tcp_subr.c revision 1.251 1 /* $NetBSD: tcp_subr.c,v 1.251 2013/11/12 09:02:05 kefren Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.251 2013/11/12 09:02:05 kefren Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101
102 #include <sys/param.h>
103 #include <sys/proc.h>
104 #include <sys/systm.h>
105 #include <sys/malloc.h>
106 #include <sys/mbuf.h>
107 #include <sys/socket.h>
108 #include <sys/socketvar.h>
109 #include <sys/protosw.h>
110 #include <sys/errno.h>
111 #include <sys/kernel.h>
112 #include <sys/pool.h>
113 #include <sys/md5.h>
114 #include <sys/cprng.h>
115
116 #include <net/route.h>
117 #include <net/if.h>
118
119 #include <netinet/in.h>
120 #include <netinet/in_systm.h>
121 #include <netinet/ip.h>
122 #include <netinet/in_pcb.h>
123 #include <netinet/ip_var.h>
124 #include <netinet/ip_icmp.h>
125
126 #ifdef INET6
127 #ifndef INET
128 #include <netinet/in.h>
129 #endif
130 #include <netinet/ip6.h>
131 #include <netinet6/in6_pcb.h>
132 #include <netinet6/ip6_var.h>
133 #include <netinet6/in6_var.h>
134 #include <netinet6/ip6protosw.h>
135 #include <netinet/icmp6.h>
136 #include <netinet6/nd6.h>
137 #endif
138
139 #include <netinet/tcp.h>
140 #include <netinet/tcp_fsm.h>
141 #include <netinet/tcp_seq.h>
142 #include <netinet/tcp_timer.h>
143 #include <netinet/tcp_var.h>
144 #include <netinet/tcp_vtw.h>
145 #include <netinet/tcp_private.h>
146 #include <netinet/tcp_congctl.h>
147 #include <netinet/tcpip.h>
148
149 #ifdef IPSEC
150 #include <netipsec/ipsec.h>
151 #include <netipsec/xform.h>
152 #ifdef INET6
153 #include <netipsec/ipsec6.h>
154 #endif
155 #include <netipsec/key.h>
156 #endif /* IPSEC*/
157
158
159 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
160 u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
161
162 percpu_t *tcpstat_percpu;
163
164 /* patchable/settable parameters for tcp */
165 int tcp_mssdflt = TCP_MSS;
166 int tcp_minmss = TCP_MINMSS;
167 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
168 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
169 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
170 int tcp_do_sack = 1; /* selective acknowledgement */
171 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
172 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
173 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
174 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
175 #ifndef TCP_INIT_WIN
176 #define TCP_INIT_WIN 4 /* initial slow start window */
177 #endif
178 #ifndef TCP_INIT_WIN_LOCAL
179 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
180 #endif
181 /*
182 * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
183 * This is to simulate current behavior for iw == 4
184 */
185 int tcp_init_win_max[] = {
186 1 * 1460,
187 1 * 1460,
188 2 * 1460,
189 2 * 1460,
190 3 * 1460,
191 5 * 1460,
192 6 * 1460,
193 7 * 1460,
194 8 * 1460,
195 9 * 1460,
196 10 * 1460
197 };
198 int tcp_init_win = TCP_INIT_WIN;
199 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
200 int tcp_mss_ifmtu = 0;
201 #ifdef TCP_COMPAT_42
202 int tcp_compat_42 = 1;
203 #else
204 int tcp_compat_42 = 0;
205 #endif
206 int tcp_rst_ppslim = 100; /* 100pps */
207 int tcp_ackdrop_ppslim = 100; /* 100pps */
208 int tcp_do_loopback_cksum = 0;
209 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
210 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
211 int tcp_sack_tp_maxholes = 32;
212 int tcp_sack_globalmaxholes = 1024;
213 int tcp_sack_globalholes = 0;
214 int tcp_ecn_maxretries = 1;
215 int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
216 int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
217 int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
218 int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
219 int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
220 int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
221
222 int tcp4_vtw_enable = 0; /* 1 to enable */
223 int tcp6_vtw_enable = 0; /* 1 to enable */
224 int tcp_vtw_was_enabled = 0;
225 int tcp_vtw_entries = 1 << 16; /* 64K vestigial TIME_WAIT entries */
226
227 /* tcb hash */
228 #ifndef TCBHASHSIZE
229 #define TCBHASHSIZE 128
230 #endif
231 int tcbhashsize = TCBHASHSIZE;
232
233 /* syn hash parameters */
234 #define TCP_SYN_HASH_SIZE 293
235 #define TCP_SYN_BUCKET_SIZE 35
236 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
237 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
238 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
239 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
240
241 int tcp_freeq(struct tcpcb *);
242
243 #ifdef INET
244 void tcp_mtudisc_callback(struct in_addr);
245 #endif
246 #ifdef INET6
247 void tcp6_mtudisc_callback(struct in6_addr *);
248 #endif
249
250 #ifdef INET6
251 void tcp6_mtudisc(struct in6pcb *, int);
252 #endif
253
254 static struct pool tcpcb_pool;
255
256 static int tcp_drainwanted;
257
258 #ifdef TCP_CSUM_COUNTERS
259 #include <sys/device.h>
260
261 #if defined(INET)
262 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
263 NULL, "tcp", "hwcsum bad");
264 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp", "hwcsum ok");
266 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp", "hwcsum data");
268 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
269 NULL, "tcp", "swcsum");
270
271 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
272 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
273 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
274 EVCNT_ATTACH_STATIC(tcp_swcsum);
275 #endif /* defined(INET) */
276
277 #if defined(INET6)
278 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
279 NULL, "tcp6", "hwcsum bad");
280 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 NULL, "tcp6", "hwcsum ok");
282 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp6", "hwcsum data");
284 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 NULL, "tcp6", "swcsum");
286
287 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
288 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
289 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
290 EVCNT_ATTACH_STATIC(tcp6_swcsum);
291 #endif /* defined(INET6) */
292 #endif /* TCP_CSUM_COUNTERS */
293
294
295 #ifdef TCP_OUTPUT_COUNTERS
296 #include <sys/device.h>
297
298 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 NULL, "tcp", "output big header");
300 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 NULL, "tcp", "output predict hit");
302 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 NULL, "tcp", "output predict miss");
304 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 NULL, "tcp", "output copy small");
306 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 NULL, "tcp", "output copy big");
308 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 NULL, "tcp", "output reference big");
310
311 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
312 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
313 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
314 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
315 EVCNT_ATTACH_STATIC(tcp_output_copybig);
316 EVCNT_ATTACH_STATIC(tcp_output_refbig);
317
318 #endif /* TCP_OUTPUT_COUNTERS */
319
320 #ifdef TCP_REASS_COUNTERS
321 #include <sys/device.h>
322
323 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324 NULL, "tcp_reass", "calls");
325 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
326 &tcp_reass_, "tcp_reass", "insert into empty queue");
327 struct evcnt tcp_reass_iteration[8] = {
328 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
329 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
331 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
332 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
333 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
335 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
336 };
337 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338 &tcp_reass_, "tcp_reass", "prepend to first");
339 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340 &tcp_reass_, "tcp_reass", "prepend");
341 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 &tcp_reass_, "tcp_reass", "insert");
343 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 &tcp_reass_, "tcp_reass", "insert at tail");
345 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 &tcp_reass_, "tcp_reass", "append");
347 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 &tcp_reass_, "tcp_reass", "append to tail fragment");
349 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 &tcp_reass_, "tcp_reass", "overlap at end");
351 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
352 &tcp_reass_, "tcp_reass", "overlap at start");
353 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
354 &tcp_reass_, "tcp_reass", "duplicate segment");
355 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
356 &tcp_reass_, "tcp_reass", "duplicate fragment");
357
358 EVCNT_ATTACH_STATIC(tcp_reass_);
359 EVCNT_ATTACH_STATIC(tcp_reass_empty);
360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
361 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
362 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
363 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
364 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
365 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
366 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
367 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
368 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
369 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
370 EVCNT_ATTACH_STATIC(tcp_reass_insert);
371 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
372 EVCNT_ATTACH_STATIC(tcp_reass_append);
373 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
374 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
375 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
376 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
377 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
378
379 #endif /* TCP_REASS_COUNTERS */
380
381 #ifdef MBUFTRACE
382 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
383 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
384 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
385 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
386 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
387 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
388 #endif
389
390 /*
391 * Tcp initialization
392 */
393 void
394 tcp_init(void)
395 {
396 int hlen;
397
398 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
399 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
400 NULL, IPL_SOFTNET);
401
402 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
403 #ifdef INET6
404 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
405 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
406 #endif
407 if (max_protohdr < hlen)
408 max_protohdr = hlen;
409 if (max_linkhdr + hlen > MHLEN)
410 panic("tcp_init");
411
412 #ifdef INET
413 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
414 #endif
415 #ifdef INET6
416 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
417 #endif
418
419 tcp_usrreq_init();
420
421 /* Initialize timer state. */
422 tcp_timer_init();
423
424 /* Initialize the compressed state engine. */
425 syn_cache_init();
426
427 /* Initialize the congestion control algorithms. */
428 tcp_congctl_init();
429
430 /* Initialize the TCPCB template. */
431 tcp_tcpcb_template();
432
433 /* Initialize reassembly queue */
434 tcpipqent_init();
435
436 /* SACK */
437 tcp_sack_init();
438
439 MOWNER_ATTACH(&tcp_tx_mowner);
440 MOWNER_ATTACH(&tcp_rx_mowner);
441 MOWNER_ATTACH(&tcp_reass_mowner);
442 MOWNER_ATTACH(&tcp_sock_mowner);
443 MOWNER_ATTACH(&tcp_sock_tx_mowner);
444 MOWNER_ATTACH(&tcp_sock_rx_mowner);
445 MOWNER_ATTACH(&tcp_mowner);
446
447 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
448
449 vtw_earlyinit();
450 }
451
452 /*
453 * Create template to be used to send tcp packets on a connection.
454 * Call after host entry created, allocates an mbuf and fills
455 * in a skeletal tcp/ip header, minimizing the amount of work
456 * necessary when the connection is used.
457 */
458 struct mbuf *
459 tcp_template(struct tcpcb *tp)
460 {
461 struct inpcb *inp = tp->t_inpcb;
462 #ifdef INET6
463 struct in6pcb *in6p = tp->t_in6pcb;
464 #endif
465 struct tcphdr *n;
466 struct mbuf *m;
467 int hlen;
468
469 switch (tp->t_family) {
470 case AF_INET:
471 hlen = sizeof(struct ip);
472 if (inp)
473 break;
474 #ifdef INET6
475 if (in6p) {
476 /* mapped addr case */
477 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
478 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
479 break;
480 }
481 #endif
482 return NULL; /*EINVAL*/
483 #ifdef INET6
484 case AF_INET6:
485 hlen = sizeof(struct ip6_hdr);
486 if (in6p) {
487 /* more sainty check? */
488 break;
489 }
490 return NULL; /*EINVAL*/
491 #endif
492 default:
493 hlen = 0; /*pacify gcc*/
494 return NULL; /*EAFNOSUPPORT*/
495 }
496 #ifdef DIAGNOSTIC
497 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
498 panic("mclbytes too small for t_template");
499 #endif
500 m = tp->t_template;
501 if (m && m->m_len == hlen + sizeof(struct tcphdr))
502 ;
503 else {
504 if (m)
505 m_freem(m);
506 m = tp->t_template = NULL;
507 MGETHDR(m, M_DONTWAIT, MT_HEADER);
508 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
509 MCLGET(m, M_DONTWAIT);
510 if ((m->m_flags & M_EXT) == 0) {
511 m_free(m);
512 m = NULL;
513 }
514 }
515 if (m == NULL)
516 return NULL;
517 MCLAIM(m, &tcp_mowner);
518 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
519 }
520
521 memset(mtod(m, void *), 0, m->m_len);
522
523 n = (struct tcphdr *)(mtod(m, char *) + hlen);
524
525 switch (tp->t_family) {
526 case AF_INET:
527 {
528 struct ipovly *ipov;
529 mtod(m, struct ip *)->ip_v = 4;
530 mtod(m, struct ip *)->ip_hl = hlen >> 2;
531 ipov = mtod(m, struct ipovly *);
532 ipov->ih_pr = IPPROTO_TCP;
533 ipov->ih_len = htons(sizeof(struct tcphdr));
534 if (inp) {
535 ipov->ih_src = inp->inp_laddr;
536 ipov->ih_dst = inp->inp_faddr;
537 }
538 #ifdef INET6
539 else if (in6p) {
540 /* mapped addr case */
541 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
542 sizeof(ipov->ih_src));
543 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
544 sizeof(ipov->ih_dst));
545 }
546 #endif
547 /*
548 * Compute the pseudo-header portion of the checksum
549 * now. We incrementally add in the TCP option and
550 * payload lengths later, and then compute the TCP
551 * checksum right before the packet is sent off onto
552 * the wire.
553 */
554 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
555 ipov->ih_dst.s_addr,
556 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
557 break;
558 }
559 #ifdef INET6
560 case AF_INET6:
561 {
562 struct ip6_hdr *ip6;
563 mtod(m, struct ip *)->ip_v = 6;
564 ip6 = mtod(m, struct ip6_hdr *);
565 ip6->ip6_nxt = IPPROTO_TCP;
566 ip6->ip6_plen = htons(sizeof(struct tcphdr));
567 ip6->ip6_src = in6p->in6p_laddr;
568 ip6->ip6_dst = in6p->in6p_faddr;
569 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
570 if (ip6_auto_flowlabel) {
571 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
572 ip6->ip6_flow |=
573 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
574 }
575 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
576 ip6->ip6_vfc |= IPV6_VERSION;
577
578 /*
579 * Compute the pseudo-header portion of the checksum
580 * now. We incrementally add in the TCP option and
581 * payload lengths later, and then compute the TCP
582 * checksum right before the packet is sent off onto
583 * the wire.
584 */
585 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
586 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
587 htonl(IPPROTO_TCP));
588 break;
589 }
590 #endif
591 }
592 if (inp) {
593 n->th_sport = inp->inp_lport;
594 n->th_dport = inp->inp_fport;
595 }
596 #ifdef INET6
597 else if (in6p) {
598 n->th_sport = in6p->in6p_lport;
599 n->th_dport = in6p->in6p_fport;
600 }
601 #endif
602 n->th_seq = 0;
603 n->th_ack = 0;
604 n->th_x2 = 0;
605 n->th_off = 5;
606 n->th_flags = 0;
607 n->th_win = 0;
608 n->th_urp = 0;
609 return (m);
610 }
611
612 /*
613 * Send a single message to the TCP at address specified by
614 * the given TCP/IP header. If m == 0, then we make a copy
615 * of the tcpiphdr at ti and send directly to the addressed host.
616 * This is used to force keep alive messages out using the TCP
617 * template for a connection tp->t_template. If flags are given
618 * then we send a message back to the TCP which originated the
619 * segment ti, and discard the mbuf containing it and any other
620 * attached mbufs.
621 *
622 * In any case the ack and sequence number of the transmitted
623 * segment are as specified by the parameters.
624 */
625 int
626 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
627 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
628 {
629 #ifdef INET6
630 struct rtentry *rt;
631 #endif
632 struct route *ro;
633 int error, tlen, win = 0;
634 int hlen;
635 struct ip *ip;
636 #ifdef INET6
637 struct ip6_hdr *ip6;
638 #endif
639 int family; /* family on packet, not inpcb/in6pcb! */
640 struct tcphdr *th;
641 struct socket *so;
642
643 if (tp != NULL && (flags & TH_RST) == 0) {
644 #ifdef DIAGNOSTIC
645 if (tp->t_inpcb && tp->t_in6pcb)
646 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
647 #endif
648 #ifdef INET
649 if (tp->t_inpcb)
650 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
651 #endif
652 #ifdef INET6
653 if (tp->t_in6pcb)
654 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
655 #endif
656 }
657
658 th = NULL; /* Quell uninitialized warning */
659 ip = NULL;
660 #ifdef INET6
661 ip6 = NULL;
662 #endif
663 if (m == 0) {
664 if (!template)
665 return EINVAL;
666
667 /* get family information from template */
668 switch (mtod(template, struct ip *)->ip_v) {
669 case 4:
670 family = AF_INET;
671 hlen = sizeof(struct ip);
672 break;
673 #ifdef INET6
674 case 6:
675 family = AF_INET6;
676 hlen = sizeof(struct ip6_hdr);
677 break;
678 #endif
679 default:
680 return EAFNOSUPPORT;
681 }
682
683 MGETHDR(m, M_DONTWAIT, MT_HEADER);
684 if (m) {
685 MCLAIM(m, &tcp_tx_mowner);
686 MCLGET(m, M_DONTWAIT);
687 if ((m->m_flags & M_EXT) == 0) {
688 m_free(m);
689 m = NULL;
690 }
691 }
692 if (m == NULL)
693 return (ENOBUFS);
694
695 if (tcp_compat_42)
696 tlen = 1;
697 else
698 tlen = 0;
699
700 m->m_data += max_linkhdr;
701 bcopy(mtod(template, void *), mtod(m, void *),
702 template->m_len);
703 switch (family) {
704 case AF_INET:
705 ip = mtod(m, struct ip *);
706 th = (struct tcphdr *)(ip + 1);
707 break;
708 #ifdef INET6
709 case AF_INET6:
710 ip6 = mtod(m, struct ip6_hdr *);
711 th = (struct tcphdr *)(ip6 + 1);
712 break;
713 #endif
714 #if 0
715 default:
716 /* noone will visit here */
717 m_freem(m);
718 return EAFNOSUPPORT;
719 #endif
720 }
721 flags = TH_ACK;
722 } else {
723
724 if ((m->m_flags & M_PKTHDR) == 0) {
725 #if 0
726 printf("non PKTHDR to tcp_respond\n");
727 #endif
728 m_freem(m);
729 return EINVAL;
730 }
731 #ifdef DIAGNOSTIC
732 if (!th0)
733 panic("th0 == NULL in tcp_respond");
734 #endif
735
736 /* get family information from m */
737 switch (mtod(m, struct ip *)->ip_v) {
738 case 4:
739 family = AF_INET;
740 hlen = sizeof(struct ip);
741 ip = mtod(m, struct ip *);
742 break;
743 #ifdef INET6
744 case 6:
745 family = AF_INET6;
746 hlen = sizeof(struct ip6_hdr);
747 ip6 = mtod(m, struct ip6_hdr *);
748 break;
749 #endif
750 default:
751 m_freem(m);
752 return EAFNOSUPPORT;
753 }
754 /* clear h/w csum flags inherited from rx packet */
755 m->m_pkthdr.csum_flags = 0;
756
757 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
758 tlen = sizeof(*th0);
759 else
760 tlen = th0->th_off << 2;
761
762 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
763 mtod(m, char *) + hlen == (char *)th0) {
764 m->m_len = hlen + tlen;
765 m_freem(m->m_next);
766 m->m_next = NULL;
767 } else {
768 struct mbuf *n;
769
770 #ifdef DIAGNOSTIC
771 if (max_linkhdr + hlen + tlen > MCLBYTES) {
772 m_freem(m);
773 return EMSGSIZE;
774 }
775 #endif
776 MGETHDR(n, M_DONTWAIT, MT_HEADER);
777 if (n && max_linkhdr + hlen + tlen > MHLEN) {
778 MCLGET(n, M_DONTWAIT);
779 if ((n->m_flags & M_EXT) == 0) {
780 m_freem(n);
781 n = NULL;
782 }
783 }
784 if (!n) {
785 m_freem(m);
786 return ENOBUFS;
787 }
788
789 MCLAIM(n, &tcp_tx_mowner);
790 n->m_data += max_linkhdr;
791 n->m_len = hlen + tlen;
792 m_copyback(n, 0, hlen, mtod(m, void *));
793 m_copyback(n, hlen, tlen, (void *)th0);
794
795 m_freem(m);
796 m = n;
797 n = NULL;
798 }
799
800 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
801 switch (family) {
802 case AF_INET:
803 ip = mtod(m, struct ip *);
804 th = (struct tcphdr *)(ip + 1);
805 ip->ip_p = IPPROTO_TCP;
806 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
807 ip->ip_p = IPPROTO_TCP;
808 break;
809 #ifdef INET6
810 case AF_INET6:
811 ip6 = mtod(m, struct ip6_hdr *);
812 th = (struct tcphdr *)(ip6 + 1);
813 ip6->ip6_nxt = IPPROTO_TCP;
814 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
815 ip6->ip6_nxt = IPPROTO_TCP;
816 break;
817 #endif
818 #if 0
819 default:
820 /* noone will visit here */
821 m_freem(m);
822 return EAFNOSUPPORT;
823 #endif
824 }
825 xchg(th->th_dport, th->th_sport, u_int16_t);
826 #undef xchg
827 tlen = 0; /*be friendly with the following code*/
828 }
829 th->th_seq = htonl(seq);
830 th->th_ack = htonl(ack);
831 th->th_x2 = 0;
832 if ((flags & TH_SYN) == 0) {
833 if (tp)
834 win >>= tp->rcv_scale;
835 if (win > TCP_MAXWIN)
836 win = TCP_MAXWIN;
837 th->th_win = htons((u_int16_t)win);
838 th->th_off = sizeof (struct tcphdr) >> 2;
839 tlen += sizeof(*th);
840 } else
841 tlen += th->th_off << 2;
842 m->m_len = hlen + tlen;
843 m->m_pkthdr.len = hlen + tlen;
844 m->m_pkthdr.rcvif = NULL;
845 th->th_flags = flags;
846 th->th_urp = 0;
847
848 switch (family) {
849 #ifdef INET
850 case AF_INET:
851 {
852 struct ipovly *ipov = (struct ipovly *)ip;
853 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
854 ipov->ih_len = htons((u_int16_t)tlen);
855
856 th->th_sum = 0;
857 th->th_sum = in_cksum(m, hlen + tlen);
858 ip->ip_len = htons(hlen + tlen);
859 ip->ip_ttl = ip_defttl;
860 break;
861 }
862 #endif
863 #ifdef INET6
864 case AF_INET6:
865 {
866 th->th_sum = 0;
867 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
868 tlen);
869 ip6->ip6_plen = htons(tlen);
870 if (tp && tp->t_in6pcb) {
871 struct ifnet *oifp;
872 ro = &tp->t_in6pcb->in6p_route;
873 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
874 : NULL;
875 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
876 } else
877 ip6->ip6_hlim = ip6_defhlim;
878 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
879 if (ip6_auto_flowlabel) {
880 ip6->ip6_flow |=
881 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
882 }
883 break;
884 }
885 #endif
886 }
887
888 if (tp && tp->t_inpcb)
889 so = tp->t_inpcb->inp_socket;
890 #ifdef INET6
891 else if (tp && tp->t_in6pcb)
892 so = tp->t_in6pcb->in6p_socket;
893 #endif
894 else
895 so = NULL;
896
897 if (tp != NULL && tp->t_inpcb != NULL) {
898 ro = &tp->t_inpcb->inp_route;
899 #ifdef DIAGNOSTIC
900 if (family != AF_INET)
901 panic("tcp_respond: address family mismatch");
902 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
903 panic("tcp_respond: ip_dst %x != inp_faddr %x",
904 ntohl(ip->ip_dst.s_addr),
905 ntohl(tp->t_inpcb->inp_faddr.s_addr));
906 }
907 #endif
908 }
909 #ifdef INET6
910 else if (tp != NULL && tp->t_in6pcb != NULL) {
911 ro = (struct route *)&tp->t_in6pcb->in6p_route;
912 #ifdef DIAGNOSTIC
913 if (family == AF_INET) {
914 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
915 panic("tcp_respond: not mapped addr");
916 if (memcmp(&ip->ip_dst,
917 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
918 sizeof(ip->ip_dst)) != 0) {
919 panic("tcp_respond: ip_dst != in6p_faddr");
920 }
921 } else if (family == AF_INET6) {
922 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
923 &tp->t_in6pcb->in6p_faddr))
924 panic("tcp_respond: ip6_dst != in6p_faddr");
925 } else
926 panic("tcp_respond: address family mismatch");
927 #endif
928 }
929 #endif
930 else
931 ro = NULL;
932
933 switch (family) {
934 #ifdef INET
935 case AF_INET:
936 error = ip_output(m, NULL, ro,
937 (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
938 break;
939 #endif
940 #ifdef INET6
941 case AF_INET6:
942 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
943 break;
944 #endif
945 default:
946 error = EAFNOSUPPORT;
947 break;
948 }
949
950 return (error);
951 }
952
953 /*
954 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
955 * a bunch of members individually, we maintain this template for the
956 * static and mostly-static components of the TCPCB, and copy it into
957 * the new TCPCB instead.
958 */
959 static struct tcpcb tcpcb_template = {
960 .t_srtt = TCPTV_SRTTBASE,
961 .t_rttmin = TCPTV_MIN,
962
963 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
964 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
965 .snd_numholes = 0,
966 .snd_cubic_wmax = 0,
967 .snd_cubic_wmax_last = 0,
968 .snd_cubic_ctime = 0,
969
970 .t_partialacks = -1,
971 .t_bytes_acked = 0,
972 };
973
974 /*
975 * Updates the TCPCB template whenever a parameter that would affect
976 * the template is changed.
977 */
978 void
979 tcp_tcpcb_template(void)
980 {
981 struct tcpcb *tp = &tcpcb_template;
982 int flags;
983
984 tp->t_peermss = tcp_mssdflt;
985 tp->t_ourmss = tcp_mssdflt;
986 tp->t_segsz = tcp_mssdflt;
987
988 flags = 0;
989 if (tcp_do_rfc1323 && tcp_do_win_scale)
990 flags |= TF_REQ_SCALE;
991 if (tcp_do_rfc1323 && tcp_do_timestamps)
992 flags |= TF_REQ_TSTMP;
993 tp->t_flags = flags;
994
995 /*
996 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
997 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
998 * reasonable initial retransmit time.
999 */
1000 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
1001 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1002 TCPTV_MIN, TCPTV_REXMTMAX);
1003
1004 /* Keep Alive */
1005 tp->t_keepinit = tcp_keepinit;
1006 tp->t_keepidle = tcp_keepidle;
1007 tp->t_keepintvl = tcp_keepintvl;
1008 tp->t_keepcnt = tcp_keepcnt;
1009 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
1010
1011 /* MSL */
1012 tp->t_msl = TCPTV_MSL;
1013 }
1014
1015 /*
1016 * Create a new TCP control block, making an
1017 * empty reassembly queue and hooking it to the argument
1018 * protocol control block.
1019 */
1020 /* family selects inpcb, or in6pcb */
1021 struct tcpcb *
1022 tcp_newtcpcb(int family, void *aux)
1023 {
1024 #ifdef INET6
1025 struct rtentry *rt;
1026 #endif
1027 struct tcpcb *tp;
1028 int i;
1029
1030 /* XXX Consider using a pool_cache for speed. */
1031 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
1032 if (tp == NULL)
1033 return (NULL);
1034 memcpy(tp, &tcpcb_template, sizeof(*tp));
1035 TAILQ_INIT(&tp->segq);
1036 TAILQ_INIT(&tp->timeq);
1037 tp->t_family = family; /* may be overridden later on */
1038 TAILQ_INIT(&tp->snd_holes);
1039 LIST_INIT(&tp->t_sc); /* XXX can template this */
1040
1041 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1042 for (i = 0; i < TCPT_NTIMERS; i++) {
1043 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1044 TCP_TIMER_INIT(tp, i);
1045 }
1046 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1047
1048 switch (family) {
1049 case AF_INET:
1050 {
1051 struct inpcb *inp = (struct inpcb *)aux;
1052
1053 inp->inp_ip.ip_ttl = ip_defttl;
1054 inp->inp_ppcb = (void *)tp;
1055
1056 tp->t_inpcb = inp;
1057 tp->t_mtudisc = ip_mtudisc;
1058 break;
1059 }
1060 #ifdef INET6
1061 case AF_INET6:
1062 {
1063 struct in6pcb *in6p = (struct in6pcb *)aux;
1064
1065 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1066 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1067 ? rt->rt_ifp
1068 : NULL);
1069 in6p->in6p_ppcb = (void *)tp;
1070
1071 tp->t_in6pcb = in6p;
1072 /* for IPv6, always try to run path MTU discovery */
1073 tp->t_mtudisc = 1;
1074 break;
1075 }
1076 #endif /* INET6 */
1077 default:
1078 for (i = 0; i < TCPT_NTIMERS; i++)
1079 callout_destroy(&tp->t_timer[i]);
1080 callout_destroy(&tp->t_delack_ch);
1081 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1082 return (NULL);
1083 }
1084
1085 /*
1086 * Initialize our timebase. When we send timestamps, we take
1087 * the delta from tcp_now -- this means each connection always
1088 * gets a timebase of 1, which makes it, among other things,
1089 * more difficult to determine how long a system has been up,
1090 * and thus how many TCP sequence increments have occurred.
1091 *
1092 * We start with 1, because 0 doesn't work with linux, which
1093 * considers timestamp 0 in a SYN packet as a bug and disables
1094 * timestamps.
1095 */
1096 tp->ts_timebase = tcp_now - 1;
1097
1098 tcp_congctl_select(tp, tcp_congctl_global_name);
1099
1100 return (tp);
1101 }
1102
1103 /*
1104 * Drop a TCP connection, reporting
1105 * the specified error. If connection is synchronized,
1106 * then send a RST to peer.
1107 */
1108 struct tcpcb *
1109 tcp_drop(struct tcpcb *tp, int errno)
1110 {
1111 struct socket *so = NULL;
1112
1113 #ifdef DIAGNOSTIC
1114 if (tp->t_inpcb && tp->t_in6pcb)
1115 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1116 #endif
1117 #ifdef INET
1118 if (tp->t_inpcb)
1119 so = tp->t_inpcb->inp_socket;
1120 #endif
1121 #ifdef INET6
1122 if (tp->t_in6pcb)
1123 so = tp->t_in6pcb->in6p_socket;
1124 #endif
1125 if (!so)
1126 return NULL;
1127
1128 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1129 tp->t_state = TCPS_CLOSED;
1130 (void) tcp_output(tp);
1131 TCP_STATINC(TCP_STAT_DROPS);
1132 } else
1133 TCP_STATINC(TCP_STAT_CONNDROPS);
1134 if (errno == ETIMEDOUT && tp->t_softerror)
1135 errno = tp->t_softerror;
1136 so->so_error = errno;
1137 return (tcp_close(tp));
1138 }
1139
1140 /*
1141 * Close a TCP control block:
1142 * discard all space held by the tcp
1143 * discard internet protocol block
1144 * wake up any sleepers
1145 */
1146 struct tcpcb *
1147 tcp_close(struct tcpcb *tp)
1148 {
1149 struct inpcb *inp;
1150 #ifdef INET6
1151 struct in6pcb *in6p;
1152 #endif
1153 struct socket *so;
1154 #ifdef RTV_RTT
1155 struct rtentry *rt;
1156 #endif
1157 struct route *ro;
1158 int j;
1159
1160 inp = tp->t_inpcb;
1161 #ifdef INET6
1162 in6p = tp->t_in6pcb;
1163 #endif
1164 so = NULL;
1165 ro = NULL;
1166 if (inp) {
1167 so = inp->inp_socket;
1168 ro = &inp->inp_route;
1169 }
1170 #ifdef INET6
1171 else if (in6p) {
1172 so = in6p->in6p_socket;
1173 ro = (struct route *)&in6p->in6p_route;
1174 }
1175 #endif
1176
1177 #ifdef RTV_RTT
1178 /*
1179 * If we sent enough data to get some meaningful characteristics,
1180 * save them in the routing entry. 'Enough' is arbitrarily
1181 * defined as the sendpipesize (default 4K) * 16. This would
1182 * give us 16 rtt samples assuming we only get one sample per
1183 * window (the usual case on a long haul net). 16 samples is
1184 * enough for the srtt filter to converge to within 5% of the correct
1185 * value; fewer samples and we could save a very bogus rtt.
1186 *
1187 * Don't update the default route's characteristics and don't
1188 * update anything that the user "locked".
1189 */
1190 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1191 ro && (rt = rtcache_validate(ro)) != NULL &&
1192 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1193 u_long i = 0;
1194
1195 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1196 i = tp->t_srtt *
1197 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1198 if (rt->rt_rmx.rmx_rtt && i)
1199 /*
1200 * filter this update to half the old & half
1201 * the new values, converting scale.
1202 * See route.h and tcp_var.h for a
1203 * description of the scaling constants.
1204 */
1205 rt->rt_rmx.rmx_rtt =
1206 (rt->rt_rmx.rmx_rtt + i) / 2;
1207 else
1208 rt->rt_rmx.rmx_rtt = i;
1209 }
1210 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1211 i = tp->t_rttvar *
1212 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1213 if (rt->rt_rmx.rmx_rttvar && i)
1214 rt->rt_rmx.rmx_rttvar =
1215 (rt->rt_rmx.rmx_rttvar + i) / 2;
1216 else
1217 rt->rt_rmx.rmx_rttvar = i;
1218 }
1219 /*
1220 * update the pipelimit (ssthresh) if it has been updated
1221 * already or if a pipesize was specified & the threshhold
1222 * got below half the pipesize. I.e., wait for bad news
1223 * before we start updating, then update on both good
1224 * and bad news.
1225 */
1226 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1227 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1228 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1229 /*
1230 * convert the limit from user data bytes to
1231 * packets then to packet data bytes.
1232 */
1233 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1234 if (i < 2)
1235 i = 2;
1236 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1237 if (rt->rt_rmx.rmx_ssthresh)
1238 rt->rt_rmx.rmx_ssthresh =
1239 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1240 else
1241 rt->rt_rmx.rmx_ssthresh = i;
1242 }
1243 }
1244 #endif /* RTV_RTT */
1245 /* free the reassembly queue, if any */
1246 TCP_REASS_LOCK(tp);
1247 (void) tcp_freeq(tp);
1248 TCP_REASS_UNLOCK(tp);
1249
1250 /* free the SACK holes list. */
1251 tcp_free_sackholes(tp);
1252 tcp_congctl_release(tp);
1253 syn_cache_cleanup(tp);
1254
1255 if (tp->t_template) {
1256 m_free(tp->t_template);
1257 tp->t_template = NULL;
1258 }
1259
1260 /*
1261 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1262 * the timers can also drop the lock. We need to prevent access
1263 * to the tcpcb as it's half torn down. Flag the pcb as dead
1264 * (prevents access by timers) and only then detach it.
1265 */
1266 tp->t_flags |= TF_DEAD;
1267 if (inp) {
1268 inp->inp_ppcb = 0;
1269 soisdisconnected(so);
1270 in_pcbdetach(inp);
1271 }
1272 #ifdef INET6
1273 else if (in6p) {
1274 in6p->in6p_ppcb = 0;
1275 soisdisconnected(so);
1276 in6_pcbdetach(in6p);
1277 }
1278 #endif
1279 /*
1280 * pcb is no longer visble elsewhere, so we can safely release
1281 * the lock in callout_halt() if needed.
1282 */
1283 TCP_STATINC(TCP_STAT_CLOSED);
1284 for (j = 0; j < TCPT_NTIMERS; j++) {
1285 callout_halt(&tp->t_timer[j], softnet_lock);
1286 callout_destroy(&tp->t_timer[j]);
1287 }
1288 callout_halt(&tp->t_delack_ch, softnet_lock);
1289 callout_destroy(&tp->t_delack_ch);
1290 pool_put(&tcpcb_pool, tp);
1291
1292 return NULL;
1293 }
1294
1295 int
1296 tcp_freeq(struct tcpcb *tp)
1297 {
1298 struct ipqent *qe;
1299 int rv = 0;
1300 #ifdef TCPREASS_DEBUG
1301 int i = 0;
1302 #endif
1303
1304 TCP_REASS_LOCK_CHECK(tp);
1305
1306 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1307 #ifdef TCPREASS_DEBUG
1308 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1309 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1310 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1311 #endif
1312 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1313 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1314 m_freem(qe->ipqe_m);
1315 tcpipqent_free(qe);
1316 rv = 1;
1317 }
1318 tp->t_segqlen = 0;
1319 KASSERT(TAILQ_EMPTY(&tp->timeq));
1320 return (rv);
1321 }
1322
1323 void
1324 tcp_fasttimo(void)
1325 {
1326 if (tcp_drainwanted) {
1327 tcp_drain();
1328 tcp_drainwanted = 0;
1329 }
1330 }
1331
1332 void
1333 tcp_drainstub(void)
1334 {
1335 tcp_drainwanted = 1;
1336 }
1337
1338 /*
1339 * Protocol drain routine. Called when memory is in short supply.
1340 * Called from pr_fasttimo thus a callout context.
1341 */
1342 void
1343 tcp_drain(void)
1344 {
1345 struct inpcb_hdr *inph;
1346 struct tcpcb *tp;
1347
1348 mutex_enter(softnet_lock);
1349 KERNEL_LOCK(1, NULL);
1350
1351 /*
1352 * Free the sequence queue of all TCP connections.
1353 */
1354 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1355 switch (inph->inph_af) {
1356 case AF_INET:
1357 tp = intotcpcb((struct inpcb *)inph);
1358 break;
1359 #ifdef INET6
1360 case AF_INET6:
1361 tp = in6totcpcb((struct in6pcb *)inph);
1362 break;
1363 #endif
1364 default:
1365 tp = NULL;
1366 break;
1367 }
1368 if (tp != NULL) {
1369 /*
1370 * We may be called from a device's interrupt
1371 * context. If the tcpcb is already busy,
1372 * just bail out now.
1373 */
1374 if (tcp_reass_lock_try(tp) == 0)
1375 continue;
1376 if (tcp_freeq(tp))
1377 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1378 TCP_REASS_UNLOCK(tp);
1379 }
1380 }
1381
1382 KERNEL_UNLOCK_ONE(NULL);
1383 mutex_exit(softnet_lock);
1384 }
1385
1386 /*
1387 * Notify a tcp user of an asynchronous error;
1388 * store error as soft error, but wake up user
1389 * (for now, won't do anything until can select for soft error).
1390 */
1391 void
1392 tcp_notify(struct inpcb *inp, int error)
1393 {
1394 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1395 struct socket *so = inp->inp_socket;
1396
1397 /*
1398 * Ignore some errors if we are hooked up.
1399 * If connection hasn't completed, has retransmitted several times,
1400 * and receives a second error, give up now. This is better
1401 * than waiting a long time to establish a connection that
1402 * can never complete.
1403 */
1404 if (tp->t_state == TCPS_ESTABLISHED &&
1405 (error == EHOSTUNREACH || error == ENETUNREACH ||
1406 error == EHOSTDOWN)) {
1407 return;
1408 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1409 tp->t_rxtshift > 3 && tp->t_softerror)
1410 so->so_error = error;
1411 else
1412 tp->t_softerror = error;
1413 cv_broadcast(&so->so_cv);
1414 sorwakeup(so);
1415 sowwakeup(so);
1416 }
1417
1418 #ifdef INET6
1419 void
1420 tcp6_notify(struct in6pcb *in6p, int error)
1421 {
1422 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1423 struct socket *so = in6p->in6p_socket;
1424
1425 /*
1426 * Ignore some errors if we are hooked up.
1427 * If connection hasn't completed, has retransmitted several times,
1428 * and receives a second error, give up now. This is better
1429 * than waiting a long time to establish a connection that
1430 * can never complete.
1431 */
1432 if (tp->t_state == TCPS_ESTABLISHED &&
1433 (error == EHOSTUNREACH || error == ENETUNREACH ||
1434 error == EHOSTDOWN)) {
1435 return;
1436 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1437 tp->t_rxtshift > 3 && tp->t_softerror)
1438 so->so_error = error;
1439 else
1440 tp->t_softerror = error;
1441 cv_broadcast(&so->so_cv);
1442 sorwakeup(so);
1443 sowwakeup(so);
1444 }
1445 #endif
1446
1447 #ifdef INET6
1448 void *
1449 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1450 {
1451 struct tcphdr th;
1452 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1453 int nmatch;
1454 struct ip6_hdr *ip6;
1455 const struct sockaddr_in6 *sa6_src = NULL;
1456 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1457 struct mbuf *m;
1458 int off;
1459
1460 if (sa->sa_family != AF_INET6 ||
1461 sa->sa_len != sizeof(struct sockaddr_in6))
1462 return NULL;
1463 if ((unsigned)cmd >= PRC_NCMDS)
1464 return NULL;
1465 else if (cmd == PRC_QUENCH) {
1466 /*
1467 * Don't honor ICMP Source Quench messages meant for
1468 * TCP connections.
1469 */
1470 return NULL;
1471 } else if (PRC_IS_REDIRECT(cmd))
1472 notify = in6_rtchange, d = NULL;
1473 else if (cmd == PRC_MSGSIZE)
1474 ; /* special code is present, see below */
1475 else if (cmd == PRC_HOSTDEAD)
1476 d = NULL;
1477 else if (inet6ctlerrmap[cmd] == 0)
1478 return NULL;
1479
1480 /* if the parameter is from icmp6, decode it. */
1481 if (d != NULL) {
1482 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1483 m = ip6cp->ip6c_m;
1484 ip6 = ip6cp->ip6c_ip6;
1485 off = ip6cp->ip6c_off;
1486 sa6_src = ip6cp->ip6c_src;
1487 } else {
1488 m = NULL;
1489 ip6 = NULL;
1490 sa6_src = &sa6_any;
1491 off = 0;
1492 }
1493
1494 if (ip6) {
1495 /*
1496 * XXX: We assume that when ip6 is non NULL,
1497 * M and OFF are valid.
1498 */
1499
1500 /* check if we can safely examine src and dst ports */
1501 if (m->m_pkthdr.len < off + sizeof(th)) {
1502 if (cmd == PRC_MSGSIZE)
1503 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1504 return NULL;
1505 }
1506
1507 memset(&th, 0, sizeof(th));
1508 m_copydata(m, off, sizeof(th), (void *)&th);
1509
1510 if (cmd == PRC_MSGSIZE) {
1511 int valid = 0;
1512
1513 /*
1514 * Check to see if we have a valid TCP connection
1515 * corresponding to the address in the ICMPv6 message
1516 * payload.
1517 */
1518 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1519 th.th_dport,
1520 (const struct in6_addr *)&sa6_src->sin6_addr,
1521 th.th_sport, 0, 0))
1522 valid++;
1523
1524 /*
1525 * Depending on the value of "valid" and routing table
1526 * size (mtudisc_{hi,lo}wat), we will:
1527 * - recalcurate the new MTU and create the
1528 * corresponding routing entry, or
1529 * - ignore the MTU change notification.
1530 */
1531 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1532
1533 /*
1534 * no need to call in6_pcbnotify, it should have been
1535 * called via callback if necessary
1536 */
1537 return NULL;
1538 }
1539
1540 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1541 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1542 if (nmatch == 0 && syn_cache_count &&
1543 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1544 inet6ctlerrmap[cmd] == ENETUNREACH ||
1545 inet6ctlerrmap[cmd] == EHOSTDOWN))
1546 syn_cache_unreach((const struct sockaddr *)sa6_src,
1547 sa, &th);
1548 } else {
1549 (void) in6_pcbnotify(&tcbtable, sa, 0,
1550 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1551 }
1552
1553 return NULL;
1554 }
1555 #endif
1556
1557 #ifdef INET
1558 /* assumes that ip header and tcp header are contiguous on mbuf */
1559 void *
1560 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1561 {
1562 struct ip *ip = v;
1563 struct tcphdr *th;
1564 struct icmp *icp;
1565 extern const int inetctlerrmap[];
1566 void (*notify)(struct inpcb *, int) = tcp_notify;
1567 int errno;
1568 int nmatch;
1569 struct tcpcb *tp;
1570 u_int mtu;
1571 tcp_seq seq;
1572 struct inpcb *inp;
1573 #ifdef INET6
1574 struct in6pcb *in6p;
1575 struct in6_addr src6, dst6;
1576 #endif
1577
1578 if (sa->sa_family != AF_INET ||
1579 sa->sa_len != sizeof(struct sockaddr_in))
1580 return NULL;
1581 if ((unsigned)cmd >= PRC_NCMDS)
1582 return NULL;
1583 errno = inetctlerrmap[cmd];
1584 if (cmd == PRC_QUENCH)
1585 /*
1586 * Don't honor ICMP Source Quench messages meant for
1587 * TCP connections.
1588 */
1589 return NULL;
1590 else if (PRC_IS_REDIRECT(cmd))
1591 notify = in_rtchange, ip = 0;
1592 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1593 /*
1594 * Check to see if we have a valid TCP connection
1595 * corresponding to the address in the ICMP message
1596 * payload.
1597 *
1598 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1599 */
1600 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1601 #ifdef INET6
1602 memset(&src6, 0, sizeof(src6));
1603 memset(&dst6, 0, sizeof(dst6));
1604 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1605 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1606 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1607 #endif
1608 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1609 th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1610 #ifdef INET6
1611 in6p = NULL;
1612 #else
1613 ;
1614 #endif
1615 #ifdef INET6
1616 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1617 th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1618 ;
1619 #endif
1620 else
1621 return NULL;
1622
1623 /*
1624 * Now that we've validated that we are actually communicating
1625 * with the host indicated in the ICMP message, locate the
1626 * ICMP header, recalculate the new MTU, and create the
1627 * corresponding routing entry.
1628 */
1629 icp = (struct icmp *)((char *)ip -
1630 offsetof(struct icmp, icmp_ip));
1631 if (inp) {
1632 if ((tp = intotcpcb(inp)) == NULL)
1633 return NULL;
1634 }
1635 #ifdef INET6
1636 else if (in6p) {
1637 if ((tp = in6totcpcb(in6p)) == NULL)
1638 return NULL;
1639 }
1640 #endif
1641 else
1642 return NULL;
1643 seq = ntohl(th->th_seq);
1644 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1645 return NULL;
1646 /*
1647 * If the ICMP message advertises a Next-Hop MTU
1648 * equal or larger than the maximum packet size we have
1649 * ever sent, drop the message.
1650 */
1651 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1652 if (mtu >= tp->t_pmtud_mtu_sent)
1653 return NULL;
1654 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1655 /*
1656 * Calculate new MTU, and create corresponding
1657 * route (traditional PMTUD).
1658 */
1659 tp->t_flags &= ~TF_PMTUD_PEND;
1660 icmp_mtudisc(icp, ip->ip_dst);
1661 } else {
1662 /*
1663 * Record the information got in the ICMP
1664 * message; act on it later.
1665 * If we had already recorded an ICMP message,
1666 * replace the old one only if the new message
1667 * refers to an older TCP segment
1668 */
1669 if (tp->t_flags & TF_PMTUD_PEND) {
1670 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1671 return NULL;
1672 } else
1673 tp->t_flags |= TF_PMTUD_PEND;
1674 tp->t_pmtud_th_seq = seq;
1675 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1676 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1677 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1678 }
1679 return NULL;
1680 } else if (cmd == PRC_HOSTDEAD)
1681 ip = 0;
1682 else if (errno == 0)
1683 return NULL;
1684 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1685 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1686 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1687 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1688 if (nmatch == 0 && syn_cache_count &&
1689 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1690 inetctlerrmap[cmd] == ENETUNREACH ||
1691 inetctlerrmap[cmd] == EHOSTDOWN)) {
1692 struct sockaddr_in sin;
1693 memset(&sin, 0, sizeof(sin));
1694 sin.sin_len = sizeof(sin);
1695 sin.sin_family = AF_INET;
1696 sin.sin_port = th->th_sport;
1697 sin.sin_addr = ip->ip_src;
1698 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1699 }
1700
1701 /* XXX mapped address case */
1702 } else
1703 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1704 notify);
1705 return NULL;
1706 }
1707
1708 /*
1709 * When a source quench is received, we are being notified of congestion.
1710 * Close the congestion window down to the Loss Window (one segment).
1711 * We will gradually open it again as we proceed.
1712 */
1713 void
1714 tcp_quench(struct inpcb *inp, int errno)
1715 {
1716 struct tcpcb *tp = intotcpcb(inp);
1717
1718 if (tp) {
1719 tp->snd_cwnd = tp->t_segsz;
1720 tp->t_bytes_acked = 0;
1721 }
1722 }
1723 #endif
1724
1725 #ifdef INET6
1726 void
1727 tcp6_quench(struct in6pcb *in6p, int errno)
1728 {
1729 struct tcpcb *tp = in6totcpcb(in6p);
1730
1731 if (tp) {
1732 tp->snd_cwnd = tp->t_segsz;
1733 tp->t_bytes_acked = 0;
1734 }
1735 }
1736 #endif
1737
1738 #ifdef INET
1739 /*
1740 * Path MTU Discovery handlers.
1741 */
1742 void
1743 tcp_mtudisc_callback(struct in_addr faddr)
1744 {
1745 #ifdef INET6
1746 struct in6_addr in6;
1747 #endif
1748
1749 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1750 #ifdef INET6
1751 memset(&in6, 0, sizeof(in6));
1752 in6.s6_addr16[5] = 0xffff;
1753 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1754 tcp6_mtudisc_callback(&in6);
1755 #endif
1756 }
1757
1758 /*
1759 * On receipt of path MTU corrections, flush old route and replace it
1760 * with the new one. Retransmit all unacknowledged packets, to ensure
1761 * that all packets will be received.
1762 */
1763 void
1764 tcp_mtudisc(struct inpcb *inp, int errno)
1765 {
1766 struct tcpcb *tp = intotcpcb(inp);
1767 struct rtentry *rt = in_pcbrtentry(inp);
1768
1769 if (tp != 0) {
1770 if (rt != 0) {
1771 /*
1772 * If this was not a host route, remove and realloc.
1773 */
1774 if ((rt->rt_flags & RTF_HOST) == 0) {
1775 in_rtchange(inp, errno);
1776 if ((rt = in_pcbrtentry(inp)) == 0)
1777 return;
1778 }
1779
1780 /*
1781 * Slow start out of the error condition. We
1782 * use the MTU because we know it's smaller
1783 * than the previously transmitted segment.
1784 *
1785 * Note: This is more conservative than the
1786 * suggestion in draft-floyd-incr-init-win-03.
1787 */
1788 if (rt->rt_rmx.rmx_mtu != 0)
1789 tp->snd_cwnd =
1790 TCP_INITIAL_WINDOW(tcp_init_win,
1791 rt->rt_rmx.rmx_mtu);
1792 }
1793
1794 /*
1795 * Resend unacknowledged packets.
1796 */
1797 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1798 tcp_output(tp);
1799 }
1800 }
1801 #endif
1802
1803 #ifdef INET6
1804 /*
1805 * Path MTU Discovery handlers.
1806 */
1807 void
1808 tcp6_mtudisc_callback(struct in6_addr *faddr)
1809 {
1810 struct sockaddr_in6 sin6;
1811
1812 memset(&sin6, 0, sizeof(sin6));
1813 sin6.sin6_family = AF_INET6;
1814 sin6.sin6_len = sizeof(struct sockaddr_in6);
1815 sin6.sin6_addr = *faddr;
1816 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1817 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1818 }
1819
1820 void
1821 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1822 {
1823 struct tcpcb *tp = in6totcpcb(in6p);
1824 struct rtentry *rt = in6_pcbrtentry(in6p);
1825
1826 if (tp != 0) {
1827 if (rt != 0) {
1828 /*
1829 * If this was not a host route, remove and realloc.
1830 */
1831 if ((rt->rt_flags & RTF_HOST) == 0) {
1832 in6_rtchange(in6p, errno);
1833 if ((rt = in6_pcbrtentry(in6p)) == 0)
1834 return;
1835 }
1836
1837 /*
1838 * Slow start out of the error condition. We
1839 * use the MTU because we know it's smaller
1840 * than the previously transmitted segment.
1841 *
1842 * Note: This is more conservative than the
1843 * suggestion in draft-floyd-incr-init-win-03.
1844 */
1845 if (rt->rt_rmx.rmx_mtu != 0)
1846 tp->snd_cwnd =
1847 TCP_INITIAL_WINDOW(tcp_init_win,
1848 rt->rt_rmx.rmx_mtu);
1849 }
1850
1851 /*
1852 * Resend unacknowledged packets.
1853 */
1854 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1855 tcp_output(tp);
1856 }
1857 }
1858 #endif /* INET6 */
1859
1860 /*
1861 * Compute the MSS to advertise to the peer. Called only during
1862 * the 3-way handshake. If we are the server (peer initiated
1863 * connection), we are called with a pointer to the interface
1864 * on which the SYN packet arrived. If we are the client (we
1865 * initiated connection), we are called with a pointer to the
1866 * interface out which this connection should go.
1867 *
1868 * NOTE: Do not subtract IP option/extension header size nor IPsec
1869 * header size from MSS advertisement. MSS option must hold the maximum
1870 * segment size we can accept, so it must always be:
1871 * max(if mtu) - ip header - tcp header
1872 */
1873 u_long
1874 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1875 {
1876 extern u_long in_maxmtu;
1877 u_long mss = 0;
1878 u_long hdrsiz;
1879
1880 /*
1881 * In order to avoid defeating path MTU discovery on the peer,
1882 * we advertise the max MTU of all attached networks as our MSS,
1883 * per RFC 1191, section 3.1.
1884 *
1885 * We provide the option to advertise just the MTU of
1886 * the interface on which we hope this connection will
1887 * be receiving. If we are responding to a SYN, we
1888 * will have a pretty good idea about this, but when
1889 * initiating a connection there is a bit more doubt.
1890 *
1891 * We also need to ensure that loopback has a large enough
1892 * MSS, as the loopback MTU is never included in in_maxmtu.
1893 */
1894
1895 if (ifp != NULL)
1896 switch (af) {
1897 case AF_INET:
1898 mss = ifp->if_mtu;
1899 break;
1900 #ifdef INET6
1901 case AF_INET6:
1902 mss = IN6_LINKMTU(ifp);
1903 break;
1904 #endif
1905 }
1906
1907 if (tcp_mss_ifmtu == 0)
1908 switch (af) {
1909 case AF_INET:
1910 mss = max(in_maxmtu, mss);
1911 break;
1912 #ifdef INET6
1913 case AF_INET6:
1914 mss = max(in6_maxmtu, mss);
1915 break;
1916 #endif
1917 }
1918
1919 switch (af) {
1920 case AF_INET:
1921 hdrsiz = sizeof(struct ip);
1922 break;
1923 #ifdef INET6
1924 case AF_INET6:
1925 hdrsiz = sizeof(struct ip6_hdr);
1926 break;
1927 #endif
1928 default:
1929 hdrsiz = 0;
1930 break;
1931 }
1932 hdrsiz += sizeof(struct tcphdr);
1933 if (mss > hdrsiz)
1934 mss -= hdrsiz;
1935
1936 mss = max(tcp_mssdflt, mss);
1937 return (mss);
1938 }
1939
1940 /*
1941 * Set connection variables based on the peer's advertised MSS.
1942 * We are passed the TCPCB for the actual connection. If we
1943 * are the server, we are called by the compressed state engine
1944 * when the 3-way handshake is complete. If we are the client,
1945 * we are called when we receive the SYN,ACK from the server.
1946 *
1947 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1948 * before this routine is called!
1949 */
1950 void
1951 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1952 {
1953 struct socket *so;
1954 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1955 struct rtentry *rt;
1956 #endif
1957 u_long bufsize;
1958 int mss;
1959
1960 #ifdef DIAGNOSTIC
1961 if (tp->t_inpcb && tp->t_in6pcb)
1962 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1963 #endif
1964 so = NULL;
1965 rt = NULL;
1966 #ifdef INET
1967 if (tp->t_inpcb) {
1968 so = tp->t_inpcb->inp_socket;
1969 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1970 rt = in_pcbrtentry(tp->t_inpcb);
1971 #endif
1972 }
1973 #endif
1974 #ifdef INET6
1975 if (tp->t_in6pcb) {
1976 so = tp->t_in6pcb->in6p_socket;
1977 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1978 rt = in6_pcbrtentry(tp->t_in6pcb);
1979 #endif
1980 }
1981 #endif
1982
1983 /*
1984 * As per RFC1122, use the default MSS value, unless they
1985 * sent us an offer. Do not accept offers less than 256 bytes.
1986 */
1987 mss = tcp_mssdflt;
1988 if (offer)
1989 mss = offer;
1990 mss = max(mss, 256); /* sanity */
1991 tp->t_peermss = mss;
1992 mss -= tcp_optlen(tp);
1993 #ifdef INET
1994 if (tp->t_inpcb)
1995 mss -= ip_optlen(tp->t_inpcb);
1996 #endif
1997 #ifdef INET6
1998 if (tp->t_in6pcb)
1999 mss -= ip6_optlen(tp->t_in6pcb);
2000 #endif
2001
2002 /*
2003 * If there's a pipesize, change the socket buffer to that size.
2004 * Make the socket buffer an integral number of MSS units. If
2005 * the MSS is larger than the socket buffer, artificially decrease
2006 * the MSS.
2007 */
2008 #ifdef RTV_SPIPE
2009 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
2010 bufsize = rt->rt_rmx.rmx_sendpipe;
2011 else
2012 #endif
2013 {
2014 KASSERT(so != NULL);
2015 bufsize = so->so_snd.sb_hiwat;
2016 }
2017 if (bufsize < mss)
2018 mss = bufsize;
2019 else {
2020 bufsize = roundup(bufsize, mss);
2021 if (bufsize > sb_max)
2022 bufsize = sb_max;
2023 (void) sbreserve(&so->so_snd, bufsize, so);
2024 }
2025 tp->t_segsz = mss;
2026
2027 #ifdef RTV_SSTHRESH
2028 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2029 /*
2030 * There's some sort of gateway or interface buffer
2031 * limit on the path. Use this to set the slow
2032 * start threshold, but set the threshold to no less
2033 * than 2 * MSS.
2034 */
2035 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2036 }
2037 #endif
2038 }
2039
2040 /*
2041 * Processing necessary when a TCP connection is established.
2042 */
2043 void
2044 tcp_established(struct tcpcb *tp)
2045 {
2046 struct socket *so;
2047 #ifdef RTV_RPIPE
2048 struct rtentry *rt;
2049 #endif
2050 u_long bufsize;
2051
2052 #ifdef DIAGNOSTIC
2053 if (tp->t_inpcb && tp->t_in6pcb)
2054 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2055 #endif
2056 so = NULL;
2057 rt = NULL;
2058 #ifdef INET
2059 /* This is a while() to reduce the dreadful stairstepping below */
2060 while (tp->t_inpcb) {
2061 so = tp->t_inpcb->inp_socket;
2062 #if defined(RTV_RPIPE)
2063 rt = in_pcbrtentry(tp->t_inpcb);
2064 #endif
2065 if (__predict_true(tcp_msl_enable)) {
2066 if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2067 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2068 break;
2069 }
2070
2071 if (__predict_false(tcp_rttlocal)) {
2072 /* This may be adjusted by tcp_input */
2073 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2074 break;
2075 }
2076 if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2077 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2078 break;
2079 }
2080 }
2081 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2082 break;
2083 }
2084 #endif
2085 #ifdef INET6
2086 /* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2087 while (!tp->t_inpcb && tp->t_in6pcb) {
2088 so = tp->t_in6pcb->in6p_socket;
2089 #if defined(RTV_RPIPE)
2090 rt = in6_pcbrtentry(tp->t_in6pcb);
2091 #endif
2092 if (__predict_true(tcp_msl_enable)) {
2093 extern const struct in6_addr in6addr_loopback;
2094
2095 if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2096 &in6addr_loopback)) {
2097 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2098 break;
2099 }
2100
2101 if (__predict_false(tcp_rttlocal)) {
2102 /* This may be adjusted by tcp_input */
2103 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2104 break;
2105 }
2106 if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2107 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2108 break;
2109 }
2110 }
2111 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2112 break;
2113 }
2114 #endif
2115
2116 tp->t_state = TCPS_ESTABLISHED;
2117 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2118
2119 #ifdef RTV_RPIPE
2120 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2121 bufsize = rt->rt_rmx.rmx_recvpipe;
2122 else
2123 #endif
2124 {
2125 KASSERT(so != NULL);
2126 bufsize = so->so_rcv.sb_hiwat;
2127 }
2128 if (bufsize > tp->t_ourmss) {
2129 bufsize = roundup(bufsize, tp->t_ourmss);
2130 if (bufsize > sb_max)
2131 bufsize = sb_max;
2132 (void) sbreserve(&so->so_rcv, bufsize, so);
2133 }
2134 }
2135
2136 /*
2137 * Check if there's an initial rtt or rttvar. Convert from the
2138 * route-table units to scaled multiples of the slow timeout timer.
2139 * Called only during the 3-way handshake.
2140 */
2141 void
2142 tcp_rmx_rtt(struct tcpcb *tp)
2143 {
2144 #ifdef RTV_RTT
2145 struct rtentry *rt = NULL;
2146 int rtt;
2147
2148 #ifdef DIAGNOSTIC
2149 if (tp->t_inpcb && tp->t_in6pcb)
2150 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2151 #endif
2152 #ifdef INET
2153 if (tp->t_inpcb)
2154 rt = in_pcbrtentry(tp->t_inpcb);
2155 #endif
2156 #ifdef INET6
2157 if (tp->t_in6pcb)
2158 rt = in6_pcbrtentry(tp->t_in6pcb);
2159 #endif
2160 if (rt == NULL)
2161 return;
2162
2163 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2164 /*
2165 * XXX The lock bit for MTU indicates that the value
2166 * is also a minimum value; this is subject to time.
2167 */
2168 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2169 TCPT_RANGESET(tp->t_rttmin,
2170 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2171 TCPTV_MIN, TCPTV_REXMTMAX);
2172 tp->t_srtt = rtt /
2173 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2174 if (rt->rt_rmx.rmx_rttvar) {
2175 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2176 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2177 (TCP_RTTVAR_SHIFT + 2));
2178 } else {
2179 /* Default variation is +- 1 rtt */
2180 tp->t_rttvar =
2181 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2182 }
2183 TCPT_RANGESET(tp->t_rxtcur,
2184 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2185 tp->t_rttmin, TCPTV_REXMTMAX);
2186 }
2187 #endif
2188 }
2189
2190 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2191 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2192
2193 /*
2194 * Get a new sequence value given a tcp control block
2195 */
2196 tcp_seq
2197 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2198 {
2199
2200 #ifdef INET
2201 if (tp->t_inpcb != NULL) {
2202 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2203 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2204 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2205 addin));
2206 }
2207 #endif
2208 #ifdef INET6
2209 if (tp->t_in6pcb != NULL) {
2210 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2211 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2212 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2213 addin));
2214 }
2215 #endif
2216 /* Not possible. */
2217 panic("tcp_new_iss");
2218 }
2219
2220 /*
2221 * This routine actually generates a new TCP initial sequence number.
2222 */
2223 tcp_seq
2224 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2225 size_t addrsz, tcp_seq addin)
2226 {
2227 tcp_seq tcp_iss;
2228
2229 static bool tcp_iss_gotten_secret;
2230
2231 /*
2232 * If we haven't been here before, initialize our cryptographic
2233 * hash secret.
2234 */
2235 if (tcp_iss_gotten_secret == false) {
2236 cprng_strong(kern_cprng,
2237 tcp_iss_secret, sizeof(tcp_iss_secret), FASYNC);
2238 tcp_iss_gotten_secret = true;
2239 }
2240
2241 if (tcp_do_rfc1948) {
2242 MD5_CTX ctx;
2243 u_int8_t hash[16]; /* XXX MD5 knowledge */
2244
2245 /*
2246 * Compute the base value of the ISS. It is a hash
2247 * of (saddr, sport, daddr, dport, secret).
2248 */
2249 MD5Init(&ctx);
2250
2251 MD5Update(&ctx, (u_char *) laddr, addrsz);
2252 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2253
2254 MD5Update(&ctx, (u_char *) faddr, addrsz);
2255 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2256
2257 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2258
2259 MD5Final(hash, &ctx);
2260
2261 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2262
2263 /*
2264 * Now increment our "timer", and add it in to
2265 * the computed value.
2266 *
2267 * XXX Use `addin'?
2268 * XXX TCP_ISSINCR too large to use?
2269 */
2270 tcp_iss_seq += TCP_ISSINCR;
2271 #ifdef TCPISS_DEBUG
2272 printf("ISS hash 0x%08x, ", tcp_iss);
2273 #endif
2274 tcp_iss += tcp_iss_seq + addin;
2275 #ifdef TCPISS_DEBUG
2276 printf("new ISS 0x%08x\n", tcp_iss);
2277 #endif
2278 } else {
2279 /*
2280 * Randomize.
2281 */
2282 tcp_iss = cprng_fast32();
2283
2284 /*
2285 * If we were asked to add some amount to a known value,
2286 * we will take a random value obtained above, mask off
2287 * the upper bits, and add in the known value. We also
2288 * add in a constant to ensure that we are at least a
2289 * certain distance from the original value.
2290 *
2291 * This is used when an old connection is in timed wait
2292 * and we have a new one coming in, for instance.
2293 */
2294 if (addin != 0) {
2295 #ifdef TCPISS_DEBUG
2296 printf("Random %08x, ", tcp_iss);
2297 #endif
2298 tcp_iss &= TCP_ISS_RANDOM_MASK;
2299 tcp_iss += addin + TCP_ISSINCR;
2300 #ifdef TCPISS_DEBUG
2301 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2302 #endif
2303 } else {
2304 tcp_iss &= TCP_ISS_RANDOM_MASK;
2305 tcp_iss += tcp_iss_seq;
2306 tcp_iss_seq += TCP_ISSINCR;
2307 #ifdef TCPISS_DEBUG
2308 printf("ISS %08x\n", tcp_iss);
2309 #endif
2310 }
2311 }
2312
2313 if (tcp_compat_42) {
2314 /*
2315 * Limit it to the positive range for really old TCP
2316 * implementations.
2317 * Just AND off the top bit instead of checking if
2318 * is set first - saves a branch 50% of the time.
2319 */
2320 tcp_iss &= 0x7fffffff; /* XXX */
2321 }
2322
2323 return (tcp_iss);
2324 }
2325
2326 #if defined(IPSEC)
2327 /* compute ESP/AH header size for TCP, including outer IP header. */
2328 size_t
2329 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2330 {
2331 struct inpcb *inp;
2332 size_t hdrsiz;
2333
2334 /* XXX mapped addr case (tp->t_in6pcb) */
2335 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2336 return 0;
2337 switch (tp->t_family) {
2338 case AF_INET:
2339 /* XXX: should use currect direction. */
2340 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2341 break;
2342 default:
2343 hdrsiz = 0;
2344 break;
2345 }
2346
2347 return hdrsiz;
2348 }
2349
2350 #ifdef INET6
2351 size_t
2352 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2353 {
2354 struct in6pcb *in6p;
2355 size_t hdrsiz;
2356
2357 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2358 return 0;
2359 switch (tp->t_family) {
2360 case AF_INET6:
2361 /* XXX: should use currect direction. */
2362 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2363 break;
2364 case AF_INET:
2365 /* mapped address case - tricky */
2366 default:
2367 hdrsiz = 0;
2368 break;
2369 }
2370
2371 return hdrsiz;
2372 }
2373 #endif
2374 #endif /*IPSEC*/
2375
2376 /*
2377 * Determine the length of the TCP options for this connection.
2378 *
2379 * XXX: What do we do for SACK, when we add that? Just reserve
2380 * all of the space? Otherwise we can't exactly be incrementing
2381 * cwnd by an amount that varies depending on the amount we last
2382 * had to SACK!
2383 */
2384
2385 u_int
2386 tcp_optlen(struct tcpcb *tp)
2387 {
2388 u_int optlen;
2389
2390 optlen = 0;
2391 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2392 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2393 optlen += TCPOLEN_TSTAMP_APPA;
2394
2395 #ifdef TCP_SIGNATURE
2396 if (tp->t_flags & TF_SIGNATURE)
2397 optlen += TCPOLEN_SIGNATURE + 2;
2398 #endif /* TCP_SIGNATURE */
2399
2400 return optlen;
2401 }
2402
2403 u_int
2404 tcp_hdrsz(struct tcpcb *tp)
2405 {
2406 u_int hlen;
2407
2408 switch (tp->t_family) {
2409 #ifdef INET6
2410 case AF_INET6:
2411 hlen = sizeof(struct ip6_hdr);
2412 break;
2413 #endif
2414 case AF_INET:
2415 hlen = sizeof(struct ip);
2416 break;
2417 default:
2418 hlen = 0;
2419 break;
2420 }
2421 hlen += sizeof(struct tcphdr);
2422
2423 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2424 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2425 hlen += TCPOLEN_TSTAMP_APPA;
2426 #ifdef TCP_SIGNATURE
2427 if (tp->t_flags & TF_SIGNATURE)
2428 hlen += TCPOLEN_SIGLEN;
2429 #endif
2430 return hlen;
2431 }
2432
2433 void
2434 tcp_statinc(u_int stat)
2435 {
2436
2437 KASSERT(stat < TCP_NSTATS);
2438 TCP_STATINC(stat);
2439 }
2440
2441 void
2442 tcp_statadd(u_int stat, uint64_t val)
2443 {
2444
2445 KASSERT(stat < TCP_NSTATS);
2446 TCP_STATADD(stat, val);
2447 }
2448