_broadcast(&so->so_cv);
1393 sorwakeup(so);
1394 sowwakeup(so);
1395 }
1396 #endif
1397
1398 #ifdef INET6
1399 void *
1400 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1401 {
1402 struct tcphdr th;
1403 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1404 int nmatch;
1405 struct ip6_hdr *ip6;
1406 const struct sockaddr_in6 *sa6_src = NULL;
1407 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1408 struct mbuf *m;
1409 int off;
1410
1411 if (sa->sa_family != AF_INET6 ||
1412 sa->sa_len != sizeof(struct sockaddr_in6))
1413 return NULL;
1414 if ((unsigned)cmd >= PRC_NCMDS)
1415 return NULL;
1416 else if (cmd == PRC_QUENCH) {
1417 /*
1418 * Don't honor ICMP Source Quench messages meant for
1419 * TCP connections.
1420 */
1421 return NULL;
1422 } else if (PRC_IS_REDIRECT(cmd))
1423 notify = in6_rtchange, d = NULL;
1424 else if (cmd == PRC_MSGSIZE)
1425 ; /* special code is present, see below */
1426 else if (cmd == PRC_HOSTDEAD)
1427 d = NULL;
1428 else if (inet6ctlerrmap[cmd] == 0)
1429 return NULL;
1430
1431 /* if the parameter is from icmp6, decode it. */
1432 if (d != NULL) {
1433 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1434 m = ip6cp->ip6c_m;
1435 ip6 = ip6cp->ip6c_ip6;
1436 off = ip6cp->ip6c_off;
1437 sa6_src = ip6cp->ip6c_src;
1438 } else {
1439 m = NULL;
1440 ip6 = NULL;
1441 sa6_src = &sa6_any;
1442 off = 0;
1443 }
1444
1445 if (ip6) {
1446 /*
1447 * XXX: We assume that when ip6 is non NULL,
1448 * M and OFF are valid.
1449 */
1450
1451 /* check if we can safely examine src and dst ports */
1452 if (m->m_pkthdr.len < off + sizeof(th)) {
1453 if (cmd == PRC_MSGSIZE)
1454 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1455 return NULL;
1456 }
1457
1458 memset(&th, 0, sizeof(th));
1459 m_copydata(m, off, sizeof(th), (void *)&th);
1460
1461 if (cmd == PRC_MSGSIZE) {
1462 int valid = 0;
1463
1464 /*
1465 * Check to see if we have a valid TCP connection
1466 * corresponding to the address in the ICMPv6 message
1467 * payload.
1468 */
1469 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1470 th.th_dport,
1471 (const struct in6_addr *)&sa6_src->sin6_addr,
1472 th.th_sport, 0))
1473 valid++;
1474
1475 /*
1476 * Depending on the value of "valid" and routing table
1477 * size (mtudisc_{hi,lo}wat), we will:
1478 * - recalcurate the new MTU and create the
1479 * corresponding routing entry, or
1480 * - ignore the MTU change notification.
1481 */
1482 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1483
1484 /*
1485 * no need to call in6_pcbnotify, it should have been
1486 * called via callback if necessary
1487 */
1488 return NULL;
1489 }
1490
1491 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1492 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1493 if (nmatch == 0 && syn_cache_count &&
1494 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1495 inet6ctlerrmap[cmd] == ENETUNREACH ||
1496 inet6ctlerrmap[cmd] == EHOSTDOWN))
1497 syn_cache_unreach((const struct sockaddr *)sa6_src,
1498 sa, &th);
1499 } else {
1500 (void) in6_pcbnotify(&tcbtable, sa, 0,
1501 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1502 }
1503
1504 return NULL;
1505 }
1506 #endif
1507
1508 #ifdef INET
1509 /* assumes that ip header and tcp header are contiguous on mbuf */
1510 void *
1511 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1512 {
1513 struct ip *ip = v;
1514 struct tcphdr *th;
1515 struct icmp *icp;
1516 extern const int inetctlerrmap[];
1517 void (*notify)(struct inpcb *, int) = tcp_notify;
1518 int errno;
1519 int nmatch;
1520 struct tcpcb *tp;
1521 u_int mtu;
1522 tcp_seq seq;
1523 struct inpcb *inp;
1524 #ifdef INET6
1525 struct in6pcb *in6p;
1526 struct in6_addr src6, dst6;
1527 #endif
1528
1529 if (sa->sa_family != AF_INET ||
1530 sa->sa_len != sizeof(struct sockaddr_in))
1531 return NULL;
1532 if ((unsigned)cmd >= PRC_NCMDS)
1533 return NULL;
1534 errno = inetctlerrmap[cmd];
1535 if (cmd == PRC_QUENCH)
1536 /*
1537 * Don't honor ICMP Source Quench messages meant for
1538 * TCP connections.
1539 */
1540 return NULL;
1541 else if (PRC_IS_REDIRECT(cmd))
1542 notify = in_rtchange, ip = 0;
1543 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1544 /*
1545 * Check to see if we have a valid TCP connection
1546 * corresponding to the address in the ICMP message
1547 * payload.
1548 *
1549 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1550 */
1551 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1552 #ifdef INET6
1553 memset(&src6, 0, sizeof(src6));
1554 memset(&dst6, 0, sizeof(dst6));
1555 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1556 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1557 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1558 #endif
1559 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1560 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1561 #ifdef INET6
1562 in6p = NULL;
1563 #else
1564 ;
1565 #endif
1566 #ifdef INET6
1567 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1568 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1569 ;
1570 #endif
1571 else
1572 return NULL;
1573
1574 /*
1575 * Now that we've validated that we are actually communicating
1576 * with the host indicated in the ICMP message, locate the
1577 * ICMP header, recalculate the new MTU, and create the
1578 * corresponding routing entry.
1579 */
1580 icp = (struct icmp *)((char *)ip -
1581 offsetof(struct icmp, icmp_ip));
1582 if (inp) {
1583 if ((tp = intotcpcb(inp)) == NULL)
1584 return NULL;
1585 }
1586 #ifdef INET6
1587 else if (in6p) {
1588 if ((tp = in6totcpcb(in6p)) == NULL)
1589 return NULL;
1590 }
1591 #endif
1592 else
1593 return NULL;
1594 seq = ntohl(th->th_seq);
1595 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1596 return NULL;
1597 /*
1598 * If the ICMP message advertises a Next-Hop MTU
1599 * equal or larger than the maximum packet size we have
1600 * ever sent, drop the message.
1601 */
1602 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1603 if (mtu >= tp->t_pmtud_mtu_sent)
1604 return NULL;
1605 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1606 /*
1607 * Calculate new MTU, and create corresponding
1608 * route (traditional PMTUD).
1609 */
1610 tp->t_flags &= ~TF_PMTUD_PEND;
1611 icmp_mtudisc(icp, ip->ip_dst);
1612 } else {
1613 /*
1614 * Record the information got in the ICMP
1615 * message; act on it later.
1616 * If we had already recorded an ICMP message,
1617 * replace the old one only if the new message
1618 * refers to an older TCP segment
1619 */
1620 if (tp->t_flags & TF_PMTUD_PEND) {
1621 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1622 return NULL;
1623 } else
1624 tp->t_flags |= TF_PMTUD_PEND;
1625 tp->t_pmtud_th_seq = seq;
1626 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1627 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1628 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1629 }
1630 return NULL;
1631 } else if (cmd == PRC_HOSTDEAD)
1632 ip = 0;
1633 else if (errno == 0)
1634 return NULL;
1635 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1636 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1637 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1638 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1639 if (nmatch == 0 && syn_cache_count &&
1640 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1641 inetctlerrmap[cmd] == ENETUNREACH ||
1642 inetctlerrmap[cmd] == EHOSTDOWN)) {
1643 struct sockaddr_in sin;
1644 memset(&sin, 0, sizeof(sin));
1645 sin.sin_len = sizeof(sin);
1646 sin.sin_family = AF_INET;
1647 sin.sin_port = th->th_sport;
1648 sin.sin_addr = ip->ip_src;
1649 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1650 }
1651
1652 /* XXX mapped address case */
1653 } else
1654 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1655 notify);
1656 return NULL;
1657 }
1658
1659 /*
1660 * When a source quench is received, we are being notified of congestion.
1661 * Close the congestion window down to the Loss Window (one segment).
1662 * We will gradually open it again as we proceed.
1663 */
1664 void
1665 tcp_quench(struct inpcb *inp, int errno)
1666 {
1667 struct tcpcb *tp = intotcpcb(inp);
1668
1669 if (tp) {
1670 tp->snd_cwnd = tp->t_segsz;
1671 tp->t_bytes_acked = 0;
1672 }
1673 }
1674 #endif
1675
1676 #ifdef INET6
1677 void
1678 tcp6_quench(struct in6pcb *in6p, int errno)
1679 {
1680 struct tcpcb *tp = in6totcpcb(in6p);
1681
1682 if (tp) {
1683 tp->snd_cwnd = tp->t_segsz;
1684 tp->t_bytes_acked = 0;
1685 }
1686 }
1687 #endif
1688
1689 #ifdef INET
1690 /*
1691 * Path MTU Discovery handlers.
1692 */
1693 void
1694 tcp_mtudisc_callback(struct in_addr faddr)
1695 {
1696 #ifdef INET6
1697 struct in6_addr in6;
1698 #endif
1699
1700 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1701 #ifdef INET6
1702 memset(&in6, 0, sizeof(in6));
1703 in6.s6_addr16[5] = 0xffff;
1704 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1705 tcp6_mtudisc_callback(&in6);
1706 #endif
1707 }
1708
1709 /*
1710 * On receipt of path MTU corrections, flush old route and replace it
1711 * with the new one. Retransmit all unacknowledged packets, to ensure
1712 * that all packets will be received.
1713 */
1714 void
1715 tcp_mtudisc(struct inpcb *inp, int errno)
1716 {
1717 struct tcpcb *tp = intotcpcb(inp);
1718 struct rtentry *rt = in_pcbrtentry(inp);
1719
1720 if (tp != 0) {
1721 if (rt != 0) {
1722 /*
1723 * If this was not a host route, remove and realloc.
1724 */
1725 if ((rt->rt_flags & RTF_HOST) == 0) {
1726 in_rtchange(inp, errno);
1727 if ((rt = in_pcbrtentry(inp)) == 0)
1728 return;
1729 }
1730
1731 /*
1732 * Slow start out of the error condition. We
1733 * use the MTU because we know it's smaller
1734 * than the previously transmitted segment.
1735 *
1736 * Note: This is more conservative than the
1737 * suggestion in draft-floyd-incr-init-win-03.
1738 */
1739 if (rt->rt_rmx.rmx_mtu != 0)
1740 tp->snd_cwnd =
1741 TCP_INITIAL_WINDOW(tcp_init_win,
1742 rt->rt_rmx.rmx_mtu);
1743 }
1744
1745 /*
1746 * Resend unacknowledged packets.
1747 */
1748 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1749 tcp_output(tp);
1750 }
1751 }
1752 #endif
1753
1754 #ifdef INET6
1755 /*
1756 * Path MTU Discovery handlers.
1757 */
1758 void
1759 tcp6_mtudisc_callback(struct in6_addr *faddr)
1760 {
1761 struct sockaddr_in6 sin6;
1762
1763 memset(&sin6, 0, sizeof(sin6));
1764 sin6.sin6_family = AF_INET6;
1765 sin6.sin6_len = sizeof(struct sockaddr_in6);
1766 sin6.sin6_addr = *faddr;
1767 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1768 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1769 }
1770
1771 void
1772 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1773 {
1774 struct tcpcb *tp = in6totcpcb(in6p);
1775 struct rtentry *rt = in6_pcbrtentry(in6p);
1776
1777 if (tp != 0) {
1778 if (rt != 0) {
1779 /*
1780 * If this was not a host route, remove and realloc.
1781 */
1782 if ((rt->rt_flags & RTF_HOST) == 0) {
1783 in6_rtchange(in6p, errno);
1784 if ((rt = in6_pcbrtentry(in6p)) == 0)
1785 return;
1786 }
1787
1788 /*
1789 * Slow start out of the error condition. We
1790 * use the MTU because we know it's smaller
1791 * than the previously transmitted segment.
1792 *
1793 * Note: This is more conservative than the
1794 * suggestion in draft-floyd-incr-init-win-03.
1795 */
1796 if (rt->rt_rmx.rmx_mtu != 0)
1797 tp->snd_cwnd =
1798 TCP_INITIAL_WINDOW(tcp_init_win,
1799 rt->rt_rmx.rmx_mtu);
1800 }
1801
1802 /*
1803 * Resend unacknowledged packets.
1804 */
1805 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1806 tcp_output(tp);
1807 }
1808 }
1809 #endif /* INET6 */
1810
1811 /*
1812 * Compute the MSS to advertise to the peer. Called only during
1813 * the 3-way handshake. If we are the server (peer initiated
1814 * connection), we are called with a pointer to the interface
1815 * on which the SYN packet arrived. If we are the client (we
1816 * initiated connection), we are called with a pointer to the
1817 * interface out which this connection should go.
1818 *
1819 * NOTE: Do not subtract IP option/extension header size nor IPsec
1820 * header size from MSS advertisement. MSS option must hold the maximum
1821 * segment size we can accept, so it must always be:
1822 * max(if mtu) - ip header - tcp header
1823 */
1824 u_long
1825 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1826 {
1827 extern u_long in_maxmtu;
1828 u_long mss = 0;
1829 u_long hdrsiz;
1830
1831 /*
1832 * In order to avoid defeating path MTU discovery on the peer,
1833 * we advertise the max MTU of all attached networks as our MSS,
1834 * per RFC 1191, section 3.1.
1835 *
1836 * We provide the option to advertise just the MTU of
1837 * the interface on which we hope this connection will
1838 * be receiving. If we are responding to a SYN, we
1839 * will have a pretty good idea about this, but when
1840 * initiating a connection there is a bit more doubt.
1841 *
1842 * We also need to ensure that loopback has a large enough
1843 * MSS, as the loopback MTU is never included in in_maxmtu.
1844 */
1845
1846 if (ifp != NULL)
1847 switch (af) {
1848 case AF_INET:
1849 mss = ifp->if_mtu;
1850 break;
1851 #ifdef INET6
1852 case AF_INET6:
1853 mss = IN6_LINKMTU(ifp);
1854 break;
1855 #endif
1856 }
1857
1858 if (tcp_mss_ifmtu == 0)
1859 switch (af) {
1860 case AF_INET:
1861 mss = max(in_maxmtu, mss);
1862 break;
1863 #ifdef INET6
1864 case AF_INET6:
1865 mss = max(in6_maxmtu, mss);
1866 break;
1867 #endif
1868 }
1869
1870 switch (af) {
1871 case AF_INET:
1872 hdrsiz = sizeof(struct ip);
1873 break;
1874 #ifdef INET6
1875 case AF_INET6:
1876 hdrsiz = sizeof(struct ip6_hdr);
1877 break;
1878 #endif
1879 default:
1880 hdrsiz = 0;
1881 break;
1882 }
1883 hdrsiz += sizeof(struct tcphdr);
1884 if (mss > hdrsiz)
1885 mss -= hdrsiz;
1886
1887 mss = max(tcp_mssdflt, mss);
1888 return (mss);
1889 }
1890
1891 /*
1892 * Set connection variables based on the peer's advertised MSS.
1893 * We are passed the TCPCB for the actual connection. If we
1894 * are the server, we are called by the compressed state engine
1895 * when the 3-way handshake is complete. If we are the client,
1896 * we are called when we receive the SYN,ACK from the server.
1897 *
1898 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1899 * before this routine is called!
1900 */
1901 void
1902 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1903 {
1904 struct socket *so;
1905 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1906 struct rtentry *rt;
1907 #endif
1908 u_long bufsize;
1909 int mss;
1910
1911 #ifdef DIAGNOSTIC
1912 if (tp->t_inpcb && tp->t_in6pcb)
1913 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1914 #endif
1915 so = NULL;
1916 rt = NULL;
1917 #ifdef INET
1918 if (tp->t_inpcb) {
1919 so = tp->t_inpcb->inp_socket;
1920 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1921 rt = in_pcbrtentry(tp->t_inpcb);
1922 #endif
1923 }
1924 #endif
1925 #ifdef INET6
1926 if (tp->t_in6pcb) {
1927 so = tp->t_in6pcb->in6p_socket;
1928 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1929 rt = in6_pcbrtentry(tp->t_in6pcb);
1930 #endif
1931 }
1932 #endif
1933
1934 /*
1935 * As per RFC1122, use the default MSS value, unless they
1936 * sent us an offer. Do not accept offers less than 256 bytes.
1937 */
1938 mss = tcp_mssdflt;
1939 if (offer)
1940 mss = offer;
1941 mss = max(mss, 256); /* sanity */
1942 tp->t_peermss = mss;
1943 mss -= tcp_optlen(tp);
1944 #ifdef INET
1945 if (tp->t_inpcb)
1946 mss -= ip_optlen(tp->t_inpcb);
1947 #endif
1948 #ifdef INET6
1949 if (tp->t_in6pcb)
1950 mss -= ip6_optlen(tp->t_in6pcb);
1951 #endif
1952
1953 /*
1954 * If there's a pipesize, change the socket buffer to that size.
1955 * Make the socket buffer an integral number of MSS units. If
1956 * the MSS is larger than the socket buffer, artificially decrease
1957 * the MSS.
1958 */
1959 #ifdef RTV_SPIPE
1960 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1961 bufsize = rt->rt_rmx.rmx_sendpipe;
1962 else
1963 #endif
1964 {
1965 KASSERT(so != NULL);
1966 bufsize = so->so_snd.sb_hiwat;
1967 }
1968 if (bufsize < mss)
1969 mss = bufsize;
1970 else {
1971 bufsize = roundup(bufsize, mss);
1972 if (bufsize > sb_max)
1973 bufsize = sb_max;
1974 (void) sbreserve(&so->so_snd, bufsize, so);
1975 }
1976 tp->t_segsz = mss;
1977
1978 #ifdef RTV_SSTHRESH
1979 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1980 /*
1981 * There's some sort of gateway or interface buffer
1982 * limit on the path. Use this to set the slow
1983 * start threshold, but set the threshold to no less
1984 * than 2 * MSS.
1985 */
1986 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1987 }
1988 #endif
1989 }
1990
1991 /*
1992 * Processing necessary when a TCP connection is established.
1993 */
1994 void
1995 tcp_established(struct tcpcb *tp)
1996 {
1997 struct socket *so;
1998 #ifdef RTV_RPIPE
1999 struct rtentry *rt;
2000 #endif
2001 u_long bufsize;
2002
2003 #ifdef DIAGNOSTIC
2004 if (tp->t_inpcb && tp->t_in6pcb)
2005 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2006 #endif
2007 so = NULL;
2008 rt = NULL;
2009 #ifdef INET
2010 if (tp->t_inpcb) {
2011 so = tp->t_inpcb->inp_socket;
2012 #if defined(RTV_RPIPE)
2013 rt = in_pcbrtentry(tp->t_inpcb);
2014 #endif
2015 }
2016 #endif
2017 #ifdef INET6
2018 if (tp->t_in6pcb) {
2019 so = tp->t_in6pcb->in6p_socket;
2020 #if defined(RTV_RPIPE)
2021 rt = in6_pcbrtentry(tp->t_in6pcb);
2022 #endif
2023 }
2024 #endif
2025
2026 tp->t_state = TCPS_ESTABLISHED;
2027 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2028
2029 #ifdef RTV_RPIPE
2030 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2031 bufsize = rt->rt_rmx.rmx_recvpipe;
2032 else
2033 #endif
2034 {
2035 KASSERT(so != NULL);
2036 bufsize = so->so_rcv.sb_hiwat;
2037 }
2038 if (bufsize > tp->t_ourmss) {
2039 bufsize = roundup(bufsize, tp->t_ourmss);
2040 if (bufsize > sb_max)
2041 bufsize = sb_max;
2042 (void) sbreserve(&so->so_rcv, bufsize, so);
2043 }
2044 }
2045
2046 /*
2047 * Check if there's an initial rtt or rttvar. Convert from the
2048 * route-table units to scaled multiples of the slow timeout timer.
2049 * Called only during the 3-way handshake.
2050 */
2051 void
2052 tcp_rmx_rtt(struct tcpcb *tp)
2053 {
2054 #ifdef RTV_RTT
2055 struct rtentry *rt = NULL;
2056 int rtt;
2057
2058 #ifdef DIAGNOSTIC
2059 if (tp->t_inpcb && tp->t_in6pcb)
2060 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2061 #endif
2062 #ifdef INET
2063 if (tp->t_inpcb)
2064 rt = in_pcbrtentry(tp->t_inpcb);
2065 #endif
2066 #ifdef INET6
2067 if (tp->t_in6pcb)
2068 rt = in6_pcbrtentry(tp->t_in6pcb);
2069 #endif
2070 if (rt == NULL)
2071 return;
2072
2073 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2074 /*
2075 * XXX The lock bit for MTU indicates that the value
2076 * is also a minimum value; this is subject to time.
2077 */
2078 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2079 TCPT_RANGESET(tp->t_rttmin,
2080 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2081 TCPTV_MIN, TCPTV_REXMTMAX);
2082 tp->t_srtt = rtt /
2083 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2084 if (rt->rt_rmx.rmx_rttvar) {
2085 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2086 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2087 (TCP_RTTVAR_SHIFT + 2));
2088 } else {
2089 /* Default variation is +- 1 rtt */
2090 tp->t_rttvar =
2091 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2092 }
2093 TCPT_RANGESET(tp->t_rxtcur,
2094 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2095 tp->t_rttmin, TCPTV_REXMTMAX);
2096 }
2097 #endif
2098 }
2099
2100 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2101 #if NRND > 0
2102 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2103 #endif
2104
2105 /*
2106 * Get a new sequence value given a tcp control block
2107 */
2108 tcp_seq
2109 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2110 {
2111
2112 #ifdef INET
2113 if (tp->t_inpcb != NULL) {
2114 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2115 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2116 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2117 addin));
2118 }
2119 #endif
2120 #ifdef INET6
2121 if (tp->t_in6pcb != NULL) {
2122 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2123 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2124 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2125 addin));
2126 }
2127 #endif
2128 /* Not possible. */
2129 panic("tcp_new_iss");
2130 }
2131
2132 /*
2133 * This routine actually generates a new TCP initial sequence number.
2134 */
2135 tcp_seq
2136 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2137 size_t addrsz, tcp_seq addin)
2138 {
2139 tcp_seq tcp_iss;
2140
2141 #if NRND > 0
2142 static bool tcp_iss_gotten_secret;
2143
2144 /*
2145 * If we haven't been here before, initialize our cryptographic
2146 * hash secret.
2147 */
2148 if (tcp_iss_gotten_secret == false) {
2149 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2150 RND_EXTRACT_ANY);
2151 tcp_iss_gotten_secret = true;
2152 }
2153
2154 if (tcp_do_rfc1948) {
2155 MD5_CTX ctx;
2156 u_int8_t hash[16]; /* XXX MD5 knowledge */
2157
2158 /*
2159 * Compute the base value of the ISS. It is a hash
2160 * of (saddr, sport, daddr, dport, secret).
2161 */
2162 MD5Init(&ctx);
2163
2164 MD5Update(&ctx, (u_char *) laddr, addrsz);
2165 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2166
2167 MD5Update(&ctx, (u_char *) faddr, addrsz);
2168 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2169
2170 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2171
2172 MD5Final(hash, &ctx);
2173
2174 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2175
2176 /*
2177 * Now increment our "timer", and add it in to
2178 * the computed value.
2179 *
2180 * XXX Use `addin'?
2181 * XXX TCP_ISSINCR too large to use?
2182 */
2183 tcp_iss_seq += TCP_ISSINCR;
2184 #ifdef TCPISS_DEBUG
2185 printf("ISS hash 0x%08x, ", tcp_iss);
2186 #endif
2187 tcp_iss += tcp_iss_seq + addin;
2188 #ifdef TCPISS_DEBUG
2189 printf("new ISS 0x%08x\n", tcp_iss);
2190 #endif
2191 } else
2192 #endif /* NRND > 0 */
2193 {
2194 /*
2195 * Randomize.
2196 */
2197 #if NRND > 0
2198 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2199 #else
2200 tcp_iss = arc4random();
2201 #endif
2202
2203 /*
2204 * If we were asked to add some amount to a known value,
2205 * we will take a random value obtained above, mask off
2206 * the upper bits, and add in the known value. We also
2207 * add in a constant to ensure that we are at least a
2208 * certain distance from the original value.
2209 *
2210 * This is used when an old connection is in timed wait
2211 * and we have a new one coming in, for instance.
2212 */
2213 if (addin != 0) {
2214 #ifdef TCPISS_DEBUG
2215 printf("Random %08x, ", tcp_iss);
2216 #endif
2217 tcp_iss &= TCP_ISS_RANDOM_MASK;
2218 tcp_iss += addin + TCP_ISSINCR;
2219 #ifdef TCPISS_DEBUG
2220 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2221 #endif
2222 } else {
2223 tcp_iss &= TCP_ISS_RANDOM_MASK;
2224 tcp_iss += tcp_iss_seq;
2225 tcp_iss_seq += TCP_ISSINCR;
2226 #ifdef TCPISS_DEBUG
2227 printf("ISS %08x\n", tcp_iss);
2228 #endif
2229 }
2230 }
2231
2232 if (tcp_compat_42) {
2233 /*
2234 * Limit it to the positive range for really old TCP
2235 * implementations.
2236 * Just AND off the top bit instead of checking if
2237 * is set first - saves a branch 50% of the time.
2238 */
2239 tcp_iss &= 0x7fffffff; /* XXX */
2240 }
2241
2242 return (tcp_iss);
2243 }
2244
2245 #if defined(IPSEC) || defined(FAST_IPSEC)
2246 /* compute ESP/AH header size for TCP, including outer IP header. */
2247 size_t
2248 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2249 {
2250 struct inpcb *inp;
2251 size_t hdrsiz;
2252
2253 /* XXX mapped addr case (tp->t_in6pcb) */
2254 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2255 return 0;
2256 switch (tp->t_family) {
2257 case AF_INET:
2258 /* XXX: should use currect direction. */
2259 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2260 break;
2261 default:
2262 hdrsiz = 0;
2263 break;
2264 }
2265
2266 return hdrsiz;
2267 }
2268
2269 #ifdef INET6
2270 size_t
2271 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2272 {
2273 struct in6pcb *in6p;
2274 size_t hdrsiz;
2275
2276 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2277 return 0;
2278 switch (tp->t_family) {
2279 case AF_INET6:
2280 /* XXX: should use currect direction. */
2281 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2282 break;
2283 case AF_INET:
2284 /* mapped address case - tricky */
2285 default:
2286 hdrsiz = 0;
2287 break;
2288 }
2289
2290 return hdrsiz;
2291 }
2292 #endif
2293 #endif /*IPSEC*/
2294
2295 /*
2296 * Determine the length of the TCP options for this connection.
2297 *
2298 * XXX: What do we do for SACK, when we add that? Just reserve
2299 * all of the space? Otherwise we can't exactly be incrementing
2300 * cwnd by an amount that varies depending on the amount we last
2301 * had to SACK!
2302 */
2303
2304 u_int
2305 tcp_optlen(struct tcpcb *tp)
2306 {
2307 u_int optlen;
2308
2309 optlen = 0;
2310 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2311 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2312 optlen += TCPOLEN_TSTAMP_APPA;
2313
2314 #ifdef TCP_SIGNATURE
2315 if (tp->t_flags & TF_SIGNATURE)
2316 optlen += TCPOLEN_SIGNATURE + 2;
2317 #endif /* TCP_SIGNATURE */
2318
2319 return optlen;
2320 }
2321
2322 u_int
2323 tcp_hdrsz(struct tcpcb *tp)
2324 {
2325 u_int hlen;
2326
2327 switch (tp->t_family) {
2328 #ifdef INET6
2329 case AF_INET6:
2330 hlen = sizeof(struct ip6_hdr);
2331 break;
2332 #endif
2333 case AF_INET:
2334 hlen = sizeof(struct ip);
2335 break;
2336 default:
2337 hlen = 0;
2338 break;
2339 }
2340 hlen += sizeof(struct tcphdr);
2341
2342 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2343 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2344 hlen += TCPOLEN_TSTAMP_APPA;
2345 #ifdef TCP_SIGNATURE
2346 if (tp->t_flags & TF_SIGNATURE)
2347 hlen += TCPOLEN_SIGLEN;
2348 #endif
2349 return hlen;
2350 }
2351
2352 void
2353 tcp_statinc(u_int stat)
2354 {
2355
2356 KASSERT(stat < TCP_NSTATS);
2357 TCP_STATINC(stat);
2358 }
2359
2360 void
2361 tcp_statadd(u_int stat, uint64_t val)
2362 {
2363
2364 KASSERT(stat < TCP_NSTATS);
2365 TCP_STATADD(stat, val);
2366 }
2367