Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.250
      1 /*	$NetBSD: tcp_subr.c,v 1.250 2013/06/05 19:01:26 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.250 2013/06/05 19:01:26 christos Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_tcp_compat_42.h"
     99 #include "opt_inet_csum.h"
    100 #include "opt_mbuftrace.h"
    101 
    102 #include <sys/param.h>
    103 #include <sys/proc.h>
    104 #include <sys/systm.h>
    105 #include <sys/malloc.h>
    106 #include <sys/mbuf.h>
    107 #include <sys/socket.h>
    108 #include <sys/socketvar.h>
    109 #include <sys/protosw.h>
    110 #include <sys/errno.h>
    111 #include <sys/kernel.h>
    112 #include <sys/pool.h>
    113 #include <sys/md5.h>
    114 #include <sys/cprng.h>
    115 
    116 #include <net/route.h>
    117 #include <net/if.h>
    118 
    119 #include <netinet/in.h>
    120 #include <netinet/in_systm.h>
    121 #include <netinet/ip.h>
    122 #include <netinet/in_pcb.h>
    123 #include <netinet/ip_var.h>
    124 #include <netinet/ip_icmp.h>
    125 
    126 #ifdef INET6
    127 #ifndef INET
    128 #include <netinet/in.h>
    129 #endif
    130 #include <netinet/ip6.h>
    131 #include <netinet6/in6_pcb.h>
    132 #include <netinet6/ip6_var.h>
    133 #include <netinet6/in6_var.h>
    134 #include <netinet6/ip6protosw.h>
    135 #include <netinet/icmp6.h>
    136 #include <netinet6/nd6.h>
    137 #endif
    138 
    139 #include <netinet/tcp.h>
    140 #include <netinet/tcp_fsm.h>
    141 #include <netinet/tcp_seq.h>
    142 #include <netinet/tcp_timer.h>
    143 #include <netinet/tcp_var.h>
    144 #include <netinet/tcp_vtw.h>
    145 #include <netinet/tcp_private.h>
    146 #include <netinet/tcp_congctl.h>
    147 #include <netinet/tcpip.h>
    148 
    149 #ifdef IPSEC
    150 #include <netipsec/ipsec.h>
    151 #include <netipsec/xform.h>
    152 #ifdef INET6
    153 #include <netipsec/ipsec6.h>
    154 #endif
    155  #include <netipsec/key.h>
    156 #endif	/* IPSEC*/
    157 
    158 
    159 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    160 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
    161 
    162 percpu_t *tcpstat_percpu;
    163 
    164 /* patchable/settable parameters for tcp */
    165 int 	tcp_mssdflt = TCP_MSS;
    166 int	tcp_minmss = TCP_MINMSS;
    167 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    168 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    169 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    170 int	tcp_do_sack = 1;	/* selective acknowledgement */
    171 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    172 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    173 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    174 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    175 #ifndef TCP_INIT_WIN
    176 #define	TCP_INIT_WIN	4	/* initial slow start window */
    177 #endif
    178 #ifndef TCP_INIT_WIN_LOCAL
    179 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    180 #endif
    181 /*
    182  * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
    183  * This is to simulate current behavior for iw == 4
    184  */
    185 int tcp_init_win_max[] = {
    186 	 1 * 1460,
    187 	 1 * 1460,
    188 	 2 * 1460,
    189 	 2 * 1460,
    190 	 3 * 1460,
    191 	 5 * 1460,
    192 	 6 * 1460,
    193 	 7 * 1460,
    194 	 8 * 1460,
    195 	 9 * 1460,
    196 	10 * 1460
    197 };
    198 int	tcp_init_win = TCP_INIT_WIN;
    199 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    200 int	tcp_mss_ifmtu = 0;
    201 #ifdef TCP_COMPAT_42
    202 int	tcp_compat_42 = 1;
    203 #else
    204 int	tcp_compat_42 = 0;
    205 #endif
    206 int	tcp_rst_ppslim = 100;	/* 100pps */
    207 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    208 int	tcp_do_loopback_cksum = 0;
    209 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    210 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    211 int	tcp_sack_tp_maxholes = 32;
    212 int	tcp_sack_globalmaxholes = 1024;
    213 int	tcp_sack_globalholes = 0;
    214 int	tcp_ecn_maxretries = 1;
    215 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
    216 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
    217 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
    218 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
    219 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
    220 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
    221 
    222 int	tcp4_vtw_enable = 0;		/* 1 to enable */
    223 int	tcp6_vtw_enable = 0;		/* 1 to enable */
    224 int	tcp_vtw_was_enabled = 0;
    225 int	tcp_vtw_entries = 1 << 16;	/* 64K vestigial TIME_WAIT entries */
    226 
    227 /* tcb hash */
    228 #ifndef TCBHASHSIZE
    229 #define	TCBHASHSIZE	128
    230 #endif
    231 int	tcbhashsize = TCBHASHSIZE;
    232 
    233 /* syn hash parameters */
    234 #define	TCP_SYN_HASH_SIZE	293
    235 #define	TCP_SYN_BUCKET_SIZE	35
    236 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    237 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    238 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    239 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    240 
    241 int	tcp_freeq(struct tcpcb *);
    242 
    243 #ifdef INET
    244 void	tcp_mtudisc_callback(struct in_addr);
    245 #endif
    246 #ifdef INET6
    247 void	tcp6_mtudisc_callback(struct in6_addr *);
    248 #endif
    249 
    250 #ifdef INET6
    251 void	tcp6_mtudisc(struct in6pcb *, int);
    252 #endif
    253 
    254 static struct pool tcpcb_pool;
    255 
    256 static int tcp_drainwanted;
    257 
    258 #ifdef TCP_CSUM_COUNTERS
    259 #include <sys/device.h>
    260 
    261 #if defined(INET)
    262 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    263     NULL, "tcp", "hwcsum bad");
    264 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    265     NULL, "tcp", "hwcsum ok");
    266 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    267     NULL, "tcp", "hwcsum data");
    268 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    269     NULL, "tcp", "swcsum");
    270 
    271 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    272 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    273 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    274 EVCNT_ATTACH_STATIC(tcp_swcsum);
    275 #endif /* defined(INET) */
    276 
    277 #if defined(INET6)
    278 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    279     NULL, "tcp6", "hwcsum bad");
    280 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    281     NULL, "tcp6", "hwcsum ok");
    282 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    283     NULL, "tcp6", "hwcsum data");
    284 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    285     NULL, "tcp6", "swcsum");
    286 
    287 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    288 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    289 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    290 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    291 #endif /* defined(INET6) */
    292 #endif /* TCP_CSUM_COUNTERS */
    293 
    294 
    295 #ifdef TCP_OUTPUT_COUNTERS
    296 #include <sys/device.h>
    297 
    298 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    299     NULL, "tcp", "output big header");
    300 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    301     NULL, "tcp", "output predict hit");
    302 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    303     NULL, "tcp", "output predict miss");
    304 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    305     NULL, "tcp", "output copy small");
    306 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    307     NULL, "tcp", "output copy big");
    308 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    309     NULL, "tcp", "output reference big");
    310 
    311 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    312 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    313 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    314 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    315 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    316 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    317 
    318 #endif /* TCP_OUTPUT_COUNTERS */
    319 
    320 #ifdef TCP_REASS_COUNTERS
    321 #include <sys/device.h>
    322 
    323 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    324     NULL, "tcp_reass", "calls");
    325 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    326     &tcp_reass_, "tcp_reass", "insert into empty queue");
    327 struct evcnt tcp_reass_iteration[8] = {
    328     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    332     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    335     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    336 };
    337 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    338     &tcp_reass_, "tcp_reass", "prepend to first");
    339 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    340     &tcp_reass_, "tcp_reass", "prepend");
    341 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    342     &tcp_reass_, "tcp_reass", "insert");
    343 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    344     &tcp_reass_, "tcp_reass", "insert at tail");
    345 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    346     &tcp_reass_, "tcp_reass", "append");
    347 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    348     &tcp_reass_, "tcp_reass", "append to tail fragment");
    349 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    350     &tcp_reass_, "tcp_reass", "overlap at end");
    351 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    352     &tcp_reass_, "tcp_reass", "overlap at start");
    353 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    354     &tcp_reass_, "tcp_reass", "duplicate segment");
    355 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    356     &tcp_reass_, "tcp_reass", "duplicate fragment");
    357 
    358 EVCNT_ATTACH_STATIC(tcp_reass_);
    359 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    361 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    362 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    363 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    364 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    365 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    366 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    367 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    368 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    369 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    370 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    371 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    372 EVCNT_ATTACH_STATIC(tcp_reass_append);
    373 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    374 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    375 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    376 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    377 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    378 
    379 #endif /* TCP_REASS_COUNTERS */
    380 
    381 #ifdef MBUFTRACE
    382 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    383 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    384 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    385 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
    386 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
    387 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
    388 #endif
    389 
    390 /*
    391  * Tcp initialization
    392  */
    393 void
    394 tcp_init(void)
    395 {
    396 	int hlen;
    397 
    398 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    399 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    400 	    NULL, IPL_SOFTNET);
    401 
    402 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    403 #ifdef INET6
    404 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    405 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    406 #endif
    407 	if (max_protohdr < hlen)
    408 		max_protohdr = hlen;
    409 	if (max_linkhdr + hlen > MHLEN)
    410 		panic("tcp_init");
    411 
    412 #ifdef INET
    413 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    414 #endif
    415 #ifdef INET6
    416 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    417 #endif
    418 
    419 	tcp_usrreq_init();
    420 
    421 	/* Initialize timer state. */
    422 	tcp_timer_init();
    423 
    424 	/* Initialize the compressed state engine. */
    425 	syn_cache_init();
    426 
    427 	/* Initialize the congestion control algorithms. */
    428 	tcp_congctl_init();
    429 
    430 	/* Initialize the TCPCB template. */
    431 	tcp_tcpcb_template();
    432 
    433 	/* Initialize reassembly queue */
    434 	tcpipqent_init();
    435 
    436 	/* SACK */
    437 	tcp_sack_init();
    438 
    439 	MOWNER_ATTACH(&tcp_tx_mowner);
    440 	MOWNER_ATTACH(&tcp_rx_mowner);
    441 	MOWNER_ATTACH(&tcp_reass_mowner);
    442 	MOWNER_ATTACH(&tcp_sock_mowner);
    443 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
    444 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
    445 	MOWNER_ATTACH(&tcp_mowner);
    446 
    447 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
    448 
    449 	vtw_earlyinit();
    450 }
    451 
    452 /*
    453  * Create template to be used to send tcp packets on a connection.
    454  * Call after host entry created, allocates an mbuf and fills
    455  * in a skeletal tcp/ip header, minimizing the amount of work
    456  * necessary when the connection is used.
    457  */
    458 struct mbuf *
    459 tcp_template(struct tcpcb *tp)
    460 {
    461 	struct inpcb *inp = tp->t_inpcb;
    462 #ifdef INET6
    463 	struct in6pcb *in6p = tp->t_in6pcb;
    464 #endif
    465 	struct tcphdr *n;
    466 	struct mbuf *m;
    467 	int hlen;
    468 
    469 	switch (tp->t_family) {
    470 	case AF_INET:
    471 		hlen = sizeof(struct ip);
    472 		if (inp)
    473 			break;
    474 #ifdef INET6
    475 		if (in6p) {
    476 			/* mapped addr case */
    477 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    478 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    479 				break;
    480 		}
    481 #endif
    482 		return NULL;	/*EINVAL*/
    483 #ifdef INET6
    484 	case AF_INET6:
    485 		hlen = sizeof(struct ip6_hdr);
    486 		if (in6p) {
    487 			/* more sainty check? */
    488 			break;
    489 		}
    490 		return NULL;	/*EINVAL*/
    491 #endif
    492 	default:
    493 		hlen = 0;	/*pacify gcc*/
    494 		return NULL;	/*EAFNOSUPPORT*/
    495 	}
    496 #ifdef DIAGNOSTIC
    497 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    498 		panic("mclbytes too small for t_template");
    499 #endif
    500 	m = tp->t_template;
    501 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    502 		;
    503 	else {
    504 		if (m)
    505 			m_freem(m);
    506 		m = tp->t_template = NULL;
    507 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    508 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    509 			MCLGET(m, M_DONTWAIT);
    510 			if ((m->m_flags & M_EXT) == 0) {
    511 				m_free(m);
    512 				m = NULL;
    513 			}
    514 		}
    515 		if (m == NULL)
    516 			return NULL;
    517 		MCLAIM(m, &tcp_mowner);
    518 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    519 	}
    520 
    521 	memset(mtod(m, void *), 0, m->m_len);
    522 
    523 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
    524 
    525 	switch (tp->t_family) {
    526 	case AF_INET:
    527 	    {
    528 		struct ipovly *ipov;
    529 		mtod(m, struct ip *)->ip_v = 4;
    530 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    531 		ipov = mtod(m, struct ipovly *);
    532 		ipov->ih_pr = IPPROTO_TCP;
    533 		ipov->ih_len = htons(sizeof(struct tcphdr));
    534 		if (inp) {
    535 			ipov->ih_src = inp->inp_laddr;
    536 			ipov->ih_dst = inp->inp_faddr;
    537 		}
    538 #ifdef INET6
    539 		else if (in6p) {
    540 			/* mapped addr case */
    541 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    542 				sizeof(ipov->ih_src));
    543 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    544 				sizeof(ipov->ih_dst));
    545 		}
    546 #endif
    547 		/*
    548 		 * Compute the pseudo-header portion of the checksum
    549 		 * now.  We incrementally add in the TCP option and
    550 		 * payload lengths later, and then compute the TCP
    551 		 * checksum right before the packet is sent off onto
    552 		 * the wire.
    553 		 */
    554 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    555 		    ipov->ih_dst.s_addr,
    556 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    557 		break;
    558 	    }
    559 #ifdef INET6
    560 	case AF_INET6:
    561 	    {
    562 		struct ip6_hdr *ip6;
    563 		mtod(m, struct ip *)->ip_v = 6;
    564 		ip6 = mtod(m, struct ip6_hdr *);
    565 		ip6->ip6_nxt = IPPROTO_TCP;
    566 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    567 		ip6->ip6_src = in6p->in6p_laddr;
    568 		ip6->ip6_dst = in6p->in6p_faddr;
    569 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    570 		if (ip6_auto_flowlabel) {
    571 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    572 			ip6->ip6_flow |=
    573 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    574 		}
    575 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    576 		ip6->ip6_vfc |= IPV6_VERSION;
    577 
    578 		/*
    579 		 * Compute the pseudo-header portion of the checksum
    580 		 * now.  We incrementally add in the TCP option and
    581 		 * payload lengths later, and then compute the TCP
    582 		 * checksum right before the packet is sent off onto
    583 		 * the wire.
    584 		 */
    585 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    586 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    587 		    htonl(IPPROTO_TCP));
    588 		break;
    589 	    }
    590 #endif
    591 	}
    592 	if (inp) {
    593 		n->th_sport = inp->inp_lport;
    594 		n->th_dport = inp->inp_fport;
    595 	}
    596 #ifdef INET6
    597 	else if (in6p) {
    598 		n->th_sport = in6p->in6p_lport;
    599 		n->th_dport = in6p->in6p_fport;
    600 	}
    601 #endif
    602 	n->th_seq = 0;
    603 	n->th_ack = 0;
    604 	n->th_x2 = 0;
    605 	n->th_off = 5;
    606 	n->th_flags = 0;
    607 	n->th_win = 0;
    608 	n->th_urp = 0;
    609 	return (m);
    610 }
    611 
    612 /*
    613  * Send a single message to the TCP at address specified by
    614  * the given TCP/IP header.  If m == 0, then we make a copy
    615  * of the tcpiphdr at ti and send directly to the addressed host.
    616  * This is used to force keep alive messages out using the TCP
    617  * template for a connection tp->t_template.  If flags are given
    618  * then we send a message back to the TCP which originated the
    619  * segment ti, and discard the mbuf containing it and any other
    620  * attached mbufs.
    621  *
    622  * In any case the ack and sequence number of the transmitted
    623  * segment are as specified by the parameters.
    624  */
    625 int
    626 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    627     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    628 {
    629 #ifdef INET6
    630 	struct rtentry *rt;
    631 #endif
    632 	struct route *ro;
    633 	int error, tlen, win = 0;
    634 	int hlen;
    635 	struct ip *ip;
    636 #ifdef INET6
    637 	struct ip6_hdr *ip6;
    638 #endif
    639 	int family;	/* family on packet, not inpcb/in6pcb! */
    640 	struct tcphdr *th;
    641 	struct socket *so;
    642 
    643 	if (tp != NULL && (flags & TH_RST) == 0) {
    644 #ifdef DIAGNOSTIC
    645 		if (tp->t_inpcb && tp->t_in6pcb)
    646 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    647 #endif
    648 #ifdef INET
    649 		if (tp->t_inpcb)
    650 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    651 #endif
    652 #ifdef INET6
    653 		if (tp->t_in6pcb)
    654 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    655 #endif
    656 	}
    657 
    658 	th = NULL;	/* Quell uninitialized warning */
    659 	ip = NULL;
    660 #ifdef INET6
    661 	ip6 = NULL;
    662 #endif
    663 	if (m == 0) {
    664 		if (!template)
    665 			return EINVAL;
    666 
    667 		/* get family information from template */
    668 		switch (mtod(template, struct ip *)->ip_v) {
    669 		case 4:
    670 			family = AF_INET;
    671 			hlen = sizeof(struct ip);
    672 			break;
    673 #ifdef INET6
    674 		case 6:
    675 			family = AF_INET6;
    676 			hlen = sizeof(struct ip6_hdr);
    677 			break;
    678 #endif
    679 		default:
    680 			return EAFNOSUPPORT;
    681 		}
    682 
    683 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    684 		if (m) {
    685 			MCLAIM(m, &tcp_tx_mowner);
    686 			MCLGET(m, M_DONTWAIT);
    687 			if ((m->m_flags & M_EXT) == 0) {
    688 				m_free(m);
    689 				m = NULL;
    690 			}
    691 		}
    692 		if (m == NULL)
    693 			return (ENOBUFS);
    694 
    695 		if (tcp_compat_42)
    696 			tlen = 1;
    697 		else
    698 			tlen = 0;
    699 
    700 		m->m_data += max_linkhdr;
    701 		bcopy(mtod(template, void *), mtod(m, void *),
    702 			template->m_len);
    703 		switch (family) {
    704 		case AF_INET:
    705 			ip = mtod(m, struct ip *);
    706 			th = (struct tcphdr *)(ip + 1);
    707 			break;
    708 #ifdef INET6
    709 		case AF_INET6:
    710 			ip6 = mtod(m, struct ip6_hdr *);
    711 			th = (struct tcphdr *)(ip6 + 1);
    712 			break;
    713 #endif
    714 #if 0
    715 		default:
    716 			/* noone will visit here */
    717 			m_freem(m);
    718 			return EAFNOSUPPORT;
    719 #endif
    720 		}
    721 		flags = TH_ACK;
    722 	} else {
    723 
    724 		if ((m->m_flags & M_PKTHDR) == 0) {
    725 #if 0
    726 			printf("non PKTHDR to tcp_respond\n");
    727 #endif
    728 			m_freem(m);
    729 			return EINVAL;
    730 		}
    731 #ifdef DIAGNOSTIC
    732 		if (!th0)
    733 			panic("th0 == NULL in tcp_respond");
    734 #endif
    735 
    736 		/* get family information from m */
    737 		switch (mtod(m, struct ip *)->ip_v) {
    738 		case 4:
    739 			family = AF_INET;
    740 			hlen = sizeof(struct ip);
    741 			ip = mtod(m, struct ip *);
    742 			break;
    743 #ifdef INET6
    744 		case 6:
    745 			family = AF_INET6;
    746 			hlen = sizeof(struct ip6_hdr);
    747 			ip6 = mtod(m, struct ip6_hdr *);
    748 			break;
    749 #endif
    750 		default:
    751 			m_freem(m);
    752 			return EAFNOSUPPORT;
    753 		}
    754 		/* clear h/w csum flags inherited from rx packet */
    755 		m->m_pkthdr.csum_flags = 0;
    756 
    757 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    758 			tlen = sizeof(*th0);
    759 		else
    760 			tlen = th0->th_off << 2;
    761 
    762 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    763 		    mtod(m, char *) + hlen == (char *)th0) {
    764 			m->m_len = hlen + tlen;
    765 			m_freem(m->m_next);
    766 			m->m_next = NULL;
    767 		} else {
    768 			struct mbuf *n;
    769 
    770 #ifdef DIAGNOSTIC
    771 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    772 				m_freem(m);
    773 				return EMSGSIZE;
    774 			}
    775 #endif
    776 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    777 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    778 				MCLGET(n, M_DONTWAIT);
    779 				if ((n->m_flags & M_EXT) == 0) {
    780 					m_freem(n);
    781 					n = NULL;
    782 				}
    783 			}
    784 			if (!n) {
    785 				m_freem(m);
    786 				return ENOBUFS;
    787 			}
    788 
    789 			MCLAIM(n, &tcp_tx_mowner);
    790 			n->m_data += max_linkhdr;
    791 			n->m_len = hlen + tlen;
    792 			m_copyback(n, 0, hlen, mtod(m, void *));
    793 			m_copyback(n, hlen, tlen, (void *)th0);
    794 
    795 			m_freem(m);
    796 			m = n;
    797 			n = NULL;
    798 		}
    799 
    800 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    801 		switch (family) {
    802 		case AF_INET:
    803 			ip = mtod(m, struct ip *);
    804 			th = (struct tcphdr *)(ip + 1);
    805 			ip->ip_p = IPPROTO_TCP;
    806 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    807 			ip->ip_p = IPPROTO_TCP;
    808 			break;
    809 #ifdef INET6
    810 		case AF_INET6:
    811 			ip6 = mtod(m, struct ip6_hdr *);
    812 			th = (struct tcphdr *)(ip6 + 1);
    813 			ip6->ip6_nxt = IPPROTO_TCP;
    814 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    815 			ip6->ip6_nxt = IPPROTO_TCP;
    816 			break;
    817 #endif
    818 #if 0
    819 		default:
    820 			/* noone will visit here */
    821 			m_freem(m);
    822 			return EAFNOSUPPORT;
    823 #endif
    824 		}
    825 		xchg(th->th_dport, th->th_sport, u_int16_t);
    826 #undef xchg
    827 		tlen = 0;	/*be friendly with the following code*/
    828 	}
    829 	th->th_seq = htonl(seq);
    830 	th->th_ack = htonl(ack);
    831 	th->th_x2 = 0;
    832 	if ((flags & TH_SYN) == 0) {
    833 		if (tp)
    834 			win >>= tp->rcv_scale;
    835 		if (win > TCP_MAXWIN)
    836 			win = TCP_MAXWIN;
    837 		th->th_win = htons((u_int16_t)win);
    838 		th->th_off = sizeof (struct tcphdr) >> 2;
    839 		tlen += sizeof(*th);
    840 	} else
    841 		tlen += th->th_off << 2;
    842 	m->m_len = hlen + tlen;
    843 	m->m_pkthdr.len = hlen + tlen;
    844 	m->m_pkthdr.rcvif = NULL;
    845 	th->th_flags = flags;
    846 	th->th_urp = 0;
    847 
    848 	switch (family) {
    849 #ifdef INET
    850 	case AF_INET:
    851 	    {
    852 		struct ipovly *ipov = (struct ipovly *)ip;
    853 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
    854 		ipov->ih_len = htons((u_int16_t)tlen);
    855 
    856 		th->th_sum = 0;
    857 		th->th_sum = in_cksum(m, hlen + tlen);
    858 		ip->ip_len = htons(hlen + tlen);
    859 		ip->ip_ttl = ip_defttl;
    860 		break;
    861 	    }
    862 #endif
    863 #ifdef INET6
    864 	case AF_INET6:
    865 	    {
    866 		th->th_sum = 0;
    867 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    868 				tlen);
    869 		ip6->ip6_plen = htons(tlen);
    870 		if (tp && tp->t_in6pcb) {
    871 			struct ifnet *oifp;
    872 			ro = &tp->t_in6pcb->in6p_route;
    873 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
    874 			                                           : NULL;
    875 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    876 		} else
    877 			ip6->ip6_hlim = ip6_defhlim;
    878 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    879 		if (ip6_auto_flowlabel) {
    880 			ip6->ip6_flow |=
    881 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    882 		}
    883 		break;
    884 	    }
    885 #endif
    886 	}
    887 
    888 	if (tp && tp->t_inpcb)
    889 		so = tp->t_inpcb->inp_socket;
    890 #ifdef INET6
    891 	else if (tp && tp->t_in6pcb)
    892 		so = tp->t_in6pcb->in6p_socket;
    893 #endif
    894 	else
    895 		so = NULL;
    896 
    897 	if (tp != NULL && tp->t_inpcb != NULL) {
    898 		ro = &tp->t_inpcb->inp_route;
    899 #ifdef DIAGNOSTIC
    900 		if (family != AF_INET)
    901 			panic("tcp_respond: address family mismatch");
    902 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    903 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    904 			    ntohl(ip->ip_dst.s_addr),
    905 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    906 		}
    907 #endif
    908 	}
    909 #ifdef INET6
    910 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    911 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    912 #ifdef DIAGNOSTIC
    913 		if (family == AF_INET) {
    914 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    915 				panic("tcp_respond: not mapped addr");
    916 			if (memcmp(&ip->ip_dst,
    917 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    918 			    sizeof(ip->ip_dst)) != 0) {
    919 				panic("tcp_respond: ip_dst != in6p_faddr");
    920 			}
    921 		} else if (family == AF_INET6) {
    922 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    923 			    &tp->t_in6pcb->in6p_faddr))
    924 				panic("tcp_respond: ip6_dst != in6p_faddr");
    925 		} else
    926 			panic("tcp_respond: address family mismatch");
    927 #endif
    928 	}
    929 #endif
    930 	else
    931 		ro = NULL;
    932 
    933 	switch (family) {
    934 #ifdef INET
    935 	case AF_INET:
    936 		error = ip_output(m, NULL, ro,
    937 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
    938 		break;
    939 #endif
    940 #ifdef INET6
    941 	case AF_INET6:
    942 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
    943 		break;
    944 #endif
    945 	default:
    946 		error = EAFNOSUPPORT;
    947 		break;
    948 	}
    949 
    950 	return (error);
    951 }
    952 
    953 /*
    954  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    955  * a bunch of members individually, we maintain this template for the
    956  * static and mostly-static components of the TCPCB, and copy it into
    957  * the new TCPCB instead.
    958  */
    959 static struct tcpcb tcpcb_template = {
    960 	.t_srtt = TCPTV_SRTTBASE,
    961 	.t_rttmin = TCPTV_MIN,
    962 
    963 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    964 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    965 	.snd_numholes = 0,
    966 
    967 	.t_partialacks = -1,
    968 	.t_bytes_acked = 0,
    969 };
    970 
    971 /*
    972  * Updates the TCPCB template whenever a parameter that would affect
    973  * the template is changed.
    974  */
    975 void
    976 tcp_tcpcb_template(void)
    977 {
    978 	struct tcpcb *tp = &tcpcb_template;
    979 	int flags;
    980 
    981 	tp->t_peermss = tcp_mssdflt;
    982 	tp->t_ourmss = tcp_mssdflt;
    983 	tp->t_segsz = tcp_mssdflt;
    984 
    985 	flags = 0;
    986 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    987 		flags |= TF_REQ_SCALE;
    988 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    989 		flags |= TF_REQ_TSTMP;
    990 	tp->t_flags = flags;
    991 
    992 	/*
    993 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    994 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    995 	 * reasonable initial retransmit time.
    996 	 */
    997 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    998 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    999 	    TCPTV_MIN, TCPTV_REXMTMAX);
   1000 
   1001 	/* Keep Alive */
   1002 	tp->t_keepinit = tcp_keepinit;
   1003 	tp->t_keepidle = tcp_keepidle;
   1004 	tp->t_keepintvl = tcp_keepintvl;
   1005 	tp->t_keepcnt = tcp_keepcnt;
   1006 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
   1007 
   1008 	/* MSL */
   1009 	tp->t_msl = TCPTV_MSL;
   1010 }
   1011 
   1012 /*
   1013  * Create a new TCP control block, making an
   1014  * empty reassembly queue and hooking it to the argument
   1015  * protocol control block.
   1016  */
   1017 /* family selects inpcb, or in6pcb */
   1018 struct tcpcb *
   1019 tcp_newtcpcb(int family, void *aux)
   1020 {
   1021 #ifdef INET6
   1022 	struct rtentry *rt;
   1023 #endif
   1024 	struct tcpcb *tp;
   1025 	int i;
   1026 
   1027 	/* XXX Consider using a pool_cache for speed. */
   1028 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
   1029 	if (tp == NULL)
   1030 		return (NULL);
   1031 	memcpy(tp, &tcpcb_template, sizeof(*tp));
   1032 	TAILQ_INIT(&tp->segq);
   1033 	TAILQ_INIT(&tp->timeq);
   1034 	tp->t_family = family;		/* may be overridden later on */
   1035 	TAILQ_INIT(&tp->snd_holes);
   1036 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
   1037 
   1038 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
   1039 	for (i = 0; i < TCPT_NTIMERS; i++) {
   1040 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
   1041 		TCP_TIMER_INIT(tp, i);
   1042 	}
   1043 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
   1044 
   1045 	switch (family) {
   1046 	case AF_INET:
   1047 	    {
   1048 		struct inpcb *inp = (struct inpcb *)aux;
   1049 
   1050 		inp->inp_ip.ip_ttl = ip_defttl;
   1051 		inp->inp_ppcb = (void *)tp;
   1052 
   1053 		tp->t_inpcb = inp;
   1054 		tp->t_mtudisc = ip_mtudisc;
   1055 		break;
   1056 	    }
   1057 #ifdef INET6
   1058 	case AF_INET6:
   1059 	    {
   1060 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1061 
   1062 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1063 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
   1064 			    ? rt->rt_ifp
   1065 			    : NULL);
   1066 		in6p->in6p_ppcb = (void *)tp;
   1067 
   1068 		tp->t_in6pcb = in6p;
   1069 		/* for IPv6, always try to run path MTU discovery */
   1070 		tp->t_mtudisc = 1;
   1071 		break;
   1072 	    }
   1073 #endif /* INET6 */
   1074 	default:
   1075 		for (i = 0; i < TCPT_NTIMERS; i++)
   1076 			callout_destroy(&tp->t_timer[i]);
   1077 		callout_destroy(&tp->t_delack_ch);
   1078 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1079 		return (NULL);
   1080 	}
   1081 
   1082 	/*
   1083 	 * Initialize our timebase.  When we send timestamps, we take
   1084 	 * the delta from tcp_now -- this means each connection always
   1085 	 * gets a timebase of 1, which makes it, among other things,
   1086 	 * more difficult to determine how long a system has been up,
   1087 	 * and thus how many TCP sequence increments have occurred.
   1088 	 *
   1089 	 * We start with 1, because 0 doesn't work with linux, which
   1090 	 * considers timestamp 0 in a SYN packet as a bug and disables
   1091 	 * timestamps.
   1092 	 */
   1093 	tp->ts_timebase = tcp_now - 1;
   1094 
   1095 	tcp_congctl_select(tp, tcp_congctl_global_name);
   1096 
   1097 	return (tp);
   1098 }
   1099 
   1100 /*
   1101  * Drop a TCP connection, reporting
   1102  * the specified error.  If connection is synchronized,
   1103  * then send a RST to peer.
   1104  */
   1105 struct tcpcb *
   1106 tcp_drop(struct tcpcb *tp, int errno)
   1107 {
   1108 	struct socket *so = NULL;
   1109 
   1110 #ifdef DIAGNOSTIC
   1111 	if (tp->t_inpcb && tp->t_in6pcb)
   1112 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1113 #endif
   1114 #ifdef INET
   1115 	if (tp->t_inpcb)
   1116 		so = tp->t_inpcb->inp_socket;
   1117 #endif
   1118 #ifdef INET6
   1119 	if (tp->t_in6pcb)
   1120 		so = tp->t_in6pcb->in6p_socket;
   1121 #endif
   1122 	if (!so)
   1123 		return NULL;
   1124 
   1125 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1126 		tp->t_state = TCPS_CLOSED;
   1127 		(void) tcp_output(tp);
   1128 		TCP_STATINC(TCP_STAT_DROPS);
   1129 	} else
   1130 		TCP_STATINC(TCP_STAT_CONNDROPS);
   1131 	if (errno == ETIMEDOUT && tp->t_softerror)
   1132 		errno = tp->t_softerror;
   1133 	so->so_error = errno;
   1134 	return (tcp_close(tp));
   1135 }
   1136 
   1137 /*
   1138  * Close a TCP control block:
   1139  *	discard all space held by the tcp
   1140  *	discard internet protocol block
   1141  *	wake up any sleepers
   1142  */
   1143 struct tcpcb *
   1144 tcp_close(struct tcpcb *tp)
   1145 {
   1146 	struct inpcb *inp;
   1147 #ifdef INET6
   1148 	struct in6pcb *in6p;
   1149 #endif
   1150 	struct socket *so;
   1151 #ifdef RTV_RTT
   1152 	struct rtentry *rt;
   1153 #endif
   1154 	struct route *ro;
   1155 	int j;
   1156 
   1157 	inp = tp->t_inpcb;
   1158 #ifdef INET6
   1159 	in6p = tp->t_in6pcb;
   1160 #endif
   1161 	so = NULL;
   1162 	ro = NULL;
   1163 	if (inp) {
   1164 		so = inp->inp_socket;
   1165 		ro = &inp->inp_route;
   1166 	}
   1167 #ifdef INET6
   1168 	else if (in6p) {
   1169 		so = in6p->in6p_socket;
   1170 		ro = (struct route *)&in6p->in6p_route;
   1171 	}
   1172 #endif
   1173 
   1174 #ifdef RTV_RTT
   1175 	/*
   1176 	 * If we sent enough data to get some meaningful characteristics,
   1177 	 * save them in the routing entry.  'Enough' is arbitrarily
   1178 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1179 	 * give us 16 rtt samples assuming we only get one sample per
   1180 	 * window (the usual case on a long haul net).  16 samples is
   1181 	 * enough for the srtt filter to converge to within 5% of the correct
   1182 	 * value; fewer samples and we could save a very bogus rtt.
   1183 	 *
   1184 	 * Don't update the default route's characteristics and don't
   1185 	 * update anything that the user "locked".
   1186 	 */
   1187 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1188 	    ro && (rt = rtcache_validate(ro)) != NULL &&
   1189 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
   1190 		u_long i = 0;
   1191 
   1192 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1193 			i = tp->t_srtt *
   1194 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1195 			if (rt->rt_rmx.rmx_rtt && i)
   1196 				/*
   1197 				 * filter this update to half the old & half
   1198 				 * the new values, converting scale.
   1199 				 * See route.h and tcp_var.h for a
   1200 				 * description of the scaling constants.
   1201 				 */
   1202 				rt->rt_rmx.rmx_rtt =
   1203 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1204 			else
   1205 				rt->rt_rmx.rmx_rtt = i;
   1206 		}
   1207 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1208 			i = tp->t_rttvar *
   1209 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1210 			if (rt->rt_rmx.rmx_rttvar && i)
   1211 				rt->rt_rmx.rmx_rttvar =
   1212 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1213 			else
   1214 				rt->rt_rmx.rmx_rttvar = i;
   1215 		}
   1216 		/*
   1217 		 * update the pipelimit (ssthresh) if it has been updated
   1218 		 * already or if a pipesize was specified & the threshhold
   1219 		 * got below half the pipesize.  I.e., wait for bad news
   1220 		 * before we start updating, then update on both good
   1221 		 * and bad news.
   1222 		 */
   1223 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1224 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1225 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1226 			/*
   1227 			 * convert the limit from user data bytes to
   1228 			 * packets then to packet data bytes.
   1229 			 */
   1230 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1231 			if (i < 2)
   1232 				i = 2;
   1233 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1234 			if (rt->rt_rmx.rmx_ssthresh)
   1235 				rt->rt_rmx.rmx_ssthresh =
   1236 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1237 			else
   1238 				rt->rt_rmx.rmx_ssthresh = i;
   1239 		}
   1240 	}
   1241 #endif /* RTV_RTT */
   1242 	/* free the reassembly queue, if any */
   1243 	TCP_REASS_LOCK(tp);
   1244 	(void) tcp_freeq(tp);
   1245 	TCP_REASS_UNLOCK(tp);
   1246 
   1247 	/* free the SACK holes list. */
   1248 	tcp_free_sackholes(tp);
   1249 	tcp_congctl_release(tp);
   1250 	syn_cache_cleanup(tp);
   1251 
   1252 	if (tp->t_template) {
   1253 		m_free(tp->t_template);
   1254 		tp->t_template = NULL;
   1255 	}
   1256 
   1257 	/*
   1258 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
   1259 	 * the timers can also drop the lock.  We need to prevent access
   1260 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
   1261 	 * (prevents access by timers) and only then detach it.
   1262 	 */
   1263 	tp->t_flags |= TF_DEAD;
   1264 	if (inp) {
   1265 		inp->inp_ppcb = 0;
   1266 		soisdisconnected(so);
   1267 		in_pcbdetach(inp);
   1268 	}
   1269 #ifdef INET6
   1270 	else if (in6p) {
   1271 		in6p->in6p_ppcb = 0;
   1272 		soisdisconnected(so);
   1273 		in6_pcbdetach(in6p);
   1274 	}
   1275 #endif
   1276 	/*
   1277 	 * pcb is no longer visble elsewhere, so we can safely release
   1278 	 * the lock in callout_halt() if needed.
   1279 	 */
   1280 	TCP_STATINC(TCP_STAT_CLOSED);
   1281 	for (j = 0; j < TCPT_NTIMERS; j++) {
   1282 		callout_halt(&tp->t_timer[j], softnet_lock);
   1283 		callout_destroy(&tp->t_timer[j]);
   1284 	}
   1285 	callout_halt(&tp->t_delack_ch, softnet_lock);
   1286 	callout_destroy(&tp->t_delack_ch);
   1287 	pool_put(&tcpcb_pool, tp);
   1288 
   1289 	return NULL;
   1290 }
   1291 
   1292 int
   1293 tcp_freeq(struct tcpcb *tp)
   1294 {
   1295 	struct ipqent *qe;
   1296 	int rv = 0;
   1297 #ifdef TCPREASS_DEBUG
   1298 	int i = 0;
   1299 #endif
   1300 
   1301 	TCP_REASS_LOCK_CHECK(tp);
   1302 
   1303 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1304 #ifdef TCPREASS_DEBUG
   1305 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1306 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1307 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1308 #endif
   1309 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1310 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1311 		m_freem(qe->ipqe_m);
   1312 		tcpipqent_free(qe);
   1313 		rv = 1;
   1314 	}
   1315 	tp->t_segqlen = 0;
   1316 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1317 	return (rv);
   1318 }
   1319 
   1320 void
   1321 tcp_fasttimo(void)
   1322 {
   1323 	if (tcp_drainwanted) {
   1324 		tcp_drain();
   1325 		tcp_drainwanted = 0;
   1326 	}
   1327 }
   1328 
   1329 void
   1330 tcp_drainstub(void)
   1331 {
   1332 	tcp_drainwanted = 1;
   1333 }
   1334 
   1335 /*
   1336  * Protocol drain routine.  Called when memory is in short supply.
   1337  * Called from pr_fasttimo thus a callout context.
   1338  */
   1339 void
   1340 tcp_drain(void)
   1341 {
   1342 	struct inpcb_hdr *inph;
   1343 	struct tcpcb *tp;
   1344 
   1345 	mutex_enter(softnet_lock);
   1346 	KERNEL_LOCK(1, NULL);
   1347 
   1348 	/*
   1349 	 * Free the sequence queue of all TCP connections.
   1350 	 */
   1351 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1352 		switch (inph->inph_af) {
   1353 		case AF_INET:
   1354 			tp = intotcpcb((struct inpcb *)inph);
   1355 			break;
   1356 #ifdef INET6
   1357 		case AF_INET6:
   1358 			tp = in6totcpcb((struct in6pcb *)inph);
   1359 			break;
   1360 #endif
   1361 		default:
   1362 			tp = NULL;
   1363 			break;
   1364 		}
   1365 		if (tp != NULL) {
   1366 			/*
   1367 			 * We may be called from a device's interrupt
   1368 			 * context.  If the tcpcb is already busy,
   1369 			 * just bail out now.
   1370 			 */
   1371 			if (tcp_reass_lock_try(tp) == 0)
   1372 				continue;
   1373 			if (tcp_freeq(tp))
   1374 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
   1375 			TCP_REASS_UNLOCK(tp);
   1376 		}
   1377 	}
   1378 
   1379 	KERNEL_UNLOCK_ONE(NULL);
   1380 	mutex_exit(softnet_lock);
   1381 }
   1382 
   1383 /*
   1384  * Notify a tcp user of an asynchronous error;
   1385  * store error as soft error, but wake up user
   1386  * (for now, won't do anything until can select for soft error).
   1387  */
   1388 void
   1389 tcp_notify(struct inpcb *inp, int error)
   1390 {
   1391 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1392 	struct socket *so = inp->inp_socket;
   1393 
   1394 	/*
   1395 	 * Ignore some errors if we are hooked up.
   1396 	 * If connection hasn't completed, has retransmitted several times,
   1397 	 * and receives a second error, give up now.  This is better
   1398 	 * than waiting a long time to establish a connection that
   1399 	 * can never complete.
   1400 	 */
   1401 	if (tp->t_state == TCPS_ESTABLISHED &&
   1402 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1403 	      error == EHOSTDOWN)) {
   1404 		return;
   1405 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1406 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1407 		so->so_error = error;
   1408 	else
   1409 		tp->t_softerror = error;
   1410 	cv_broadcast(&so->so_cv);
   1411 	sorwakeup(so);
   1412 	sowwakeup(so);
   1413 }
   1414 
   1415 #ifdef INET6
   1416 void
   1417 tcp6_notify(struct in6pcb *in6p, int error)
   1418 {
   1419 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1420 	struct socket *so = in6p->in6p_socket;
   1421 
   1422 	/*
   1423 	 * Ignore some errors if we are hooked up.
   1424 	 * If connection hasn't completed, has retransmitted several times,
   1425 	 * and receives a second error, give up now.  This is better
   1426 	 * than waiting a long time to establish a connection that
   1427 	 * can never complete.
   1428 	 */
   1429 	if (tp->t_state == TCPS_ESTABLISHED &&
   1430 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1431 	      error == EHOSTDOWN)) {
   1432 		return;
   1433 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1434 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1435 		so->so_error = error;
   1436 	else
   1437 		tp->t_softerror = error;
   1438 	cv_broadcast(&so->so_cv);
   1439 	sorwakeup(so);
   1440 	sowwakeup(so);
   1441 }
   1442 #endif
   1443 
   1444 #ifdef INET6
   1445 void *
   1446 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
   1447 {
   1448 	struct tcphdr th;
   1449 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1450 	int nmatch;
   1451 	struct ip6_hdr *ip6;
   1452 	const struct sockaddr_in6 *sa6_src = NULL;
   1453 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
   1454 	struct mbuf *m;
   1455 	int off;
   1456 
   1457 	if (sa->sa_family != AF_INET6 ||
   1458 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1459 		return NULL;
   1460 	if ((unsigned)cmd >= PRC_NCMDS)
   1461 		return NULL;
   1462 	else if (cmd == PRC_QUENCH) {
   1463 		/*
   1464 		 * Don't honor ICMP Source Quench messages meant for
   1465 		 * TCP connections.
   1466 		 */
   1467 		return NULL;
   1468 	} else if (PRC_IS_REDIRECT(cmd))
   1469 		notify = in6_rtchange, d = NULL;
   1470 	else if (cmd == PRC_MSGSIZE)
   1471 		; /* special code is present, see below */
   1472 	else if (cmd == PRC_HOSTDEAD)
   1473 		d = NULL;
   1474 	else if (inet6ctlerrmap[cmd] == 0)
   1475 		return NULL;
   1476 
   1477 	/* if the parameter is from icmp6, decode it. */
   1478 	if (d != NULL) {
   1479 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1480 		m = ip6cp->ip6c_m;
   1481 		ip6 = ip6cp->ip6c_ip6;
   1482 		off = ip6cp->ip6c_off;
   1483 		sa6_src = ip6cp->ip6c_src;
   1484 	} else {
   1485 		m = NULL;
   1486 		ip6 = NULL;
   1487 		sa6_src = &sa6_any;
   1488 		off = 0;
   1489 	}
   1490 
   1491 	if (ip6) {
   1492 		/*
   1493 		 * XXX: We assume that when ip6 is non NULL,
   1494 		 * M and OFF are valid.
   1495 		 */
   1496 
   1497 		/* check if we can safely examine src and dst ports */
   1498 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1499 			if (cmd == PRC_MSGSIZE)
   1500 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1501 			return NULL;
   1502 		}
   1503 
   1504 		memset(&th, 0, sizeof(th));
   1505 		m_copydata(m, off, sizeof(th), (void *)&th);
   1506 
   1507 		if (cmd == PRC_MSGSIZE) {
   1508 			int valid = 0;
   1509 
   1510 			/*
   1511 			 * Check to see if we have a valid TCP connection
   1512 			 * corresponding to the address in the ICMPv6 message
   1513 			 * payload.
   1514 			 */
   1515 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1516 			    th.th_dport,
   1517 			    (const struct in6_addr *)&sa6_src->sin6_addr,
   1518 						  th.th_sport, 0, 0))
   1519 				valid++;
   1520 
   1521 			/*
   1522 			 * Depending on the value of "valid" and routing table
   1523 			 * size (mtudisc_{hi,lo}wat), we will:
   1524 			 * - recalcurate the new MTU and create the
   1525 			 *   corresponding routing entry, or
   1526 			 * - ignore the MTU change notification.
   1527 			 */
   1528 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1529 
   1530 			/*
   1531 			 * no need to call in6_pcbnotify, it should have been
   1532 			 * called via callback if necessary
   1533 			 */
   1534 			return NULL;
   1535 		}
   1536 
   1537 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1538 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1539 		if (nmatch == 0 && syn_cache_count &&
   1540 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1541 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1542 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1543 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1544 					  sa, &th);
   1545 	} else {
   1546 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1547 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1548 	}
   1549 
   1550 	return NULL;
   1551 }
   1552 #endif
   1553 
   1554 #ifdef INET
   1555 /* assumes that ip header and tcp header are contiguous on mbuf */
   1556 void *
   1557 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
   1558 {
   1559 	struct ip *ip = v;
   1560 	struct tcphdr *th;
   1561 	struct icmp *icp;
   1562 	extern const int inetctlerrmap[];
   1563 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1564 	int errno;
   1565 	int nmatch;
   1566 	struct tcpcb *tp;
   1567 	u_int mtu;
   1568 	tcp_seq seq;
   1569 	struct inpcb *inp;
   1570 #ifdef INET6
   1571 	struct in6pcb *in6p;
   1572 	struct in6_addr src6, dst6;
   1573 #endif
   1574 
   1575 	if (sa->sa_family != AF_INET ||
   1576 	    sa->sa_len != sizeof(struct sockaddr_in))
   1577 		return NULL;
   1578 	if ((unsigned)cmd >= PRC_NCMDS)
   1579 		return NULL;
   1580 	errno = inetctlerrmap[cmd];
   1581 	if (cmd == PRC_QUENCH)
   1582 		/*
   1583 		 * Don't honor ICMP Source Quench messages meant for
   1584 		 * TCP connections.
   1585 		 */
   1586 		return NULL;
   1587 	else if (PRC_IS_REDIRECT(cmd))
   1588 		notify = in_rtchange, ip = 0;
   1589 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1590 		/*
   1591 		 * Check to see if we have a valid TCP connection
   1592 		 * corresponding to the address in the ICMP message
   1593 		 * payload.
   1594 		 *
   1595 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1596 		 */
   1597 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1598 #ifdef INET6
   1599 		memset(&src6, 0, sizeof(src6));
   1600 		memset(&dst6, 0, sizeof(dst6));
   1601 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1602 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1603 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1604 #endif
   1605 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1606 						th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
   1607 #ifdef INET6
   1608 			in6p = NULL;
   1609 #else
   1610 			;
   1611 #endif
   1612 #ifdef INET6
   1613 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1614 						       th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
   1615 			;
   1616 #endif
   1617 		else
   1618 			return NULL;
   1619 
   1620 		/*
   1621 		 * Now that we've validated that we are actually communicating
   1622 		 * with the host indicated in the ICMP message, locate the
   1623 		 * ICMP header, recalculate the new MTU, and create the
   1624 		 * corresponding routing entry.
   1625 		 */
   1626 		icp = (struct icmp *)((char *)ip -
   1627 		    offsetof(struct icmp, icmp_ip));
   1628 		if (inp) {
   1629 			if ((tp = intotcpcb(inp)) == NULL)
   1630 				return NULL;
   1631 		}
   1632 #ifdef INET6
   1633 		else if (in6p) {
   1634 			if ((tp = in6totcpcb(in6p)) == NULL)
   1635 				return NULL;
   1636 		}
   1637 #endif
   1638 		else
   1639 			return NULL;
   1640 		seq = ntohl(th->th_seq);
   1641 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1642 			return NULL;
   1643 		/*
   1644 		 * If the ICMP message advertises a Next-Hop MTU
   1645 		 * equal or larger than the maximum packet size we have
   1646 		 * ever sent, drop the message.
   1647 		 */
   1648 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1649 		if (mtu >= tp->t_pmtud_mtu_sent)
   1650 			return NULL;
   1651 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1652 			/*
   1653 			 * Calculate new MTU, and create corresponding
   1654 			 * route (traditional PMTUD).
   1655 			 */
   1656 			tp->t_flags &= ~TF_PMTUD_PEND;
   1657 			icmp_mtudisc(icp, ip->ip_dst);
   1658 		} else {
   1659 			/*
   1660 			 * Record the information got in the ICMP
   1661 			 * message; act on it later.
   1662 			 * If we had already recorded an ICMP message,
   1663 			 * replace the old one only if the new message
   1664 			 * refers to an older TCP segment
   1665 			 */
   1666 			if (tp->t_flags & TF_PMTUD_PEND) {
   1667 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1668 					return NULL;
   1669 			} else
   1670 				tp->t_flags |= TF_PMTUD_PEND;
   1671 			tp->t_pmtud_th_seq = seq;
   1672 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1673 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1674 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1675 		}
   1676 		return NULL;
   1677 	} else if (cmd == PRC_HOSTDEAD)
   1678 		ip = 0;
   1679 	else if (errno == 0)
   1680 		return NULL;
   1681 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1682 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1683 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
   1684 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1685 		if (nmatch == 0 && syn_cache_count &&
   1686 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1687 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1688 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1689 			struct sockaddr_in sin;
   1690 			memset(&sin, 0, sizeof(sin));
   1691 			sin.sin_len = sizeof(sin);
   1692 			sin.sin_family = AF_INET;
   1693 			sin.sin_port = th->th_sport;
   1694 			sin.sin_addr = ip->ip_src;
   1695 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1696 		}
   1697 
   1698 		/* XXX mapped address case */
   1699 	} else
   1700 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
   1701 		    notify);
   1702 	return NULL;
   1703 }
   1704 
   1705 /*
   1706  * When a source quench is received, we are being notified of congestion.
   1707  * Close the congestion window down to the Loss Window (one segment).
   1708  * We will gradually open it again as we proceed.
   1709  */
   1710 void
   1711 tcp_quench(struct inpcb *inp, int errno)
   1712 {
   1713 	struct tcpcb *tp = intotcpcb(inp);
   1714 
   1715 	if (tp) {
   1716 		tp->snd_cwnd = tp->t_segsz;
   1717 		tp->t_bytes_acked = 0;
   1718 	}
   1719 }
   1720 #endif
   1721 
   1722 #ifdef INET6
   1723 void
   1724 tcp6_quench(struct in6pcb *in6p, int errno)
   1725 {
   1726 	struct tcpcb *tp = in6totcpcb(in6p);
   1727 
   1728 	if (tp) {
   1729 		tp->snd_cwnd = tp->t_segsz;
   1730 		tp->t_bytes_acked = 0;
   1731 	}
   1732 }
   1733 #endif
   1734 
   1735 #ifdef INET
   1736 /*
   1737  * Path MTU Discovery handlers.
   1738  */
   1739 void
   1740 tcp_mtudisc_callback(struct in_addr faddr)
   1741 {
   1742 #ifdef INET6
   1743 	struct in6_addr in6;
   1744 #endif
   1745 
   1746 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1747 #ifdef INET6
   1748 	memset(&in6, 0, sizeof(in6));
   1749 	in6.s6_addr16[5] = 0xffff;
   1750 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1751 	tcp6_mtudisc_callback(&in6);
   1752 #endif
   1753 }
   1754 
   1755 /*
   1756  * On receipt of path MTU corrections, flush old route and replace it
   1757  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1758  * that all packets will be received.
   1759  */
   1760 void
   1761 tcp_mtudisc(struct inpcb *inp, int errno)
   1762 {
   1763 	struct tcpcb *tp = intotcpcb(inp);
   1764 	struct rtentry *rt = in_pcbrtentry(inp);
   1765 
   1766 	if (tp != 0) {
   1767 		if (rt != 0) {
   1768 			/*
   1769 			 * If this was not a host route, remove and realloc.
   1770 			 */
   1771 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1772 				in_rtchange(inp, errno);
   1773 				if ((rt = in_pcbrtentry(inp)) == 0)
   1774 					return;
   1775 			}
   1776 
   1777 			/*
   1778 			 * Slow start out of the error condition.  We
   1779 			 * use the MTU because we know it's smaller
   1780 			 * than the previously transmitted segment.
   1781 			 *
   1782 			 * Note: This is more conservative than the
   1783 			 * suggestion in draft-floyd-incr-init-win-03.
   1784 			 */
   1785 			if (rt->rt_rmx.rmx_mtu != 0)
   1786 				tp->snd_cwnd =
   1787 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1788 				    rt->rt_rmx.rmx_mtu);
   1789 		}
   1790 
   1791 		/*
   1792 		 * Resend unacknowledged packets.
   1793 		 */
   1794 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1795 		tcp_output(tp);
   1796 	}
   1797 }
   1798 #endif
   1799 
   1800 #ifdef INET6
   1801 /*
   1802  * Path MTU Discovery handlers.
   1803  */
   1804 void
   1805 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1806 {
   1807 	struct sockaddr_in6 sin6;
   1808 
   1809 	memset(&sin6, 0, sizeof(sin6));
   1810 	sin6.sin6_family = AF_INET6;
   1811 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1812 	sin6.sin6_addr = *faddr;
   1813 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1814 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1815 }
   1816 
   1817 void
   1818 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1819 {
   1820 	struct tcpcb *tp = in6totcpcb(in6p);
   1821 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1822 
   1823 	if (tp != 0) {
   1824 		if (rt != 0) {
   1825 			/*
   1826 			 * If this was not a host route, remove and realloc.
   1827 			 */
   1828 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1829 				in6_rtchange(in6p, errno);
   1830 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1831 					return;
   1832 			}
   1833 
   1834 			/*
   1835 			 * Slow start out of the error condition.  We
   1836 			 * use the MTU because we know it's smaller
   1837 			 * than the previously transmitted segment.
   1838 			 *
   1839 			 * Note: This is more conservative than the
   1840 			 * suggestion in draft-floyd-incr-init-win-03.
   1841 			 */
   1842 			if (rt->rt_rmx.rmx_mtu != 0)
   1843 				tp->snd_cwnd =
   1844 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1845 				    rt->rt_rmx.rmx_mtu);
   1846 		}
   1847 
   1848 		/*
   1849 		 * Resend unacknowledged packets.
   1850 		 */
   1851 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1852 		tcp_output(tp);
   1853 	}
   1854 }
   1855 #endif /* INET6 */
   1856 
   1857 /*
   1858  * Compute the MSS to advertise to the peer.  Called only during
   1859  * the 3-way handshake.  If we are the server (peer initiated
   1860  * connection), we are called with a pointer to the interface
   1861  * on which the SYN packet arrived.  If we are the client (we
   1862  * initiated connection), we are called with a pointer to the
   1863  * interface out which this connection should go.
   1864  *
   1865  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1866  * header size from MSS advertisement.  MSS option must hold the maximum
   1867  * segment size we can accept, so it must always be:
   1868  *	 max(if mtu) - ip header - tcp header
   1869  */
   1870 u_long
   1871 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1872 {
   1873 	extern u_long in_maxmtu;
   1874 	u_long mss = 0;
   1875 	u_long hdrsiz;
   1876 
   1877 	/*
   1878 	 * In order to avoid defeating path MTU discovery on the peer,
   1879 	 * we advertise the max MTU of all attached networks as our MSS,
   1880 	 * per RFC 1191, section 3.1.
   1881 	 *
   1882 	 * We provide the option to advertise just the MTU of
   1883 	 * the interface on which we hope this connection will
   1884 	 * be receiving.  If we are responding to a SYN, we
   1885 	 * will have a pretty good idea about this, but when
   1886 	 * initiating a connection there is a bit more doubt.
   1887 	 *
   1888 	 * We also need to ensure that loopback has a large enough
   1889 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1890 	 */
   1891 
   1892 	if (ifp != NULL)
   1893 		switch (af) {
   1894 		case AF_INET:
   1895 			mss = ifp->if_mtu;
   1896 			break;
   1897 #ifdef INET6
   1898 		case AF_INET6:
   1899 			mss = IN6_LINKMTU(ifp);
   1900 			break;
   1901 #endif
   1902 		}
   1903 
   1904 	if (tcp_mss_ifmtu == 0)
   1905 		switch (af) {
   1906 		case AF_INET:
   1907 			mss = max(in_maxmtu, mss);
   1908 			break;
   1909 #ifdef INET6
   1910 		case AF_INET6:
   1911 			mss = max(in6_maxmtu, mss);
   1912 			break;
   1913 #endif
   1914 		}
   1915 
   1916 	switch (af) {
   1917 	case AF_INET:
   1918 		hdrsiz = sizeof(struct ip);
   1919 		break;
   1920 #ifdef INET6
   1921 	case AF_INET6:
   1922 		hdrsiz = sizeof(struct ip6_hdr);
   1923 		break;
   1924 #endif
   1925 	default:
   1926 		hdrsiz = 0;
   1927 		break;
   1928 	}
   1929 	hdrsiz += sizeof(struct tcphdr);
   1930 	if (mss > hdrsiz)
   1931 		mss -= hdrsiz;
   1932 
   1933 	mss = max(tcp_mssdflt, mss);
   1934 	return (mss);
   1935 }
   1936 
   1937 /*
   1938  * Set connection variables based on the peer's advertised MSS.
   1939  * We are passed the TCPCB for the actual connection.  If we
   1940  * are the server, we are called by the compressed state engine
   1941  * when the 3-way handshake is complete.  If we are the client,
   1942  * we are called when we receive the SYN,ACK from the server.
   1943  *
   1944  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1945  * before this routine is called!
   1946  */
   1947 void
   1948 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1949 {
   1950 	struct socket *so;
   1951 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1952 	struct rtentry *rt;
   1953 #endif
   1954 	u_long bufsize;
   1955 	int mss;
   1956 
   1957 #ifdef DIAGNOSTIC
   1958 	if (tp->t_inpcb && tp->t_in6pcb)
   1959 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1960 #endif
   1961 	so = NULL;
   1962 	rt = NULL;
   1963 #ifdef INET
   1964 	if (tp->t_inpcb) {
   1965 		so = tp->t_inpcb->inp_socket;
   1966 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1967 		rt = in_pcbrtentry(tp->t_inpcb);
   1968 #endif
   1969 	}
   1970 #endif
   1971 #ifdef INET6
   1972 	if (tp->t_in6pcb) {
   1973 		so = tp->t_in6pcb->in6p_socket;
   1974 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1975 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1976 #endif
   1977 	}
   1978 #endif
   1979 
   1980 	/*
   1981 	 * As per RFC1122, use the default MSS value, unless they
   1982 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1983 	 */
   1984 	mss = tcp_mssdflt;
   1985 	if (offer)
   1986 		mss = offer;
   1987 	mss = max(mss, 256);		/* sanity */
   1988 	tp->t_peermss = mss;
   1989 	mss -= tcp_optlen(tp);
   1990 #ifdef INET
   1991 	if (tp->t_inpcb)
   1992 		mss -= ip_optlen(tp->t_inpcb);
   1993 #endif
   1994 #ifdef INET6
   1995 	if (tp->t_in6pcb)
   1996 		mss -= ip6_optlen(tp->t_in6pcb);
   1997 #endif
   1998 
   1999 	/*
   2000 	 * If there's a pipesize, change the socket buffer to that size.
   2001 	 * Make the socket buffer an integral number of MSS units.  If
   2002 	 * the MSS is larger than the socket buffer, artificially decrease
   2003 	 * the MSS.
   2004 	 */
   2005 #ifdef RTV_SPIPE
   2006 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   2007 		bufsize = rt->rt_rmx.rmx_sendpipe;
   2008 	else
   2009 #endif
   2010 	{
   2011 		KASSERT(so != NULL);
   2012 		bufsize = so->so_snd.sb_hiwat;
   2013 	}
   2014 	if (bufsize < mss)
   2015 		mss = bufsize;
   2016 	else {
   2017 		bufsize = roundup(bufsize, mss);
   2018 		if (bufsize > sb_max)
   2019 			bufsize = sb_max;
   2020 		(void) sbreserve(&so->so_snd, bufsize, so);
   2021 	}
   2022 	tp->t_segsz = mss;
   2023 
   2024 #ifdef RTV_SSTHRESH
   2025 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   2026 		/*
   2027 		 * There's some sort of gateway or interface buffer
   2028 		 * limit on the path.  Use this to set the slow
   2029 		 * start threshold, but set the threshold to no less
   2030 		 * than 2 * MSS.
   2031 		 */
   2032 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   2033 	}
   2034 #endif
   2035 }
   2036 
   2037 /*
   2038  * Processing necessary when a TCP connection is established.
   2039  */
   2040 void
   2041 tcp_established(struct tcpcb *tp)
   2042 {
   2043 	struct socket *so;
   2044 #ifdef RTV_RPIPE
   2045 	struct rtentry *rt;
   2046 #endif
   2047 	u_long bufsize;
   2048 
   2049 #ifdef DIAGNOSTIC
   2050 	if (tp->t_inpcb && tp->t_in6pcb)
   2051 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2052 #endif
   2053 	so = NULL;
   2054 	rt = NULL;
   2055 #ifdef INET
   2056 	/* This is a while() to reduce the dreadful stairstepping below */
   2057 	while (tp->t_inpcb) {
   2058 		so = tp->t_inpcb->inp_socket;
   2059 #if defined(RTV_RPIPE)
   2060 		rt = in_pcbrtentry(tp->t_inpcb);
   2061 #endif
   2062 		if (__predict_true(tcp_msl_enable)) {
   2063 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
   2064 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
   2065 				break;
   2066 			}
   2067 
   2068 			if (__predict_false(tcp_rttlocal)) {
   2069 				/* This may be adjusted by tcp_input */
   2070 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2071 				break;
   2072 			}
   2073 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
   2074 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2075 				break;
   2076 			}
   2077 		}
   2078 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
   2079 		break;
   2080 	}
   2081 #endif
   2082 #ifdef INET6
   2083 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
   2084 	while (!tp->t_inpcb && tp->t_in6pcb) {
   2085 		so = tp->t_in6pcb->in6p_socket;
   2086 #if defined(RTV_RPIPE)
   2087 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2088 #endif
   2089 		if (__predict_true(tcp_msl_enable)) {
   2090 			extern const struct in6_addr in6addr_loopback;
   2091 
   2092 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
   2093 					       &in6addr_loopback)) {
   2094 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
   2095 				break;
   2096 			}
   2097 
   2098 			if (__predict_false(tcp_rttlocal)) {
   2099 				/* This may be adjusted by tcp_input */
   2100 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2101 				break;
   2102 			}
   2103 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
   2104 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2105 				break;
   2106 			}
   2107 		}
   2108 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
   2109 		break;
   2110 	}
   2111 #endif
   2112 
   2113 	tp->t_state = TCPS_ESTABLISHED;
   2114 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   2115 
   2116 #ifdef RTV_RPIPE
   2117 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2118 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2119 	else
   2120 #endif
   2121 	{
   2122 		KASSERT(so != NULL);
   2123 		bufsize = so->so_rcv.sb_hiwat;
   2124 	}
   2125 	if (bufsize > tp->t_ourmss) {
   2126 		bufsize = roundup(bufsize, tp->t_ourmss);
   2127 		if (bufsize > sb_max)
   2128 			bufsize = sb_max;
   2129 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2130 	}
   2131 }
   2132 
   2133 /*
   2134  * Check if there's an initial rtt or rttvar.  Convert from the
   2135  * route-table units to scaled multiples of the slow timeout timer.
   2136  * Called only during the 3-way handshake.
   2137  */
   2138 void
   2139 tcp_rmx_rtt(struct tcpcb *tp)
   2140 {
   2141 #ifdef RTV_RTT
   2142 	struct rtentry *rt = NULL;
   2143 	int rtt;
   2144 
   2145 #ifdef DIAGNOSTIC
   2146 	if (tp->t_inpcb && tp->t_in6pcb)
   2147 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2148 #endif
   2149 #ifdef INET
   2150 	if (tp->t_inpcb)
   2151 		rt = in_pcbrtentry(tp->t_inpcb);
   2152 #endif
   2153 #ifdef INET6
   2154 	if (tp->t_in6pcb)
   2155 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2156 #endif
   2157 	if (rt == NULL)
   2158 		return;
   2159 
   2160 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2161 		/*
   2162 		 * XXX The lock bit for MTU indicates that the value
   2163 		 * is also a minimum value; this is subject to time.
   2164 		 */
   2165 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2166 			TCPT_RANGESET(tp->t_rttmin,
   2167 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2168 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2169 		tp->t_srtt = rtt /
   2170 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2171 		if (rt->rt_rmx.rmx_rttvar) {
   2172 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2173 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2174 				(TCP_RTTVAR_SHIFT + 2));
   2175 		} else {
   2176 			/* Default variation is +- 1 rtt */
   2177 			tp->t_rttvar =
   2178 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2179 		}
   2180 		TCPT_RANGESET(tp->t_rxtcur,
   2181 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2182 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2183 	}
   2184 #endif
   2185 }
   2186 
   2187 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2188 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2189 
   2190 /*
   2191  * Get a new sequence value given a tcp control block
   2192  */
   2193 tcp_seq
   2194 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2195 {
   2196 
   2197 #ifdef INET
   2198 	if (tp->t_inpcb != NULL) {
   2199 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2200 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2201 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2202 		    addin));
   2203 	}
   2204 #endif
   2205 #ifdef INET6
   2206 	if (tp->t_in6pcb != NULL) {
   2207 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2208 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2209 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2210 		    addin));
   2211 	}
   2212 #endif
   2213 	/* Not possible. */
   2214 	panic("tcp_new_iss");
   2215 }
   2216 
   2217 /*
   2218  * This routine actually generates a new TCP initial sequence number.
   2219  */
   2220 tcp_seq
   2221 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2222     size_t addrsz, tcp_seq addin)
   2223 {
   2224 	tcp_seq tcp_iss;
   2225 
   2226 	static bool tcp_iss_gotten_secret;
   2227 
   2228 	/*
   2229 	 * If we haven't been here before, initialize our cryptographic
   2230 	 * hash secret.
   2231 	 */
   2232 	if (tcp_iss_gotten_secret == false) {
   2233 		cprng_strong(kern_cprng,
   2234 			     tcp_iss_secret, sizeof(tcp_iss_secret), FASYNC);
   2235 		tcp_iss_gotten_secret = true;
   2236 	}
   2237 
   2238 	if (tcp_do_rfc1948) {
   2239 		MD5_CTX ctx;
   2240 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2241 
   2242 		/*
   2243 		 * Compute the base value of the ISS.  It is a hash
   2244 		 * of (saddr, sport, daddr, dport, secret).
   2245 		 */
   2246 		MD5Init(&ctx);
   2247 
   2248 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2249 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2250 
   2251 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2252 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2253 
   2254 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2255 
   2256 		MD5Final(hash, &ctx);
   2257 
   2258 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2259 
   2260 		/*
   2261 		 * Now increment our "timer", and add it in to
   2262 		 * the computed value.
   2263 		 *
   2264 		 * XXX Use `addin'?
   2265 		 * XXX TCP_ISSINCR too large to use?
   2266 		 */
   2267 		tcp_iss_seq += TCP_ISSINCR;
   2268 #ifdef TCPISS_DEBUG
   2269 		printf("ISS hash 0x%08x, ", tcp_iss);
   2270 #endif
   2271 		tcp_iss += tcp_iss_seq + addin;
   2272 #ifdef TCPISS_DEBUG
   2273 		printf("new ISS 0x%08x\n", tcp_iss);
   2274 #endif
   2275 	} else {
   2276 		/*
   2277 		 * Randomize.
   2278 		 */
   2279 		tcp_iss = cprng_fast32();
   2280 
   2281 		/*
   2282 		 * If we were asked to add some amount to a known value,
   2283 		 * we will take a random value obtained above, mask off
   2284 		 * the upper bits, and add in the known value.  We also
   2285 		 * add in a constant to ensure that we are at least a
   2286 		 * certain distance from the original value.
   2287 		 *
   2288 		 * This is used when an old connection is in timed wait
   2289 		 * and we have a new one coming in, for instance.
   2290 		 */
   2291 		if (addin != 0) {
   2292 #ifdef TCPISS_DEBUG
   2293 			printf("Random %08x, ", tcp_iss);
   2294 #endif
   2295 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2296 			tcp_iss += addin + TCP_ISSINCR;
   2297 #ifdef TCPISS_DEBUG
   2298 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2299 #endif
   2300 		} else {
   2301 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2302 			tcp_iss += tcp_iss_seq;
   2303 			tcp_iss_seq += TCP_ISSINCR;
   2304 #ifdef TCPISS_DEBUG
   2305 			printf("ISS %08x\n", tcp_iss);
   2306 #endif
   2307 		}
   2308 	}
   2309 
   2310 	if (tcp_compat_42) {
   2311 		/*
   2312 		 * Limit it to the positive range for really old TCP
   2313 		 * implementations.
   2314 		 * Just AND off the top bit instead of checking if
   2315 		 * is set first - saves a branch 50% of the time.
   2316 		 */
   2317 		tcp_iss &= 0x7fffffff;		/* XXX */
   2318 	}
   2319 
   2320 	return (tcp_iss);
   2321 }
   2322 
   2323 #if defined(IPSEC)
   2324 /* compute ESP/AH header size for TCP, including outer IP header. */
   2325 size_t
   2326 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2327 {
   2328 	struct inpcb *inp;
   2329 	size_t hdrsiz;
   2330 
   2331 	/* XXX mapped addr case (tp->t_in6pcb) */
   2332 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2333 		return 0;
   2334 	switch (tp->t_family) {
   2335 	case AF_INET:
   2336 		/* XXX: should use currect direction. */
   2337 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2338 		break;
   2339 	default:
   2340 		hdrsiz = 0;
   2341 		break;
   2342 	}
   2343 
   2344 	return hdrsiz;
   2345 }
   2346 
   2347 #ifdef INET6
   2348 size_t
   2349 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2350 {
   2351 	struct in6pcb *in6p;
   2352 	size_t hdrsiz;
   2353 
   2354 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2355 		return 0;
   2356 	switch (tp->t_family) {
   2357 	case AF_INET6:
   2358 		/* XXX: should use currect direction. */
   2359 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2360 		break;
   2361 	case AF_INET:
   2362 		/* mapped address case - tricky */
   2363 	default:
   2364 		hdrsiz = 0;
   2365 		break;
   2366 	}
   2367 
   2368 	return hdrsiz;
   2369 }
   2370 #endif
   2371 #endif /*IPSEC*/
   2372 
   2373 /*
   2374  * Determine the length of the TCP options for this connection.
   2375  *
   2376  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2377  *       all of the space?  Otherwise we can't exactly be incrementing
   2378  *       cwnd by an amount that varies depending on the amount we last
   2379  *       had to SACK!
   2380  */
   2381 
   2382 u_int
   2383 tcp_optlen(struct tcpcb *tp)
   2384 {
   2385 	u_int optlen;
   2386 
   2387 	optlen = 0;
   2388 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2389 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2390 		optlen += TCPOLEN_TSTAMP_APPA;
   2391 
   2392 #ifdef TCP_SIGNATURE
   2393 	if (tp->t_flags & TF_SIGNATURE)
   2394 		optlen += TCPOLEN_SIGNATURE + 2;
   2395 #endif /* TCP_SIGNATURE */
   2396 
   2397 	return optlen;
   2398 }
   2399 
   2400 u_int
   2401 tcp_hdrsz(struct tcpcb *tp)
   2402 {
   2403 	u_int hlen;
   2404 
   2405 	switch (tp->t_family) {
   2406 #ifdef INET6
   2407 	case AF_INET6:
   2408 		hlen = sizeof(struct ip6_hdr);
   2409 		break;
   2410 #endif
   2411 	case AF_INET:
   2412 		hlen = sizeof(struct ip);
   2413 		break;
   2414 	default:
   2415 		hlen = 0;
   2416 		break;
   2417 	}
   2418 	hlen += sizeof(struct tcphdr);
   2419 
   2420 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2421 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2422 		hlen += TCPOLEN_TSTAMP_APPA;
   2423 #ifdef TCP_SIGNATURE
   2424 	if (tp->t_flags & TF_SIGNATURE)
   2425 		hlen += TCPOLEN_SIGLEN;
   2426 #endif
   2427 	return hlen;
   2428 }
   2429 
   2430 void
   2431 tcp_statinc(u_int stat)
   2432 {
   2433 
   2434 	KASSERT(stat < TCP_NSTATS);
   2435 	TCP_STATINC(stat);
   2436 }
   2437 
   2438 void
   2439 tcp_statadd(u_int stat, uint64_t val)
   2440 {
   2441 
   2442 	KASSERT(stat < TCP_NSTATS);
   2443 	TCP_STATADD(stat, val);
   2444 }
   2445