tcp_subr.c revision 1.242 1 /* $NetBSD: tcp_subr.c,v 1.242 2011/10/31 12:56:45 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.242 2011/10/31 12:56:45 yamt Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #include "rnd.h"
102
103 #include <sys/param.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/protosw.h>
111 #include <sys/errno.h>
112 #include <sys/kernel.h>
113 #include <sys/pool.h>
114 #if NRND > 0
115 #include <sys/md5.h>
116 #include <sys/rnd.h>
117 #endif
118
119 #include <net/route.h>
120 #include <net/if.h>
121
122 #include <netinet/in.h>
123 #include <netinet/in_systm.h>
124 #include <netinet/ip.h>
125 #include <netinet/in_pcb.h>
126 #include <netinet/ip_var.h>
127 #include <netinet/ip_icmp.h>
128
129 #ifdef INET6
130 #ifndef INET
131 #include <netinet/in.h>
132 #endif
133 #include <netinet/ip6.h>
134 #include <netinet6/in6_pcb.h>
135 #include <netinet6/ip6_var.h>
136 #include <netinet6/in6_var.h>
137 #include <netinet6/ip6protosw.h>
138 #include <netinet/icmp6.h>
139 #include <netinet6/nd6.h>
140 #endif
141
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcp_vtw.h>
148 #include <netinet/tcp_private.h>
149 #include <netinet/tcp_congctl.h>
150 #include <netinet/tcpip.h>
151
152 #ifdef IPSEC
153 #include <netinet6/ipsec.h>
154 #include <netkey/key.h>
155 #endif /*IPSEC*/
156
157 #ifdef FAST_IPSEC
158 #include <netipsec/ipsec.h>
159 #include <netipsec/xform.h>
160 #ifdef INET6
161 #include <netipsec/ipsec6.h>
162 #endif
163 #include <netipsec/key.h>
164 #endif /* FAST_IPSEC*/
165
166
167 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
168 u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
169
170 percpu_t *tcpstat_percpu;
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_minmss = TCP_MINMSS;
175 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
176 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
177 #if NRND > 0
178 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
179 #endif
180 int tcp_do_sack = 1; /* selective acknowledgement */
181 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
182 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
185 #ifndef TCP_INIT_WIN
186 #define TCP_INIT_WIN 0 /* initial slow start window */
187 #endif
188 #ifndef TCP_INIT_WIN_LOCAL
189 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
190 #endif
191 int tcp_init_win = TCP_INIT_WIN;
192 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
193 int tcp_mss_ifmtu = 0;
194 #ifdef TCP_COMPAT_42
195 int tcp_compat_42 = 1;
196 #else
197 int tcp_compat_42 = 0;
198 #endif
199 int tcp_rst_ppslim = 100; /* 100pps */
200 int tcp_ackdrop_ppslim = 100; /* 100pps */
201 int tcp_do_loopback_cksum = 0;
202 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
203 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
204 int tcp_sack_tp_maxholes = 32;
205 int tcp_sack_globalmaxholes = 1024;
206 int tcp_sack_globalholes = 0;
207 int tcp_ecn_maxretries = 1;
208 int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
209 int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
210 int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
211 int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
212 int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
213 int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
214
215 int tcp4_vtw_enable = 0; /* 1 to enable */
216 int tcp6_vtw_enable = 0; /* 1 to enable */
217 int tcp_vtw_was_enabled = 0;
218 int tcp_vtw_entries = 1 << 16; /* 64K vestigial TIME_WAIT entries */
219
220 /* tcb hash */
221 #ifndef TCBHASHSIZE
222 #define TCBHASHSIZE 128
223 #endif
224 int tcbhashsize = TCBHASHSIZE;
225
226 /* syn hash parameters */
227 #define TCP_SYN_HASH_SIZE 293
228 #define TCP_SYN_BUCKET_SIZE 35
229 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
230 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
231 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
232 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
233
234 int tcp_freeq(struct tcpcb *);
235
236 #ifdef INET
237 void tcp_mtudisc_callback(struct in_addr);
238 #endif
239 #ifdef INET6
240 void tcp6_mtudisc_callback(struct in6_addr *);
241 #endif
242
243 #ifdef INET6
244 void tcp6_mtudisc(struct in6pcb *, int);
245 #endif
246
247 static struct pool tcpcb_pool;
248
249 static int tcp_drainwanted;
250
251 #ifdef TCP_CSUM_COUNTERS
252 #include <sys/device.h>
253
254 #if defined(INET)
255 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
256 NULL, "tcp", "hwcsum bad");
257 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp", "hwcsum ok");
259 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp", "hwcsum data");
261 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "swcsum");
263
264 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
265 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
266 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
267 EVCNT_ATTACH_STATIC(tcp_swcsum);
268 #endif /* defined(INET) */
269
270 #if defined(INET6)
271 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
272 NULL, "tcp6", "hwcsum bad");
273 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
274 NULL, "tcp6", "hwcsum ok");
275 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
276 NULL, "tcp6", "hwcsum data");
277 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 NULL, "tcp6", "swcsum");
279
280 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
281 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
282 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
283 EVCNT_ATTACH_STATIC(tcp6_swcsum);
284 #endif /* defined(INET6) */
285 #endif /* TCP_CSUM_COUNTERS */
286
287
288 #ifdef TCP_OUTPUT_COUNTERS
289 #include <sys/device.h>
290
291 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 NULL, "tcp", "output big header");
293 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 NULL, "tcp", "output predict hit");
295 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296 NULL, "tcp", "output predict miss");
297 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
298 NULL, "tcp", "output copy small");
299 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
300 NULL, "tcp", "output copy big");
301 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
302 NULL, "tcp", "output reference big");
303
304 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
305 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
306 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
307 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
308 EVCNT_ATTACH_STATIC(tcp_output_copybig);
309 EVCNT_ATTACH_STATIC(tcp_output_refbig);
310
311 #endif /* TCP_OUTPUT_COUNTERS */
312
313 #ifdef TCP_REASS_COUNTERS
314 #include <sys/device.h>
315
316 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
317 NULL, "tcp_reass", "calls");
318 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319 &tcp_reass_, "tcp_reass", "insert into empty queue");
320 struct evcnt tcp_reass_iteration[8] = {
321 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
322 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
323 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
324 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
325 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
328 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
329 };
330 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331 &tcp_reass_, "tcp_reass", "prepend to first");
332 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333 &tcp_reass_, "tcp_reass", "prepend");
334 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335 &tcp_reass_, "tcp_reass", "insert");
336 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337 &tcp_reass_, "tcp_reass", "insert at tail");
338 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339 &tcp_reass_, "tcp_reass", "append");
340 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341 &tcp_reass_, "tcp_reass", "append to tail fragment");
342 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
343 &tcp_reass_, "tcp_reass", "overlap at end");
344 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
345 &tcp_reass_, "tcp_reass", "overlap at start");
346 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
347 &tcp_reass_, "tcp_reass", "duplicate segment");
348 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
349 &tcp_reass_, "tcp_reass", "duplicate fragment");
350
351 EVCNT_ATTACH_STATIC(tcp_reass_);
352 EVCNT_ATTACH_STATIC(tcp_reass_empty);
353 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
354 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
355 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
356 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
357 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
358 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
359 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
361 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
362 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
363 EVCNT_ATTACH_STATIC(tcp_reass_insert);
364 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
365 EVCNT_ATTACH_STATIC(tcp_reass_append);
366 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
367 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
368 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
369 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
370 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
371
372 #endif /* TCP_REASS_COUNTERS */
373
374 #ifdef MBUFTRACE
375 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
376 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
377 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
378 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
379 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
380 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
381 #endif
382
383 /*
384 * Tcp initialization
385 */
386 void
387 tcp_init(void)
388 {
389 int hlen;
390
391 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
392 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
393 NULL, IPL_SOFTNET);
394
395 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
396 #ifdef INET6
397 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
398 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
399 #endif
400 if (max_protohdr < hlen)
401 max_protohdr = hlen;
402 if (max_linkhdr + hlen > MHLEN)
403 panic("tcp_init");
404
405 #ifdef INET
406 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
407 #endif
408 #ifdef INET6
409 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
410 #endif
411
412 tcp_usrreq_init();
413
414 /* Initialize timer state. */
415 tcp_timer_init();
416
417 /* Initialize the compressed state engine. */
418 syn_cache_init();
419
420 /* Initialize the congestion control algorithms. */
421 tcp_congctl_init();
422
423 /* Initialize the TCPCB template. */
424 tcp_tcpcb_template();
425
426 /* Initialize reassembly queue */
427 tcpipqent_init();
428
429 /* SACK */
430 tcp_sack_init();
431
432 MOWNER_ATTACH(&tcp_tx_mowner);
433 MOWNER_ATTACH(&tcp_rx_mowner);
434 MOWNER_ATTACH(&tcp_reass_mowner);
435 MOWNER_ATTACH(&tcp_sock_mowner);
436 MOWNER_ATTACH(&tcp_sock_tx_mowner);
437 MOWNER_ATTACH(&tcp_sock_rx_mowner);
438 MOWNER_ATTACH(&tcp_mowner);
439
440 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
441
442 vtw_earlyinit();
443 }
444
445 /*
446 * Create template to be used to send tcp packets on a connection.
447 * Call after host entry created, allocates an mbuf and fills
448 * in a skeletal tcp/ip header, minimizing the amount of work
449 * necessary when the connection is used.
450 */
451 struct mbuf *
452 tcp_template(struct tcpcb *tp)
453 {
454 struct inpcb *inp = tp->t_inpcb;
455 #ifdef INET6
456 struct in6pcb *in6p = tp->t_in6pcb;
457 #endif
458 struct tcphdr *n;
459 struct mbuf *m;
460 int hlen;
461
462 switch (tp->t_family) {
463 case AF_INET:
464 hlen = sizeof(struct ip);
465 if (inp)
466 break;
467 #ifdef INET6
468 if (in6p) {
469 /* mapped addr case */
470 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
471 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
472 break;
473 }
474 #endif
475 return NULL; /*EINVAL*/
476 #ifdef INET6
477 case AF_INET6:
478 hlen = sizeof(struct ip6_hdr);
479 if (in6p) {
480 /* more sainty check? */
481 break;
482 }
483 return NULL; /*EINVAL*/
484 #endif
485 default:
486 hlen = 0; /*pacify gcc*/
487 return NULL; /*EAFNOSUPPORT*/
488 }
489 #ifdef DIAGNOSTIC
490 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
491 panic("mclbytes too small for t_template");
492 #endif
493 m = tp->t_template;
494 if (m && m->m_len == hlen + sizeof(struct tcphdr))
495 ;
496 else {
497 if (m)
498 m_freem(m);
499 m = tp->t_template = NULL;
500 MGETHDR(m, M_DONTWAIT, MT_HEADER);
501 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
502 MCLGET(m, M_DONTWAIT);
503 if ((m->m_flags & M_EXT) == 0) {
504 m_free(m);
505 m = NULL;
506 }
507 }
508 if (m == NULL)
509 return NULL;
510 MCLAIM(m, &tcp_mowner);
511 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
512 }
513
514 memset(mtod(m, void *), 0, m->m_len);
515
516 n = (struct tcphdr *)(mtod(m, char *) + hlen);
517
518 switch (tp->t_family) {
519 case AF_INET:
520 {
521 struct ipovly *ipov;
522 mtod(m, struct ip *)->ip_v = 4;
523 mtod(m, struct ip *)->ip_hl = hlen >> 2;
524 ipov = mtod(m, struct ipovly *);
525 ipov->ih_pr = IPPROTO_TCP;
526 ipov->ih_len = htons(sizeof(struct tcphdr));
527 if (inp) {
528 ipov->ih_src = inp->inp_laddr;
529 ipov->ih_dst = inp->inp_faddr;
530 }
531 #ifdef INET6
532 else if (in6p) {
533 /* mapped addr case */
534 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
535 sizeof(ipov->ih_src));
536 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
537 sizeof(ipov->ih_dst));
538 }
539 #endif
540 /*
541 * Compute the pseudo-header portion of the checksum
542 * now. We incrementally add in the TCP option and
543 * payload lengths later, and then compute the TCP
544 * checksum right before the packet is sent off onto
545 * the wire.
546 */
547 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
548 ipov->ih_dst.s_addr,
549 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
550 break;
551 }
552 #ifdef INET6
553 case AF_INET6:
554 {
555 struct ip6_hdr *ip6;
556 mtod(m, struct ip *)->ip_v = 6;
557 ip6 = mtod(m, struct ip6_hdr *);
558 ip6->ip6_nxt = IPPROTO_TCP;
559 ip6->ip6_plen = htons(sizeof(struct tcphdr));
560 ip6->ip6_src = in6p->in6p_laddr;
561 ip6->ip6_dst = in6p->in6p_faddr;
562 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
563 if (ip6_auto_flowlabel) {
564 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
565 ip6->ip6_flow |=
566 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
567 }
568 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
569 ip6->ip6_vfc |= IPV6_VERSION;
570
571 /*
572 * Compute the pseudo-header portion of the checksum
573 * now. We incrementally add in the TCP option and
574 * payload lengths later, and then compute the TCP
575 * checksum right before the packet is sent off onto
576 * the wire.
577 */
578 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
579 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
580 htonl(IPPROTO_TCP));
581 break;
582 }
583 #endif
584 }
585 if (inp) {
586 n->th_sport = inp->inp_lport;
587 n->th_dport = inp->inp_fport;
588 }
589 #ifdef INET6
590 else if (in6p) {
591 n->th_sport = in6p->in6p_lport;
592 n->th_dport = in6p->in6p_fport;
593 }
594 #endif
595 n->th_seq = 0;
596 n->th_ack = 0;
597 n->th_x2 = 0;
598 n->th_off = 5;
599 n->th_flags = 0;
600 n->th_win = 0;
601 n->th_urp = 0;
602 return (m);
603 }
604
605 /*
606 * Send a single message to the TCP at address specified by
607 * the given TCP/IP header. If m == 0, then we make a copy
608 * of the tcpiphdr at ti and send directly to the addressed host.
609 * This is used to force keep alive messages out using the TCP
610 * template for a connection tp->t_template. If flags are given
611 * then we send a message back to the TCP which originated the
612 * segment ti, and discard the mbuf containing it and any other
613 * attached mbufs.
614 *
615 * In any case the ack and sequence number of the transmitted
616 * segment are as specified by the parameters.
617 */
618 int
619 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
620 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
621 {
622 #ifdef INET6
623 struct rtentry *rt;
624 #endif
625 struct route *ro;
626 int error, tlen, win = 0;
627 int hlen;
628 struct ip *ip;
629 #ifdef INET6
630 struct ip6_hdr *ip6;
631 #endif
632 int family; /* family on packet, not inpcb/in6pcb! */
633 struct tcphdr *th;
634 struct socket *so;
635
636 if (tp != NULL && (flags & TH_RST) == 0) {
637 #ifdef DIAGNOSTIC
638 if (tp->t_inpcb && tp->t_in6pcb)
639 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
640 #endif
641 #ifdef INET
642 if (tp->t_inpcb)
643 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
644 #endif
645 #ifdef INET6
646 if (tp->t_in6pcb)
647 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
648 #endif
649 }
650
651 th = NULL; /* Quell uninitialized warning */
652 ip = NULL;
653 #ifdef INET6
654 ip6 = NULL;
655 #endif
656 if (m == 0) {
657 if (!template)
658 return EINVAL;
659
660 /* get family information from template */
661 switch (mtod(template, struct ip *)->ip_v) {
662 case 4:
663 family = AF_INET;
664 hlen = sizeof(struct ip);
665 break;
666 #ifdef INET6
667 case 6:
668 family = AF_INET6;
669 hlen = sizeof(struct ip6_hdr);
670 break;
671 #endif
672 default:
673 return EAFNOSUPPORT;
674 }
675
676 MGETHDR(m, M_DONTWAIT, MT_HEADER);
677 if (m) {
678 MCLAIM(m, &tcp_tx_mowner);
679 MCLGET(m, M_DONTWAIT);
680 if ((m->m_flags & M_EXT) == 0) {
681 m_free(m);
682 m = NULL;
683 }
684 }
685 if (m == NULL)
686 return (ENOBUFS);
687
688 if (tcp_compat_42)
689 tlen = 1;
690 else
691 tlen = 0;
692
693 m->m_data += max_linkhdr;
694 bcopy(mtod(template, void *), mtod(m, void *),
695 template->m_len);
696 switch (family) {
697 case AF_INET:
698 ip = mtod(m, struct ip *);
699 th = (struct tcphdr *)(ip + 1);
700 break;
701 #ifdef INET6
702 case AF_INET6:
703 ip6 = mtod(m, struct ip6_hdr *);
704 th = (struct tcphdr *)(ip6 + 1);
705 break;
706 #endif
707 #if 0
708 default:
709 /* noone will visit here */
710 m_freem(m);
711 return EAFNOSUPPORT;
712 #endif
713 }
714 flags = TH_ACK;
715 } else {
716
717 if ((m->m_flags & M_PKTHDR) == 0) {
718 #if 0
719 printf("non PKTHDR to tcp_respond\n");
720 #endif
721 m_freem(m);
722 return EINVAL;
723 }
724 #ifdef DIAGNOSTIC
725 if (!th0)
726 panic("th0 == NULL in tcp_respond");
727 #endif
728
729 /* get family information from m */
730 switch (mtod(m, struct ip *)->ip_v) {
731 case 4:
732 family = AF_INET;
733 hlen = sizeof(struct ip);
734 ip = mtod(m, struct ip *);
735 break;
736 #ifdef INET6
737 case 6:
738 family = AF_INET6;
739 hlen = sizeof(struct ip6_hdr);
740 ip6 = mtod(m, struct ip6_hdr *);
741 break;
742 #endif
743 default:
744 m_freem(m);
745 return EAFNOSUPPORT;
746 }
747 /* clear h/w csum flags inherited from rx packet */
748 m->m_pkthdr.csum_flags = 0;
749
750 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
751 tlen = sizeof(*th0);
752 else
753 tlen = th0->th_off << 2;
754
755 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
756 mtod(m, char *) + hlen == (char *)th0) {
757 m->m_len = hlen + tlen;
758 m_freem(m->m_next);
759 m->m_next = NULL;
760 } else {
761 struct mbuf *n;
762
763 #ifdef DIAGNOSTIC
764 if (max_linkhdr + hlen + tlen > MCLBYTES) {
765 m_freem(m);
766 return EMSGSIZE;
767 }
768 #endif
769 MGETHDR(n, M_DONTWAIT, MT_HEADER);
770 if (n && max_linkhdr + hlen + tlen > MHLEN) {
771 MCLGET(n, M_DONTWAIT);
772 if ((n->m_flags & M_EXT) == 0) {
773 m_freem(n);
774 n = NULL;
775 }
776 }
777 if (!n) {
778 m_freem(m);
779 return ENOBUFS;
780 }
781
782 MCLAIM(n, &tcp_tx_mowner);
783 n->m_data += max_linkhdr;
784 n->m_len = hlen + tlen;
785 m_copyback(n, 0, hlen, mtod(m, void *));
786 m_copyback(n, hlen, tlen, (void *)th0);
787
788 m_freem(m);
789 m = n;
790 n = NULL;
791 }
792
793 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
794 switch (family) {
795 case AF_INET:
796 ip = mtod(m, struct ip *);
797 th = (struct tcphdr *)(ip + 1);
798 ip->ip_p = IPPROTO_TCP;
799 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
800 ip->ip_p = IPPROTO_TCP;
801 break;
802 #ifdef INET6
803 case AF_INET6:
804 ip6 = mtod(m, struct ip6_hdr *);
805 th = (struct tcphdr *)(ip6 + 1);
806 ip6->ip6_nxt = IPPROTO_TCP;
807 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
808 ip6->ip6_nxt = IPPROTO_TCP;
809 break;
810 #endif
811 #if 0
812 default:
813 /* noone will visit here */
814 m_freem(m);
815 return EAFNOSUPPORT;
816 #endif
817 }
818 xchg(th->th_dport, th->th_sport, u_int16_t);
819 #undef xchg
820 tlen = 0; /*be friendly with the following code*/
821 }
822 th->th_seq = htonl(seq);
823 th->th_ack = htonl(ack);
824 th->th_x2 = 0;
825 if ((flags & TH_SYN) == 0) {
826 if (tp)
827 win >>= tp->rcv_scale;
828 if (win > TCP_MAXWIN)
829 win = TCP_MAXWIN;
830 th->th_win = htons((u_int16_t)win);
831 th->th_off = sizeof (struct tcphdr) >> 2;
832 tlen += sizeof(*th);
833 } else
834 tlen += th->th_off << 2;
835 m->m_len = hlen + tlen;
836 m->m_pkthdr.len = hlen + tlen;
837 m->m_pkthdr.rcvif = (struct ifnet *) 0;
838 th->th_flags = flags;
839 th->th_urp = 0;
840
841 switch (family) {
842 #ifdef INET
843 case AF_INET:
844 {
845 struct ipovly *ipov = (struct ipovly *)ip;
846 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
847 ipov->ih_len = htons((u_int16_t)tlen);
848
849 th->th_sum = 0;
850 th->th_sum = in_cksum(m, hlen + tlen);
851 ip->ip_len = htons(hlen + tlen);
852 ip->ip_ttl = ip_defttl;
853 break;
854 }
855 #endif
856 #ifdef INET6
857 case AF_INET6:
858 {
859 th->th_sum = 0;
860 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
861 tlen);
862 ip6->ip6_plen = htons(tlen);
863 if (tp && tp->t_in6pcb) {
864 struct ifnet *oifp;
865 ro = &tp->t_in6pcb->in6p_route;
866 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
867 : NULL;
868 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
869 } else
870 ip6->ip6_hlim = ip6_defhlim;
871 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
872 if (ip6_auto_flowlabel) {
873 ip6->ip6_flow |=
874 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
875 }
876 break;
877 }
878 #endif
879 }
880
881 if (tp && tp->t_inpcb)
882 so = tp->t_inpcb->inp_socket;
883 #ifdef INET6
884 else if (tp && tp->t_in6pcb)
885 so = tp->t_in6pcb->in6p_socket;
886 #endif
887 else
888 so = NULL;
889
890 if (tp != NULL && tp->t_inpcb != NULL) {
891 ro = &tp->t_inpcb->inp_route;
892 #ifdef DIAGNOSTIC
893 if (family != AF_INET)
894 panic("tcp_respond: address family mismatch");
895 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
896 panic("tcp_respond: ip_dst %x != inp_faddr %x",
897 ntohl(ip->ip_dst.s_addr),
898 ntohl(tp->t_inpcb->inp_faddr.s_addr));
899 }
900 #endif
901 }
902 #ifdef INET6
903 else if (tp != NULL && tp->t_in6pcb != NULL) {
904 ro = (struct route *)&tp->t_in6pcb->in6p_route;
905 #ifdef DIAGNOSTIC
906 if (family == AF_INET) {
907 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
908 panic("tcp_respond: not mapped addr");
909 if (memcmp(&ip->ip_dst,
910 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
911 sizeof(ip->ip_dst)) != 0) {
912 panic("tcp_respond: ip_dst != in6p_faddr");
913 }
914 } else if (family == AF_INET6) {
915 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
916 &tp->t_in6pcb->in6p_faddr))
917 panic("tcp_respond: ip6_dst != in6p_faddr");
918 } else
919 panic("tcp_respond: address family mismatch");
920 #endif
921 }
922 #endif
923 else
924 ro = NULL;
925
926 switch (family) {
927 #ifdef INET
928 case AF_INET:
929 error = ip_output(m, NULL, ro,
930 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
931 (struct ip_moptions *)0, so);
932 break;
933 #endif
934 #ifdef INET6
935 case AF_INET6:
936 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
937 break;
938 #endif
939 default:
940 error = EAFNOSUPPORT;
941 break;
942 }
943
944 return (error);
945 }
946
947 /*
948 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
949 * a bunch of members individually, we maintain this template for the
950 * static and mostly-static components of the TCPCB, and copy it into
951 * the new TCPCB instead.
952 */
953 static struct tcpcb tcpcb_template = {
954 .t_srtt = TCPTV_SRTTBASE,
955 .t_rttmin = TCPTV_MIN,
956
957 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
958 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
959 .snd_numholes = 0,
960
961 .t_partialacks = -1,
962 .t_bytes_acked = 0,
963 };
964
965 /*
966 * Updates the TCPCB template whenever a parameter that would affect
967 * the template is changed.
968 */
969 void
970 tcp_tcpcb_template(void)
971 {
972 struct tcpcb *tp = &tcpcb_template;
973 int flags;
974
975 tp->t_peermss = tcp_mssdflt;
976 tp->t_ourmss = tcp_mssdflt;
977 tp->t_segsz = tcp_mssdflt;
978
979 flags = 0;
980 if (tcp_do_rfc1323 && tcp_do_win_scale)
981 flags |= TF_REQ_SCALE;
982 if (tcp_do_rfc1323 && tcp_do_timestamps)
983 flags |= TF_REQ_TSTMP;
984 tp->t_flags = flags;
985
986 /*
987 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
988 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
989 * reasonable initial retransmit time.
990 */
991 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
992 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
993 TCPTV_MIN, TCPTV_REXMTMAX);
994
995 /* Keep Alive */
996 tp->t_keepinit = tcp_keepinit;
997 tp->t_keepidle = tcp_keepidle;
998 tp->t_keepintvl = tcp_keepintvl;
999 tp->t_keepcnt = tcp_keepcnt;
1000 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
1001
1002 /* MSL */
1003 tp->t_msl = TCPTV_MSL;
1004 }
1005
1006 /*
1007 * Create a new TCP control block, making an
1008 * empty reassembly queue and hooking it to the argument
1009 * protocol control block.
1010 */
1011 /* family selects inpcb, or in6pcb */
1012 struct tcpcb *
1013 tcp_newtcpcb(int family, void *aux)
1014 {
1015 #ifdef INET6
1016 struct rtentry *rt;
1017 #endif
1018 struct tcpcb *tp;
1019 int i;
1020
1021 /* XXX Consider using a pool_cache for speed. */
1022 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
1023 if (tp == NULL)
1024 return (NULL);
1025 memcpy(tp, &tcpcb_template, sizeof(*tp));
1026 TAILQ_INIT(&tp->segq);
1027 TAILQ_INIT(&tp->timeq);
1028 tp->t_family = family; /* may be overridden later on */
1029 TAILQ_INIT(&tp->snd_holes);
1030 LIST_INIT(&tp->t_sc); /* XXX can template this */
1031
1032 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1033 for (i = 0; i < TCPT_NTIMERS; i++) {
1034 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1035 TCP_TIMER_INIT(tp, i);
1036 }
1037 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1038
1039 switch (family) {
1040 case AF_INET:
1041 {
1042 struct inpcb *inp = (struct inpcb *)aux;
1043
1044 inp->inp_ip.ip_ttl = ip_defttl;
1045 inp->inp_ppcb = (void *)tp;
1046
1047 tp->t_inpcb = inp;
1048 tp->t_mtudisc = ip_mtudisc;
1049 break;
1050 }
1051 #ifdef INET6
1052 case AF_INET6:
1053 {
1054 struct in6pcb *in6p = (struct in6pcb *)aux;
1055
1056 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1057 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1058 ? rt->rt_ifp
1059 : NULL);
1060 in6p->in6p_ppcb = (void *)tp;
1061
1062 tp->t_in6pcb = in6p;
1063 /* for IPv6, always try to run path MTU discovery */
1064 tp->t_mtudisc = 1;
1065 break;
1066 }
1067 #endif /* INET6 */
1068 default:
1069 for (i = 0; i < TCPT_NTIMERS; i++)
1070 callout_destroy(&tp->t_timer[i]);
1071 callout_destroy(&tp->t_delack_ch);
1072 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1073 return (NULL);
1074 }
1075
1076 /*
1077 * Initialize our timebase. When we send timestamps, we take
1078 * the delta from tcp_now -- this means each connection always
1079 * gets a timebase of 1, which makes it, among other things,
1080 * more difficult to determine how long a system has been up,
1081 * and thus how many TCP sequence increments have occurred.
1082 *
1083 * We start with 1, because 0 doesn't work with linux, which
1084 * considers timestamp 0 in a SYN packet as a bug and disables
1085 * timestamps.
1086 */
1087 tp->ts_timebase = tcp_now - 1;
1088
1089 tcp_congctl_select(tp, tcp_congctl_global_name);
1090
1091 return (tp);
1092 }
1093
1094 /*
1095 * Drop a TCP connection, reporting
1096 * the specified error. If connection is synchronized,
1097 * then send a RST to peer.
1098 */
1099 struct tcpcb *
1100 tcp_drop(struct tcpcb *tp, int errno)
1101 {
1102 struct socket *so = NULL;
1103
1104 #ifdef DIAGNOSTIC
1105 if (tp->t_inpcb && tp->t_in6pcb)
1106 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1107 #endif
1108 #ifdef INET
1109 if (tp->t_inpcb)
1110 so = tp->t_inpcb->inp_socket;
1111 #endif
1112 #ifdef INET6
1113 if (tp->t_in6pcb)
1114 so = tp->t_in6pcb->in6p_socket;
1115 #endif
1116 if (!so)
1117 return NULL;
1118
1119 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1120 tp->t_state = TCPS_CLOSED;
1121 (void) tcp_output(tp);
1122 TCP_STATINC(TCP_STAT_DROPS);
1123 } else
1124 TCP_STATINC(TCP_STAT_CONNDROPS);
1125 if (errno == ETIMEDOUT && tp->t_softerror)
1126 errno = tp->t_softerror;
1127 so->so_error = errno;
1128 return (tcp_close(tp));
1129 }
1130
1131 /*
1132 * Close a TCP control block:
1133 * discard all space held by the tcp
1134 * discard internet protocol block
1135 * wake up any sleepers
1136 */
1137 struct tcpcb *
1138 tcp_close(struct tcpcb *tp)
1139 {
1140 struct inpcb *inp;
1141 #ifdef INET6
1142 struct in6pcb *in6p;
1143 #endif
1144 struct socket *so;
1145 #ifdef RTV_RTT
1146 struct rtentry *rt;
1147 #endif
1148 struct route *ro;
1149 int j;
1150
1151 inp = tp->t_inpcb;
1152 #ifdef INET6
1153 in6p = tp->t_in6pcb;
1154 #endif
1155 so = NULL;
1156 ro = NULL;
1157 if (inp) {
1158 so = inp->inp_socket;
1159 ro = &inp->inp_route;
1160 }
1161 #ifdef INET6
1162 else if (in6p) {
1163 so = in6p->in6p_socket;
1164 ro = (struct route *)&in6p->in6p_route;
1165 }
1166 #endif
1167
1168 #ifdef RTV_RTT
1169 /*
1170 * If we sent enough data to get some meaningful characteristics,
1171 * save them in the routing entry. 'Enough' is arbitrarily
1172 * defined as the sendpipesize (default 4K) * 16. This would
1173 * give us 16 rtt samples assuming we only get one sample per
1174 * window (the usual case on a long haul net). 16 samples is
1175 * enough for the srtt filter to converge to within 5% of the correct
1176 * value; fewer samples and we could save a very bogus rtt.
1177 *
1178 * Don't update the default route's characteristics and don't
1179 * update anything that the user "locked".
1180 */
1181 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1182 ro && (rt = rtcache_validate(ro)) != NULL &&
1183 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1184 u_long i = 0;
1185
1186 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1187 i = tp->t_srtt *
1188 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1189 if (rt->rt_rmx.rmx_rtt && i)
1190 /*
1191 * filter this update to half the old & half
1192 * the new values, converting scale.
1193 * See route.h and tcp_var.h for a
1194 * description of the scaling constants.
1195 */
1196 rt->rt_rmx.rmx_rtt =
1197 (rt->rt_rmx.rmx_rtt + i) / 2;
1198 else
1199 rt->rt_rmx.rmx_rtt = i;
1200 }
1201 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1202 i = tp->t_rttvar *
1203 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1204 if (rt->rt_rmx.rmx_rttvar && i)
1205 rt->rt_rmx.rmx_rttvar =
1206 (rt->rt_rmx.rmx_rttvar + i) / 2;
1207 else
1208 rt->rt_rmx.rmx_rttvar = i;
1209 }
1210 /*
1211 * update the pipelimit (ssthresh) if it has been updated
1212 * already or if a pipesize was specified & the threshhold
1213 * got below half the pipesize. I.e., wait for bad news
1214 * before we start updating, then update on both good
1215 * and bad news.
1216 */
1217 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1218 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1219 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1220 /*
1221 * convert the limit from user data bytes to
1222 * packets then to packet data bytes.
1223 */
1224 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1225 if (i < 2)
1226 i = 2;
1227 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1228 if (rt->rt_rmx.rmx_ssthresh)
1229 rt->rt_rmx.rmx_ssthresh =
1230 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1231 else
1232 rt->rt_rmx.rmx_ssthresh = i;
1233 }
1234 }
1235 #endif /* RTV_RTT */
1236 /* free the reassembly queue, if any */
1237 TCP_REASS_LOCK(tp);
1238 (void) tcp_freeq(tp);
1239 TCP_REASS_UNLOCK(tp);
1240
1241 /* free the SACK holes list. */
1242 tcp_free_sackholes(tp);
1243 tcp_congctl_release(tp);
1244 syn_cache_cleanup(tp);
1245
1246 if (tp->t_template) {
1247 m_free(tp->t_template);
1248 tp->t_template = NULL;
1249 }
1250
1251 /*
1252 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1253 * the timers can also drop the lock. We need to prevent access
1254 * to the tcpcb as it's half torn down. Flag the pcb as dead
1255 * (prevents access by timers) and only then detach it.
1256 */
1257 tp->t_flags |= TF_DEAD;
1258 if (inp) {
1259 inp->inp_ppcb = 0;
1260 soisdisconnected(so);
1261 in_pcbdetach(inp);
1262 }
1263 #ifdef INET6
1264 else if (in6p) {
1265 in6p->in6p_ppcb = 0;
1266 soisdisconnected(so);
1267 in6_pcbdetach(in6p);
1268 }
1269 #endif
1270 /*
1271 * pcb is no longer visble elsewhere, so we can safely release
1272 * the lock in callout_halt() if needed.
1273 */
1274 TCP_STATINC(TCP_STAT_CLOSED);
1275 for (j = 0; j < TCPT_NTIMERS; j++) {
1276 callout_halt(&tp->t_timer[j], softnet_lock);
1277 callout_destroy(&tp->t_timer[j]);
1278 }
1279 callout_halt(&tp->t_delack_ch, softnet_lock);
1280 callout_destroy(&tp->t_delack_ch);
1281 pool_put(&tcpcb_pool, tp);
1282
1283 return ((struct tcpcb *)0);
1284 }
1285
1286 int
1287 tcp_freeq(struct tcpcb *tp)
1288 {
1289 struct ipqent *qe;
1290 int rv = 0;
1291 #ifdef TCPREASS_DEBUG
1292 int i = 0;
1293 #endif
1294
1295 TCP_REASS_LOCK_CHECK(tp);
1296
1297 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1298 #ifdef TCPREASS_DEBUG
1299 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1300 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1301 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1302 #endif
1303 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1304 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1305 m_freem(qe->ipqe_m);
1306 tcpipqent_free(qe);
1307 rv = 1;
1308 }
1309 tp->t_segqlen = 0;
1310 KASSERT(TAILQ_EMPTY(&tp->timeq));
1311 return (rv);
1312 }
1313
1314 void
1315 tcp_fasttimo(void)
1316 {
1317 if (tcp_drainwanted) {
1318 tcp_drain();
1319 tcp_drainwanted = 0;
1320 }
1321 }
1322
1323 void
1324 tcp_drainstub(void)
1325 {
1326 tcp_drainwanted = 1;
1327 }
1328
1329 /*
1330 * Protocol drain routine. Called when memory is in short supply.
1331 * Called from pr_fasttimo thus a callout context.
1332 */
1333 void
1334 tcp_drain(void)
1335 {
1336 struct inpcb_hdr *inph;
1337 struct tcpcb *tp;
1338
1339 mutex_enter(softnet_lock);
1340 KERNEL_LOCK(1, NULL);
1341
1342 /*
1343 * Free the sequence queue of all TCP connections.
1344 */
1345 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1346 switch (inph->inph_af) {
1347 case AF_INET:
1348 tp = intotcpcb((struct inpcb *)inph);
1349 break;
1350 #ifdef INET6
1351 case AF_INET6:
1352 tp = in6totcpcb((struct in6pcb *)inph);
1353 break;
1354 #endif
1355 default:
1356 tp = NULL;
1357 break;
1358 }
1359 if (tp != NULL) {
1360 /*
1361 * We may be called from a device's interrupt
1362 * context. If the tcpcb is already busy,
1363 * just bail out now.
1364 */
1365 if (tcp_reass_lock_try(tp) == 0)
1366 continue;
1367 if (tcp_freeq(tp))
1368 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1369 TCP_REASS_UNLOCK(tp);
1370 }
1371 }
1372
1373 KERNEL_UNLOCK_ONE(NULL);
1374 mutex_exit(softnet_lock);
1375 }
1376
1377 /*
1378 * Notify a tcp user of an asynchronous error;
1379 * store error as soft error, but wake up user
1380 * (for now, won't do anything until can select for soft error).
1381 */
1382 void
1383 tcp_notify(struct inpcb *inp, int error)
1384 {
1385 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1386 struct socket *so = inp->inp_socket;
1387
1388 /*
1389 * Ignore some errors if we are hooked up.
1390 * If connection hasn't completed, has retransmitted several times,
1391 * and receives a second error, give up now. This is better
1392 * than waiting a long time to establish a connection that
1393 * can never complete.
1394 */
1395 if (tp->t_state == TCPS_ESTABLISHED &&
1396 (error == EHOSTUNREACH || error == ENETUNREACH ||
1397 error == EHOSTDOWN)) {
1398 return;
1399 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1400 tp->t_rxtshift > 3 && tp->t_softerror)
1401 so->so_error = error;
1402 else
1403 tp->t_softerror = error;
1404 cv_broadcast(&so->so_cv);
1405 sorwakeup(so);
1406 sowwakeup(so);
1407 }
1408
1409 #ifdef INET6
1410 void
1411 tcp6_notify(struct in6pcb *in6p, int error)
1412 {
1413 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1414 struct socket *so = in6p->in6p_socket;
1415
1416 /*
1417 * Ignore some errors if we are hooked up.
1418 * If connection hasn't completed, has retransmitted several times,
1419 * and receives a second error, give up now. This is better
1420 * than waiting a long time to establish a connection that
1421 * can never complete.
1422 */
1423 if (tp->t_state == TCPS_ESTABLISHED &&
1424 (error == EHOSTUNREACH || error == ENETUNREACH ||
1425 error == EHOSTDOWN)) {
1426 return;
1427 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1428 tp->t_rxtshift > 3 && tp->t_softerror)
1429 so->so_error = error;
1430 else
1431 tp->t_softerror = error;
1432 cv_broadcast(&so->so_cv);
1433 sorwakeup(so);
1434 sowwakeup(so);
1435 }
1436 #endif
1437
1438 #ifdef INET6
1439 void *
1440 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1441 {
1442 struct tcphdr th;
1443 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1444 int nmatch;
1445 struct ip6_hdr *ip6;
1446 const struct sockaddr_in6 *sa6_src = NULL;
1447 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1448 struct mbuf *m;
1449 int off;
1450
1451 if (sa->sa_family != AF_INET6 ||
1452 sa->sa_len != sizeof(struct sockaddr_in6))
1453 return NULL;
1454 if ((unsigned)cmd >= PRC_NCMDS)
1455 return NULL;
1456 else if (cmd == PRC_QUENCH) {
1457 /*
1458 * Don't honor ICMP Source Quench messages meant for
1459 * TCP connections.
1460 */
1461 return NULL;
1462 } else if (PRC_IS_REDIRECT(cmd))
1463 notify = in6_rtchange, d = NULL;
1464 else if (cmd == PRC_MSGSIZE)
1465 ; /* special code is present, see below */
1466 else if (cmd == PRC_HOSTDEAD)
1467 d = NULL;
1468 else if (inet6ctlerrmap[cmd] == 0)
1469 return NULL;
1470
1471 /* if the parameter is from icmp6, decode it. */
1472 if (d != NULL) {
1473 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1474 m = ip6cp->ip6c_m;
1475 ip6 = ip6cp->ip6c_ip6;
1476 off = ip6cp->ip6c_off;
1477 sa6_src = ip6cp->ip6c_src;
1478 } else {
1479 m = NULL;
1480 ip6 = NULL;
1481 sa6_src = &sa6_any;
1482 off = 0;
1483 }
1484
1485 if (ip6) {
1486 /*
1487 * XXX: We assume that when ip6 is non NULL,
1488 * M and OFF are valid.
1489 */
1490
1491 /* check if we can safely examine src and dst ports */
1492 if (m->m_pkthdr.len < off + sizeof(th)) {
1493 if (cmd == PRC_MSGSIZE)
1494 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1495 return NULL;
1496 }
1497
1498 memset(&th, 0, sizeof(th));
1499 m_copydata(m, off, sizeof(th), (void *)&th);
1500
1501 if (cmd == PRC_MSGSIZE) {
1502 int valid = 0;
1503
1504 /*
1505 * Check to see if we have a valid TCP connection
1506 * corresponding to the address in the ICMPv6 message
1507 * payload.
1508 */
1509 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1510 th.th_dport,
1511 (const struct in6_addr *)&sa6_src->sin6_addr,
1512 th.th_sport, 0, 0))
1513 valid++;
1514
1515 /*
1516 * Depending on the value of "valid" and routing table
1517 * size (mtudisc_{hi,lo}wat), we will:
1518 * - recalcurate the new MTU and create the
1519 * corresponding routing entry, or
1520 * - ignore the MTU change notification.
1521 */
1522 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1523
1524 /*
1525 * no need to call in6_pcbnotify, it should have been
1526 * called via callback if necessary
1527 */
1528 return NULL;
1529 }
1530
1531 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1532 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1533 if (nmatch == 0 && syn_cache_count &&
1534 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1535 inet6ctlerrmap[cmd] == ENETUNREACH ||
1536 inet6ctlerrmap[cmd] == EHOSTDOWN))
1537 syn_cache_unreach((const struct sockaddr *)sa6_src,
1538 sa, &th);
1539 } else {
1540 (void) in6_pcbnotify(&tcbtable, sa, 0,
1541 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1542 }
1543
1544 return NULL;
1545 }
1546 #endif
1547
1548 #ifdef INET
1549 /* assumes that ip header and tcp header are contiguous on mbuf */
1550 void *
1551 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1552 {
1553 struct ip *ip = v;
1554 struct tcphdr *th;
1555 struct icmp *icp;
1556 extern const int inetctlerrmap[];
1557 void (*notify)(struct inpcb *, int) = tcp_notify;
1558 int errno;
1559 int nmatch;
1560 struct tcpcb *tp;
1561 u_int mtu;
1562 tcp_seq seq;
1563 struct inpcb *inp;
1564 #ifdef INET6
1565 struct in6pcb *in6p;
1566 struct in6_addr src6, dst6;
1567 #endif
1568
1569 if (sa->sa_family != AF_INET ||
1570 sa->sa_len != sizeof(struct sockaddr_in))
1571 return NULL;
1572 if ((unsigned)cmd >= PRC_NCMDS)
1573 return NULL;
1574 errno = inetctlerrmap[cmd];
1575 if (cmd == PRC_QUENCH)
1576 /*
1577 * Don't honor ICMP Source Quench messages meant for
1578 * TCP connections.
1579 */
1580 return NULL;
1581 else if (PRC_IS_REDIRECT(cmd))
1582 notify = in_rtchange, ip = 0;
1583 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1584 /*
1585 * Check to see if we have a valid TCP connection
1586 * corresponding to the address in the ICMP message
1587 * payload.
1588 *
1589 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1590 */
1591 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1592 #ifdef INET6
1593 memset(&src6, 0, sizeof(src6));
1594 memset(&dst6, 0, sizeof(dst6));
1595 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1596 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1597 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1598 #endif
1599 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1600 th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1601 #ifdef INET6
1602 in6p = NULL;
1603 #else
1604 ;
1605 #endif
1606 #ifdef INET6
1607 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1608 th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1609 ;
1610 #endif
1611 else
1612 return NULL;
1613
1614 /*
1615 * Now that we've validated that we are actually communicating
1616 * with the host indicated in the ICMP message, locate the
1617 * ICMP header, recalculate the new MTU, and create the
1618 * corresponding routing entry.
1619 */
1620 icp = (struct icmp *)((char *)ip -
1621 offsetof(struct icmp, icmp_ip));
1622 if (inp) {
1623 if ((tp = intotcpcb(inp)) == NULL)
1624 return NULL;
1625 }
1626 #ifdef INET6
1627 else if (in6p) {
1628 if ((tp = in6totcpcb(in6p)) == NULL)
1629 return NULL;
1630 }
1631 #endif
1632 else
1633 return NULL;
1634 seq = ntohl(th->th_seq);
1635 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1636 return NULL;
1637 /*
1638 * If the ICMP message advertises a Next-Hop MTU
1639 * equal or larger than the maximum packet size we have
1640 * ever sent, drop the message.
1641 */
1642 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1643 if (mtu >= tp->t_pmtud_mtu_sent)
1644 return NULL;
1645 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1646 /*
1647 * Calculate new MTU, and create corresponding
1648 * route (traditional PMTUD).
1649 */
1650 tp->t_flags &= ~TF_PMTUD_PEND;
1651 icmp_mtudisc(icp, ip->ip_dst);
1652 } else {
1653 /*
1654 * Record the information got in the ICMP
1655 * message; act on it later.
1656 * If we had already recorded an ICMP message,
1657 * replace the old one only if the new message
1658 * refers to an older TCP segment
1659 */
1660 if (tp->t_flags & TF_PMTUD_PEND) {
1661 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1662 return NULL;
1663 } else
1664 tp->t_flags |= TF_PMTUD_PEND;
1665 tp->t_pmtud_th_seq = seq;
1666 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1667 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1668 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1669 }
1670 return NULL;
1671 } else if (cmd == PRC_HOSTDEAD)
1672 ip = 0;
1673 else if (errno == 0)
1674 return NULL;
1675 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1676 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1677 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1678 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1679 if (nmatch == 0 && syn_cache_count &&
1680 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1681 inetctlerrmap[cmd] == ENETUNREACH ||
1682 inetctlerrmap[cmd] == EHOSTDOWN)) {
1683 struct sockaddr_in sin;
1684 memset(&sin, 0, sizeof(sin));
1685 sin.sin_len = sizeof(sin);
1686 sin.sin_family = AF_INET;
1687 sin.sin_port = th->th_sport;
1688 sin.sin_addr = ip->ip_src;
1689 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1690 }
1691
1692 /* XXX mapped address case */
1693 } else
1694 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1695 notify);
1696 return NULL;
1697 }
1698
1699 /*
1700 * When a source quench is received, we are being notified of congestion.
1701 * Close the congestion window down to the Loss Window (one segment).
1702 * We will gradually open it again as we proceed.
1703 */
1704 void
1705 tcp_quench(struct inpcb *inp, int errno)
1706 {
1707 struct tcpcb *tp = intotcpcb(inp);
1708
1709 if (tp) {
1710 tp->snd_cwnd = tp->t_segsz;
1711 tp->t_bytes_acked = 0;
1712 }
1713 }
1714 #endif
1715
1716 #ifdef INET6
1717 void
1718 tcp6_quench(struct in6pcb *in6p, int errno)
1719 {
1720 struct tcpcb *tp = in6totcpcb(in6p);
1721
1722 if (tp) {
1723 tp->snd_cwnd = tp->t_segsz;
1724 tp->t_bytes_acked = 0;
1725 }
1726 }
1727 #endif
1728
1729 #ifdef INET
1730 /*
1731 * Path MTU Discovery handlers.
1732 */
1733 void
1734 tcp_mtudisc_callback(struct in_addr faddr)
1735 {
1736 #ifdef INET6
1737 struct in6_addr in6;
1738 #endif
1739
1740 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1741 #ifdef INET6
1742 memset(&in6, 0, sizeof(in6));
1743 in6.s6_addr16[5] = 0xffff;
1744 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1745 tcp6_mtudisc_callback(&in6);
1746 #endif
1747 }
1748
1749 /*
1750 * On receipt of path MTU corrections, flush old route and replace it
1751 * with the new one. Retransmit all unacknowledged packets, to ensure
1752 * that all packets will be received.
1753 */
1754 void
1755 tcp_mtudisc(struct inpcb *inp, int errno)
1756 {
1757 struct tcpcb *tp = intotcpcb(inp);
1758 struct rtentry *rt = in_pcbrtentry(inp);
1759
1760 if (tp != 0) {
1761 if (rt != 0) {
1762 /*
1763 * If this was not a host route, remove and realloc.
1764 */
1765 if ((rt->rt_flags & RTF_HOST) == 0) {
1766 in_rtchange(inp, errno);
1767 if ((rt = in_pcbrtentry(inp)) == 0)
1768 return;
1769 }
1770
1771 /*
1772 * Slow start out of the error condition. We
1773 * use the MTU because we know it's smaller
1774 * than the previously transmitted segment.
1775 *
1776 * Note: This is more conservative than the
1777 * suggestion in draft-floyd-incr-init-win-03.
1778 */
1779 if (rt->rt_rmx.rmx_mtu != 0)
1780 tp->snd_cwnd =
1781 TCP_INITIAL_WINDOW(tcp_init_win,
1782 rt->rt_rmx.rmx_mtu);
1783 }
1784
1785 /*
1786 * Resend unacknowledged packets.
1787 */
1788 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1789 tcp_output(tp);
1790 }
1791 }
1792 #endif
1793
1794 #ifdef INET6
1795 /*
1796 * Path MTU Discovery handlers.
1797 */
1798 void
1799 tcp6_mtudisc_callback(struct in6_addr *faddr)
1800 {
1801 struct sockaddr_in6 sin6;
1802
1803 memset(&sin6, 0, sizeof(sin6));
1804 sin6.sin6_family = AF_INET6;
1805 sin6.sin6_len = sizeof(struct sockaddr_in6);
1806 sin6.sin6_addr = *faddr;
1807 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1808 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1809 }
1810
1811 void
1812 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1813 {
1814 struct tcpcb *tp = in6totcpcb(in6p);
1815 struct rtentry *rt = in6_pcbrtentry(in6p);
1816
1817 if (tp != 0) {
1818 if (rt != 0) {
1819 /*
1820 * If this was not a host route, remove and realloc.
1821 */
1822 if ((rt->rt_flags & RTF_HOST) == 0) {
1823 in6_rtchange(in6p, errno);
1824 if ((rt = in6_pcbrtentry(in6p)) == 0)
1825 return;
1826 }
1827
1828 /*
1829 * Slow start out of the error condition. We
1830 * use the MTU because we know it's smaller
1831 * than the previously transmitted segment.
1832 *
1833 * Note: This is more conservative than the
1834 * suggestion in draft-floyd-incr-init-win-03.
1835 */
1836 if (rt->rt_rmx.rmx_mtu != 0)
1837 tp->snd_cwnd =
1838 TCP_INITIAL_WINDOW(tcp_init_win,
1839 rt->rt_rmx.rmx_mtu);
1840 }
1841
1842 /*
1843 * Resend unacknowledged packets.
1844 */
1845 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1846 tcp_output(tp);
1847 }
1848 }
1849 #endif /* INET6 */
1850
1851 /*
1852 * Compute the MSS to advertise to the peer. Called only during
1853 * the 3-way handshake. If we are the server (peer initiated
1854 * connection), we are called with a pointer to the interface
1855 * on which the SYN packet arrived. If we are the client (we
1856 * initiated connection), we are called with a pointer to the
1857 * interface out which this connection should go.
1858 *
1859 * NOTE: Do not subtract IP option/extension header size nor IPsec
1860 * header size from MSS advertisement. MSS option must hold the maximum
1861 * segment size we can accept, so it must always be:
1862 * max(if mtu) - ip header - tcp header
1863 */
1864 u_long
1865 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1866 {
1867 extern u_long in_maxmtu;
1868 u_long mss = 0;
1869 u_long hdrsiz;
1870
1871 /*
1872 * In order to avoid defeating path MTU discovery on the peer,
1873 * we advertise the max MTU of all attached networks as our MSS,
1874 * per RFC 1191, section 3.1.
1875 *
1876 * We provide the option to advertise just the MTU of
1877 * the interface on which we hope this connection will
1878 * be receiving. If we are responding to a SYN, we
1879 * will have a pretty good idea about this, but when
1880 * initiating a connection there is a bit more doubt.
1881 *
1882 * We also need to ensure that loopback has a large enough
1883 * MSS, as the loopback MTU is never included in in_maxmtu.
1884 */
1885
1886 if (ifp != NULL)
1887 switch (af) {
1888 case AF_INET:
1889 mss = ifp->if_mtu;
1890 break;
1891 #ifdef INET6
1892 case AF_INET6:
1893 mss = IN6_LINKMTU(ifp);
1894 break;
1895 #endif
1896 }
1897
1898 if (tcp_mss_ifmtu == 0)
1899 switch (af) {
1900 case AF_INET:
1901 mss = max(in_maxmtu, mss);
1902 break;
1903 #ifdef INET6
1904 case AF_INET6:
1905 mss = max(in6_maxmtu, mss);
1906 break;
1907 #endif
1908 }
1909
1910 switch (af) {
1911 case AF_INET:
1912 hdrsiz = sizeof(struct ip);
1913 break;
1914 #ifdef INET6
1915 case AF_INET6:
1916 hdrsiz = sizeof(struct ip6_hdr);
1917 break;
1918 #endif
1919 default:
1920 hdrsiz = 0;
1921 break;
1922 }
1923 hdrsiz += sizeof(struct tcphdr);
1924 if (mss > hdrsiz)
1925 mss -= hdrsiz;
1926
1927 mss = max(tcp_mssdflt, mss);
1928 return (mss);
1929 }
1930
1931 /*
1932 * Set connection variables based on the peer's advertised MSS.
1933 * We are passed the TCPCB for the actual connection. If we
1934 * are the server, we are called by the compressed state engine
1935 * when the 3-way handshake is complete. If we are the client,
1936 * we are called when we receive the SYN,ACK from the server.
1937 *
1938 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1939 * before this routine is called!
1940 */
1941 void
1942 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1943 {
1944 struct socket *so;
1945 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1946 struct rtentry *rt;
1947 #endif
1948 u_long bufsize;
1949 int mss;
1950
1951 #ifdef DIAGNOSTIC
1952 if (tp->t_inpcb && tp->t_in6pcb)
1953 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1954 #endif
1955 so = NULL;
1956 rt = NULL;
1957 #ifdef INET
1958 if (tp->t_inpcb) {
1959 so = tp->t_inpcb->inp_socket;
1960 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1961 rt = in_pcbrtentry(tp->t_inpcb);
1962 #endif
1963 }
1964 #endif
1965 #ifdef INET6
1966 if (tp->t_in6pcb) {
1967 so = tp->t_in6pcb->in6p_socket;
1968 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1969 rt = in6_pcbrtentry(tp->t_in6pcb);
1970 #endif
1971 }
1972 #endif
1973
1974 /*
1975 * As per RFC1122, use the default MSS value, unless they
1976 * sent us an offer. Do not accept offers less than 256 bytes.
1977 */
1978 mss = tcp_mssdflt;
1979 if (offer)
1980 mss = offer;
1981 mss = max(mss, 256); /* sanity */
1982 tp->t_peermss = mss;
1983 mss -= tcp_optlen(tp);
1984 #ifdef INET
1985 if (tp->t_inpcb)
1986 mss -= ip_optlen(tp->t_inpcb);
1987 #endif
1988 #ifdef INET6
1989 if (tp->t_in6pcb)
1990 mss -= ip6_optlen(tp->t_in6pcb);
1991 #endif
1992
1993 /*
1994 * If there's a pipesize, change the socket buffer to that size.
1995 * Make the socket buffer an integral number of MSS units. If
1996 * the MSS is larger than the socket buffer, artificially decrease
1997 * the MSS.
1998 */
1999 #ifdef RTV_SPIPE
2000 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
2001 bufsize = rt->rt_rmx.rmx_sendpipe;
2002 else
2003 #endif
2004 {
2005 KASSERT(so != NULL);
2006 bufsize = so->so_snd.sb_hiwat;
2007 }
2008 if (bufsize < mss)
2009 mss = bufsize;
2010 else {
2011 bufsize = roundup(bufsize, mss);
2012 if (bufsize > sb_max)
2013 bufsize = sb_max;
2014 (void) sbreserve(&so->so_snd, bufsize, so);
2015 }
2016 tp->t_segsz = mss;
2017
2018 #ifdef RTV_SSTHRESH
2019 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2020 /*
2021 * There's some sort of gateway or interface buffer
2022 * limit on the path. Use this to set the slow
2023 * start threshold, but set the threshold to no less
2024 * than 2 * MSS.
2025 */
2026 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2027 }
2028 #endif
2029 }
2030
2031 /*
2032 * Processing necessary when a TCP connection is established.
2033 */
2034 void
2035 tcp_established(struct tcpcb *tp)
2036 {
2037 struct socket *so;
2038 #ifdef RTV_RPIPE
2039 struct rtentry *rt;
2040 #endif
2041 u_long bufsize;
2042
2043 #ifdef DIAGNOSTIC
2044 if (tp->t_inpcb && tp->t_in6pcb)
2045 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2046 #endif
2047 so = NULL;
2048 rt = NULL;
2049 #ifdef INET
2050 /* This is a while() to reduce the dreadful stairstepping below */
2051 while (tp->t_inpcb) {
2052 so = tp->t_inpcb->inp_socket;
2053 #if defined(RTV_RPIPE)
2054 rt = in_pcbrtentry(tp->t_inpcb);
2055 #endif
2056 if (__predict_true(tcp_msl_enable)) {
2057 if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2058 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2059 break;
2060 }
2061
2062 if (__predict_false(tcp_rttlocal)) {
2063 /* This may be adjusted by tcp_input */
2064 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2065 break;
2066 }
2067 if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2068 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2069 break;
2070 }
2071 }
2072 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2073 break;
2074 }
2075 #endif
2076 #ifdef INET6
2077 /* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2078 while (!tp->t_inpcb && tp->t_in6pcb) {
2079 so = tp->t_in6pcb->in6p_socket;
2080 #if defined(RTV_RPIPE)
2081 rt = in6_pcbrtentry(tp->t_in6pcb);
2082 #endif
2083 if (__predict_true(tcp_msl_enable)) {
2084 extern const struct in6_addr in6addr_loopback;
2085
2086 if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2087 &in6addr_loopback)) {
2088 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2089 break;
2090 }
2091
2092 if (__predict_false(tcp_rttlocal)) {
2093 /* This may be adjusted by tcp_input */
2094 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2095 break;
2096 }
2097 if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2098 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2099 break;
2100 }
2101 }
2102 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2103 break;
2104 }
2105 #endif
2106
2107 tp->t_state = TCPS_ESTABLISHED;
2108 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2109
2110 #ifdef RTV_RPIPE
2111 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2112 bufsize = rt->rt_rmx.rmx_recvpipe;
2113 else
2114 #endif
2115 {
2116 KASSERT(so != NULL);
2117 bufsize = so->so_rcv.sb_hiwat;
2118 }
2119 if (bufsize > tp->t_ourmss) {
2120 bufsize = roundup(bufsize, tp->t_ourmss);
2121 if (bufsize > sb_max)
2122 bufsize = sb_max;
2123 (void) sbreserve(&so->so_rcv, bufsize, so);
2124 }
2125 }
2126
2127 /*
2128 * Check if there's an initial rtt or rttvar. Convert from the
2129 * route-table units to scaled multiples of the slow timeout timer.
2130 * Called only during the 3-way handshake.
2131 */
2132 void
2133 tcp_rmx_rtt(struct tcpcb *tp)
2134 {
2135 #ifdef RTV_RTT
2136 struct rtentry *rt = NULL;
2137 int rtt;
2138
2139 #ifdef DIAGNOSTIC
2140 if (tp->t_inpcb && tp->t_in6pcb)
2141 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2142 #endif
2143 #ifdef INET
2144 if (tp->t_inpcb)
2145 rt = in_pcbrtentry(tp->t_inpcb);
2146 #endif
2147 #ifdef INET6
2148 if (tp->t_in6pcb)
2149 rt = in6_pcbrtentry(tp->t_in6pcb);
2150 #endif
2151 if (rt == NULL)
2152 return;
2153
2154 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2155 /*
2156 * XXX The lock bit for MTU indicates that the value
2157 * is also a minimum value; this is subject to time.
2158 */
2159 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2160 TCPT_RANGESET(tp->t_rttmin,
2161 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2162 TCPTV_MIN, TCPTV_REXMTMAX);
2163 tp->t_srtt = rtt /
2164 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2165 if (rt->rt_rmx.rmx_rttvar) {
2166 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2167 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2168 (TCP_RTTVAR_SHIFT + 2));
2169 } else {
2170 /* Default variation is +- 1 rtt */
2171 tp->t_rttvar =
2172 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2173 }
2174 TCPT_RANGESET(tp->t_rxtcur,
2175 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2176 tp->t_rttmin, TCPTV_REXMTMAX);
2177 }
2178 #endif
2179 }
2180
2181 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2182 #if NRND > 0
2183 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2184 #endif
2185
2186 /*
2187 * Get a new sequence value given a tcp control block
2188 */
2189 tcp_seq
2190 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2191 {
2192
2193 #ifdef INET
2194 if (tp->t_inpcb != NULL) {
2195 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2196 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2197 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2198 addin));
2199 }
2200 #endif
2201 #ifdef INET6
2202 if (tp->t_in6pcb != NULL) {
2203 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2204 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2205 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2206 addin));
2207 }
2208 #endif
2209 /* Not possible. */
2210 panic("tcp_new_iss");
2211 }
2212
2213 /*
2214 * This routine actually generates a new TCP initial sequence number.
2215 */
2216 tcp_seq
2217 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2218 size_t addrsz, tcp_seq addin)
2219 {
2220 tcp_seq tcp_iss;
2221
2222 #if NRND > 0
2223 static bool tcp_iss_gotten_secret;
2224
2225 /*
2226 * If we haven't been here before, initialize our cryptographic
2227 * hash secret.
2228 */
2229 if (tcp_iss_gotten_secret == false) {
2230 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2231 RND_EXTRACT_ANY);
2232 tcp_iss_gotten_secret = true;
2233 }
2234
2235 if (tcp_do_rfc1948) {
2236 MD5_CTX ctx;
2237 u_int8_t hash[16]; /* XXX MD5 knowledge */
2238
2239 /*
2240 * Compute the base value of the ISS. It is a hash
2241 * of (saddr, sport, daddr, dport, secret).
2242 */
2243 MD5Init(&ctx);
2244
2245 MD5Update(&ctx, (u_char *) laddr, addrsz);
2246 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2247
2248 MD5Update(&ctx, (u_char *) faddr, addrsz);
2249 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2250
2251 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2252
2253 MD5Final(hash, &ctx);
2254
2255 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2256
2257 /*
2258 * Now increment our "timer", and add it in to
2259 * the computed value.
2260 *
2261 * XXX Use `addin'?
2262 * XXX TCP_ISSINCR too large to use?
2263 */
2264 tcp_iss_seq += TCP_ISSINCR;
2265 #ifdef TCPISS_DEBUG
2266 printf("ISS hash 0x%08x, ", tcp_iss);
2267 #endif
2268 tcp_iss += tcp_iss_seq + addin;
2269 #ifdef TCPISS_DEBUG
2270 printf("new ISS 0x%08x\n", tcp_iss);
2271 #endif
2272 } else
2273 #endif /* NRND > 0 */
2274 {
2275 /*
2276 * Randomize.
2277 */
2278 #if NRND > 0
2279 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2280 #else
2281 tcp_iss = arc4random();
2282 #endif
2283
2284 /*
2285 * If we were asked to add some amount to a known value,
2286 * we will take a random value obtained above, mask off
2287 * the upper bits, and add in the known value. We also
2288 * add in a constant to ensure that we are at least a
2289 * certain distance from the original value.
2290 *
2291 * This is used when an old connection is in timed wait
2292 * and we have a new one coming in, for instance.
2293 */
2294 if (addin != 0) {
2295 #ifdef TCPISS_DEBUG
2296 printf("Random %08x, ", tcp_iss);
2297 #endif
2298 tcp_iss &= TCP_ISS_RANDOM_MASK;
2299 tcp_iss += addin + TCP_ISSINCR;
2300 #ifdef TCPISS_DEBUG
2301 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2302 #endif
2303 } else {
2304 tcp_iss &= TCP_ISS_RANDOM_MASK;
2305 tcp_iss += tcp_iss_seq;
2306 tcp_iss_seq += TCP_ISSINCR;
2307 #ifdef TCPISS_DEBUG
2308 printf("ISS %08x\n", tcp_iss);
2309 #endif
2310 }
2311 }
2312
2313 if (tcp_compat_42) {
2314 /*
2315 * Limit it to the positive range for really old TCP
2316 * implementations.
2317 * Just AND off the top bit instead of checking if
2318 * is set first - saves a branch 50% of the time.
2319 */
2320 tcp_iss &= 0x7fffffff; /* XXX */
2321 }
2322
2323 return (tcp_iss);
2324 }
2325
2326 #if defined(IPSEC) || defined(FAST_IPSEC)
2327 /* compute ESP/AH header size for TCP, including outer IP header. */
2328 size_t
2329 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2330 {
2331 struct inpcb *inp;
2332 size_t hdrsiz;
2333
2334 /* XXX mapped addr case (tp->t_in6pcb) */
2335 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2336 return 0;
2337 switch (tp->t_family) {
2338 case AF_INET:
2339 /* XXX: should use currect direction. */
2340 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2341 break;
2342 default:
2343 hdrsiz = 0;
2344 break;
2345 }
2346
2347 return hdrsiz;
2348 }
2349
2350 #ifdef INET6
2351 size_t
2352 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2353 {
2354 struct in6pcb *in6p;
2355 size_t hdrsiz;
2356
2357 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2358 return 0;
2359 switch (tp->t_family) {
2360 case AF_INET6:
2361 /* XXX: should use currect direction. */
2362 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2363 break;
2364 case AF_INET:
2365 /* mapped address case - tricky */
2366 default:
2367 hdrsiz = 0;
2368 break;
2369 }
2370
2371 return hdrsiz;
2372 }
2373 #endif
2374 #endif /*IPSEC*/
2375
2376 /*
2377 * Determine the length of the TCP options for this connection.
2378 *
2379 * XXX: What do we do for SACK, when we add that? Just reserve
2380 * all of the space? Otherwise we can't exactly be incrementing
2381 * cwnd by an amount that varies depending on the amount we last
2382 * had to SACK!
2383 */
2384
2385 u_int
2386 tcp_optlen(struct tcpcb *tp)
2387 {
2388 u_int optlen;
2389
2390 optlen = 0;
2391 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2392 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2393 optlen += TCPOLEN_TSTAMP_APPA;
2394
2395 #ifdef TCP_SIGNATURE
2396 if (tp->t_flags & TF_SIGNATURE)
2397 optlen += TCPOLEN_SIGNATURE + 2;
2398 #endif /* TCP_SIGNATURE */
2399
2400 return optlen;
2401 }
2402
2403 u_int
2404 tcp_hdrsz(struct tcpcb *tp)
2405 {
2406 u_int hlen;
2407
2408 switch (tp->t_family) {
2409 #ifdef INET6
2410 case AF_INET6:
2411 hlen = sizeof(struct ip6_hdr);
2412 break;
2413 #endif
2414 case AF_INET:
2415 hlen = sizeof(struct ip);
2416 break;
2417 default:
2418 hlen = 0;
2419 break;
2420 }
2421 hlen += sizeof(struct tcphdr);
2422
2423 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2424 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2425 hlen += TCPOLEN_TSTAMP_APPA;
2426 #ifdef TCP_SIGNATURE
2427 if (tp->t_flags & TF_SIGNATURE)
2428 hlen += TCPOLEN_SIGLEN;
2429 #endif
2430 return hlen;
2431 }
2432
2433 void
2434 tcp_statinc(u_int stat)
2435 {
2436
2437 KASSERT(stat < TCP_NSTATS);
2438 TCP_STATINC(stat);
2439 }
2440
2441 void
2442 tcp_statadd(u_int stat, uint64_t val)
2443 {
2444
2445 KASSERT(stat < TCP_NSTATS);
2446 TCP_STATADD(stat, val);
2447 }
2448