tcp_subr.c revision 1.248 1 /* $NetBSD: tcp_subr.c,v 1.248 2012/09/08 02:58:13 msaitoh Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.248 2012/09/08 02:58:13 msaitoh Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101
102 #include <sys/param.h>
103 #include <sys/proc.h>
104 #include <sys/systm.h>
105 #include <sys/malloc.h>
106 #include <sys/mbuf.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/protosw.h>
110 #include <sys/errno.h>
111 #include <sys/kernel.h>
112 #include <sys/pool.h>
113 #include <sys/md5.h>
114 #include <sys/cprng.h>
115
116 #include <net/route.h>
117 #include <net/if.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/ip_var.h>
124 #include <netinet/ip_icmp.h>
125
126 #ifdef INET6
127 #ifndef INET
128 #include <netinet/in.h>
129 #endif
130 #include <netinet/ip6.h>
131 #include <netinet6/in6_pcb.h>
132 #include <netinet6/ip6_var.h>
133 #include <netinet6/in6_var.h>
134 #include <netinet6/ip6protosw.h>
135 #include <netinet/icmp6.h>
136 #include <netinet6/nd6.h>
137 #endif
138
139 #include <netinet/tcp.h>
140 #include <netinet/tcp_fsm.h>
141 #include <netinet/tcp_seq.h>
142 #include <netinet/tcp_timer.h>
143 #include <netinet/tcp_var.h>
144 #include <netinet/tcp_vtw.h>
145 #include <netinet/tcp_private.h>
146 #include <netinet/tcp_congctl.h>
147 #include <netinet/tcpip.h>
148
149 #ifdef FAST_IPSEC
150 #include <netipsec/ipsec.h>
151 #include <netipsec/xform.h>
152 #ifdef INET6
153 #include <netipsec/ipsec6.h>
154 #endif
155 #include <netipsec/key.h>
156 #endif /* FAST_IPSEC*/
157
158
159 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
160 u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
161
162 percpu_t *tcpstat_percpu;
163
164 /* patchable/settable parameters for tcp */
165 int tcp_mssdflt = TCP_MSS;
166 int tcp_minmss = TCP_MINMSS;
167 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
168 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
169 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
170 int tcp_do_sack = 1; /* selective acknowledgement */
171 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
172 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
173 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
174 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
175 #ifndef TCP_INIT_WIN
176 #define TCP_INIT_WIN 0 /* initial slow start window */
177 #endif
178 #ifndef TCP_INIT_WIN_LOCAL
179 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
180 #endif
181 int tcp_init_win = TCP_INIT_WIN;
182 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
183 int tcp_mss_ifmtu = 0;
184 #ifdef TCP_COMPAT_42
185 int tcp_compat_42 = 1;
186 #else
187 int tcp_compat_42 = 0;
188 #endif
189 int tcp_rst_ppslim = 100; /* 100pps */
190 int tcp_ackdrop_ppslim = 100; /* 100pps */
191 int tcp_do_loopback_cksum = 0;
192 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
193 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
194 int tcp_sack_tp_maxholes = 32;
195 int tcp_sack_globalmaxholes = 1024;
196 int tcp_sack_globalholes = 0;
197 int tcp_ecn_maxretries = 1;
198 int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
199 int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
200 int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
201 int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
202 int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
203 int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
204
205 int tcp4_vtw_enable = 0; /* 1 to enable */
206 int tcp6_vtw_enable = 0; /* 1 to enable */
207 int tcp_vtw_was_enabled = 0;
208 int tcp_vtw_entries = 1 << 16; /* 64K vestigial TIME_WAIT entries */
209
210 /* tcb hash */
211 #ifndef TCBHASHSIZE
212 #define TCBHASHSIZE 128
213 #endif
214 int tcbhashsize = TCBHASHSIZE;
215
216 /* syn hash parameters */
217 #define TCP_SYN_HASH_SIZE 293
218 #define TCP_SYN_BUCKET_SIZE 35
219 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
220 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
221 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
222 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
223
224 int tcp_freeq(struct tcpcb *);
225
226 #ifdef INET
227 void tcp_mtudisc_callback(struct in_addr);
228 #endif
229 #ifdef INET6
230 void tcp6_mtudisc_callback(struct in6_addr *);
231 #endif
232
233 #ifdef INET6
234 void tcp6_mtudisc(struct in6pcb *, int);
235 #endif
236
237 static struct pool tcpcb_pool;
238
239 static int tcp_drainwanted;
240
241 #ifdef TCP_CSUM_COUNTERS
242 #include <sys/device.h>
243
244 #if defined(INET)
245 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246 NULL, "tcp", "hwcsum bad");
247 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
248 NULL, "tcp", "hwcsum ok");
249 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250 NULL, "tcp", "hwcsum data");
251 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp", "swcsum");
253
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
255 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
256 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
257 EVCNT_ATTACH_STATIC(tcp_swcsum);
258 #endif /* defined(INET) */
259
260 #if defined(INET6)
261 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp6", "hwcsum bad");
263 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp6", "hwcsum ok");
265 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp6", "hwcsum data");
267 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp6", "swcsum");
269
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
273 EVCNT_ATTACH_STATIC(tcp6_swcsum);
274 #endif /* defined(INET6) */
275 #endif /* TCP_CSUM_COUNTERS */
276
277
278 #ifdef TCP_OUTPUT_COUNTERS
279 #include <sys/device.h>
280
281 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 NULL, "tcp", "output big header");
283 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 NULL, "tcp", "output predict hit");
285 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 NULL, "tcp", "output predict miss");
287 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 NULL, "tcp", "output copy small");
289 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 NULL, "tcp", "output copy big");
291 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 NULL, "tcp", "output reference big");
293
294 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
295 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
296 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
297 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
298 EVCNT_ATTACH_STATIC(tcp_output_copybig);
299 EVCNT_ATTACH_STATIC(tcp_output_refbig);
300
301 #endif /* TCP_OUTPUT_COUNTERS */
302
303 #ifdef TCP_REASS_COUNTERS
304 #include <sys/device.h>
305
306 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 NULL, "tcp_reass", "calls");
308 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "insert into empty queue");
310 struct evcnt tcp_reass_iteration[8] = {
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
318 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
319 };
320 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
321 &tcp_reass_, "tcp_reass", "prepend to first");
322 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323 &tcp_reass_, "tcp_reass", "prepend");
324 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325 &tcp_reass_, "tcp_reass", "insert");
326 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
327 &tcp_reass_, "tcp_reass", "insert at tail");
328 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
329 &tcp_reass_, "tcp_reass", "append");
330 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
331 &tcp_reass_, "tcp_reass", "append to tail fragment");
332 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
333 &tcp_reass_, "tcp_reass", "overlap at end");
334 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
335 &tcp_reass_, "tcp_reass", "overlap at start");
336 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337 &tcp_reass_, "tcp_reass", "duplicate segment");
338 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339 &tcp_reass_, "tcp_reass", "duplicate fragment");
340
341 EVCNT_ATTACH_STATIC(tcp_reass_);
342 EVCNT_ATTACH_STATIC(tcp_reass_empty);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
351 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
352 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
353 EVCNT_ATTACH_STATIC(tcp_reass_insert);
354 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
355 EVCNT_ATTACH_STATIC(tcp_reass_append);
356 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
357 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
358 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
359 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
360 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
361
362 #endif /* TCP_REASS_COUNTERS */
363
364 #ifdef MBUFTRACE
365 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
366 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
367 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
368 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
369 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
370 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
371 #endif
372
373 /*
374 * Tcp initialization
375 */
376 void
377 tcp_init(void)
378 {
379 int hlen;
380
381 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
382 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
383 NULL, IPL_SOFTNET);
384
385 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
386 #ifdef INET6
387 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
388 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
389 #endif
390 if (max_protohdr < hlen)
391 max_protohdr = hlen;
392 if (max_linkhdr + hlen > MHLEN)
393 panic("tcp_init");
394
395 #ifdef INET
396 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
397 #endif
398 #ifdef INET6
399 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
400 #endif
401
402 tcp_usrreq_init();
403
404 /* Initialize timer state. */
405 tcp_timer_init();
406
407 /* Initialize the compressed state engine. */
408 syn_cache_init();
409
410 /* Initialize the congestion control algorithms. */
411 tcp_congctl_init();
412
413 /* Initialize the TCPCB template. */
414 tcp_tcpcb_template();
415
416 /* Initialize reassembly queue */
417 tcpipqent_init();
418
419 /* SACK */
420 tcp_sack_init();
421
422 MOWNER_ATTACH(&tcp_tx_mowner);
423 MOWNER_ATTACH(&tcp_rx_mowner);
424 MOWNER_ATTACH(&tcp_reass_mowner);
425 MOWNER_ATTACH(&tcp_sock_mowner);
426 MOWNER_ATTACH(&tcp_sock_tx_mowner);
427 MOWNER_ATTACH(&tcp_sock_rx_mowner);
428 MOWNER_ATTACH(&tcp_mowner);
429
430 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
431
432 vtw_earlyinit();
433 }
434
435 /*
436 * Create template to be used to send tcp packets on a connection.
437 * Call after host entry created, allocates an mbuf and fills
438 * in a skeletal tcp/ip header, minimizing the amount of work
439 * necessary when the connection is used.
440 */
441 struct mbuf *
442 tcp_template(struct tcpcb *tp)
443 {
444 struct inpcb *inp = tp->t_inpcb;
445 #ifdef INET6
446 struct in6pcb *in6p = tp->t_in6pcb;
447 #endif
448 struct tcphdr *n;
449 struct mbuf *m;
450 int hlen;
451
452 switch (tp->t_family) {
453 case AF_INET:
454 hlen = sizeof(struct ip);
455 if (inp)
456 break;
457 #ifdef INET6
458 if (in6p) {
459 /* mapped addr case */
460 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
461 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
462 break;
463 }
464 #endif
465 return NULL; /*EINVAL*/
466 #ifdef INET6
467 case AF_INET6:
468 hlen = sizeof(struct ip6_hdr);
469 if (in6p) {
470 /* more sainty check? */
471 break;
472 }
473 return NULL; /*EINVAL*/
474 #endif
475 default:
476 hlen = 0; /*pacify gcc*/
477 return NULL; /*EAFNOSUPPORT*/
478 }
479 #ifdef DIAGNOSTIC
480 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
481 panic("mclbytes too small for t_template");
482 #endif
483 m = tp->t_template;
484 if (m && m->m_len == hlen + sizeof(struct tcphdr))
485 ;
486 else {
487 if (m)
488 m_freem(m);
489 m = tp->t_template = NULL;
490 MGETHDR(m, M_DONTWAIT, MT_HEADER);
491 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
492 MCLGET(m, M_DONTWAIT);
493 if ((m->m_flags & M_EXT) == 0) {
494 m_free(m);
495 m = NULL;
496 }
497 }
498 if (m == NULL)
499 return NULL;
500 MCLAIM(m, &tcp_mowner);
501 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
502 }
503
504 memset(mtod(m, void *), 0, m->m_len);
505
506 n = (struct tcphdr *)(mtod(m, char *) + hlen);
507
508 switch (tp->t_family) {
509 case AF_INET:
510 {
511 struct ipovly *ipov;
512 mtod(m, struct ip *)->ip_v = 4;
513 mtod(m, struct ip *)->ip_hl = hlen >> 2;
514 ipov = mtod(m, struct ipovly *);
515 ipov->ih_pr = IPPROTO_TCP;
516 ipov->ih_len = htons(sizeof(struct tcphdr));
517 if (inp) {
518 ipov->ih_src = inp->inp_laddr;
519 ipov->ih_dst = inp->inp_faddr;
520 }
521 #ifdef INET6
522 else if (in6p) {
523 /* mapped addr case */
524 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
525 sizeof(ipov->ih_src));
526 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
527 sizeof(ipov->ih_dst));
528 }
529 #endif
530 /*
531 * Compute the pseudo-header portion of the checksum
532 * now. We incrementally add in the TCP option and
533 * payload lengths later, and then compute the TCP
534 * checksum right before the packet is sent off onto
535 * the wire.
536 */
537 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
538 ipov->ih_dst.s_addr,
539 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
540 break;
541 }
542 #ifdef INET6
543 case AF_INET6:
544 {
545 struct ip6_hdr *ip6;
546 mtod(m, struct ip *)->ip_v = 6;
547 ip6 = mtod(m, struct ip6_hdr *);
548 ip6->ip6_nxt = IPPROTO_TCP;
549 ip6->ip6_plen = htons(sizeof(struct tcphdr));
550 ip6->ip6_src = in6p->in6p_laddr;
551 ip6->ip6_dst = in6p->in6p_faddr;
552 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
553 if (ip6_auto_flowlabel) {
554 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
555 ip6->ip6_flow |=
556 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
557 }
558 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
559 ip6->ip6_vfc |= IPV6_VERSION;
560
561 /*
562 * Compute the pseudo-header portion of the checksum
563 * now. We incrementally add in the TCP option and
564 * payload lengths later, and then compute the TCP
565 * checksum right before the packet is sent off onto
566 * the wire.
567 */
568 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
569 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
570 htonl(IPPROTO_TCP));
571 break;
572 }
573 #endif
574 }
575 if (inp) {
576 n->th_sport = inp->inp_lport;
577 n->th_dport = inp->inp_fport;
578 }
579 #ifdef INET6
580 else if (in6p) {
581 n->th_sport = in6p->in6p_lport;
582 n->th_dport = in6p->in6p_fport;
583 }
584 #endif
585 n->th_seq = 0;
586 n->th_ack = 0;
587 n->th_x2 = 0;
588 n->th_off = 5;
589 n->th_flags = 0;
590 n->th_win = 0;
591 n->th_urp = 0;
592 return (m);
593 }
594
595 /*
596 * Send a single message to the TCP at address specified by
597 * the given TCP/IP header. If m == 0, then we make a copy
598 * of the tcpiphdr at ti and send directly to the addressed host.
599 * This is used to force keep alive messages out using the TCP
600 * template for a connection tp->t_template. If flags are given
601 * then we send a message back to the TCP which originated the
602 * segment ti, and discard the mbuf containing it and any other
603 * attached mbufs.
604 *
605 * In any case the ack and sequence number of the transmitted
606 * segment are as specified by the parameters.
607 */
608 int
609 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
610 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
611 {
612 #ifdef INET6
613 struct rtentry *rt;
614 #endif
615 struct route *ro;
616 int error, tlen, win = 0;
617 int hlen;
618 struct ip *ip;
619 #ifdef INET6
620 struct ip6_hdr *ip6;
621 #endif
622 int family; /* family on packet, not inpcb/in6pcb! */
623 struct tcphdr *th;
624 struct socket *so;
625
626 if (tp != NULL && (flags & TH_RST) == 0) {
627 #ifdef DIAGNOSTIC
628 if (tp->t_inpcb && tp->t_in6pcb)
629 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
630 #endif
631 #ifdef INET
632 if (tp->t_inpcb)
633 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
634 #endif
635 #ifdef INET6
636 if (tp->t_in6pcb)
637 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
638 #endif
639 }
640
641 th = NULL; /* Quell uninitialized warning */
642 ip = NULL;
643 #ifdef INET6
644 ip6 = NULL;
645 #endif
646 if (m == 0) {
647 if (!template)
648 return EINVAL;
649
650 /* get family information from template */
651 switch (mtod(template, struct ip *)->ip_v) {
652 case 4:
653 family = AF_INET;
654 hlen = sizeof(struct ip);
655 break;
656 #ifdef INET6
657 case 6:
658 family = AF_INET6;
659 hlen = sizeof(struct ip6_hdr);
660 break;
661 #endif
662 default:
663 return EAFNOSUPPORT;
664 }
665
666 MGETHDR(m, M_DONTWAIT, MT_HEADER);
667 if (m) {
668 MCLAIM(m, &tcp_tx_mowner);
669 MCLGET(m, M_DONTWAIT);
670 if ((m->m_flags & M_EXT) == 0) {
671 m_free(m);
672 m = NULL;
673 }
674 }
675 if (m == NULL)
676 return (ENOBUFS);
677
678 if (tcp_compat_42)
679 tlen = 1;
680 else
681 tlen = 0;
682
683 m->m_data += max_linkhdr;
684 bcopy(mtod(template, void *), mtod(m, void *),
685 template->m_len);
686 switch (family) {
687 case AF_INET:
688 ip = mtod(m, struct ip *);
689 th = (struct tcphdr *)(ip + 1);
690 break;
691 #ifdef INET6
692 case AF_INET6:
693 ip6 = mtod(m, struct ip6_hdr *);
694 th = (struct tcphdr *)(ip6 + 1);
695 break;
696 #endif
697 #if 0
698 default:
699 /* noone will visit here */
700 m_freem(m);
701 return EAFNOSUPPORT;
702 #endif
703 }
704 flags = TH_ACK;
705 } else {
706
707 if ((m->m_flags & M_PKTHDR) == 0) {
708 #if 0
709 printf("non PKTHDR to tcp_respond\n");
710 #endif
711 m_freem(m);
712 return EINVAL;
713 }
714 #ifdef DIAGNOSTIC
715 if (!th0)
716 panic("th0 == NULL in tcp_respond");
717 #endif
718
719 /* get family information from m */
720 switch (mtod(m, struct ip *)->ip_v) {
721 case 4:
722 family = AF_INET;
723 hlen = sizeof(struct ip);
724 ip = mtod(m, struct ip *);
725 break;
726 #ifdef INET6
727 case 6:
728 family = AF_INET6;
729 hlen = sizeof(struct ip6_hdr);
730 ip6 = mtod(m, struct ip6_hdr *);
731 break;
732 #endif
733 default:
734 m_freem(m);
735 return EAFNOSUPPORT;
736 }
737 /* clear h/w csum flags inherited from rx packet */
738 m->m_pkthdr.csum_flags = 0;
739
740 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
741 tlen = sizeof(*th0);
742 else
743 tlen = th0->th_off << 2;
744
745 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
746 mtod(m, char *) + hlen == (char *)th0) {
747 m->m_len = hlen + tlen;
748 m_freem(m->m_next);
749 m->m_next = NULL;
750 } else {
751 struct mbuf *n;
752
753 #ifdef DIAGNOSTIC
754 if (max_linkhdr + hlen + tlen > MCLBYTES) {
755 m_freem(m);
756 return EMSGSIZE;
757 }
758 #endif
759 MGETHDR(n, M_DONTWAIT, MT_HEADER);
760 if (n && max_linkhdr + hlen + tlen > MHLEN) {
761 MCLGET(n, M_DONTWAIT);
762 if ((n->m_flags & M_EXT) == 0) {
763 m_freem(n);
764 n = NULL;
765 }
766 }
767 if (!n) {
768 m_freem(m);
769 return ENOBUFS;
770 }
771
772 MCLAIM(n, &tcp_tx_mowner);
773 n->m_data += max_linkhdr;
774 n->m_len = hlen + tlen;
775 m_copyback(n, 0, hlen, mtod(m, void *));
776 m_copyback(n, hlen, tlen, (void *)th0);
777
778 m_freem(m);
779 m = n;
780 n = NULL;
781 }
782
783 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
784 switch (family) {
785 case AF_INET:
786 ip = mtod(m, struct ip *);
787 th = (struct tcphdr *)(ip + 1);
788 ip->ip_p = IPPROTO_TCP;
789 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
790 ip->ip_p = IPPROTO_TCP;
791 break;
792 #ifdef INET6
793 case AF_INET6:
794 ip6 = mtod(m, struct ip6_hdr *);
795 th = (struct tcphdr *)(ip6 + 1);
796 ip6->ip6_nxt = IPPROTO_TCP;
797 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
798 ip6->ip6_nxt = IPPROTO_TCP;
799 break;
800 #endif
801 #if 0
802 default:
803 /* noone will visit here */
804 m_freem(m);
805 return EAFNOSUPPORT;
806 #endif
807 }
808 xchg(th->th_dport, th->th_sport, u_int16_t);
809 #undef xchg
810 tlen = 0; /*be friendly with the following code*/
811 }
812 th->th_seq = htonl(seq);
813 th->th_ack = htonl(ack);
814 th->th_x2 = 0;
815 if ((flags & TH_SYN) == 0) {
816 if (tp)
817 win >>= tp->rcv_scale;
818 if (win > TCP_MAXWIN)
819 win = TCP_MAXWIN;
820 th->th_win = htons((u_int16_t)win);
821 th->th_off = sizeof (struct tcphdr) >> 2;
822 tlen += sizeof(*th);
823 } else
824 tlen += th->th_off << 2;
825 m->m_len = hlen + tlen;
826 m->m_pkthdr.len = hlen + tlen;
827 m->m_pkthdr.rcvif = NULL;
828 th->th_flags = flags;
829 th->th_urp = 0;
830
831 switch (family) {
832 #ifdef INET
833 case AF_INET:
834 {
835 struct ipovly *ipov = (struct ipovly *)ip;
836 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
837 ipov->ih_len = htons((u_int16_t)tlen);
838
839 th->th_sum = 0;
840 th->th_sum = in_cksum(m, hlen + tlen);
841 ip->ip_len = htons(hlen + tlen);
842 ip->ip_ttl = ip_defttl;
843 break;
844 }
845 #endif
846 #ifdef INET6
847 case AF_INET6:
848 {
849 th->th_sum = 0;
850 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
851 tlen);
852 ip6->ip6_plen = htons(tlen);
853 if (tp && tp->t_in6pcb) {
854 struct ifnet *oifp;
855 ro = &tp->t_in6pcb->in6p_route;
856 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
857 : NULL;
858 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
859 } else
860 ip6->ip6_hlim = ip6_defhlim;
861 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
862 if (ip6_auto_flowlabel) {
863 ip6->ip6_flow |=
864 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
865 }
866 break;
867 }
868 #endif
869 }
870
871 if (tp && tp->t_inpcb)
872 so = tp->t_inpcb->inp_socket;
873 #ifdef INET6
874 else if (tp && tp->t_in6pcb)
875 so = tp->t_in6pcb->in6p_socket;
876 #endif
877 else
878 so = NULL;
879
880 if (tp != NULL && tp->t_inpcb != NULL) {
881 ro = &tp->t_inpcb->inp_route;
882 #ifdef DIAGNOSTIC
883 if (family != AF_INET)
884 panic("tcp_respond: address family mismatch");
885 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
886 panic("tcp_respond: ip_dst %x != inp_faddr %x",
887 ntohl(ip->ip_dst.s_addr),
888 ntohl(tp->t_inpcb->inp_faddr.s_addr));
889 }
890 #endif
891 }
892 #ifdef INET6
893 else if (tp != NULL && tp->t_in6pcb != NULL) {
894 ro = (struct route *)&tp->t_in6pcb->in6p_route;
895 #ifdef DIAGNOSTIC
896 if (family == AF_INET) {
897 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
898 panic("tcp_respond: not mapped addr");
899 if (memcmp(&ip->ip_dst,
900 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
901 sizeof(ip->ip_dst)) != 0) {
902 panic("tcp_respond: ip_dst != in6p_faddr");
903 }
904 } else if (family == AF_INET6) {
905 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
906 &tp->t_in6pcb->in6p_faddr))
907 panic("tcp_respond: ip6_dst != in6p_faddr");
908 } else
909 panic("tcp_respond: address family mismatch");
910 #endif
911 }
912 #endif
913 else
914 ro = NULL;
915
916 switch (family) {
917 #ifdef INET
918 case AF_INET:
919 error = ip_output(m, NULL, ro,
920 (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
921 break;
922 #endif
923 #ifdef INET6
924 case AF_INET6:
925 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
926 break;
927 #endif
928 default:
929 error = EAFNOSUPPORT;
930 break;
931 }
932
933 return (error);
934 }
935
936 /*
937 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
938 * a bunch of members individually, we maintain this template for the
939 * static and mostly-static components of the TCPCB, and copy it into
940 * the new TCPCB instead.
941 */
942 static struct tcpcb tcpcb_template = {
943 .t_srtt = TCPTV_SRTTBASE,
944 .t_rttmin = TCPTV_MIN,
945
946 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
947 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
948 .snd_numholes = 0,
949
950 .t_partialacks = -1,
951 .t_bytes_acked = 0,
952 };
953
954 /*
955 * Updates the TCPCB template whenever a parameter that would affect
956 * the template is changed.
957 */
958 void
959 tcp_tcpcb_template(void)
960 {
961 struct tcpcb *tp = &tcpcb_template;
962 int flags;
963
964 tp->t_peermss = tcp_mssdflt;
965 tp->t_ourmss = tcp_mssdflt;
966 tp->t_segsz = tcp_mssdflt;
967
968 flags = 0;
969 if (tcp_do_rfc1323 && tcp_do_win_scale)
970 flags |= TF_REQ_SCALE;
971 if (tcp_do_rfc1323 && tcp_do_timestamps)
972 flags |= TF_REQ_TSTMP;
973 tp->t_flags = flags;
974
975 /*
976 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
977 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
978 * reasonable initial retransmit time.
979 */
980 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
981 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
982 TCPTV_MIN, TCPTV_REXMTMAX);
983
984 /* Keep Alive */
985 tp->t_keepinit = tcp_keepinit;
986 tp->t_keepidle = tcp_keepidle;
987 tp->t_keepintvl = tcp_keepintvl;
988 tp->t_keepcnt = tcp_keepcnt;
989 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
990
991 /* MSL */
992 tp->t_msl = TCPTV_MSL;
993 }
994
995 /*
996 * Create a new TCP control block, making an
997 * empty reassembly queue and hooking it to the argument
998 * protocol control block.
999 */
1000 /* family selects inpcb, or in6pcb */
1001 struct tcpcb *
1002 tcp_newtcpcb(int family, void *aux)
1003 {
1004 #ifdef INET6
1005 struct rtentry *rt;
1006 #endif
1007 struct tcpcb *tp;
1008 int i;
1009
1010 /* XXX Consider using a pool_cache for speed. */
1011 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
1012 if (tp == NULL)
1013 return (NULL);
1014 memcpy(tp, &tcpcb_template, sizeof(*tp));
1015 TAILQ_INIT(&tp->segq);
1016 TAILQ_INIT(&tp->timeq);
1017 tp->t_family = family; /* may be overridden later on */
1018 TAILQ_INIT(&tp->snd_holes);
1019 LIST_INIT(&tp->t_sc); /* XXX can template this */
1020
1021 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1022 for (i = 0; i < TCPT_NTIMERS; i++) {
1023 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1024 TCP_TIMER_INIT(tp, i);
1025 }
1026 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1027
1028 switch (family) {
1029 case AF_INET:
1030 {
1031 struct inpcb *inp = (struct inpcb *)aux;
1032
1033 inp->inp_ip.ip_ttl = ip_defttl;
1034 inp->inp_ppcb = (void *)tp;
1035
1036 tp->t_inpcb = inp;
1037 tp->t_mtudisc = ip_mtudisc;
1038 break;
1039 }
1040 #ifdef INET6
1041 case AF_INET6:
1042 {
1043 struct in6pcb *in6p = (struct in6pcb *)aux;
1044
1045 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1046 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1047 ? rt->rt_ifp
1048 : NULL);
1049 in6p->in6p_ppcb = (void *)tp;
1050
1051 tp->t_in6pcb = in6p;
1052 /* for IPv6, always try to run path MTU discovery */
1053 tp->t_mtudisc = 1;
1054 break;
1055 }
1056 #endif /* INET6 */
1057 default:
1058 for (i = 0; i < TCPT_NTIMERS; i++)
1059 callout_destroy(&tp->t_timer[i]);
1060 callout_destroy(&tp->t_delack_ch);
1061 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1062 return (NULL);
1063 }
1064
1065 /*
1066 * Initialize our timebase. When we send timestamps, we take
1067 * the delta from tcp_now -- this means each connection always
1068 * gets a timebase of 1, which makes it, among other things,
1069 * more difficult to determine how long a system has been up,
1070 * and thus how many TCP sequence increments have occurred.
1071 *
1072 * We start with 1, because 0 doesn't work with linux, which
1073 * considers timestamp 0 in a SYN packet as a bug and disables
1074 * timestamps.
1075 */
1076 tp->ts_timebase = tcp_now - 1;
1077
1078 tcp_congctl_select(tp, tcp_congctl_global_name);
1079
1080 return (tp);
1081 }
1082
1083 /*
1084 * Drop a TCP connection, reporting
1085 * the specified error. If connection is synchronized,
1086 * then send a RST to peer.
1087 */
1088 struct tcpcb *
1089 tcp_drop(struct tcpcb *tp, int errno)
1090 {
1091 struct socket *so = NULL;
1092
1093 #ifdef DIAGNOSTIC
1094 if (tp->t_inpcb && tp->t_in6pcb)
1095 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1096 #endif
1097 #ifdef INET
1098 if (tp->t_inpcb)
1099 so = tp->t_inpcb->inp_socket;
1100 #endif
1101 #ifdef INET6
1102 if (tp->t_in6pcb)
1103 so = tp->t_in6pcb->in6p_socket;
1104 #endif
1105 if (!so)
1106 return NULL;
1107
1108 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1109 tp->t_state = TCPS_CLOSED;
1110 (void) tcp_output(tp);
1111 TCP_STATINC(TCP_STAT_DROPS);
1112 } else
1113 TCP_STATINC(TCP_STAT_CONNDROPS);
1114 if (errno == ETIMEDOUT && tp->t_softerror)
1115 errno = tp->t_softerror;
1116 so->so_error = errno;
1117 return (tcp_close(tp));
1118 }
1119
1120 /*
1121 * Close a TCP control block:
1122 * discard all space held by the tcp
1123 * discard internet protocol block
1124 * wake up any sleepers
1125 */
1126 struct tcpcb *
1127 tcp_close(struct tcpcb *tp)
1128 {
1129 struct inpcb *inp;
1130 #ifdef INET6
1131 struct in6pcb *in6p;
1132 #endif
1133 struct socket *so;
1134 #ifdef RTV_RTT
1135 struct rtentry *rt;
1136 #endif
1137 struct route *ro;
1138 int j;
1139
1140 inp = tp->t_inpcb;
1141 #ifdef INET6
1142 in6p = tp->t_in6pcb;
1143 #endif
1144 so = NULL;
1145 ro = NULL;
1146 if (inp) {
1147 so = inp->inp_socket;
1148 ro = &inp->inp_route;
1149 }
1150 #ifdef INET6
1151 else if (in6p) {
1152 so = in6p->in6p_socket;
1153 ro = (struct route *)&in6p->in6p_route;
1154 }
1155 #endif
1156
1157 #ifdef RTV_RTT
1158 /*
1159 * If we sent enough data to get some meaningful characteristics,
1160 * save them in the routing entry. 'Enough' is arbitrarily
1161 * defined as the sendpipesize (default 4K) * 16. This would
1162 * give us 16 rtt samples assuming we only get one sample per
1163 * window (the usual case on a long haul net). 16 samples is
1164 * enough for the srtt filter to converge to within 5% of the correct
1165 * value; fewer samples and we could save a very bogus rtt.
1166 *
1167 * Don't update the default route's characteristics and don't
1168 * update anything that the user "locked".
1169 */
1170 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1171 ro && (rt = rtcache_validate(ro)) != NULL &&
1172 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1173 u_long i = 0;
1174
1175 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1176 i = tp->t_srtt *
1177 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1178 if (rt->rt_rmx.rmx_rtt && i)
1179 /*
1180 * filter this update to half the old & half
1181 * the new values, converting scale.
1182 * See route.h and tcp_var.h for a
1183 * description of the scaling constants.
1184 */
1185 rt->rt_rmx.rmx_rtt =
1186 (rt->rt_rmx.rmx_rtt + i) / 2;
1187 else
1188 rt->rt_rmx.rmx_rtt = i;
1189 }
1190 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1191 i = tp->t_rttvar *
1192 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1193 if (rt->rt_rmx.rmx_rttvar && i)
1194 rt->rt_rmx.rmx_rttvar =
1195 (rt->rt_rmx.rmx_rttvar + i) / 2;
1196 else
1197 rt->rt_rmx.rmx_rttvar = i;
1198 }
1199 /*
1200 * update the pipelimit (ssthresh) if it has been updated
1201 * already or if a pipesize was specified & the threshhold
1202 * got below half the pipesize. I.e., wait for bad news
1203 * before we start updating, then update on both good
1204 * and bad news.
1205 */
1206 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1207 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1208 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1209 /*
1210 * convert the limit from user data bytes to
1211 * packets then to packet data bytes.
1212 */
1213 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1214 if (i < 2)
1215 i = 2;
1216 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1217 if (rt->rt_rmx.rmx_ssthresh)
1218 rt->rt_rmx.rmx_ssthresh =
1219 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1220 else
1221 rt->rt_rmx.rmx_ssthresh = i;
1222 }
1223 }
1224 #endif /* RTV_RTT */
1225 /* free the reassembly queue, if any */
1226 TCP_REASS_LOCK(tp);
1227 (void) tcp_freeq(tp);
1228 TCP_REASS_UNLOCK(tp);
1229
1230 /* free the SACK holes list. */
1231 tcp_free_sackholes(tp);
1232 tcp_congctl_release(tp);
1233 syn_cache_cleanup(tp);
1234
1235 if (tp->t_template) {
1236 m_free(tp->t_template);
1237 tp->t_template = NULL;
1238 }
1239
1240 /*
1241 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1242 * the timers can also drop the lock. We need to prevent access
1243 * to the tcpcb as it's half torn down. Flag the pcb as dead
1244 * (prevents access by timers) and only then detach it.
1245 */
1246 tp->t_flags |= TF_DEAD;
1247 if (inp) {
1248 inp->inp_ppcb = 0;
1249 soisdisconnected(so);
1250 in_pcbdetach(inp);
1251 }
1252 #ifdef INET6
1253 else if (in6p) {
1254 in6p->in6p_ppcb = 0;
1255 soisdisconnected(so);
1256 in6_pcbdetach(in6p);
1257 }
1258 #endif
1259 /*
1260 * pcb is no longer visble elsewhere, so we can safely release
1261 * the lock in callout_halt() if needed.
1262 */
1263 TCP_STATINC(TCP_STAT_CLOSED);
1264 for (j = 0; j < TCPT_NTIMERS; j++) {
1265 callout_halt(&tp->t_timer[j], softnet_lock);
1266 callout_destroy(&tp->t_timer[j]);
1267 }
1268 callout_halt(&tp->t_delack_ch, softnet_lock);
1269 callout_destroy(&tp->t_delack_ch);
1270 pool_put(&tcpcb_pool, tp);
1271
1272 return NULL;
1273 }
1274
1275 int
1276 tcp_freeq(struct tcpcb *tp)
1277 {
1278 struct ipqent *qe;
1279 int rv = 0;
1280 #ifdef TCPREASS_DEBUG
1281 int i = 0;
1282 #endif
1283
1284 TCP_REASS_LOCK_CHECK(tp);
1285
1286 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1287 #ifdef TCPREASS_DEBUG
1288 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1289 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1290 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1291 #endif
1292 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1293 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1294 m_freem(qe->ipqe_m);
1295 tcpipqent_free(qe);
1296 rv = 1;
1297 }
1298 tp->t_segqlen = 0;
1299 KASSERT(TAILQ_EMPTY(&tp->timeq));
1300 return (rv);
1301 }
1302
1303 void
1304 tcp_fasttimo(void)
1305 {
1306 if (tcp_drainwanted) {
1307 tcp_drain();
1308 tcp_drainwanted = 0;
1309 }
1310 }
1311
1312 void
1313 tcp_drainstub(void)
1314 {
1315 tcp_drainwanted = 1;
1316 }
1317
1318 /*
1319 * Protocol drain routine. Called when memory is in short supply.
1320 * Called from pr_fasttimo thus a callout context.
1321 */
1322 void
1323 tcp_drain(void)
1324 {
1325 struct inpcb_hdr *inph;
1326 struct tcpcb *tp;
1327
1328 mutex_enter(softnet_lock);
1329 KERNEL_LOCK(1, NULL);
1330
1331 /*
1332 * Free the sequence queue of all TCP connections.
1333 */
1334 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1335 switch (inph->inph_af) {
1336 case AF_INET:
1337 tp = intotcpcb((struct inpcb *)inph);
1338 break;
1339 #ifdef INET6
1340 case AF_INET6:
1341 tp = in6totcpcb((struct in6pcb *)inph);
1342 break;
1343 #endif
1344 default:
1345 tp = NULL;
1346 break;
1347 }
1348 if (tp != NULL) {
1349 /*
1350 * We may be called from a device's interrupt
1351 * context. If the tcpcb is already busy,
1352 * just bail out now.
1353 */
1354 if (tcp_reass_lock_try(tp) == 0)
1355 continue;
1356 if (tcp_freeq(tp))
1357 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1358 TCP_REASS_UNLOCK(tp);
1359 }
1360 }
1361
1362 KERNEL_UNLOCK_ONE(NULL);
1363 mutex_exit(softnet_lock);
1364 }
1365
1366 /*
1367 * Notify a tcp user of an asynchronous error;
1368 * store error as soft error, but wake up user
1369 * (for now, won't do anything until can select for soft error).
1370 */
1371 void
1372 tcp_notify(struct inpcb *inp, int error)
1373 {
1374 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1375 struct socket *so = inp->inp_socket;
1376
1377 /*
1378 * Ignore some errors if we are hooked up.
1379 * If connection hasn't completed, has retransmitted several times,
1380 * and receives a second error, give up now. This is better
1381 * than waiting a long time to establish a connection that
1382 * can never complete.
1383 */
1384 if (tp->t_state == TCPS_ESTABLISHED &&
1385 (error == EHOSTUNREACH || error == ENETUNREACH ||
1386 error == EHOSTDOWN)) {
1387 return;
1388 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1389 tp->t_rxtshift > 3 && tp->t_softerror)
1390 so->so_error = error;
1391 else
1392 tp->t_softerror = error;
1393 cv_broadcast(&so->so_cv);
1394 sorwakeup(so);
1395 sowwakeup(so);
1396 }
1397
1398 #ifdef INET6
1399 void
1400 tcp6_notify(struct in6pcb *in6p, int error)
1401 {
1402 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1403 struct socket *so = in6p->in6p_socket;
1404
1405 /*
1406 * Ignore some errors if we are hooked up.
1407 * If connection hasn't completed, has retransmitted several times,
1408 * and receives a second error, give up now. This is better
1409 * than waiting a long time to establish a connection that
1410 * can never complete.
1411 */
1412 if (tp->t_state == TCPS_ESTABLISHED &&
1413 (error == EHOSTUNREACH || error == ENETUNREACH ||
1414 error == EHOSTDOWN)) {
1415 return;
1416 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1417 tp->t_rxtshift > 3 && tp->t_softerror)
1418 so->so_error = error;
1419 else
1420 tp->t_softerror = error;
1421 cv_broadcast(&so->so_cv);
1422 sorwakeup(so);
1423 sowwakeup(so);
1424 }
1425 #endif
1426
1427 #ifdef INET6
1428 void *
1429 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1430 {
1431 struct tcphdr th;
1432 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1433 int nmatch;
1434 struct ip6_hdr *ip6;
1435 const struct sockaddr_in6 *sa6_src = NULL;
1436 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1437 struct mbuf *m;
1438 int off;
1439
1440 if (sa->sa_family != AF_INET6 ||
1441 sa->sa_len != sizeof(struct sockaddr_in6))
1442 return NULL;
1443 if ((unsigned)cmd >= PRC_NCMDS)
1444 return NULL;
1445 else if (cmd == PRC_QUENCH) {
1446 /*
1447 * Don't honor ICMP Source Quench messages meant for
1448 * TCP connections.
1449 */
1450 return NULL;
1451 } else if (PRC_IS_REDIRECT(cmd))
1452 notify = in6_rtchange, d = NULL;
1453 else if (cmd == PRC_MSGSIZE)
1454 ; /* special code is present, see below */
1455 else if (cmd == PRC_HOSTDEAD)
1456 d = NULL;
1457 else if (inet6ctlerrmap[cmd] == 0)
1458 return NULL;
1459
1460 /* if the parameter is from icmp6, decode it. */
1461 if (d != NULL) {
1462 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1463 m = ip6cp->ip6c_m;
1464 ip6 = ip6cp->ip6c_ip6;
1465 off = ip6cp->ip6c_off;
1466 sa6_src = ip6cp->ip6c_src;
1467 } else {
1468 m = NULL;
1469 ip6 = NULL;
1470 sa6_src = &sa6_any;
1471 off = 0;
1472 }
1473
1474 if (ip6) {
1475 /*
1476 * XXX: We assume that when ip6 is non NULL,
1477 * M and OFF are valid.
1478 */
1479
1480 /* check if we can safely examine src and dst ports */
1481 if (m->m_pkthdr.len < off + sizeof(th)) {
1482 if (cmd == PRC_MSGSIZE)
1483 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1484 return NULL;
1485 }
1486
1487 memset(&th, 0, sizeof(th));
1488 m_copydata(m, off, sizeof(th), (void *)&th);
1489
1490 if (cmd == PRC_MSGSIZE) {
1491 int valid = 0;
1492
1493 /*
1494 * Check to see if we have a valid TCP connection
1495 * corresponding to the address in the ICMPv6 message
1496 * payload.
1497 */
1498 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1499 th.th_dport,
1500 (const struct in6_addr *)&sa6_src->sin6_addr,
1501 th.th_sport, 0, 0))
1502 valid++;
1503
1504 /*
1505 * Depending on the value of "valid" and routing table
1506 * size (mtudisc_{hi,lo}wat), we will:
1507 * - recalcurate the new MTU and create the
1508 * corresponding routing entry, or
1509 * - ignore the MTU change notification.
1510 */
1511 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1512
1513 /*
1514 * no need to call in6_pcbnotify, it should have been
1515 * called via callback if necessary
1516 */
1517 return NULL;
1518 }
1519
1520 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1521 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1522 if (nmatch == 0 && syn_cache_count &&
1523 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1524 inet6ctlerrmap[cmd] == ENETUNREACH ||
1525 inet6ctlerrmap[cmd] == EHOSTDOWN))
1526 syn_cache_unreach((const struct sockaddr *)sa6_src,
1527 sa, &th);
1528 } else {
1529 (void) in6_pcbnotify(&tcbtable, sa, 0,
1530 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1531 }
1532
1533 return NULL;
1534 }
1535 #endif
1536
1537 #ifdef INET
1538 /* assumes that ip header and tcp header are contiguous on mbuf */
1539 void *
1540 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1541 {
1542 struct ip *ip = v;
1543 struct tcphdr *th;
1544 struct icmp *icp;
1545 extern const int inetctlerrmap[];
1546 void (*notify)(struct inpcb *, int) = tcp_notify;
1547 int errno;
1548 int nmatch;
1549 struct tcpcb *tp;
1550 u_int mtu;
1551 tcp_seq seq;
1552 struct inpcb *inp;
1553 #ifdef INET6
1554 struct in6pcb *in6p;
1555 struct in6_addr src6, dst6;
1556 #endif
1557
1558 if (sa->sa_family != AF_INET ||
1559 sa->sa_len != sizeof(struct sockaddr_in))
1560 return NULL;
1561 if ((unsigned)cmd >= PRC_NCMDS)
1562 return NULL;
1563 errno = inetctlerrmap[cmd];
1564 if (cmd == PRC_QUENCH)
1565 /*
1566 * Don't honor ICMP Source Quench messages meant for
1567 * TCP connections.
1568 */
1569 return NULL;
1570 else if (PRC_IS_REDIRECT(cmd))
1571 notify = in_rtchange, ip = 0;
1572 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1573 /*
1574 * Check to see if we have a valid TCP connection
1575 * corresponding to the address in the ICMP message
1576 * payload.
1577 *
1578 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1579 */
1580 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1581 #ifdef INET6
1582 memset(&src6, 0, sizeof(src6));
1583 memset(&dst6, 0, sizeof(dst6));
1584 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1585 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1586 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1587 #endif
1588 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1589 th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1590 #ifdef INET6
1591 in6p = NULL;
1592 #else
1593 ;
1594 #endif
1595 #ifdef INET6
1596 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1597 th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1598 ;
1599 #endif
1600 else
1601 return NULL;
1602
1603 /*
1604 * Now that we've validated that we are actually communicating
1605 * with the host indicated in the ICMP message, locate the
1606 * ICMP header, recalculate the new MTU, and create the
1607 * corresponding routing entry.
1608 */
1609 icp = (struct icmp *)((char *)ip -
1610 offsetof(struct icmp, icmp_ip));
1611 if (inp) {
1612 if ((tp = intotcpcb(inp)) == NULL)
1613 return NULL;
1614 }
1615 #ifdef INET6
1616 else if (in6p) {
1617 if ((tp = in6totcpcb(in6p)) == NULL)
1618 return NULL;
1619 }
1620 #endif
1621 else
1622 return NULL;
1623 seq = ntohl(th->th_seq);
1624 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1625 return NULL;
1626 /*
1627 * If the ICMP message advertises a Next-Hop MTU
1628 * equal or larger than the maximum packet size we have
1629 * ever sent, drop the message.
1630 */
1631 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1632 if (mtu >= tp->t_pmtud_mtu_sent)
1633 return NULL;
1634 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1635 /*
1636 * Calculate new MTU, and create corresponding
1637 * route (traditional PMTUD).
1638 */
1639 tp->t_flags &= ~TF_PMTUD_PEND;
1640 icmp_mtudisc(icp, ip->ip_dst);
1641 } else {
1642 /*
1643 * Record the information got in the ICMP
1644 * message; act on it later.
1645 * If we had already recorded an ICMP message,
1646 * replace the old one only if the new message
1647 * refers to an older TCP segment
1648 */
1649 if (tp->t_flags & TF_PMTUD_PEND) {
1650 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1651 return NULL;
1652 } else
1653 tp->t_flags |= TF_PMTUD_PEND;
1654 tp->t_pmtud_th_seq = seq;
1655 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1656 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1657 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1658 }
1659 return NULL;
1660 } else if (cmd == PRC_HOSTDEAD)
1661 ip = 0;
1662 else if (errno == 0)
1663 return NULL;
1664 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1665 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1666 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1667 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1668 if (nmatch == 0 && syn_cache_count &&
1669 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1670 inetctlerrmap[cmd] == ENETUNREACH ||
1671 inetctlerrmap[cmd] == EHOSTDOWN)) {
1672 struct sockaddr_in sin;
1673 memset(&sin, 0, sizeof(sin));
1674 sin.sin_len = sizeof(sin);
1675 sin.sin_family = AF_INET;
1676 sin.sin_port = th->th_sport;
1677 sin.sin_addr = ip->ip_src;
1678 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1679 }
1680
1681 /* XXX mapped address case */
1682 } else
1683 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1684 notify);
1685 return NULL;
1686 }
1687
1688 /*
1689 * When a source quench is received, we are being notified of congestion.
1690 * Close the congestion window down to the Loss Window (one segment).
1691 * We will gradually open it again as we proceed.
1692 */
1693 void
1694 tcp_quench(struct inpcb *inp, int errno)
1695 {
1696 struct tcpcb *tp = intotcpcb(inp);
1697
1698 if (tp) {
1699 tp->snd_cwnd = tp->t_segsz;
1700 tp->t_bytes_acked = 0;
1701 }
1702 }
1703 #endif
1704
1705 #ifdef INET6
1706 void
1707 tcp6_quench(struct in6pcb *in6p, int errno)
1708 {
1709 struct tcpcb *tp = in6totcpcb(in6p);
1710
1711 if (tp) {
1712 tp->snd_cwnd = tp->t_segsz;
1713 tp->t_bytes_acked = 0;
1714 }
1715 }
1716 #endif
1717
1718 #ifdef INET
1719 /*
1720 * Path MTU Discovery handlers.
1721 */
1722 void
1723 tcp_mtudisc_callback(struct in_addr faddr)
1724 {
1725 #ifdef INET6
1726 struct in6_addr in6;
1727 #endif
1728
1729 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1730 #ifdef INET6
1731 memset(&in6, 0, sizeof(in6));
1732 in6.s6_addr16[5] = 0xffff;
1733 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1734 tcp6_mtudisc_callback(&in6);
1735 #endif
1736 }
1737
1738 /*
1739 * On receipt of path MTU corrections, flush old route and replace it
1740 * with the new one. Retransmit all unacknowledged packets, to ensure
1741 * that all packets will be received.
1742 */
1743 void
1744 tcp_mtudisc(struct inpcb *inp, int errno)
1745 {
1746 struct tcpcb *tp = intotcpcb(inp);
1747 struct rtentry *rt = in_pcbrtentry(inp);
1748
1749 if (tp != 0) {
1750 if (rt != 0) {
1751 /*
1752 * If this was not a host route, remove and realloc.
1753 */
1754 if ((rt->rt_flags & RTF_HOST) == 0) {
1755 in_rtchange(inp, errno);
1756 if ((rt = in_pcbrtentry(inp)) == 0)
1757 return;
1758 }
1759
1760 /*
1761 * Slow start out of the error condition. We
1762 * use the MTU because we know it's smaller
1763 * than the previously transmitted segment.
1764 *
1765 * Note: This is more conservative than the
1766 * suggestion in draft-floyd-incr-init-win-03.
1767 */
1768 if (rt->rt_rmx.rmx_mtu != 0)
1769 tp->snd_cwnd =
1770 TCP_INITIAL_WINDOW(tcp_init_win,
1771 rt->rt_rmx.rmx_mtu);
1772 }
1773
1774 /*
1775 * Resend unacknowledged packets.
1776 */
1777 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1778 tcp_output(tp);
1779 }
1780 }
1781 #endif
1782
1783 #ifdef INET6
1784 /*
1785 * Path MTU Discovery handlers.
1786 */
1787 void
1788 tcp6_mtudisc_callback(struct in6_addr *faddr)
1789 {
1790 struct sockaddr_in6 sin6;
1791
1792 memset(&sin6, 0, sizeof(sin6));
1793 sin6.sin6_family = AF_INET6;
1794 sin6.sin6_len = sizeof(struct sockaddr_in6);
1795 sin6.sin6_addr = *faddr;
1796 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1797 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1798 }
1799
1800 void
1801 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1802 {
1803 struct tcpcb *tp = in6totcpcb(in6p);
1804 struct rtentry *rt = in6_pcbrtentry(in6p);
1805
1806 if (tp != 0) {
1807 if (rt != 0) {
1808 /*
1809 * If this was not a host route, remove and realloc.
1810 */
1811 if ((rt->rt_flags & RTF_HOST) == 0) {
1812 in6_rtchange(in6p, errno);
1813 if ((rt = in6_pcbrtentry(in6p)) == 0)
1814 return;
1815 }
1816
1817 /*
1818 * Slow start out of the error condition. We
1819 * use the MTU because we know it's smaller
1820 * than the previously transmitted segment.
1821 *
1822 * Note: This is more conservative than the
1823 * suggestion in draft-floyd-incr-init-win-03.
1824 */
1825 if (rt->rt_rmx.rmx_mtu != 0)
1826 tp->snd_cwnd =
1827 TCP_INITIAL_WINDOW(tcp_init_win,
1828 rt->rt_rmx.rmx_mtu);
1829 }
1830
1831 /*
1832 * Resend unacknowledged packets.
1833 */
1834 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1835 tcp_output(tp);
1836 }
1837 }
1838 #endif /* INET6 */
1839
1840 /*
1841 * Compute the MSS to advertise to the peer. Called only during
1842 * the 3-way handshake. If we are the server (peer initiated
1843 * connection), we are called with a pointer to the interface
1844 * on which the SYN packet arrived. If we are the client (we
1845 * initiated connection), we are called with a pointer to the
1846 * interface out which this connection should go.
1847 *
1848 * NOTE: Do not subtract IP option/extension header size nor IPsec
1849 * header size from MSS advertisement. MSS option must hold the maximum
1850 * segment size we can accept, so it must always be:
1851 * max(if mtu) - ip header - tcp header
1852 */
1853 u_long
1854 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1855 {
1856 extern u_long in_maxmtu;
1857 u_long mss = 0;
1858 u_long hdrsiz;
1859
1860 /*
1861 * In order to avoid defeating path MTU discovery on the peer,
1862 * we advertise the max MTU of all attached networks as our MSS,
1863 * per RFC 1191, section 3.1.
1864 *
1865 * We provide the option to advertise just the MTU of
1866 * the interface on which we hope this connection will
1867 * be receiving. If we are responding to a SYN, we
1868 * will have a pretty good idea about this, but when
1869 * initiating a connection there is a bit more doubt.
1870 *
1871 * We also need to ensure that loopback has a large enough
1872 * MSS, as the loopback MTU is never included in in_maxmtu.
1873 */
1874
1875 if (ifp != NULL)
1876 switch (af) {
1877 case AF_INET:
1878 mss = ifp->if_mtu;
1879 break;
1880 #ifdef INET6
1881 case AF_INET6:
1882 mss = IN6_LINKMTU(ifp);
1883 break;
1884 #endif
1885 }
1886
1887 if (tcp_mss_ifmtu == 0)
1888 switch (af) {
1889 case AF_INET:
1890 mss = max(in_maxmtu, mss);
1891 break;
1892 #ifdef INET6
1893 case AF_INET6:
1894 mss = max(in6_maxmtu, mss);
1895 break;
1896 #endif
1897 }
1898
1899 switch (af) {
1900 case AF_INET:
1901 hdrsiz = sizeof(struct ip);
1902 break;
1903 #ifdef INET6
1904 case AF_INET6:
1905 hdrsiz = sizeof(struct ip6_hdr);
1906 break;
1907 #endif
1908 default:
1909 hdrsiz = 0;
1910 break;
1911 }
1912 hdrsiz += sizeof(struct tcphdr);
1913 if (mss > hdrsiz)
1914 mss -= hdrsiz;
1915
1916 mss = max(tcp_mssdflt, mss);
1917 return (mss);
1918 }
1919
1920 /*
1921 * Set connection variables based on the peer's advertised MSS.
1922 * We are passed the TCPCB for the actual connection. If we
1923 * are the server, we are called by the compressed state engine
1924 * when the 3-way handshake is complete. If we are the client,
1925 * we are called when we receive the SYN,ACK from the server.
1926 *
1927 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1928 * before this routine is called!
1929 */
1930 void
1931 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1932 {
1933 struct socket *so;
1934 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1935 struct rtentry *rt;
1936 #endif
1937 u_long bufsize;
1938 int mss;
1939
1940 #ifdef DIAGNOSTIC
1941 if (tp->t_inpcb && tp->t_in6pcb)
1942 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1943 #endif
1944 so = NULL;
1945 rt = NULL;
1946 #ifdef INET
1947 if (tp->t_inpcb) {
1948 so = tp->t_inpcb->inp_socket;
1949 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1950 rt = in_pcbrtentry(tp->t_inpcb);
1951 #endif
1952 }
1953 #endif
1954 #ifdef INET6
1955 if (tp->t_in6pcb) {
1956 so = tp->t_in6pcb->in6p_socket;
1957 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1958 rt = in6_pcbrtentry(tp->t_in6pcb);
1959 #endif
1960 }
1961 #endif
1962
1963 /*
1964 * As per RFC1122, use the default MSS value, unless they
1965 * sent us an offer. Do not accept offers less than 256 bytes.
1966 */
1967 mss = tcp_mssdflt;
1968 if (offer)
1969 mss = offer;
1970 mss = max(mss, 256); /* sanity */
1971 tp->t_peermss = mss;
1972 mss -= tcp_optlen(tp);
1973 #ifdef INET
1974 if (tp->t_inpcb)
1975 mss -= ip_optlen(tp->t_inpcb);
1976 #endif
1977 #ifdef INET6
1978 if (tp->t_in6pcb)
1979 mss -= ip6_optlen(tp->t_in6pcb);
1980 #endif
1981
1982 /*
1983 * If there's a pipesize, change the socket buffer to that size.
1984 * Make the socket buffer an integral number of MSS units. If
1985 * the MSS is larger than the socket buffer, artificially decrease
1986 * the MSS.
1987 */
1988 #ifdef RTV_SPIPE
1989 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1990 bufsize = rt->rt_rmx.rmx_sendpipe;
1991 else
1992 #endif
1993 {
1994 KASSERT(so != NULL);
1995 bufsize = so->so_snd.sb_hiwat;
1996 }
1997 if (bufsize < mss)
1998 mss = bufsize;
1999 else {
2000 bufsize = roundup(bufsize, mss);
2001 if (bufsize > sb_max)
2002 bufsize = sb_max;
2003 (void) sbreserve(&so->so_snd, bufsize, so);
2004 }
2005 tp->t_segsz = mss;
2006
2007 #ifdef RTV_SSTHRESH
2008 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2009 /*
2010 * There's some sort of gateway or interface buffer
2011 * limit on the path. Use this to set the slow
2012 * start threshold, but set the threshold to no less
2013 * than 2 * MSS.
2014 */
2015 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2016 }
2017 #endif
2018 }
2019
2020 /*
2021 * Processing necessary when a TCP connection is established.
2022 */
2023 void
2024 tcp_established(struct tcpcb *tp)
2025 {
2026 struct socket *so;
2027 #ifdef RTV_RPIPE
2028 struct rtentry *rt;
2029 #endif
2030 u_long bufsize;
2031
2032 #ifdef DIAGNOSTIC
2033 if (tp->t_inpcb && tp->t_in6pcb)
2034 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2035 #endif
2036 so = NULL;
2037 rt = NULL;
2038 #ifdef INET
2039 /* This is a while() to reduce the dreadful stairstepping below */
2040 while (tp->t_inpcb) {
2041 so = tp->t_inpcb->inp_socket;
2042 #if defined(RTV_RPIPE)
2043 rt = in_pcbrtentry(tp->t_inpcb);
2044 #endif
2045 if (__predict_true(tcp_msl_enable)) {
2046 if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2047 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2048 break;
2049 }
2050
2051 if (__predict_false(tcp_rttlocal)) {
2052 /* This may be adjusted by tcp_input */
2053 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2054 break;
2055 }
2056 if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2057 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2058 break;
2059 }
2060 }
2061 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2062 break;
2063 }
2064 #endif
2065 #ifdef INET6
2066 /* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2067 while (!tp->t_inpcb && tp->t_in6pcb) {
2068 so = tp->t_in6pcb->in6p_socket;
2069 #if defined(RTV_RPIPE)
2070 rt = in6_pcbrtentry(tp->t_in6pcb);
2071 #endif
2072 if (__predict_true(tcp_msl_enable)) {
2073 extern const struct in6_addr in6addr_loopback;
2074
2075 if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2076 &in6addr_loopback)) {
2077 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2078 break;
2079 }
2080
2081 if (__predict_false(tcp_rttlocal)) {
2082 /* This may be adjusted by tcp_input */
2083 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2084 break;
2085 }
2086 if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2087 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2088 break;
2089 }
2090 }
2091 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2092 break;
2093 }
2094 #endif
2095
2096 tp->t_state = TCPS_ESTABLISHED;
2097 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2098
2099 #ifdef RTV_RPIPE
2100 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2101 bufsize = rt->rt_rmx.rmx_recvpipe;
2102 else
2103 #endif
2104 {
2105 KASSERT(so != NULL);
2106 bufsize = so->so_rcv.sb_hiwat;
2107 }
2108 if (bufsize > tp->t_ourmss) {
2109 bufsize = roundup(bufsize, tp->t_ourmss);
2110 if (bufsize > sb_max)
2111 bufsize = sb_max;
2112 (void) sbreserve(&so->so_rcv, bufsize, so);
2113 }
2114 }
2115
2116 /*
2117 * Check if there's an initial rtt or rttvar. Convert from the
2118 * route-table units to scaled multiples of the slow timeout timer.
2119 * Called only during the 3-way handshake.
2120 */
2121 void
2122 tcp_rmx_rtt(struct tcpcb *tp)
2123 {
2124 #ifdef RTV_RTT
2125 struct rtentry *rt = NULL;
2126 int rtt;
2127
2128 #ifdef DIAGNOSTIC
2129 if (tp->t_inpcb && tp->t_in6pcb)
2130 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2131 #endif
2132 #ifdef INET
2133 if (tp->t_inpcb)
2134 rt = in_pcbrtentry(tp->t_inpcb);
2135 #endif
2136 #ifdef INET6
2137 if (tp->t_in6pcb)
2138 rt = in6_pcbrtentry(tp->t_in6pcb);
2139 #endif
2140 if (rt == NULL)
2141 return;
2142
2143 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2144 /*
2145 * XXX The lock bit for MTU indicates that the value
2146 * is also a minimum value; this is subject to time.
2147 */
2148 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2149 TCPT_RANGESET(tp->t_rttmin,
2150 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2151 TCPTV_MIN, TCPTV_REXMTMAX);
2152 tp->t_srtt = rtt /
2153 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2154 if (rt->rt_rmx.rmx_rttvar) {
2155 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2156 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2157 (TCP_RTTVAR_SHIFT + 2));
2158 } else {
2159 /* Default variation is +- 1 rtt */
2160 tp->t_rttvar =
2161 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2162 }
2163 TCPT_RANGESET(tp->t_rxtcur,
2164 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2165 tp->t_rttmin, TCPTV_REXMTMAX);
2166 }
2167 #endif
2168 }
2169
2170 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2171 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2172
2173 /*
2174 * Get a new sequence value given a tcp control block
2175 */
2176 tcp_seq
2177 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2178 {
2179
2180 #ifdef INET
2181 if (tp->t_inpcb != NULL) {
2182 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2183 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2184 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2185 addin));
2186 }
2187 #endif
2188 #ifdef INET6
2189 if (tp->t_in6pcb != NULL) {
2190 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2191 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2192 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2193 addin));
2194 }
2195 #endif
2196 /* Not possible. */
2197 panic("tcp_new_iss");
2198 }
2199
2200 /*
2201 * This routine actually generates a new TCP initial sequence number.
2202 */
2203 tcp_seq
2204 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2205 size_t addrsz, tcp_seq addin)
2206 {
2207 tcp_seq tcp_iss;
2208
2209 static bool tcp_iss_gotten_secret;
2210
2211 /*
2212 * If we haven't been here before, initialize our cryptographic
2213 * hash secret.
2214 */
2215 if (tcp_iss_gotten_secret == false) {
2216 cprng_strong(kern_cprng,
2217 tcp_iss_secret, sizeof(tcp_iss_secret), FASYNC);
2218 tcp_iss_gotten_secret = true;
2219 }
2220
2221 if (tcp_do_rfc1948) {
2222 MD5_CTX ctx;
2223 u_int8_t hash[16]; /* XXX MD5 knowledge */
2224
2225 /*
2226 * Compute the base value of the ISS. It is a hash
2227 * of (saddr, sport, daddr, dport, secret).
2228 */
2229 MD5Init(&ctx);
2230
2231 MD5Update(&ctx, (u_char *) laddr, addrsz);
2232 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2233
2234 MD5Update(&ctx, (u_char *) faddr, addrsz);
2235 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2236
2237 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2238
2239 MD5Final(hash, &ctx);
2240
2241 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2242
2243 /*
2244 * Now increment our "timer", and add it in to
2245 * the computed value.
2246 *
2247 * XXX Use `addin'?
2248 * XXX TCP_ISSINCR too large to use?
2249 */
2250 tcp_iss_seq += TCP_ISSINCR;
2251 #ifdef TCPISS_DEBUG
2252 printf("ISS hash 0x%08x, ", tcp_iss);
2253 #endif
2254 tcp_iss += tcp_iss_seq + addin;
2255 #ifdef TCPISS_DEBUG
2256 printf("new ISS 0x%08x\n", tcp_iss);
2257 #endif
2258 } else {
2259 /*
2260 * Randomize.
2261 */
2262 tcp_iss = cprng_fast32();
2263
2264 /*
2265 * If we were asked to add some amount to a known value,
2266 * we will take a random value obtained above, mask off
2267 * the upper bits, and add in the known value. We also
2268 * add in a constant to ensure that we are at least a
2269 * certain distance from the original value.
2270 *
2271 * This is used when an old connection is in timed wait
2272 * and we have a new one coming in, for instance.
2273 */
2274 if (addin != 0) {
2275 #ifdef TCPISS_DEBUG
2276 printf("Random %08x, ", tcp_iss);
2277 #endif
2278 tcp_iss &= TCP_ISS_RANDOM_MASK;
2279 tcp_iss += addin + TCP_ISSINCR;
2280 #ifdef TCPISS_DEBUG
2281 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2282 #endif
2283 } else {
2284 tcp_iss &= TCP_ISS_RANDOM_MASK;
2285 tcp_iss += tcp_iss_seq;
2286 tcp_iss_seq += TCP_ISSINCR;
2287 #ifdef TCPISS_DEBUG
2288 printf("ISS %08x\n", tcp_iss);
2289 #endif
2290 }
2291 }
2292
2293 if (tcp_compat_42) {
2294 /*
2295 * Limit it to the positive range for really old TCP
2296 * implementations.
2297 * Just AND off the top bit instead of checking if
2298 * is set first - saves a branch 50% of the time.
2299 */
2300 tcp_iss &= 0x7fffffff; /* XXX */
2301 }
2302
2303 return (tcp_iss);
2304 }
2305
2306 #if defined(FAST_IPSEC)
2307 /* compute ESP/AH header size for TCP, including outer IP header. */
2308 size_t
2309 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2310 {
2311 struct inpcb *inp;
2312 size_t hdrsiz;
2313
2314 /* XXX mapped addr case (tp->t_in6pcb) */
2315 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2316 return 0;
2317 switch (tp->t_family) {
2318 case AF_INET:
2319 /* XXX: should use currect direction. */
2320 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2321 break;
2322 default:
2323 hdrsiz = 0;
2324 break;
2325 }
2326
2327 return hdrsiz;
2328 }
2329
2330 #ifdef INET6
2331 size_t
2332 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2333 {
2334 struct in6pcb *in6p;
2335 size_t hdrsiz;
2336
2337 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2338 return 0;
2339 switch (tp->t_family) {
2340 case AF_INET6:
2341 /* XXX: should use currect direction. */
2342 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2343 break;
2344 case AF_INET:
2345 /* mapped address case - tricky */
2346 default:
2347 hdrsiz = 0;
2348 break;
2349 }
2350
2351 return hdrsiz;
2352 }
2353 #endif
2354 #endif /*IPSEC*/
2355
2356 /*
2357 * Determine the length of the TCP options for this connection.
2358 *
2359 * XXX: What do we do for SACK, when we add that? Just reserve
2360 * all of the space? Otherwise we can't exactly be incrementing
2361 * cwnd by an amount that varies depending on the amount we last
2362 * had to SACK!
2363 */
2364
2365 u_int
2366 tcp_optlen(struct tcpcb *tp)
2367 {
2368 u_int optlen;
2369
2370 optlen = 0;
2371 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2372 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2373 optlen += TCPOLEN_TSTAMP_APPA;
2374
2375 #ifdef TCP_SIGNATURE
2376 if (tp->t_flags & TF_SIGNATURE)
2377 optlen += TCPOLEN_SIGNATURE + 2;
2378 #endif /* TCP_SIGNATURE */
2379
2380 return optlen;
2381 }
2382
2383 u_int
2384 tcp_hdrsz(struct tcpcb *tp)
2385 {
2386 u_int hlen;
2387
2388 switch (tp->t_family) {
2389 #ifdef INET6
2390 case AF_INET6:
2391 hlen = sizeof(struct ip6_hdr);
2392 break;
2393 #endif
2394 case AF_INET:
2395 hlen = sizeof(struct ip);
2396 break;
2397 default:
2398 hlen = 0;
2399 break;
2400 }
2401 hlen += sizeof(struct tcphdr);
2402
2403 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2404 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2405 hlen += TCPOLEN_TSTAMP_APPA;
2406 #ifdef TCP_SIGNATURE
2407 if (tp->t_flags & TF_SIGNATURE)
2408 hlen += TCPOLEN_SIGLEN;
2409 #endif
2410 return hlen;
2411 }
2412
2413 void
2414 tcp_statinc(u_int stat)
2415 {
2416
2417 KASSERT(stat < TCP_NSTATS);
2418 TCP_STATINC(stat);
2419 }
2420
2421 void
2422 tcp_statadd(u_int stat, uint64_t val)
2423 {
2424
2425 KASSERT(stat < TCP_NSTATS);
2426 TCP_STATADD(stat, val);
2427 }
2428