Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.242
      1 /*	$NetBSD: tcp_subr.c,v 1.242 2011/10/31 12:56:45 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.242 2011/10/31 12:56:45 yamt Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_tcp_compat_42.h"
     99 #include "opt_inet_csum.h"
    100 #include "opt_mbuftrace.h"
    101 #include "rnd.h"
    102 
    103 #include <sys/param.h>
    104 #include <sys/proc.h>
    105 #include <sys/systm.h>
    106 #include <sys/malloc.h>
    107 #include <sys/mbuf.h>
    108 #include <sys/socket.h>
    109 #include <sys/socketvar.h>
    110 #include <sys/protosw.h>
    111 #include <sys/errno.h>
    112 #include <sys/kernel.h>
    113 #include <sys/pool.h>
    114 #if NRND > 0
    115 #include <sys/md5.h>
    116 #include <sys/rnd.h>
    117 #endif
    118 
    119 #include <net/route.h>
    120 #include <net/if.h>
    121 
    122 #include <netinet/in.h>
    123 #include <netinet/in_systm.h>
    124 #include <netinet/ip.h>
    125 #include <netinet/in_pcb.h>
    126 #include <netinet/ip_var.h>
    127 #include <netinet/ip_icmp.h>
    128 
    129 #ifdef INET6
    130 #ifndef INET
    131 #include <netinet/in.h>
    132 #endif
    133 #include <netinet/ip6.h>
    134 #include <netinet6/in6_pcb.h>
    135 #include <netinet6/ip6_var.h>
    136 #include <netinet6/in6_var.h>
    137 #include <netinet6/ip6protosw.h>
    138 #include <netinet/icmp6.h>
    139 #include <netinet6/nd6.h>
    140 #endif
    141 
    142 #include <netinet/tcp.h>
    143 #include <netinet/tcp_fsm.h>
    144 #include <netinet/tcp_seq.h>
    145 #include <netinet/tcp_timer.h>
    146 #include <netinet/tcp_var.h>
    147 #include <netinet/tcp_vtw.h>
    148 #include <netinet/tcp_private.h>
    149 #include <netinet/tcp_congctl.h>
    150 #include <netinet/tcpip.h>
    151 
    152 #ifdef IPSEC
    153 #include <netinet6/ipsec.h>
    154 #include <netkey/key.h>
    155 #endif /*IPSEC*/
    156 
    157 #ifdef FAST_IPSEC
    158 #include <netipsec/ipsec.h>
    159 #include <netipsec/xform.h>
    160 #ifdef INET6
    161 #include <netipsec/ipsec6.h>
    162 #endif
    163  #include <netipsec/key.h>
    164 #endif	/* FAST_IPSEC*/
    165 
    166 
    167 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    168 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
    169 
    170 percpu_t *tcpstat_percpu;
    171 
    172 /* patchable/settable parameters for tcp */
    173 int 	tcp_mssdflt = TCP_MSS;
    174 int	tcp_minmss = TCP_MINMSS;
    175 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    176 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    177 #if NRND > 0
    178 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    179 #endif
    180 int	tcp_do_sack = 1;	/* selective acknowledgement */
    181 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    182 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    183 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    184 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    185 #ifndef TCP_INIT_WIN
    186 #define	TCP_INIT_WIN	0	/* initial slow start window */
    187 #endif
    188 #ifndef TCP_INIT_WIN_LOCAL
    189 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    190 #endif
    191 int	tcp_init_win = TCP_INIT_WIN;
    192 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    193 int	tcp_mss_ifmtu = 0;
    194 #ifdef TCP_COMPAT_42
    195 int	tcp_compat_42 = 1;
    196 #else
    197 int	tcp_compat_42 = 0;
    198 #endif
    199 int	tcp_rst_ppslim = 100;	/* 100pps */
    200 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    201 int	tcp_do_loopback_cksum = 0;
    202 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    203 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    204 int	tcp_sack_tp_maxholes = 32;
    205 int	tcp_sack_globalmaxholes = 1024;
    206 int	tcp_sack_globalholes = 0;
    207 int	tcp_ecn_maxretries = 1;
    208 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
    209 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
    210 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
    211 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
    212 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
    213 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
    214 
    215 int	tcp4_vtw_enable = 0;		/* 1 to enable */
    216 int	tcp6_vtw_enable = 0;		/* 1 to enable */
    217 int	tcp_vtw_was_enabled = 0;
    218 int	tcp_vtw_entries = 1 << 16;	/* 64K vestigial TIME_WAIT entries */
    219 
    220 /* tcb hash */
    221 #ifndef TCBHASHSIZE
    222 #define	TCBHASHSIZE	128
    223 #endif
    224 int	tcbhashsize = TCBHASHSIZE;
    225 
    226 /* syn hash parameters */
    227 #define	TCP_SYN_HASH_SIZE	293
    228 #define	TCP_SYN_BUCKET_SIZE	35
    229 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    230 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    231 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    232 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    233 
    234 int	tcp_freeq(struct tcpcb *);
    235 
    236 #ifdef INET
    237 void	tcp_mtudisc_callback(struct in_addr);
    238 #endif
    239 #ifdef INET6
    240 void	tcp6_mtudisc_callback(struct in6_addr *);
    241 #endif
    242 
    243 #ifdef INET6
    244 void	tcp6_mtudisc(struct in6pcb *, int);
    245 #endif
    246 
    247 static struct pool tcpcb_pool;
    248 
    249 static int tcp_drainwanted;
    250 
    251 #ifdef TCP_CSUM_COUNTERS
    252 #include <sys/device.h>
    253 
    254 #if defined(INET)
    255 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    256     NULL, "tcp", "hwcsum bad");
    257 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    258     NULL, "tcp", "hwcsum ok");
    259 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp", "hwcsum data");
    261 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp", "swcsum");
    263 
    264 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    265 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    266 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    267 EVCNT_ATTACH_STATIC(tcp_swcsum);
    268 #endif /* defined(INET) */
    269 
    270 #if defined(INET6)
    271 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    272     NULL, "tcp6", "hwcsum bad");
    273 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    274     NULL, "tcp6", "hwcsum ok");
    275 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    276     NULL, "tcp6", "hwcsum data");
    277 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     NULL, "tcp6", "swcsum");
    279 
    280 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    281 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    282 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    283 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    284 #endif /* defined(INET6) */
    285 #endif /* TCP_CSUM_COUNTERS */
    286 
    287 
    288 #ifdef TCP_OUTPUT_COUNTERS
    289 #include <sys/device.h>
    290 
    291 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     NULL, "tcp", "output big header");
    293 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    294     NULL, "tcp", "output predict hit");
    295 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    296     NULL, "tcp", "output predict miss");
    297 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    298     NULL, "tcp", "output copy small");
    299 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    300     NULL, "tcp", "output copy big");
    301 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    302     NULL, "tcp", "output reference big");
    303 
    304 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    305 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    306 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    307 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    308 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    309 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    310 
    311 #endif /* TCP_OUTPUT_COUNTERS */
    312 
    313 #ifdef TCP_REASS_COUNTERS
    314 #include <sys/device.h>
    315 
    316 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    317     NULL, "tcp_reass", "calls");
    318 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    319     &tcp_reass_, "tcp_reass", "insert into empty queue");
    320 struct evcnt tcp_reass_iteration[8] = {
    321     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    322     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    323     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    324     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    325     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    326     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    327     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    328     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    329 };
    330 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    331     &tcp_reass_, "tcp_reass", "prepend to first");
    332 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    333     &tcp_reass_, "tcp_reass", "prepend");
    334 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    335     &tcp_reass_, "tcp_reass", "insert");
    336 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    337     &tcp_reass_, "tcp_reass", "insert at tail");
    338 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    339     &tcp_reass_, "tcp_reass", "append");
    340 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    341     &tcp_reass_, "tcp_reass", "append to tail fragment");
    342 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    343     &tcp_reass_, "tcp_reass", "overlap at end");
    344 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    345     &tcp_reass_, "tcp_reass", "overlap at start");
    346 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    347     &tcp_reass_, "tcp_reass", "duplicate segment");
    348 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    349     &tcp_reass_, "tcp_reass", "duplicate fragment");
    350 
    351 EVCNT_ATTACH_STATIC(tcp_reass_);
    352 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    353 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    354 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    355 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    356 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    357 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    358 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    359 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    361 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    362 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    363 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    364 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    365 EVCNT_ATTACH_STATIC(tcp_reass_append);
    366 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    367 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    368 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    369 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    370 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    371 
    372 #endif /* TCP_REASS_COUNTERS */
    373 
    374 #ifdef MBUFTRACE
    375 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    376 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    377 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    378 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
    379 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
    380 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
    381 #endif
    382 
    383 /*
    384  * Tcp initialization
    385  */
    386 void
    387 tcp_init(void)
    388 {
    389 	int hlen;
    390 
    391 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    392 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    393 	    NULL, IPL_SOFTNET);
    394 
    395 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    396 #ifdef INET6
    397 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    398 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    399 #endif
    400 	if (max_protohdr < hlen)
    401 		max_protohdr = hlen;
    402 	if (max_linkhdr + hlen > MHLEN)
    403 		panic("tcp_init");
    404 
    405 #ifdef INET
    406 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    407 #endif
    408 #ifdef INET6
    409 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    410 #endif
    411 
    412 	tcp_usrreq_init();
    413 
    414 	/* Initialize timer state. */
    415 	tcp_timer_init();
    416 
    417 	/* Initialize the compressed state engine. */
    418 	syn_cache_init();
    419 
    420 	/* Initialize the congestion control algorithms. */
    421 	tcp_congctl_init();
    422 
    423 	/* Initialize the TCPCB template. */
    424 	tcp_tcpcb_template();
    425 
    426 	/* Initialize reassembly queue */
    427 	tcpipqent_init();
    428 
    429 	/* SACK */
    430 	tcp_sack_init();
    431 
    432 	MOWNER_ATTACH(&tcp_tx_mowner);
    433 	MOWNER_ATTACH(&tcp_rx_mowner);
    434 	MOWNER_ATTACH(&tcp_reass_mowner);
    435 	MOWNER_ATTACH(&tcp_sock_mowner);
    436 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
    437 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
    438 	MOWNER_ATTACH(&tcp_mowner);
    439 
    440 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
    441 
    442 	vtw_earlyinit();
    443 }
    444 
    445 /*
    446  * Create template to be used to send tcp packets on a connection.
    447  * Call after host entry created, allocates an mbuf and fills
    448  * in a skeletal tcp/ip header, minimizing the amount of work
    449  * necessary when the connection is used.
    450  */
    451 struct mbuf *
    452 tcp_template(struct tcpcb *tp)
    453 {
    454 	struct inpcb *inp = tp->t_inpcb;
    455 #ifdef INET6
    456 	struct in6pcb *in6p = tp->t_in6pcb;
    457 #endif
    458 	struct tcphdr *n;
    459 	struct mbuf *m;
    460 	int hlen;
    461 
    462 	switch (tp->t_family) {
    463 	case AF_INET:
    464 		hlen = sizeof(struct ip);
    465 		if (inp)
    466 			break;
    467 #ifdef INET6
    468 		if (in6p) {
    469 			/* mapped addr case */
    470 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    471 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    472 				break;
    473 		}
    474 #endif
    475 		return NULL;	/*EINVAL*/
    476 #ifdef INET6
    477 	case AF_INET6:
    478 		hlen = sizeof(struct ip6_hdr);
    479 		if (in6p) {
    480 			/* more sainty check? */
    481 			break;
    482 		}
    483 		return NULL;	/*EINVAL*/
    484 #endif
    485 	default:
    486 		hlen = 0;	/*pacify gcc*/
    487 		return NULL;	/*EAFNOSUPPORT*/
    488 	}
    489 #ifdef DIAGNOSTIC
    490 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    491 		panic("mclbytes too small for t_template");
    492 #endif
    493 	m = tp->t_template;
    494 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    495 		;
    496 	else {
    497 		if (m)
    498 			m_freem(m);
    499 		m = tp->t_template = NULL;
    500 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    501 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    502 			MCLGET(m, M_DONTWAIT);
    503 			if ((m->m_flags & M_EXT) == 0) {
    504 				m_free(m);
    505 				m = NULL;
    506 			}
    507 		}
    508 		if (m == NULL)
    509 			return NULL;
    510 		MCLAIM(m, &tcp_mowner);
    511 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    512 	}
    513 
    514 	memset(mtod(m, void *), 0, m->m_len);
    515 
    516 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
    517 
    518 	switch (tp->t_family) {
    519 	case AF_INET:
    520 	    {
    521 		struct ipovly *ipov;
    522 		mtod(m, struct ip *)->ip_v = 4;
    523 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    524 		ipov = mtod(m, struct ipovly *);
    525 		ipov->ih_pr = IPPROTO_TCP;
    526 		ipov->ih_len = htons(sizeof(struct tcphdr));
    527 		if (inp) {
    528 			ipov->ih_src = inp->inp_laddr;
    529 			ipov->ih_dst = inp->inp_faddr;
    530 		}
    531 #ifdef INET6
    532 		else if (in6p) {
    533 			/* mapped addr case */
    534 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    535 				sizeof(ipov->ih_src));
    536 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    537 				sizeof(ipov->ih_dst));
    538 		}
    539 #endif
    540 		/*
    541 		 * Compute the pseudo-header portion of the checksum
    542 		 * now.  We incrementally add in the TCP option and
    543 		 * payload lengths later, and then compute the TCP
    544 		 * checksum right before the packet is sent off onto
    545 		 * the wire.
    546 		 */
    547 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    548 		    ipov->ih_dst.s_addr,
    549 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    550 		break;
    551 	    }
    552 #ifdef INET6
    553 	case AF_INET6:
    554 	    {
    555 		struct ip6_hdr *ip6;
    556 		mtod(m, struct ip *)->ip_v = 6;
    557 		ip6 = mtod(m, struct ip6_hdr *);
    558 		ip6->ip6_nxt = IPPROTO_TCP;
    559 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    560 		ip6->ip6_src = in6p->in6p_laddr;
    561 		ip6->ip6_dst = in6p->in6p_faddr;
    562 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    563 		if (ip6_auto_flowlabel) {
    564 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    565 			ip6->ip6_flow |=
    566 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    567 		}
    568 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    569 		ip6->ip6_vfc |= IPV6_VERSION;
    570 
    571 		/*
    572 		 * Compute the pseudo-header portion of the checksum
    573 		 * now.  We incrementally add in the TCP option and
    574 		 * payload lengths later, and then compute the TCP
    575 		 * checksum right before the packet is sent off onto
    576 		 * the wire.
    577 		 */
    578 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    579 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    580 		    htonl(IPPROTO_TCP));
    581 		break;
    582 	    }
    583 #endif
    584 	}
    585 	if (inp) {
    586 		n->th_sport = inp->inp_lport;
    587 		n->th_dport = inp->inp_fport;
    588 	}
    589 #ifdef INET6
    590 	else if (in6p) {
    591 		n->th_sport = in6p->in6p_lport;
    592 		n->th_dport = in6p->in6p_fport;
    593 	}
    594 #endif
    595 	n->th_seq = 0;
    596 	n->th_ack = 0;
    597 	n->th_x2 = 0;
    598 	n->th_off = 5;
    599 	n->th_flags = 0;
    600 	n->th_win = 0;
    601 	n->th_urp = 0;
    602 	return (m);
    603 }
    604 
    605 /*
    606  * Send a single message to the TCP at address specified by
    607  * the given TCP/IP header.  If m == 0, then we make a copy
    608  * of the tcpiphdr at ti and send directly to the addressed host.
    609  * This is used to force keep alive messages out using the TCP
    610  * template for a connection tp->t_template.  If flags are given
    611  * then we send a message back to the TCP which originated the
    612  * segment ti, and discard the mbuf containing it and any other
    613  * attached mbufs.
    614  *
    615  * In any case the ack and sequence number of the transmitted
    616  * segment are as specified by the parameters.
    617  */
    618 int
    619 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    620     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    621 {
    622 #ifdef INET6
    623 	struct rtentry *rt;
    624 #endif
    625 	struct route *ro;
    626 	int error, tlen, win = 0;
    627 	int hlen;
    628 	struct ip *ip;
    629 #ifdef INET6
    630 	struct ip6_hdr *ip6;
    631 #endif
    632 	int family;	/* family on packet, not inpcb/in6pcb! */
    633 	struct tcphdr *th;
    634 	struct socket *so;
    635 
    636 	if (tp != NULL && (flags & TH_RST) == 0) {
    637 #ifdef DIAGNOSTIC
    638 		if (tp->t_inpcb && tp->t_in6pcb)
    639 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    640 #endif
    641 #ifdef INET
    642 		if (tp->t_inpcb)
    643 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    644 #endif
    645 #ifdef INET6
    646 		if (tp->t_in6pcb)
    647 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    648 #endif
    649 	}
    650 
    651 	th = NULL;	/* Quell uninitialized warning */
    652 	ip = NULL;
    653 #ifdef INET6
    654 	ip6 = NULL;
    655 #endif
    656 	if (m == 0) {
    657 		if (!template)
    658 			return EINVAL;
    659 
    660 		/* get family information from template */
    661 		switch (mtod(template, struct ip *)->ip_v) {
    662 		case 4:
    663 			family = AF_INET;
    664 			hlen = sizeof(struct ip);
    665 			break;
    666 #ifdef INET6
    667 		case 6:
    668 			family = AF_INET6;
    669 			hlen = sizeof(struct ip6_hdr);
    670 			break;
    671 #endif
    672 		default:
    673 			return EAFNOSUPPORT;
    674 		}
    675 
    676 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    677 		if (m) {
    678 			MCLAIM(m, &tcp_tx_mowner);
    679 			MCLGET(m, M_DONTWAIT);
    680 			if ((m->m_flags & M_EXT) == 0) {
    681 				m_free(m);
    682 				m = NULL;
    683 			}
    684 		}
    685 		if (m == NULL)
    686 			return (ENOBUFS);
    687 
    688 		if (tcp_compat_42)
    689 			tlen = 1;
    690 		else
    691 			tlen = 0;
    692 
    693 		m->m_data += max_linkhdr;
    694 		bcopy(mtod(template, void *), mtod(m, void *),
    695 			template->m_len);
    696 		switch (family) {
    697 		case AF_INET:
    698 			ip = mtod(m, struct ip *);
    699 			th = (struct tcphdr *)(ip + 1);
    700 			break;
    701 #ifdef INET6
    702 		case AF_INET6:
    703 			ip6 = mtod(m, struct ip6_hdr *);
    704 			th = (struct tcphdr *)(ip6 + 1);
    705 			break;
    706 #endif
    707 #if 0
    708 		default:
    709 			/* noone will visit here */
    710 			m_freem(m);
    711 			return EAFNOSUPPORT;
    712 #endif
    713 		}
    714 		flags = TH_ACK;
    715 	} else {
    716 
    717 		if ((m->m_flags & M_PKTHDR) == 0) {
    718 #if 0
    719 			printf("non PKTHDR to tcp_respond\n");
    720 #endif
    721 			m_freem(m);
    722 			return EINVAL;
    723 		}
    724 #ifdef DIAGNOSTIC
    725 		if (!th0)
    726 			panic("th0 == NULL in tcp_respond");
    727 #endif
    728 
    729 		/* get family information from m */
    730 		switch (mtod(m, struct ip *)->ip_v) {
    731 		case 4:
    732 			family = AF_INET;
    733 			hlen = sizeof(struct ip);
    734 			ip = mtod(m, struct ip *);
    735 			break;
    736 #ifdef INET6
    737 		case 6:
    738 			family = AF_INET6;
    739 			hlen = sizeof(struct ip6_hdr);
    740 			ip6 = mtod(m, struct ip6_hdr *);
    741 			break;
    742 #endif
    743 		default:
    744 			m_freem(m);
    745 			return EAFNOSUPPORT;
    746 		}
    747 		/* clear h/w csum flags inherited from rx packet */
    748 		m->m_pkthdr.csum_flags = 0;
    749 
    750 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    751 			tlen = sizeof(*th0);
    752 		else
    753 			tlen = th0->th_off << 2;
    754 
    755 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    756 		    mtod(m, char *) + hlen == (char *)th0) {
    757 			m->m_len = hlen + tlen;
    758 			m_freem(m->m_next);
    759 			m->m_next = NULL;
    760 		} else {
    761 			struct mbuf *n;
    762 
    763 #ifdef DIAGNOSTIC
    764 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    765 				m_freem(m);
    766 				return EMSGSIZE;
    767 			}
    768 #endif
    769 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    770 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    771 				MCLGET(n, M_DONTWAIT);
    772 				if ((n->m_flags & M_EXT) == 0) {
    773 					m_freem(n);
    774 					n = NULL;
    775 				}
    776 			}
    777 			if (!n) {
    778 				m_freem(m);
    779 				return ENOBUFS;
    780 			}
    781 
    782 			MCLAIM(n, &tcp_tx_mowner);
    783 			n->m_data += max_linkhdr;
    784 			n->m_len = hlen + tlen;
    785 			m_copyback(n, 0, hlen, mtod(m, void *));
    786 			m_copyback(n, hlen, tlen, (void *)th0);
    787 
    788 			m_freem(m);
    789 			m = n;
    790 			n = NULL;
    791 		}
    792 
    793 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    794 		switch (family) {
    795 		case AF_INET:
    796 			ip = mtod(m, struct ip *);
    797 			th = (struct tcphdr *)(ip + 1);
    798 			ip->ip_p = IPPROTO_TCP;
    799 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    800 			ip->ip_p = IPPROTO_TCP;
    801 			break;
    802 #ifdef INET6
    803 		case AF_INET6:
    804 			ip6 = mtod(m, struct ip6_hdr *);
    805 			th = (struct tcphdr *)(ip6 + 1);
    806 			ip6->ip6_nxt = IPPROTO_TCP;
    807 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    808 			ip6->ip6_nxt = IPPROTO_TCP;
    809 			break;
    810 #endif
    811 #if 0
    812 		default:
    813 			/* noone will visit here */
    814 			m_freem(m);
    815 			return EAFNOSUPPORT;
    816 #endif
    817 		}
    818 		xchg(th->th_dport, th->th_sport, u_int16_t);
    819 #undef xchg
    820 		tlen = 0;	/*be friendly with the following code*/
    821 	}
    822 	th->th_seq = htonl(seq);
    823 	th->th_ack = htonl(ack);
    824 	th->th_x2 = 0;
    825 	if ((flags & TH_SYN) == 0) {
    826 		if (tp)
    827 			win >>= tp->rcv_scale;
    828 		if (win > TCP_MAXWIN)
    829 			win = TCP_MAXWIN;
    830 		th->th_win = htons((u_int16_t)win);
    831 		th->th_off = sizeof (struct tcphdr) >> 2;
    832 		tlen += sizeof(*th);
    833 	} else
    834 		tlen += th->th_off << 2;
    835 	m->m_len = hlen + tlen;
    836 	m->m_pkthdr.len = hlen + tlen;
    837 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    838 	th->th_flags = flags;
    839 	th->th_urp = 0;
    840 
    841 	switch (family) {
    842 #ifdef INET
    843 	case AF_INET:
    844 	    {
    845 		struct ipovly *ipov = (struct ipovly *)ip;
    846 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
    847 		ipov->ih_len = htons((u_int16_t)tlen);
    848 
    849 		th->th_sum = 0;
    850 		th->th_sum = in_cksum(m, hlen + tlen);
    851 		ip->ip_len = htons(hlen + tlen);
    852 		ip->ip_ttl = ip_defttl;
    853 		break;
    854 	    }
    855 #endif
    856 #ifdef INET6
    857 	case AF_INET6:
    858 	    {
    859 		th->th_sum = 0;
    860 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    861 				tlen);
    862 		ip6->ip6_plen = htons(tlen);
    863 		if (tp && tp->t_in6pcb) {
    864 			struct ifnet *oifp;
    865 			ro = &tp->t_in6pcb->in6p_route;
    866 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
    867 			                                           : NULL;
    868 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    869 		} else
    870 			ip6->ip6_hlim = ip6_defhlim;
    871 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    872 		if (ip6_auto_flowlabel) {
    873 			ip6->ip6_flow |=
    874 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    875 		}
    876 		break;
    877 	    }
    878 #endif
    879 	}
    880 
    881 	if (tp && tp->t_inpcb)
    882 		so = tp->t_inpcb->inp_socket;
    883 #ifdef INET6
    884 	else if (tp && tp->t_in6pcb)
    885 		so = tp->t_in6pcb->in6p_socket;
    886 #endif
    887 	else
    888 		so = NULL;
    889 
    890 	if (tp != NULL && tp->t_inpcb != NULL) {
    891 		ro = &tp->t_inpcb->inp_route;
    892 #ifdef DIAGNOSTIC
    893 		if (family != AF_INET)
    894 			panic("tcp_respond: address family mismatch");
    895 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    896 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    897 			    ntohl(ip->ip_dst.s_addr),
    898 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    899 		}
    900 #endif
    901 	}
    902 #ifdef INET6
    903 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    904 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    905 #ifdef DIAGNOSTIC
    906 		if (family == AF_INET) {
    907 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    908 				panic("tcp_respond: not mapped addr");
    909 			if (memcmp(&ip->ip_dst,
    910 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    911 			    sizeof(ip->ip_dst)) != 0) {
    912 				panic("tcp_respond: ip_dst != in6p_faddr");
    913 			}
    914 		} else if (family == AF_INET6) {
    915 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    916 			    &tp->t_in6pcb->in6p_faddr))
    917 				panic("tcp_respond: ip6_dst != in6p_faddr");
    918 		} else
    919 			panic("tcp_respond: address family mismatch");
    920 #endif
    921 	}
    922 #endif
    923 	else
    924 		ro = NULL;
    925 
    926 	switch (family) {
    927 #ifdef INET
    928 	case AF_INET:
    929 		error = ip_output(m, NULL, ro,
    930 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    931 		    (struct ip_moptions *)0, so);
    932 		break;
    933 #endif
    934 #ifdef INET6
    935 	case AF_INET6:
    936 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
    937 		break;
    938 #endif
    939 	default:
    940 		error = EAFNOSUPPORT;
    941 		break;
    942 	}
    943 
    944 	return (error);
    945 }
    946 
    947 /*
    948  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    949  * a bunch of members individually, we maintain this template for the
    950  * static and mostly-static components of the TCPCB, and copy it into
    951  * the new TCPCB instead.
    952  */
    953 static struct tcpcb tcpcb_template = {
    954 	.t_srtt = TCPTV_SRTTBASE,
    955 	.t_rttmin = TCPTV_MIN,
    956 
    957 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    958 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    959 	.snd_numholes = 0,
    960 
    961 	.t_partialacks = -1,
    962 	.t_bytes_acked = 0,
    963 };
    964 
    965 /*
    966  * Updates the TCPCB template whenever a parameter that would affect
    967  * the template is changed.
    968  */
    969 void
    970 tcp_tcpcb_template(void)
    971 {
    972 	struct tcpcb *tp = &tcpcb_template;
    973 	int flags;
    974 
    975 	tp->t_peermss = tcp_mssdflt;
    976 	tp->t_ourmss = tcp_mssdflt;
    977 	tp->t_segsz = tcp_mssdflt;
    978 
    979 	flags = 0;
    980 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    981 		flags |= TF_REQ_SCALE;
    982 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    983 		flags |= TF_REQ_TSTMP;
    984 	tp->t_flags = flags;
    985 
    986 	/*
    987 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    988 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    989 	 * reasonable initial retransmit time.
    990 	 */
    991 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    992 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    993 	    TCPTV_MIN, TCPTV_REXMTMAX);
    994 
    995 	/* Keep Alive */
    996 	tp->t_keepinit = tcp_keepinit;
    997 	tp->t_keepidle = tcp_keepidle;
    998 	tp->t_keepintvl = tcp_keepintvl;
    999 	tp->t_keepcnt = tcp_keepcnt;
   1000 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
   1001 
   1002 	/* MSL */
   1003 	tp->t_msl = TCPTV_MSL;
   1004 }
   1005 
   1006 /*
   1007  * Create a new TCP control block, making an
   1008  * empty reassembly queue and hooking it to the argument
   1009  * protocol control block.
   1010  */
   1011 /* family selects inpcb, or in6pcb */
   1012 struct tcpcb *
   1013 tcp_newtcpcb(int family, void *aux)
   1014 {
   1015 #ifdef INET6
   1016 	struct rtentry *rt;
   1017 #endif
   1018 	struct tcpcb *tp;
   1019 	int i;
   1020 
   1021 	/* XXX Consider using a pool_cache for speed. */
   1022 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
   1023 	if (tp == NULL)
   1024 		return (NULL);
   1025 	memcpy(tp, &tcpcb_template, sizeof(*tp));
   1026 	TAILQ_INIT(&tp->segq);
   1027 	TAILQ_INIT(&tp->timeq);
   1028 	tp->t_family = family;		/* may be overridden later on */
   1029 	TAILQ_INIT(&tp->snd_holes);
   1030 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
   1031 
   1032 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
   1033 	for (i = 0; i < TCPT_NTIMERS; i++) {
   1034 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
   1035 		TCP_TIMER_INIT(tp, i);
   1036 	}
   1037 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
   1038 
   1039 	switch (family) {
   1040 	case AF_INET:
   1041 	    {
   1042 		struct inpcb *inp = (struct inpcb *)aux;
   1043 
   1044 		inp->inp_ip.ip_ttl = ip_defttl;
   1045 		inp->inp_ppcb = (void *)tp;
   1046 
   1047 		tp->t_inpcb = inp;
   1048 		tp->t_mtudisc = ip_mtudisc;
   1049 		break;
   1050 	    }
   1051 #ifdef INET6
   1052 	case AF_INET6:
   1053 	    {
   1054 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1055 
   1056 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1057 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
   1058 			    ? rt->rt_ifp
   1059 			    : NULL);
   1060 		in6p->in6p_ppcb = (void *)tp;
   1061 
   1062 		tp->t_in6pcb = in6p;
   1063 		/* for IPv6, always try to run path MTU discovery */
   1064 		tp->t_mtudisc = 1;
   1065 		break;
   1066 	    }
   1067 #endif /* INET6 */
   1068 	default:
   1069 		for (i = 0; i < TCPT_NTIMERS; i++)
   1070 			callout_destroy(&tp->t_timer[i]);
   1071 		callout_destroy(&tp->t_delack_ch);
   1072 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1073 		return (NULL);
   1074 	}
   1075 
   1076 	/*
   1077 	 * Initialize our timebase.  When we send timestamps, we take
   1078 	 * the delta from tcp_now -- this means each connection always
   1079 	 * gets a timebase of 1, which makes it, among other things,
   1080 	 * more difficult to determine how long a system has been up,
   1081 	 * and thus how many TCP sequence increments have occurred.
   1082 	 *
   1083 	 * We start with 1, because 0 doesn't work with linux, which
   1084 	 * considers timestamp 0 in a SYN packet as a bug and disables
   1085 	 * timestamps.
   1086 	 */
   1087 	tp->ts_timebase = tcp_now - 1;
   1088 
   1089 	tcp_congctl_select(tp, tcp_congctl_global_name);
   1090 
   1091 	return (tp);
   1092 }
   1093 
   1094 /*
   1095  * Drop a TCP connection, reporting
   1096  * the specified error.  If connection is synchronized,
   1097  * then send a RST to peer.
   1098  */
   1099 struct tcpcb *
   1100 tcp_drop(struct tcpcb *tp, int errno)
   1101 {
   1102 	struct socket *so = NULL;
   1103 
   1104 #ifdef DIAGNOSTIC
   1105 	if (tp->t_inpcb && tp->t_in6pcb)
   1106 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1107 #endif
   1108 #ifdef INET
   1109 	if (tp->t_inpcb)
   1110 		so = tp->t_inpcb->inp_socket;
   1111 #endif
   1112 #ifdef INET6
   1113 	if (tp->t_in6pcb)
   1114 		so = tp->t_in6pcb->in6p_socket;
   1115 #endif
   1116 	if (!so)
   1117 		return NULL;
   1118 
   1119 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1120 		tp->t_state = TCPS_CLOSED;
   1121 		(void) tcp_output(tp);
   1122 		TCP_STATINC(TCP_STAT_DROPS);
   1123 	} else
   1124 		TCP_STATINC(TCP_STAT_CONNDROPS);
   1125 	if (errno == ETIMEDOUT && tp->t_softerror)
   1126 		errno = tp->t_softerror;
   1127 	so->so_error = errno;
   1128 	return (tcp_close(tp));
   1129 }
   1130 
   1131 /*
   1132  * Close a TCP control block:
   1133  *	discard all space held by the tcp
   1134  *	discard internet protocol block
   1135  *	wake up any sleepers
   1136  */
   1137 struct tcpcb *
   1138 tcp_close(struct tcpcb *tp)
   1139 {
   1140 	struct inpcb *inp;
   1141 #ifdef INET6
   1142 	struct in6pcb *in6p;
   1143 #endif
   1144 	struct socket *so;
   1145 #ifdef RTV_RTT
   1146 	struct rtentry *rt;
   1147 #endif
   1148 	struct route *ro;
   1149 	int j;
   1150 
   1151 	inp = tp->t_inpcb;
   1152 #ifdef INET6
   1153 	in6p = tp->t_in6pcb;
   1154 #endif
   1155 	so = NULL;
   1156 	ro = NULL;
   1157 	if (inp) {
   1158 		so = inp->inp_socket;
   1159 		ro = &inp->inp_route;
   1160 	}
   1161 #ifdef INET6
   1162 	else if (in6p) {
   1163 		so = in6p->in6p_socket;
   1164 		ro = (struct route *)&in6p->in6p_route;
   1165 	}
   1166 #endif
   1167 
   1168 #ifdef RTV_RTT
   1169 	/*
   1170 	 * If we sent enough data to get some meaningful characteristics,
   1171 	 * save them in the routing entry.  'Enough' is arbitrarily
   1172 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1173 	 * give us 16 rtt samples assuming we only get one sample per
   1174 	 * window (the usual case on a long haul net).  16 samples is
   1175 	 * enough for the srtt filter to converge to within 5% of the correct
   1176 	 * value; fewer samples and we could save a very bogus rtt.
   1177 	 *
   1178 	 * Don't update the default route's characteristics and don't
   1179 	 * update anything that the user "locked".
   1180 	 */
   1181 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1182 	    ro && (rt = rtcache_validate(ro)) != NULL &&
   1183 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
   1184 		u_long i = 0;
   1185 
   1186 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1187 			i = tp->t_srtt *
   1188 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1189 			if (rt->rt_rmx.rmx_rtt && i)
   1190 				/*
   1191 				 * filter this update to half the old & half
   1192 				 * the new values, converting scale.
   1193 				 * See route.h and tcp_var.h for a
   1194 				 * description of the scaling constants.
   1195 				 */
   1196 				rt->rt_rmx.rmx_rtt =
   1197 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1198 			else
   1199 				rt->rt_rmx.rmx_rtt = i;
   1200 		}
   1201 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1202 			i = tp->t_rttvar *
   1203 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1204 			if (rt->rt_rmx.rmx_rttvar && i)
   1205 				rt->rt_rmx.rmx_rttvar =
   1206 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1207 			else
   1208 				rt->rt_rmx.rmx_rttvar = i;
   1209 		}
   1210 		/*
   1211 		 * update the pipelimit (ssthresh) if it has been updated
   1212 		 * already or if a pipesize was specified & the threshhold
   1213 		 * got below half the pipesize.  I.e., wait for bad news
   1214 		 * before we start updating, then update on both good
   1215 		 * and bad news.
   1216 		 */
   1217 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1218 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1219 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1220 			/*
   1221 			 * convert the limit from user data bytes to
   1222 			 * packets then to packet data bytes.
   1223 			 */
   1224 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1225 			if (i < 2)
   1226 				i = 2;
   1227 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1228 			if (rt->rt_rmx.rmx_ssthresh)
   1229 				rt->rt_rmx.rmx_ssthresh =
   1230 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1231 			else
   1232 				rt->rt_rmx.rmx_ssthresh = i;
   1233 		}
   1234 	}
   1235 #endif /* RTV_RTT */
   1236 	/* free the reassembly queue, if any */
   1237 	TCP_REASS_LOCK(tp);
   1238 	(void) tcp_freeq(tp);
   1239 	TCP_REASS_UNLOCK(tp);
   1240 
   1241 	/* free the SACK holes list. */
   1242 	tcp_free_sackholes(tp);
   1243 	tcp_congctl_release(tp);
   1244 	syn_cache_cleanup(tp);
   1245 
   1246 	if (tp->t_template) {
   1247 		m_free(tp->t_template);
   1248 		tp->t_template = NULL;
   1249 	}
   1250 
   1251 	/*
   1252 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
   1253 	 * the timers can also drop the lock.  We need to prevent access
   1254 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
   1255 	 * (prevents access by timers) and only then detach it.
   1256 	 */
   1257 	tp->t_flags |= TF_DEAD;
   1258 	if (inp) {
   1259 		inp->inp_ppcb = 0;
   1260 		soisdisconnected(so);
   1261 		in_pcbdetach(inp);
   1262 	}
   1263 #ifdef INET6
   1264 	else if (in6p) {
   1265 		in6p->in6p_ppcb = 0;
   1266 		soisdisconnected(so);
   1267 		in6_pcbdetach(in6p);
   1268 	}
   1269 #endif
   1270 	/*
   1271 	 * pcb is no longer visble elsewhere, so we can safely release
   1272 	 * the lock in callout_halt() if needed.
   1273 	 */
   1274 	TCP_STATINC(TCP_STAT_CLOSED);
   1275 	for (j = 0; j < TCPT_NTIMERS; j++) {
   1276 		callout_halt(&tp->t_timer[j], softnet_lock);
   1277 		callout_destroy(&tp->t_timer[j]);
   1278 	}
   1279 	callout_halt(&tp->t_delack_ch, softnet_lock);
   1280 	callout_destroy(&tp->t_delack_ch);
   1281 	pool_put(&tcpcb_pool, tp);
   1282 
   1283 	return ((struct tcpcb *)0);
   1284 }
   1285 
   1286 int
   1287 tcp_freeq(struct tcpcb *tp)
   1288 {
   1289 	struct ipqent *qe;
   1290 	int rv = 0;
   1291 #ifdef TCPREASS_DEBUG
   1292 	int i = 0;
   1293 #endif
   1294 
   1295 	TCP_REASS_LOCK_CHECK(tp);
   1296 
   1297 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1298 #ifdef TCPREASS_DEBUG
   1299 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1300 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1301 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1302 #endif
   1303 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1304 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1305 		m_freem(qe->ipqe_m);
   1306 		tcpipqent_free(qe);
   1307 		rv = 1;
   1308 	}
   1309 	tp->t_segqlen = 0;
   1310 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1311 	return (rv);
   1312 }
   1313 
   1314 void
   1315 tcp_fasttimo(void)
   1316 {
   1317 	if (tcp_drainwanted) {
   1318 		tcp_drain();
   1319 		tcp_drainwanted = 0;
   1320 	}
   1321 }
   1322 
   1323 void
   1324 tcp_drainstub(void)
   1325 {
   1326 	tcp_drainwanted = 1;
   1327 }
   1328 
   1329 /*
   1330  * Protocol drain routine.  Called when memory is in short supply.
   1331  * Called from pr_fasttimo thus a callout context.
   1332  */
   1333 void
   1334 tcp_drain(void)
   1335 {
   1336 	struct inpcb_hdr *inph;
   1337 	struct tcpcb *tp;
   1338 
   1339 	mutex_enter(softnet_lock);
   1340 	KERNEL_LOCK(1, NULL);
   1341 
   1342 	/*
   1343 	 * Free the sequence queue of all TCP connections.
   1344 	 */
   1345 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1346 		switch (inph->inph_af) {
   1347 		case AF_INET:
   1348 			tp = intotcpcb((struct inpcb *)inph);
   1349 			break;
   1350 #ifdef INET6
   1351 		case AF_INET6:
   1352 			tp = in6totcpcb((struct in6pcb *)inph);
   1353 			break;
   1354 #endif
   1355 		default:
   1356 			tp = NULL;
   1357 			break;
   1358 		}
   1359 		if (tp != NULL) {
   1360 			/*
   1361 			 * We may be called from a device's interrupt
   1362 			 * context.  If the tcpcb is already busy,
   1363 			 * just bail out now.
   1364 			 */
   1365 			if (tcp_reass_lock_try(tp) == 0)
   1366 				continue;
   1367 			if (tcp_freeq(tp))
   1368 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
   1369 			TCP_REASS_UNLOCK(tp);
   1370 		}
   1371 	}
   1372 
   1373 	KERNEL_UNLOCK_ONE(NULL);
   1374 	mutex_exit(softnet_lock);
   1375 }
   1376 
   1377 /*
   1378  * Notify a tcp user of an asynchronous error;
   1379  * store error as soft error, but wake up user
   1380  * (for now, won't do anything until can select for soft error).
   1381  */
   1382 void
   1383 tcp_notify(struct inpcb *inp, int error)
   1384 {
   1385 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1386 	struct socket *so = inp->inp_socket;
   1387 
   1388 	/*
   1389 	 * Ignore some errors if we are hooked up.
   1390 	 * If connection hasn't completed, has retransmitted several times,
   1391 	 * and receives a second error, give up now.  This is better
   1392 	 * than waiting a long time to establish a connection that
   1393 	 * can never complete.
   1394 	 */
   1395 	if (tp->t_state == TCPS_ESTABLISHED &&
   1396 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1397 	      error == EHOSTDOWN)) {
   1398 		return;
   1399 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1400 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1401 		so->so_error = error;
   1402 	else
   1403 		tp->t_softerror = error;
   1404 	cv_broadcast(&so->so_cv);
   1405 	sorwakeup(so);
   1406 	sowwakeup(so);
   1407 }
   1408 
   1409 #ifdef INET6
   1410 void
   1411 tcp6_notify(struct in6pcb *in6p, int error)
   1412 {
   1413 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1414 	struct socket *so = in6p->in6p_socket;
   1415 
   1416 	/*
   1417 	 * Ignore some errors if we are hooked up.
   1418 	 * If connection hasn't completed, has retransmitted several times,
   1419 	 * and receives a second error, give up now.  This is better
   1420 	 * than waiting a long time to establish a connection that
   1421 	 * can never complete.
   1422 	 */
   1423 	if (tp->t_state == TCPS_ESTABLISHED &&
   1424 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1425 	      error == EHOSTDOWN)) {
   1426 		return;
   1427 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1428 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1429 		so->so_error = error;
   1430 	else
   1431 		tp->t_softerror = error;
   1432 	cv_broadcast(&so->so_cv);
   1433 	sorwakeup(so);
   1434 	sowwakeup(so);
   1435 }
   1436 #endif
   1437 
   1438 #ifdef INET6
   1439 void *
   1440 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
   1441 {
   1442 	struct tcphdr th;
   1443 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1444 	int nmatch;
   1445 	struct ip6_hdr *ip6;
   1446 	const struct sockaddr_in6 *sa6_src = NULL;
   1447 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
   1448 	struct mbuf *m;
   1449 	int off;
   1450 
   1451 	if (sa->sa_family != AF_INET6 ||
   1452 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1453 		return NULL;
   1454 	if ((unsigned)cmd >= PRC_NCMDS)
   1455 		return NULL;
   1456 	else if (cmd == PRC_QUENCH) {
   1457 		/*
   1458 		 * Don't honor ICMP Source Quench messages meant for
   1459 		 * TCP connections.
   1460 		 */
   1461 		return NULL;
   1462 	} else if (PRC_IS_REDIRECT(cmd))
   1463 		notify = in6_rtchange, d = NULL;
   1464 	else if (cmd == PRC_MSGSIZE)
   1465 		; /* special code is present, see below */
   1466 	else if (cmd == PRC_HOSTDEAD)
   1467 		d = NULL;
   1468 	else if (inet6ctlerrmap[cmd] == 0)
   1469 		return NULL;
   1470 
   1471 	/* if the parameter is from icmp6, decode it. */
   1472 	if (d != NULL) {
   1473 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1474 		m = ip6cp->ip6c_m;
   1475 		ip6 = ip6cp->ip6c_ip6;
   1476 		off = ip6cp->ip6c_off;
   1477 		sa6_src = ip6cp->ip6c_src;
   1478 	} else {
   1479 		m = NULL;
   1480 		ip6 = NULL;
   1481 		sa6_src = &sa6_any;
   1482 		off = 0;
   1483 	}
   1484 
   1485 	if (ip6) {
   1486 		/*
   1487 		 * XXX: We assume that when ip6 is non NULL,
   1488 		 * M and OFF are valid.
   1489 		 */
   1490 
   1491 		/* check if we can safely examine src and dst ports */
   1492 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1493 			if (cmd == PRC_MSGSIZE)
   1494 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1495 			return NULL;
   1496 		}
   1497 
   1498 		memset(&th, 0, sizeof(th));
   1499 		m_copydata(m, off, sizeof(th), (void *)&th);
   1500 
   1501 		if (cmd == PRC_MSGSIZE) {
   1502 			int valid = 0;
   1503 
   1504 			/*
   1505 			 * Check to see if we have a valid TCP connection
   1506 			 * corresponding to the address in the ICMPv6 message
   1507 			 * payload.
   1508 			 */
   1509 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1510 			    th.th_dport,
   1511 			    (const struct in6_addr *)&sa6_src->sin6_addr,
   1512 						  th.th_sport, 0, 0))
   1513 				valid++;
   1514 
   1515 			/*
   1516 			 * Depending on the value of "valid" and routing table
   1517 			 * size (mtudisc_{hi,lo}wat), we will:
   1518 			 * - recalcurate the new MTU and create the
   1519 			 *   corresponding routing entry, or
   1520 			 * - ignore the MTU change notification.
   1521 			 */
   1522 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1523 
   1524 			/*
   1525 			 * no need to call in6_pcbnotify, it should have been
   1526 			 * called via callback if necessary
   1527 			 */
   1528 			return NULL;
   1529 		}
   1530 
   1531 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1532 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1533 		if (nmatch == 0 && syn_cache_count &&
   1534 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1535 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1536 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1537 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1538 					  sa, &th);
   1539 	} else {
   1540 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1541 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1542 	}
   1543 
   1544 	return NULL;
   1545 }
   1546 #endif
   1547 
   1548 #ifdef INET
   1549 /* assumes that ip header and tcp header are contiguous on mbuf */
   1550 void *
   1551 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
   1552 {
   1553 	struct ip *ip = v;
   1554 	struct tcphdr *th;
   1555 	struct icmp *icp;
   1556 	extern const int inetctlerrmap[];
   1557 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1558 	int errno;
   1559 	int nmatch;
   1560 	struct tcpcb *tp;
   1561 	u_int mtu;
   1562 	tcp_seq seq;
   1563 	struct inpcb *inp;
   1564 #ifdef INET6
   1565 	struct in6pcb *in6p;
   1566 	struct in6_addr src6, dst6;
   1567 #endif
   1568 
   1569 	if (sa->sa_family != AF_INET ||
   1570 	    sa->sa_len != sizeof(struct sockaddr_in))
   1571 		return NULL;
   1572 	if ((unsigned)cmd >= PRC_NCMDS)
   1573 		return NULL;
   1574 	errno = inetctlerrmap[cmd];
   1575 	if (cmd == PRC_QUENCH)
   1576 		/*
   1577 		 * Don't honor ICMP Source Quench messages meant for
   1578 		 * TCP connections.
   1579 		 */
   1580 		return NULL;
   1581 	else if (PRC_IS_REDIRECT(cmd))
   1582 		notify = in_rtchange, ip = 0;
   1583 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1584 		/*
   1585 		 * Check to see if we have a valid TCP connection
   1586 		 * corresponding to the address in the ICMP message
   1587 		 * payload.
   1588 		 *
   1589 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1590 		 */
   1591 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1592 #ifdef INET6
   1593 		memset(&src6, 0, sizeof(src6));
   1594 		memset(&dst6, 0, sizeof(dst6));
   1595 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1596 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1597 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1598 #endif
   1599 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1600 						th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
   1601 #ifdef INET6
   1602 			in6p = NULL;
   1603 #else
   1604 			;
   1605 #endif
   1606 #ifdef INET6
   1607 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1608 						       th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
   1609 			;
   1610 #endif
   1611 		else
   1612 			return NULL;
   1613 
   1614 		/*
   1615 		 * Now that we've validated that we are actually communicating
   1616 		 * with the host indicated in the ICMP message, locate the
   1617 		 * ICMP header, recalculate the new MTU, and create the
   1618 		 * corresponding routing entry.
   1619 		 */
   1620 		icp = (struct icmp *)((char *)ip -
   1621 		    offsetof(struct icmp, icmp_ip));
   1622 		if (inp) {
   1623 			if ((tp = intotcpcb(inp)) == NULL)
   1624 				return NULL;
   1625 		}
   1626 #ifdef INET6
   1627 		else if (in6p) {
   1628 			if ((tp = in6totcpcb(in6p)) == NULL)
   1629 				return NULL;
   1630 		}
   1631 #endif
   1632 		else
   1633 			return NULL;
   1634 		seq = ntohl(th->th_seq);
   1635 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1636 			return NULL;
   1637 		/*
   1638 		 * If the ICMP message advertises a Next-Hop MTU
   1639 		 * equal or larger than the maximum packet size we have
   1640 		 * ever sent, drop the message.
   1641 		 */
   1642 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1643 		if (mtu >= tp->t_pmtud_mtu_sent)
   1644 			return NULL;
   1645 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1646 			/*
   1647 			 * Calculate new MTU, and create corresponding
   1648 			 * route (traditional PMTUD).
   1649 			 */
   1650 			tp->t_flags &= ~TF_PMTUD_PEND;
   1651 			icmp_mtudisc(icp, ip->ip_dst);
   1652 		} else {
   1653 			/*
   1654 			 * Record the information got in the ICMP
   1655 			 * message; act on it later.
   1656 			 * If we had already recorded an ICMP message,
   1657 			 * replace the old one only if the new message
   1658 			 * refers to an older TCP segment
   1659 			 */
   1660 			if (tp->t_flags & TF_PMTUD_PEND) {
   1661 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1662 					return NULL;
   1663 			} else
   1664 				tp->t_flags |= TF_PMTUD_PEND;
   1665 			tp->t_pmtud_th_seq = seq;
   1666 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1667 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1668 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1669 		}
   1670 		return NULL;
   1671 	} else if (cmd == PRC_HOSTDEAD)
   1672 		ip = 0;
   1673 	else if (errno == 0)
   1674 		return NULL;
   1675 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1676 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1677 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
   1678 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1679 		if (nmatch == 0 && syn_cache_count &&
   1680 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1681 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1682 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1683 			struct sockaddr_in sin;
   1684 			memset(&sin, 0, sizeof(sin));
   1685 			sin.sin_len = sizeof(sin);
   1686 			sin.sin_family = AF_INET;
   1687 			sin.sin_port = th->th_sport;
   1688 			sin.sin_addr = ip->ip_src;
   1689 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1690 		}
   1691 
   1692 		/* XXX mapped address case */
   1693 	} else
   1694 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
   1695 		    notify);
   1696 	return NULL;
   1697 }
   1698 
   1699 /*
   1700  * When a source quench is received, we are being notified of congestion.
   1701  * Close the congestion window down to the Loss Window (one segment).
   1702  * We will gradually open it again as we proceed.
   1703  */
   1704 void
   1705 tcp_quench(struct inpcb *inp, int errno)
   1706 {
   1707 	struct tcpcb *tp = intotcpcb(inp);
   1708 
   1709 	if (tp) {
   1710 		tp->snd_cwnd = tp->t_segsz;
   1711 		tp->t_bytes_acked = 0;
   1712 	}
   1713 }
   1714 #endif
   1715 
   1716 #ifdef INET6
   1717 void
   1718 tcp6_quench(struct in6pcb *in6p, int errno)
   1719 {
   1720 	struct tcpcb *tp = in6totcpcb(in6p);
   1721 
   1722 	if (tp) {
   1723 		tp->snd_cwnd = tp->t_segsz;
   1724 		tp->t_bytes_acked = 0;
   1725 	}
   1726 }
   1727 #endif
   1728 
   1729 #ifdef INET
   1730 /*
   1731  * Path MTU Discovery handlers.
   1732  */
   1733 void
   1734 tcp_mtudisc_callback(struct in_addr faddr)
   1735 {
   1736 #ifdef INET6
   1737 	struct in6_addr in6;
   1738 #endif
   1739 
   1740 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1741 #ifdef INET6
   1742 	memset(&in6, 0, sizeof(in6));
   1743 	in6.s6_addr16[5] = 0xffff;
   1744 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1745 	tcp6_mtudisc_callback(&in6);
   1746 #endif
   1747 }
   1748 
   1749 /*
   1750  * On receipt of path MTU corrections, flush old route and replace it
   1751  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1752  * that all packets will be received.
   1753  */
   1754 void
   1755 tcp_mtudisc(struct inpcb *inp, int errno)
   1756 {
   1757 	struct tcpcb *tp = intotcpcb(inp);
   1758 	struct rtentry *rt = in_pcbrtentry(inp);
   1759 
   1760 	if (tp != 0) {
   1761 		if (rt != 0) {
   1762 			/*
   1763 			 * If this was not a host route, remove and realloc.
   1764 			 */
   1765 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1766 				in_rtchange(inp, errno);
   1767 				if ((rt = in_pcbrtentry(inp)) == 0)
   1768 					return;
   1769 			}
   1770 
   1771 			/*
   1772 			 * Slow start out of the error condition.  We
   1773 			 * use the MTU because we know it's smaller
   1774 			 * than the previously transmitted segment.
   1775 			 *
   1776 			 * Note: This is more conservative than the
   1777 			 * suggestion in draft-floyd-incr-init-win-03.
   1778 			 */
   1779 			if (rt->rt_rmx.rmx_mtu != 0)
   1780 				tp->snd_cwnd =
   1781 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1782 				    rt->rt_rmx.rmx_mtu);
   1783 		}
   1784 
   1785 		/*
   1786 		 * Resend unacknowledged packets.
   1787 		 */
   1788 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1789 		tcp_output(tp);
   1790 	}
   1791 }
   1792 #endif
   1793 
   1794 #ifdef INET6
   1795 /*
   1796  * Path MTU Discovery handlers.
   1797  */
   1798 void
   1799 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1800 {
   1801 	struct sockaddr_in6 sin6;
   1802 
   1803 	memset(&sin6, 0, sizeof(sin6));
   1804 	sin6.sin6_family = AF_INET6;
   1805 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1806 	sin6.sin6_addr = *faddr;
   1807 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1808 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1809 }
   1810 
   1811 void
   1812 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1813 {
   1814 	struct tcpcb *tp = in6totcpcb(in6p);
   1815 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1816 
   1817 	if (tp != 0) {
   1818 		if (rt != 0) {
   1819 			/*
   1820 			 * If this was not a host route, remove and realloc.
   1821 			 */
   1822 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1823 				in6_rtchange(in6p, errno);
   1824 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1825 					return;
   1826 			}
   1827 
   1828 			/*
   1829 			 * Slow start out of the error condition.  We
   1830 			 * use the MTU because we know it's smaller
   1831 			 * than the previously transmitted segment.
   1832 			 *
   1833 			 * Note: This is more conservative than the
   1834 			 * suggestion in draft-floyd-incr-init-win-03.
   1835 			 */
   1836 			if (rt->rt_rmx.rmx_mtu != 0)
   1837 				tp->snd_cwnd =
   1838 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1839 				    rt->rt_rmx.rmx_mtu);
   1840 		}
   1841 
   1842 		/*
   1843 		 * Resend unacknowledged packets.
   1844 		 */
   1845 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1846 		tcp_output(tp);
   1847 	}
   1848 }
   1849 #endif /* INET6 */
   1850 
   1851 /*
   1852  * Compute the MSS to advertise to the peer.  Called only during
   1853  * the 3-way handshake.  If we are the server (peer initiated
   1854  * connection), we are called with a pointer to the interface
   1855  * on which the SYN packet arrived.  If we are the client (we
   1856  * initiated connection), we are called with a pointer to the
   1857  * interface out which this connection should go.
   1858  *
   1859  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1860  * header size from MSS advertisement.  MSS option must hold the maximum
   1861  * segment size we can accept, so it must always be:
   1862  *	 max(if mtu) - ip header - tcp header
   1863  */
   1864 u_long
   1865 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1866 {
   1867 	extern u_long in_maxmtu;
   1868 	u_long mss = 0;
   1869 	u_long hdrsiz;
   1870 
   1871 	/*
   1872 	 * In order to avoid defeating path MTU discovery on the peer,
   1873 	 * we advertise the max MTU of all attached networks as our MSS,
   1874 	 * per RFC 1191, section 3.1.
   1875 	 *
   1876 	 * We provide the option to advertise just the MTU of
   1877 	 * the interface on which we hope this connection will
   1878 	 * be receiving.  If we are responding to a SYN, we
   1879 	 * will have a pretty good idea about this, but when
   1880 	 * initiating a connection there is a bit more doubt.
   1881 	 *
   1882 	 * We also need to ensure that loopback has a large enough
   1883 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1884 	 */
   1885 
   1886 	if (ifp != NULL)
   1887 		switch (af) {
   1888 		case AF_INET:
   1889 			mss = ifp->if_mtu;
   1890 			break;
   1891 #ifdef INET6
   1892 		case AF_INET6:
   1893 			mss = IN6_LINKMTU(ifp);
   1894 			break;
   1895 #endif
   1896 		}
   1897 
   1898 	if (tcp_mss_ifmtu == 0)
   1899 		switch (af) {
   1900 		case AF_INET:
   1901 			mss = max(in_maxmtu, mss);
   1902 			break;
   1903 #ifdef INET6
   1904 		case AF_INET6:
   1905 			mss = max(in6_maxmtu, mss);
   1906 			break;
   1907 #endif
   1908 		}
   1909 
   1910 	switch (af) {
   1911 	case AF_INET:
   1912 		hdrsiz = sizeof(struct ip);
   1913 		break;
   1914 #ifdef INET6
   1915 	case AF_INET6:
   1916 		hdrsiz = sizeof(struct ip6_hdr);
   1917 		break;
   1918 #endif
   1919 	default:
   1920 		hdrsiz = 0;
   1921 		break;
   1922 	}
   1923 	hdrsiz += sizeof(struct tcphdr);
   1924 	if (mss > hdrsiz)
   1925 		mss -= hdrsiz;
   1926 
   1927 	mss = max(tcp_mssdflt, mss);
   1928 	return (mss);
   1929 }
   1930 
   1931 /*
   1932  * Set connection variables based on the peer's advertised MSS.
   1933  * We are passed the TCPCB for the actual connection.  If we
   1934  * are the server, we are called by the compressed state engine
   1935  * when the 3-way handshake is complete.  If we are the client,
   1936  * we are called when we receive the SYN,ACK from the server.
   1937  *
   1938  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1939  * before this routine is called!
   1940  */
   1941 void
   1942 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1943 {
   1944 	struct socket *so;
   1945 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1946 	struct rtentry *rt;
   1947 #endif
   1948 	u_long bufsize;
   1949 	int mss;
   1950 
   1951 #ifdef DIAGNOSTIC
   1952 	if (tp->t_inpcb && tp->t_in6pcb)
   1953 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1954 #endif
   1955 	so = NULL;
   1956 	rt = NULL;
   1957 #ifdef INET
   1958 	if (tp->t_inpcb) {
   1959 		so = tp->t_inpcb->inp_socket;
   1960 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1961 		rt = in_pcbrtentry(tp->t_inpcb);
   1962 #endif
   1963 	}
   1964 #endif
   1965 #ifdef INET6
   1966 	if (tp->t_in6pcb) {
   1967 		so = tp->t_in6pcb->in6p_socket;
   1968 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1969 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1970 #endif
   1971 	}
   1972 #endif
   1973 
   1974 	/*
   1975 	 * As per RFC1122, use the default MSS value, unless they
   1976 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1977 	 */
   1978 	mss = tcp_mssdflt;
   1979 	if (offer)
   1980 		mss = offer;
   1981 	mss = max(mss, 256);		/* sanity */
   1982 	tp->t_peermss = mss;
   1983 	mss -= tcp_optlen(tp);
   1984 #ifdef INET
   1985 	if (tp->t_inpcb)
   1986 		mss -= ip_optlen(tp->t_inpcb);
   1987 #endif
   1988 #ifdef INET6
   1989 	if (tp->t_in6pcb)
   1990 		mss -= ip6_optlen(tp->t_in6pcb);
   1991 #endif
   1992 
   1993 	/*
   1994 	 * If there's a pipesize, change the socket buffer to that size.
   1995 	 * Make the socket buffer an integral number of MSS units.  If
   1996 	 * the MSS is larger than the socket buffer, artificially decrease
   1997 	 * the MSS.
   1998 	 */
   1999 #ifdef RTV_SPIPE
   2000 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   2001 		bufsize = rt->rt_rmx.rmx_sendpipe;
   2002 	else
   2003 #endif
   2004 	{
   2005 		KASSERT(so != NULL);
   2006 		bufsize = so->so_snd.sb_hiwat;
   2007 	}
   2008 	if (bufsize < mss)
   2009 		mss = bufsize;
   2010 	else {
   2011 		bufsize = roundup(bufsize, mss);
   2012 		if (bufsize > sb_max)
   2013 			bufsize = sb_max;
   2014 		(void) sbreserve(&so->so_snd, bufsize, so);
   2015 	}
   2016 	tp->t_segsz = mss;
   2017 
   2018 #ifdef RTV_SSTHRESH
   2019 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   2020 		/*
   2021 		 * There's some sort of gateway or interface buffer
   2022 		 * limit on the path.  Use this to set the slow
   2023 		 * start threshold, but set the threshold to no less
   2024 		 * than 2 * MSS.
   2025 		 */
   2026 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   2027 	}
   2028 #endif
   2029 }
   2030 
   2031 /*
   2032  * Processing necessary when a TCP connection is established.
   2033  */
   2034 void
   2035 tcp_established(struct tcpcb *tp)
   2036 {
   2037 	struct socket *so;
   2038 #ifdef RTV_RPIPE
   2039 	struct rtentry *rt;
   2040 #endif
   2041 	u_long bufsize;
   2042 
   2043 #ifdef DIAGNOSTIC
   2044 	if (tp->t_inpcb && tp->t_in6pcb)
   2045 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2046 #endif
   2047 	so = NULL;
   2048 	rt = NULL;
   2049 #ifdef INET
   2050 	/* This is a while() to reduce the dreadful stairstepping below */
   2051 	while (tp->t_inpcb) {
   2052 		so = tp->t_inpcb->inp_socket;
   2053 #if defined(RTV_RPIPE)
   2054 		rt = in_pcbrtentry(tp->t_inpcb);
   2055 #endif
   2056 		if (__predict_true(tcp_msl_enable)) {
   2057 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
   2058 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
   2059 				break;
   2060 			}
   2061 
   2062 			if (__predict_false(tcp_rttlocal)) {
   2063 				/* This may be adjusted by tcp_input */
   2064 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2065 				break;
   2066 			}
   2067 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
   2068 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2069 				break;
   2070 			}
   2071 		}
   2072 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
   2073 		break;
   2074 	}
   2075 #endif
   2076 #ifdef INET6
   2077 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
   2078 	while (!tp->t_inpcb && tp->t_in6pcb) {
   2079 		so = tp->t_in6pcb->in6p_socket;
   2080 #if defined(RTV_RPIPE)
   2081 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2082 #endif
   2083 		if (__predict_true(tcp_msl_enable)) {
   2084 			extern const struct in6_addr in6addr_loopback;
   2085 
   2086 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
   2087 					       &in6addr_loopback)) {
   2088 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
   2089 				break;
   2090 			}
   2091 
   2092 			if (__predict_false(tcp_rttlocal)) {
   2093 				/* This may be adjusted by tcp_input */
   2094 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2095 				break;
   2096 			}
   2097 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
   2098 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2099 				break;
   2100 			}
   2101 		}
   2102 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
   2103 		break;
   2104 	}
   2105 #endif
   2106 
   2107 	tp->t_state = TCPS_ESTABLISHED;
   2108 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   2109 
   2110 #ifdef RTV_RPIPE
   2111 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2112 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2113 	else
   2114 #endif
   2115 	{
   2116 		KASSERT(so != NULL);
   2117 		bufsize = so->so_rcv.sb_hiwat;
   2118 	}
   2119 	if (bufsize > tp->t_ourmss) {
   2120 		bufsize = roundup(bufsize, tp->t_ourmss);
   2121 		if (bufsize > sb_max)
   2122 			bufsize = sb_max;
   2123 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2124 	}
   2125 }
   2126 
   2127 /*
   2128  * Check if there's an initial rtt or rttvar.  Convert from the
   2129  * route-table units to scaled multiples of the slow timeout timer.
   2130  * Called only during the 3-way handshake.
   2131  */
   2132 void
   2133 tcp_rmx_rtt(struct tcpcb *tp)
   2134 {
   2135 #ifdef RTV_RTT
   2136 	struct rtentry *rt = NULL;
   2137 	int rtt;
   2138 
   2139 #ifdef DIAGNOSTIC
   2140 	if (tp->t_inpcb && tp->t_in6pcb)
   2141 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2142 #endif
   2143 #ifdef INET
   2144 	if (tp->t_inpcb)
   2145 		rt = in_pcbrtentry(tp->t_inpcb);
   2146 #endif
   2147 #ifdef INET6
   2148 	if (tp->t_in6pcb)
   2149 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2150 #endif
   2151 	if (rt == NULL)
   2152 		return;
   2153 
   2154 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2155 		/*
   2156 		 * XXX The lock bit for MTU indicates that the value
   2157 		 * is also a minimum value; this is subject to time.
   2158 		 */
   2159 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2160 			TCPT_RANGESET(tp->t_rttmin,
   2161 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2162 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2163 		tp->t_srtt = rtt /
   2164 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2165 		if (rt->rt_rmx.rmx_rttvar) {
   2166 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2167 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2168 				(TCP_RTTVAR_SHIFT + 2));
   2169 		} else {
   2170 			/* Default variation is +- 1 rtt */
   2171 			tp->t_rttvar =
   2172 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2173 		}
   2174 		TCPT_RANGESET(tp->t_rxtcur,
   2175 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2176 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2177 	}
   2178 #endif
   2179 }
   2180 
   2181 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2182 #if NRND > 0
   2183 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2184 #endif
   2185 
   2186 /*
   2187  * Get a new sequence value given a tcp control block
   2188  */
   2189 tcp_seq
   2190 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2191 {
   2192 
   2193 #ifdef INET
   2194 	if (tp->t_inpcb != NULL) {
   2195 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2196 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2197 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2198 		    addin));
   2199 	}
   2200 #endif
   2201 #ifdef INET6
   2202 	if (tp->t_in6pcb != NULL) {
   2203 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2204 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2205 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2206 		    addin));
   2207 	}
   2208 #endif
   2209 	/* Not possible. */
   2210 	panic("tcp_new_iss");
   2211 }
   2212 
   2213 /*
   2214  * This routine actually generates a new TCP initial sequence number.
   2215  */
   2216 tcp_seq
   2217 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2218     size_t addrsz, tcp_seq addin)
   2219 {
   2220 	tcp_seq tcp_iss;
   2221 
   2222 #if NRND > 0
   2223 	static bool tcp_iss_gotten_secret;
   2224 
   2225 	/*
   2226 	 * If we haven't been here before, initialize our cryptographic
   2227 	 * hash secret.
   2228 	 */
   2229 	if (tcp_iss_gotten_secret == false) {
   2230 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2231 		    RND_EXTRACT_ANY);
   2232 		tcp_iss_gotten_secret = true;
   2233 	}
   2234 
   2235 	if (tcp_do_rfc1948) {
   2236 		MD5_CTX ctx;
   2237 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2238 
   2239 		/*
   2240 		 * Compute the base value of the ISS.  It is a hash
   2241 		 * of (saddr, sport, daddr, dport, secret).
   2242 		 */
   2243 		MD5Init(&ctx);
   2244 
   2245 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2246 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2247 
   2248 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2249 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2250 
   2251 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2252 
   2253 		MD5Final(hash, &ctx);
   2254 
   2255 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2256 
   2257 		/*
   2258 		 * Now increment our "timer", and add it in to
   2259 		 * the computed value.
   2260 		 *
   2261 		 * XXX Use `addin'?
   2262 		 * XXX TCP_ISSINCR too large to use?
   2263 		 */
   2264 		tcp_iss_seq += TCP_ISSINCR;
   2265 #ifdef TCPISS_DEBUG
   2266 		printf("ISS hash 0x%08x, ", tcp_iss);
   2267 #endif
   2268 		tcp_iss += tcp_iss_seq + addin;
   2269 #ifdef TCPISS_DEBUG
   2270 		printf("new ISS 0x%08x\n", tcp_iss);
   2271 #endif
   2272 	} else
   2273 #endif /* NRND > 0 */
   2274 	{
   2275 		/*
   2276 		 * Randomize.
   2277 		 */
   2278 #if NRND > 0
   2279 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2280 #else
   2281 		tcp_iss = arc4random();
   2282 #endif
   2283 
   2284 		/*
   2285 		 * If we were asked to add some amount to a known value,
   2286 		 * we will take a random value obtained above, mask off
   2287 		 * the upper bits, and add in the known value.  We also
   2288 		 * add in a constant to ensure that we are at least a
   2289 		 * certain distance from the original value.
   2290 		 *
   2291 		 * This is used when an old connection is in timed wait
   2292 		 * and we have a new one coming in, for instance.
   2293 		 */
   2294 		if (addin != 0) {
   2295 #ifdef TCPISS_DEBUG
   2296 			printf("Random %08x, ", tcp_iss);
   2297 #endif
   2298 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2299 			tcp_iss += addin + TCP_ISSINCR;
   2300 #ifdef TCPISS_DEBUG
   2301 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2302 #endif
   2303 		} else {
   2304 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2305 			tcp_iss += tcp_iss_seq;
   2306 			tcp_iss_seq += TCP_ISSINCR;
   2307 #ifdef TCPISS_DEBUG
   2308 			printf("ISS %08x\n", tcp_iss);
   2309 #endif
   2310 		}
   2311 	}
   2312 
   2313 	if (tcp_compat_42) {
   2314 		/*
   2315 		 * Limit it to the positive range for really old TCP
   2316 		 * implementations.
   2317 		 * Just AND off the top bit instead of checking if
   2318 		 * is set first - saves a branch 50% of the time.
   2319 		 */
   2320 		tcp_iss &= 0x7fffffff;		/* XXX */
   2321 	}
   2322 
   2323 	return (tcp_iss);
   2324 }
   2325 
   2326 #if defined(IPSEC) || defined(FAST_IPSEC)
   2327 /* compute ESP/AH header size for TCP, including outer IP header. */
   2328 size_t
   2329 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2330 {
   2331 	struct inpcb *inp;
   2332 	size_t hdrsiz;
   2333 
   2334 	/* XXX mapped addr case (tp->t_in6pcb) */
   2335 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2336 		return 0;
   2337 	switch (tp->t_family) {
   2338 	case AF_INET:
   2339 		/* XXX: should use currect direction. */
   2340 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2341 		break;
   2342 	default:
   2343 		hdrsiz = 0;
   2344 		break;
   2345 	}
   2346 
   2347 	return hdrsiz;
   2348 }
   2349 
   2350 #ifdef INET6
   2351 size_t
   2352 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2353 {
   2354 	struct in6pcb *in6p;
   2355 	size_t hdrsiz;
   2356 
   2357 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2358 		return 0;
   2359 	switch (tp->t_family) {
   2360 	case AF_INET6:
   2361 		/* XXX: should use currect direction. */
   2362 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2363 		break;
   2364 	case AF_INET:
   2365 		/* mapped address case - tricky */
   2366 	default:
   2367 		hdrsiz = 0;
   2368 		break;
   2369 	}
   2370 
   2371 	return hdrsiz;
   2372 }
   2373 #endif
   2374 #endif /*IPSEC*/
   2375 
   2376 /*
   2377  * Determine the length of the TCP options for this connection.
   2378  *
   2379  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2380  *       all of the space?  Otherwise we can't exactly be incrementing
   2381  *       cwnd by an amount that varies depending on the amount we last
   2382  *       had to SACK!
   2383  */
   2384 
   2385 u_int
   2386 tcp_optlen(struct tcpcb *tp)
   2387 {
   2388 	u_int optlen;
   2389 
   2390 	optlen = 0;
   2391 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2392 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2393 		optlen += TCPOLEN_TSTAMP_APPA;
   2394 
   2395 #ifdef TCP_SIGNATURE
   2396 	if (tp->t_flags & TF_SIGNATURE)
   2397 		optlen += TCPOLEN_SIGNATURE + 2;
   2398 #endif /* TCP_SIGNATURE */
   2399 
   2400 	return optlen;
   2401 }
   2402 
   2403 u_int
   2404 tcp_hdrsz(struct tcpcb *tp)
   2405 {
   2406 	u_int hlen;
   2407 
   2408 	switch (tp->t_family) {
   2409 #ifdef INET6
   2410 	case AF_INET6:
   2411 		hlen = sizeof(struct ip6_hdr);
   2412 		break;
   2413 #endif
   2414 	case AF_INET:
   2415 		hlen = sizeof(struct ip);
   2416 		break;
   2417 	default:
   2418 		hlen = 0;
   2419 		break;
   2420 	}
   2421 	hlen += sizeof(struct tcphdr);
   2422 
   2423 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2424 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2425 		hlen += TCPOLEN_TSTAMP_APPA;
   2426 #ifdef TCP_SIGNATURE
   2427 	if (tp->t_flags & TF_SIGNATURE)
   2428 		hlen += TCPOLEN_SIGLEN;
   2429 #endif
   2430 	return hlen;
   2431 }
   2432 
   2433 void
   2434 tcp_statinc(u_int stat)
   2435 {
   2436 
   2437 	KASSERT(stat < TCP_NSTATS);
   2438 	TCP_STATINC(stat);
   2439 }
   2440 
   2441 void
   2442 tcp_statadd(u_int stat, uint64_t val)
   2443 {
   2444 
   2445 	KASSERT(stat < TCP_NSTATS);
   2446 	TCP_STATADD(stat, val);
   2447 }
   2448