tcp_subr.c revision 1.253 1 /* $NetBSD: tcp_subr.c,v 1.253 2014/01/02 18:29:01 pooka Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.253 2014/01/02 18:29:01 pooka Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101
102 #include <sys/param.h>
103 #include <sys/proc.h>
104 #include <sys/systm.h>
105 #include <sys/malloc.h>
106 #include <sys/mbuf.h>
107 #include <sys/once.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/protosw.h>
111 #include <sys/errno.h>
112 #include <sys/kernel.h>
113 #include <sys/pool.h>
114 #include <sys/md5.h>
115 #include <sys/cprng.h>
116
117 #include <net/route.h>
118 #include <net/if.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_icmp.h>
126
127 #ifdef INET6
128 #ifndef INET
129 #include <netinet/in.h>
130 #endif
131 #include <netinet/ip6.h>
132 #include <netinet6/in6_pcb.h>
133 #include <netinet6/ip6_var.h>
134 #include <netinet6/in6_var.h>
135 #include <netinet6/ip6protosw.h>
136 #include <netinet/icmp6.h>
137 #include <netinet6/nd6.h>
138 #endif
139
140 #include <netinet/tcp.h>
141 #include <netinet/tcp_fsm.h>
142 #include <netinet/tcp_seq.h>
143 #include <netinet/tcp_timer.h>
144 #include <netinet/tcp_var.h>
145 #include <netinet/tcp_vtw.h>
146 #include <netinet/tcp_private.h>
147 #include <netinet/tcp_congctl.h>
148 #include <netinet/tcpip.h>
149
150 #ifdef IPSEC
151 #include <netipsec/ipsec.h>
152 #include <netipsec/xform.h>
153 #ifdef INET6
154 #include <netipsec/ipsec6.h>
155 #endif
156 #include <netipsec/key.h>
157 #endif /* IPSEC*/
158
159
160 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
161 u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
162
163 percpu_t *tcpstat_percpu;
164
165 /* patchable/settable parameters for tcp */
166 int tcp_mssdflt = TCP_MSS;
167 int tcp_minmss = TCP_MINMSS;
168 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
169 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
170 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
171 int tcp_do_sack = 1; /* selective acknowledgement */
172 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
173 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
174 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
175 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
176 #ifndef TCP_INIT_WIN
177 #define TCP_INIT_WIN 4 /* initial slow start window */
178 #endif
179 #ifndef TCP_INIT_WIN_LOCAL
180 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
181 #endif
182 /*
183 * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
184 * This is to simulate current behavior for iw == 4
185 */
186 int tcp_init_win_max[] = {
187 1 * 1460,
188 1 * 1460,
189 2 * 1460,
190 2 * 1460,
191 3 * 1460,
192 5 * 1460,
193 6 * 1460,
194 7 * 1460,
195 8 * 1460,
196 9 * 1460,
197 10 * 1460
198 };
199 int tcp_init_win = TCP_INIT_WIN;
200 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
201 int tcp_mss_ifmtu = 0;
202 #ifdef TCP_COMPAT_42
203 int tcp_compat_42 = 1;
204 #else
205 int tcp_compat_42 = 0;
206 #endif
207 int tcp_rst_ppslim = 100; /* 100pps */
208 int tcp_ackdrop_ppslim = 100; /* 100pps */
209 int tcp_do_loopback_cksum = 0;
210 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
211 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
212 int tcp_sack_tp_maxholes = 32;
213 int tcp_sack_globalmaxholes = 1024;
214 int tcp_sack_globalholes = 0;
215 int tcp_ecn_maxretries = 1;
216 int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
217 int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
218 int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
219 int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
220 int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
221 int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
222
223 int tcp4_vtw_enable = 0; /* 1 to enable */
224 int tcp6_vtw_enable = 0; /* 1 to enable */
225 int tcp_vtw_was_enabled = 0;
226 int tcp_vtw_entries = 1 << 16; /* 64K vestigial TIME_WAIT entries */
227
228 /* tcb hash */
229 #ifndef TCBHASHSIZE
230 #define TCBHASHSIZE 128
231 #endif
232 int tcbhashsize = TCBHASHSIZE;
233
234 /* syn hash parameters */
235 #define TCP_SYN_HASH_SIZE 293
236 #define TCP_SYN_BUCKET_SIZE 35
237 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
238 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
239 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
240 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
241
242 int tcp_freeq(struct tcpcb *);
243
244 #ifdef INET
245 static void tcp_mtudisc_callback(struct in_addr);
246 #endif
247
248 #ifdef INET6
249 void tcp6_mtudisc(struct in6pcb *, int);
250 #endif
251
252 static struct pool tcpcb_pool;
253
254 static int tcp_drainwanted;
255
256 #ifdef TCP_CSUM_COUNTERS
257 #include <sys/device.h>
258
259 #if defined(INET)
260 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
261 NULL, "tcp", "hwcsum bad");
262 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
263 NULL, "tcp", "hwcsum ok");
264 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp", "hwcsum data");
266 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp", "swcsum");
268
269 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
270 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
271 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
272 EVCNT_ATTACH_STATIC(tcp_swcsum);
273 #endif /* defined(INET) */
274
275 #if defined(INET6)
276 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
277 NULL, "tcp6", "hwcsum bad");
278 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
279 NULL, "tcp6", "hwcsum ok");
280 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 NULL, "tcp6", "hwcsum data");
282 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp6", "swcsum");
284
285 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
286 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
287 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
288 EVCNT_ATTACH_STATIC(tcp6_swcsum);
289 #endif /* defined(INET6) */
290 #endif /* TCP_CSUM_COUNTERS */
291
292
293 #ifdef TCP_OUTPUT_COUNTERS
294 #include <sys/device.h>
295
296 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 NULL, "tcp", "output big header");
298 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 NULL, "tcp", "output predict hit");
300 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 NULL, "tcp", "output predict miss");
302 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 NULL, "tcp", "output copy small");
304 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 NULL, "tcp", "output copy big");
306 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 NULL, "tcp", "output reference big");
308
309 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
310 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
311 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
312 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
313 EVCNT_ATTACH_STATIC(tcp_output_copybig);
314 EVCNT_ATTACH_STATIC(tcp_output_refbig);
315
316 #endif /* TCP_OUTPUT_COUNTERS */
317
318 #ifdef TCP_REASS_COUNTERS
319 #include <sys/device.h>
320
321 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
322 NULL, "tcp_reass", "calls");
323 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324 &tcp_reass_, "tcp_reass", "insert into empty queue");
325 struct evcnt tcp_reass_iteration[8] = {
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
328 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
329 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
331 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
332 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
333 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
334 };
335 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336 &tcp_reass_, "tcp_reass", "prepend to first");
337 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338 &tcp_reass_, "tcp_reass", "prepend");
339 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340 &tcp_reass_, "tcp_reass", "insert");
341 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 &tcp_reass_, "tcp_reass", "insert at tail");
343 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 &tcp_reass_, "tcp_reass", "append");
345 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 &tcp_reass_, "tcp_reass", "append to tail fragment");
347 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 &tcp_reass_, "tcp_reass", "overlap at end");
349 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 &tcp_reass_, "tcp_reass", "overlap at start");
351 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
352 &tcp_reass_, "tcp_reass", "duplicate segment");
353 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
354 &tcp_reass_, "tcp_reass", "duplicate fragment");
355
356 EVCNT_ATTACH_STATIC(tcp_reass_);
357 EVCNT_ATTACH_STATIC(tcp_reass_empty);
358 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
359 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
361 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
362 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
363 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
364 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
365 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
366 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
367 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
368 EVCNT_ATTACH_STATIC(tcp_reass_insert);
369 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
370 EVCNT_ATTACH_STATIC(tcp_reass_append);
371 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
372 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
373 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
374 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
375 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
376
377 #endif /* TCP_REASS_COUNTERS */
378
379 #ifdef MBUFTRACE
380 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
381 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
382 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
383 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
384 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
385 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
386 #endif
387
388 callout_t tcp_slowtimo_ch;
389
390 static int
391 do_tcpinit(void)
392 {
393
394 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
395 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
396 NULL, IPL_SOFTNET);
397
398 tcp_usrreq_init();
399
400 /* Initialize timer state. */
401 tcp_timer_init();
402
403 /* Initialize the compressed state engine. */
404 syn_cache_init();
405
406 /* Initialize the congestion control algorithms. */
407 tcp_congctl_init();
408
409 /* Initialize the TCPCB template. */
410 tcp_tcpcb_template();
411
412 /* Initialize reassembly queue */
413 tcpipqent_init();
414
415 /* SACK */
416 tcp_sack_init();
417
418 MOWNER_ATTACH(&tcp_tx_mowner);
419 MOWNER_ATTACH(&tcp_rx_mowner);
420 MOWNER_ATTACH(&tcp_reass_mowner);
421 MOWNER_ATTACH(&tcp_sock_mowner);
422 MOWNER_ATTACH(&tcp_sock_tx_mowner);
423 MOWNER_ATTACH(&tcp_sock_rx_mowner);
424 MOWNER_ATTACH(&tcp_mowner);
425
426 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
427
428 vtw_earlyinit();
429
430 callout_init(&tcp_slowtimo_ch, CALLOUT_MPSAFE);
431 callout_reset(&tcp_slowtimo_ch, 1, tcp_slowtimo, NULL);
432
433 return 0;
434 }
435
436 void
437 tcp_init_common(unsigned basehlen)
438 {
439 static ONCE_DECL(dotcpinit);
440 unsigned hlen = basehlen + sizeof(struct tcphdr);
441 unsigned oldhlen;
442
443 if (max_linkhdr + hlen > MHLEN)
444 panic("tcp_init");
445 while ((oldhlen = max_protohdr) < hlen)
446 atomic_cas_uint(&max_protohdr, oldhlen, hlen);
447
448 RUN_ONCE(&dotcpinit, do_tcpinit);
449 }
450
451 /*
452 * Tcp initialization
453 */
454 void
455 tcp_init(void)
456 {
457
458 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
459
460 tcp_init_common(sizeof(struct ip));
461 }
462
463 /*
464 * Create template to be used to send tcp packets on a connection.
465 * Call after host entry created, allocates an mbuf and fills
466 * in a skeletal tcp/ip header, minimizing the amount of work
467 * necessary when the connection is used.
468 */
469 struct mbuf *
470 tcp_template(struct tcpcb *tp)
471 {
472 struct inpcb *inp = tp->t_inpcb;
473 #ifdef INET6
474 struct in6pcb *in6p = tp->t_in6pcb;
475 #endif
476 struct tcphdr *n;
477 struct mbuf *m;
478 int hlen;
479
480 switch (tp->t_family) {
481 case AF_INET:
482 hlen = sizeof(struct ip);
483 if (inp)
484 break;
485 #ifdef INET6
486 if (in6p) {
487 /* mapped addr case */
488 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
489 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
490 break;
491 }
492 #endif
493 return NULL; /*EINVAL*/
494 #ifdef INET6
495 case AF_INET6:
496 hlen = sizeof(struct ip6_hdr);
497 if (in6p) {
498 /* more sainty check? */
499 break;
500 }
501 return NULL; /*EINVAL*/
502 #endif
503 default:
504 hlen = 0; /*pacify gcc*/
505 return NULL; /*EAFNOSUPPORT*/
506 }
507 #ifdef DIAGNOSTIC
508 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
509 panic("mclbytes too small for t_template");
510 #endif
511 m = tp->t_template;
512 if (m && m->m_len == hlen + sizeof(struct tcphdr))
513 ;
514 else {
515 if (m)
516 m_freem(m);
517 m = tp->t_template = NULL;
518 MGETHDR(m, M_DONTWAIT, MT_HEADER);
519 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
520 MCLGET(m, M_DONTWAIT);
521 if ((m->m_flags & M_EXT) == 0) {
522 m_free(m);
523 m = NULL;
524 }
525 }
526 if (m == NULL)
527 return NULL;
528 MCLAIM(m, &tcp_mowner);
529 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
530 }
531
532 memset(mtod(m, void *), 0, m->m_len);
533
534 n = (struct tcphdr *)(mtod(m, char *) + hlen);
535
536 switch (tp->t_family) {
537 case AF_INET:
538 {
539 struct ipovly *ipov;
540 mtod(m, struct ip *)->ip_v = 4;
541 mtod(m, struct ip *)->ip_hl = hlen >> 2;
542 ipov = mtod(m, struct ipovly *);
543 ipov->ih_pr = IPPROTO_TCP;
544 ipov->ih_len = htons(sizeof(struct tcphdr));
545 if (inp) {
546 ipov->ih_src = inp->inp_laddr;
547 ipov->ih_dst = inp->inp_faddr;
548 }
549 #ifdef INET6
550 else if (in6p) {
551 /* mapped addr case */
552 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
553 sizeof(ipov->ih_src));
554 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
555 sizeof(ipov->ih_dst));
556 }
557 #endif
558 /*
559 * Compute the pseudo-header portion of the checksum
560 * now. We incrementally add in the TCP option and
561 * payload lengths later, and then compute the TCP
562 * checksum right before the packet is sent off onto
563 * the wire.
564 */
565 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
566 ipov->ih_dst.s_addr,
567 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
568 break;
569 }
570 #ifdef INET6
571 case AF_INET6:
572 {
573 struct ip6_hdr *ip6;
574 mtod(m, struct ip *)->ip_v = 6;
575 ip6 = mtod(m, struct ip6_hdr *);
576 ip6->ip6_nxt = IPPROTO_TCP;
577 ip6->ip6_plen = htons(sizeof(struct tcphdr));
578 ip6->ip6_src = in6p->in6p_laddr;
579 ip6->ip6_dst = in6p->in6p_faddr;
580 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
581 if (ip6_auto_flowlabel) {
582 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
583 ip6->ip6_flow |=
584 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
585 }
586 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
587 ip6->ip6_vfc |= IPV6_VERSION;
588
589 /*
590 * Compute the pseudo-header portion of the checksum
591 * now. We incrementally add in the TCP option and
592 * payload lengths later, and then compute the TCP
593 * checksum right before the packet is sent off onto
594 * the wire.
595 */
596 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
597 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
598 htonl(IPPROTO_TCP));
599 break;
600 }
601 #endif
602 }
603 if (inp) {
604 n->th_sport = inp->inp_lport;
605 n->th_dport = inp->inp_fport;
606 }
607 #ifdef INET6
608 else if (in6p) {
609 n->th_sport = in6p->in6p_lport;
610 n->th_dport = in6p->in6p_fport;
611 }
612 #endif
613 n->th_seq = 0;
614 n->th_ack = 0;
615 n->th_x2 = 0;
616 n->th_off = 5;
617 n->th_flags = 0;
618 n->th_win = 0;
619 n->th_urp = 0;
620 return (m);
621 }
622
623 /*
624 * Send a single message to the TCP at address specified by
625 * the given TCP/IP header. If m == 0, then we make a copy
626 * of the tcpiphdr at ti and send directly to the addressed host.
627 * This is used to force keep alive messages out using the TCP
628 * template for a connection tp->t_template. If flags are given
629 * then we send a message back to the TCP which originated the
630 * segment ti, and discard the mbuf containing it and any other
631 * attached mbufs.
632 *
633 * In any case the ack and sequence number of the transmitted
634 * segment are as specified by the parameters.
635 */
636 int
637 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
638 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
639 {
640 #ifdef INET6
641 struct rtentry *rt;
642 #endif
643 struct route *ro;
644 int error, tlen, win = 0;
645 int hlen;
646 struct ip *ip;
647 #ifdef INET6
648 struct ip6_hdr *ip6;
649 #endif
650 int family; /* family on packet, not inpcb/in6pcb! */
651 struct tcphdr *th;
652 struct socket *so;
653
654 if (tp != NULL && (flags & TH_RST) == 0) {
655 #ifdef DIAGNOSTIC
656 if (tp->t_inpcb && tp->t_in6pcb)
657 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
658 #endif
659 #ifdef INET
660 if (tp->t_inpcb)
661 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
662 #endif
663 #ifdef INET6
664 if (tp->t_in6pcb)
665 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
666 #endif
667 }
668
669 th = NULL; /* Quell uninitialized warning */
670 ip = NULL;
671 #ifdef INET6
672 ip6 = NULL;
673 #endif
674 if (m == 0) {
675 if (!template)
676 return EINVAL;
677
678 /* get family information from template */
679 switch (mtod(template, struct ip *)->ip_v) {
680 case 4:
681 family = AF_INET;
682 hlen = sizeof(struct ip);
683 break;
684 #ifdef INET6
685 case 6:
686 family = AF_INET6;
687 hlen = sizeof(struct ip6_hdr);
688 break;
689 #endif
690 default:
691 return EAFNOSUPPORT;
692 }
693
694 MGETHDR(m, M_DONTWAIT, MT_HEADER);
695 if (m) {
696 MCLAIM(m, &tcp_tx_mowner);
697 MCLGET(m, M_DONTWAIT);
698 if ((m->m_flags & M_EXT) == 0) {
699 m_free(m);
700 m = NULL;
701 }
702 }
703 if (m == NULL)
704 return (ENOBUFS);
705
706 if (tcp_compat_42)
707 tlen = 1;
708 else
709 tlen = 0;
710
711 m->m_data += max_linkhdr;
712 bcopy(mtod(template, void *), mtod(m, void *),
713 template->m_len);
714 switch (family) {
715 case AF_INET:
716 ip = mtod(m, struct ip *);
717 th = (struct tcphdr *)(ip + 1);
718 break;
719 #ifdef INET6
720 case AF_INET6:
721 ip6 = mtod(m, struct ip6_hdr *);
722 th = (struct tcphdr *)(ip6 + 1);
723 break;
724 #endif
725 #if 0
726 default:
727 /* noone will visit here */
728 m_freem(m);
729 return EAFNOSUPPORT;
730 #endif
731 }
732 flags = TH_ACK;
733 } else {
734
735 if ((m->m_flags & M_PKTHDR) == 0) {
736 #if 0
737 printf("non PKTHDR to tcp_respond\n");
738 #endif
739 m_freem(m);
740 return EINVAL;
741 }
742 #ifdef DIAGNOSTIC
743 if (!th0)
744 panic("th0 == NULL in tcp_respond");
745 #endif
746
747 /* get family information from m */
748 switch (mtod(m, struct ip *)->ip_v) {
749 case 4:
750 family = AF_INET;
751 hlen = sizeof(struct ip);
752 ip = mtod(m, struct ip *);
753 break;
754 #ifdef INET6
755 case 6:
756 family = AF_INET6;
757 hlen = sizeof(struct ip6_hdr);
758 ip6 = mtod(m, struct ip6_hdr *);
759 break;
760 #endif
761 default:
762 m_freem(m);
763 return EAFNOSUPPORT;
764 }
765 /* clear h/w csum flags inherited from rx packet */
766 m->m_pkthdr.csum_flags = 0;
767
768 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
769 tlen = sizeof(*th0);
770 else
771 tlen = th0->th_off << 2;
772
773 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
774 mtod(m, char *) + hlen == (char *)th0) {
775 m->m_len = hlen + tlen;
776 m_freem(m->m_next);
777 m->m_next = NULL;
778 } else {
779 struct mbuf *n;
780
781 #ifdef DIAGNOSTIC
782 if (max_linkhdr + hlen + tlen > MCLBYTES) {
783 m_freem(m);
784 return EMSGSIZE;
785 }
786 #endif
787 MGETHDR(n, M_DONTWAIT, MT_HEADER);
788 if (n && max_linkhdr + hlen + tlen > MHLEN) {
789 MCLGET(n, M_DONTWAIT);
790 if ((n->m_flags & M_EXT) == 0) {
791 m_freem(n);
792 n = NULL;
793 }
794 }
795 if (!n) {
796 m_freem(m);
797 return ENOBUFS;
798 }
799
800 MCLAIM(n, &tcp_tx_mowner);
801 n->m_data += max_linkhdr;
802 n->m_len = hlen + tlen;
803 m_copyback(n, 0, hlen, mtod(m, void *));
804 m_copyback(n, hlen, tlen, (void *)th0);
805
806 m_freem(m);
807 m = n;
808 n = NULL;
809 }
810
811 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
812 switch (family) {
813 case AF_INET:
814 ip = mtod(m, struct ip *);
815 th = (struct tcphdr *)(ip + 1);
816 ip->ip_p = IPPROTO_TCP;
817 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
818 ip->ip_p = IPPROTO_TCP;
819 break;
820 #ifdef INET6
821 case AF_INET6:
822 ip6 = mtod(m, struct ip6_hdr *);
823 th = (struct tcphdr *)(ip6 + 1);
824 ip6->ip6_nxt = IPPROTO_TCP;
825 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
826 ip6->ip6_nxt = IPPROTO_TCP;
827 break;
828 #endif
829 #if 0
830 default:
831 /* noone will visit here */
832 m_freem(m);
833 return EAFNOSUPPORT;
834 #endif
835 }
836 xchg(th->th_dport, th->th_sport, u_int16_t);
837 #undef xchg
838 tlen = 0; /*be friendly with the following code*/
839 }
840 th->th_seq = htonl(seq);
841 th->th_ack = htonl(ack);
842 th->th_x2 = 0;
843 if ((flags & TH_SYN) == 0) {
844 if (tp)
845 win >>= tp->rcv_scale;
846 if (win > TCP_MAXWIN)
847 win = TCP_MAXWIN;
848 th->th_win = htons((u_int16_t)win);
849 th->th_off = sizeof (struct tcphdr) >> 2;
850 tlen += sizeof(*th);
851 } else
852 tlen += th->th_off << 2;
853 m->m_len = hlen + tlen;
854 m->m_pkthdr.len = hlen + tlen;
855 m->m_pkthdr.rcvif = NULL;
856 th->th_flags = flags;
857 th->th_urp = 0;
858
859 switch (family) {
860 #ifdef INET
861 case AF_INET:
862 {
863 struct ipovly *ipov = (struct ipovly *)ip;
864 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
865 ipov->ih_len = htons((u_int16_t)tlen);
866
867 th->th_sum = 0;
868 th->th_sum = in_cksum(m, hlen + tlen);
869 ip->ip_len = htons(hlen + tlen);
870 ip->ip_ttl = ip_defttl;
871 break;
872 }
873 #endif
874 #ifdef INET6
875 case AF_INET6:
876 {
877 th->th_sum = 0;
878 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
879 tlen);
880 ip6->ip6_plen = htons(tlen);
881 if (tp && tp->t_in6pcb) {
882 struct ifnet *oifp;
883 ro = &tp->t_in6pcb->in6p_route;
884 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
885 : NULL;
886 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
887 } else
888 ip6->ip6_hlim = ip6_defhlim;
889 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
890 if (ip6_auto_flowlabel) {
891 ip6->ip6_flow |=
892 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
893 }
894 break;
895 }
896 #endif
897 }
898
899 if (tp && tp->t_inpcb)
900 so = tp->t_inpcb->inp_socket;
901 #ifdef INET6
902 else if (tp && tp->t_in6pcb)
903 so = tp->t_in6pcb->in6p_socket;
904 #endif
905 else
906 so = NULL;
907
908 if (tp != NULL && tp->t_inpcb != NULL) {
909 ro = &tp->t_inpcb->inp_route;
910 #ifdef DIAGNOSTIC
911 if (family != AF_INET)
912 panic("tcp_respond: address family mismatch");
913 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
914 panic("tcp_respond: ip_dst %x != inp_faddr %x",
915 ntohl(ip->ip_dst.s_addr),
916 ntohl(tp->t_inpcb->inp_faddr.s_addr));
917 }
918 #endif
919 }
920 #ifdef INET6
921 else if (tp != NULL && tp->t_in6pcb != NULL) {
922 ro = (struct route *)&tp->t_in6pcb->in6p_route;
923 #ifdef DIAGNOSTIC
924 if (family == AF_INET) {
925 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
926 panic("tcp_respond: not mapped addr");
927 if (memcmp(&ip->ip_dst,
928 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
929 sizeof(ip->ip_dst)) != 0) {
930 panic("tcp_respond: ip_dst != in6p_faddr");
931 }
932 } else if (family == AF_INET6) {
933 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
934 &tp->t_in6pcb->in6p_faddr))
935 panic("tcp_respond: ip6_dst != in6p_faddr");
936 } else
937 panic("tcp_respond: address family mismatch");
938 #endif
939 }
940 #endif
941 else
942 ro = NULL;
943
944 switch (family) {
945 #ifdef INET
946 case AF_INET:
947 error = ip_output(m, NULL, ro,
948 (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
949 break;
950 #endif
951 #ifdef INET6
952 case AF_INET6:
953 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
954 break;
955 #endif
956 default:
957 error = EAFNOSUPPORT;
958 break;
959 }
960
961 return (error);
962 }
963
964 /*
965 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
966 * a bunch of members individually, we maintain this template for the
967 * static and mostly-static components of the TCPCB, and copy it into
968 * the new TCPCB instead.
969 */
970 static struct tcpcb tcpcb_template = {
971 .t_srtt = TCPTV_SRTTBASE,
972 .t_rttmin = TCPTV_MIN,
973
974 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
975 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
976 .snd_numholes = 0,
977 .snd_cubic_wmax = 0,
978 .snd_cubic_wmax_last = 0,
979 .snd_cubic_ctime = 0,
980
981 .t_partialacks = -1,
982 .t_bytes_acked = 0,
983 };
984
985 /*
986 * Updates the TCPCB template whenever a parameter that would affect
987 * the template is changed.
988 */
989 void
990 tcp_tcpcb_template(void)
991 {
992 struct tcpcb *tp = &tcpcb_template;
993 int flags;
994
995 tp->t_peermss = tcp_mssdflt;
996 tp->t_ourmss = tcp_mssdflt;
997 tp->t_segsz = tcp_mssdflt;
998
999 flags = 0;
1000 if (tcp_do_rfc1323 && tcp_do_win_scale)
1001 flags |= TF_REQ_SCALE;
1002 if (tcp_do_rfc1323 && tcp_do_timestamps)
1003 flags |= TF_REQ_TSTMP;
1004 tp->t_flags = flags;
1005
1006 /*
1007 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1008 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
1009 * reasonable initial retransmit time.
1010 */
1011 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
1012 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1013 TCPTV_MIN, TCPTV_REXMTMAX);
1014
1015 /* Keep Alive */
1016 tp->t_keepinit = tcp_keepinit;
1017 tp->t_keepidle = tcp_keepidle;
1018 tp->t_keepintvl = tcp_keepintvl;
1019 tp->t_keepcnt = tcp_keepcnt;
1020 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
1021
1022 /* MSL */
1023 tp->t_msl = TCPTV_MSL;
1024 }
1025
1026 /*
1027 * Create a new TCP control block, making an
1028 * empty reassembly queue and hooking it to the argument
1029 * protocol control block.
1030 */
1031 /* family selects inpcb, or in6pcb */
1032 struct tcpcb *
1033 tcp_newtcpcb(int family, void *aux)
1034 {
1035 #ifdef INET6
1036 struct rtentry *rt;
1037 #endif
1038 struct tcpcb *tp;
1039 int i;
1040
1041 /* XXX Consider using a pool_cache for speed. */
1042 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
1043 if (tp == NULL)
1044 return (NULL);
1045 memcpy(tp, &tcpcb_template, sizeof(*tp));
1046 TAILQ_INIT(&tp->segq);
1047 TAILQ_INIT(&tp->timeq);
1048 tp->t_family = family; /* may be overridden later on */
1049 TAILQ_INIT(&tp->snd_holes);
1050 LIST_INIT(&tp->t_sc); /* XXX can template this */
1051
1052 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1053 for (i = 0; i < TCPT_NTIMERS; i++) {
1054 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1055 TCP_TIMER_INIT(tp, i);
1056 }
1057 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1058
1059 switch (family) {
1060 case AF_INET:
1061 {
1062 struct inpcb *inp = (struct inpcb *)aux;
1063
1064 inp->inp_ip.ip_ttl = ip_defttl;
1065 inp->inp_ppcb = (void *)tp;
1066
1067 tp->t_inpcb = inp;
1068 tp->t_mtudisc = ip_mtudisc;
1069 break;
1070 }
1071 #ifdef INET6
1072 case AF_INET6:
1073 {
1074 struct in6pcb *in6p = (struct in6pcb *)aux;
1075
1076 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1077 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1078 ? rt->rt_ifp
1079 : NULL);
1080 in6p->in6p_ppcb = (void *)tp;
1081
1082 tp->t_in6pcb = in6p;
1083 /* for IPv6, always try to run path MTU discovery */
1084 tp->t_mtudisc = 1;
1085 break;
1086 }
1087 #endif /* INET6 */
1088 default:
1089 for (i = 0; i < TCPT_NTIMERS; i++)
1090 callout_destroy(&tp->t_timer[i]);
1091 callout_destroy(&tp->t_delack_ch);
1092 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1093 return (NULL);
1094 }
1095
1096 /*
1097 * Initialize our timebase. When we send timestamps, we take
1098 * the delta from tcp_now -- this means each connection always
1099 * gets a timebase of 1, which makes it, among other things,
1100 * more difficult to determine how long a system has been up,
1101 * and thus how many TCP sequence increments have occurred.
1102 *
1103 * We start with 1, because 0 doesn't work with linux, which
1104 * considers timestamp 0 in a SYN packet as a bug and disables
1105 * timestamps.
1106 */
1107 tp->ts_timebase = tcp_now - 1;
1108
1109 tcp_congctl_select(tp, tcp_congctl_global_name);
1110
1111 return (tp);
1112 }
1113
1114 /*
1115 * Drop a TCP connection, reporting
1116 * the specified error. If connection is synchronized,
1117 * then send a RST to peer.
1118 */
1119 struct tcpcb *
1120 tcp_drop(struct tcpcb *tp, int errno)
1121 {
1122 struct socket *so = NULL;
1123
1124 #ifdef DIAGNOSTIC
1125 if (tp->t_inpcb && tp->t_in6pcb)
1126 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1127 #endif
1128 #ifdef INET
1129 if (tp->t_inpcb)
1130 so = tp->t_inpcb->inp_socket;
1131 #endif
1132 #ifdef INET6
1133 if (tp->t_in6pcb)
1134 so = tp->t_in6pcb->in6p_socket;
1135 #endif
1136 if (!so)
1137 return NULL;
1138
1139 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1140 tp->t_state = TCPS_CLOSED;
1141 (void) tcp_output(tp);
1142 TCP_STATINC(TCP_STAT_DROPS);
1143 } else
1144 TCP_STATINC(TCP_STAT_CONNDROPS);
1145 if (errno == ETIMEDOUT && tp->t_softerror)
1146 errno = tp->t_softerror;
1147 so->so_error = errno;
1148 return (tcp_close(tp));
1149 }
1150
1151 /*
1152 * Close a TCP control block:
1153 * discard all space held by the tcp
1154 * discard internet protocol block
1155 * wake up any sleepers
1156 */
1157 struct tcpcb *
1158 tcp_close(struct tcpcb *tp)
1159 {
1160 struct inpcb *inp;
1161 #ifdef INET6
1162 struct in6pcb *in6p;
1163 #endif
1164 struct socket *so;
1165 #ifdef RTV_RTT
1166 struct rtentry *rt;
1167 #endif
1168 struct route *ro;
1169 int j;
1170
1171 inp = tp->t_inpcb;
1172 #ifdef INET6
1173 in6p = tp->t_in6pcb;
1174 #endif
1175 so = NULL;
1176 ro = NULL;
1177 if (inp) {
1178 so = inp->inp_socket;
1179 ro = &inp->inp_route;
1180 }
1181 #ifdef INET6
1182 else if (in6p) {
1183 so = in6p->in6p_socket;
1184 ro = (struct route *)&in6p->in6p_route;
1185 }
1186 #endif
1187
1188 #ifdef RTV_RTT
1189 /*
1190 * If we sent enough data to get some meaningful characteristics,
1191 * save them in the routing entry. 'Enough' is arbitrarily
1192 * defined as the sendpipesize (default 4K) * 16. This would
1193 * give us 16 rtt samples assuming we only get one sample per
1194 * window (the usual case on a long haul net). 16 samples is
1195 * enough for the srtt filter to converge to within 5% of the correct
1196 * value; fewer samples and we could save a very bogus rtt.
1197 *
1198 * Don't update the default route's characteristics and don't
1199 * update anything that the user "locked".
1200 */
1201 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1202 ro && (rt = rtcache_validate(ro)) != NULL &&
1203 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1204 u_long i = 0;
1205
1206 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1207 i = tp->t_srtt *
1208 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1209 if (rt->rt_rmx.rmx_rtt && i)
1210 /*
1211 * filter this update to half the old & half
1212 * the new values, converting scale.
1213 * See route.h and tcp_var.h for a
1214 * description of the scaling constants.
1215 */
1216 rt->rt_rmx.rmx_rtt =
1217 (rt->rt_rmx.rmx_rtt + i) / 2;
1218 else
1219 rt->rt_rmx.rmx_rtt = i;
1220 }
1221 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1222 i = tp->t_rttvar *
1223 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1224 if (rt->rt_rmx.rmx_rttvar && i)
1225 rt->rt_rmx.rmx_rttvar =
1226 (rt->rt_rmx.rmx_rttvar + i) / 2;
1227 else
1228 rt->rt_rmx.rmx_rttvar = i;
1229 }
1230 /*
1231 * update the pipelimit (ssthresh) if it has been updated
1232 * already or if a pipesize was specified & the threshhold
1233 * got below half the pipesize. I.e., wait for bad news
1234 * before we start updating, then update on both good
1235 * and bad news.
1236 */
1237 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1238 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1239 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1240 /*
1241 * convert the limit from user data bytes to
1242 * packets then to packet data bytes.
1243 */
1244 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1245 if (i < 2)
1246 i = 2;
1247 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1248 if (rt->rt_rmx.rmx_ssthresh)
1249 rt->rt_rmx.rmx_ssthresh =
1250 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1251 else
1252 rt->rt_rmx.rmx_ssthresh = i;
1253 }
1254 }
1255 #endif /* RTV_RTT */
1256 /* free the reassembly queue, if any */
1257 TCP_REASS_LOCK(tp);
1258 (void) tcp_freeq(tp);
1259 TCP_REASS_UNLOCK(tp);
1260
1261 /* free the SACK holes list. */
1262 tcp_free_sackholes(tp);
1263 tcp_congctl_release(tp);
1264 syn_cache_cleanup(tp);
1265
1266 if (tp->t_template) {
1267 m_free(tp->t_template);
1268 tp->t_template = NULL;
1269 }
1270
1271 /*
1272 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1273 * the timers can also drop the lock. We need to prevent access
1274 * to the tcpcb as it's half torn down. Flag the pcb as dead
1275 * (prevents access by timers) and only then detach it.
1276 */
1277 tp->t_flags |= TF_DEAD;
1278 if (inp) {
1279 inp->inp_ppcb = 0;
1280 soisdisconnected(so);
1281 in_pcbdetach(inp);
1282 }
1283 #ifdef INET6
1284 else if (in6p) {
1285 in6p->in6p_ppcb = 0;
1286 soisdisconnected(so);
1287 in6_pcbdetach(in6p);
1288 }
1289 #endif
1290 /*
1291 * pcb is no longer visble elsewhere, so we can safely release
1292 * the lock in callout_halt() if needed.
1293 */
1294 TCP_STATINC(TCP_STAT_CLOSED);
1295 for (j = 0; j < TCPT_NTIMERS; j++) {
1296 callout_halt(&tp->t_timer[j], softnet_lock);
1297 callout_destroy(&tp->t_timer[j]);
1298 }
1299 callout_halt(&tp->t_delack_ch, softnet_lock);
1300 callout_destroy(&tp->t_delack_ch);
1301 pool_put(&tcpcb_pool, tp);
1302
1303 return NULL;
1304 }
1305
1306 int
1307 tcp_freeq(struct tcpcb *tp)
1308 {
1309 struct ipqent *qe;
1310 int rv = 0;
1311 #ifdef TCPREASS_DEBUG
1312 int i = 0;
1313 #endif
1314
1315 TCP_REASS_LOCK_CHECK(tp);
1316
1317 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1318 #ifdef TCPREASS_DEBUG
1319 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1320 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1321 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1322 #endif
1323 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1324 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1325 m_freem(qe->ipqe_m);
1326 tcpipqent_free(qe);
1327 rv = 1;
1328 }
1329 tp->t_segqlen = 0;
1330 KASSERT(TAILQ_EMPTY(&tp->timeq));
1331 return (rv);
1332 }
1333
1334 void
1335 tcp_fasttimo(void)
1336 {
1337 if (tcp_drainwanted) {
1338 tcp_drain();
1339 tcp_drainwanted = 0;
1340 }
1341 }
1342
1343 void
1344 tcp_drainstub(void)
1345 {
1346 tcp_drainwanted = 1;
1347 }
1348
1349 /*
1350 * Protocol drain routine. Called when memory is in short supply.
1351 * Called from pr_fasttimo thus a callout context.
1352 */
1353 void
1354 tcp_drain(void)
1355 {
1356 struct inpcb_hdr *inph;
1357 struct tcpcb *tp;
1358
1359 mutex_enter(softnet_lock);
1360 KERNEL_LOCK(1, NULL);
1361
1362 /*
1363 * Free the sequence queue of all TCP connections.
1364 */
1365 TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1366 switch (inph->inph_af) {
1367 case AF_INET:
1368 tp = intotcpcb((struct inpcb *)inph);
1369 break;
1370 #ifdef INET6
1371 case AF_INET6:
1372 tp = in6totcpcb((struct in6pcb *)inph);
1373 break;
1374 #endif
1375 default:
1376 tp = NULL;
1377 break;
1378 }
1379 if (tp != NULL) {
1380 /*
1381 * We may be called from a device's interrupt
1382 * context. If the tcpcb is already busy,
1383 * just bail out now.
1384 */
1385 if (tcp_reass_lock_try(tp) == 0)
1386 continue;
1387 if (tcp_freeq(tp))
1388 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1389 TCP_REASS_UNLOCK(tp);
1390 }
1391 }
1392
1393 KERNEL_UNLOCK_ONE(NULL);
1394 mutex_exit(softnet_lock);
1395 }
1396
1397 /*
1398 * Notify a tcp user of an asynchronous error;
1399 * store error as soft error, but wake up user
1400 * (for now, won't do anything until can select for soft error).
1401 */
1402 void
1403 tcp_notify(struct inpcb *inp, int error)
1404 {
1405 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1406 struct socket *so = inp->inp_socket;
1407
1408 /*
1409 * Ignore some errors if we are hooked up.
1410 * If connection hasn't completed, has retransmitted several times,
1411 * and receives a second error, give up now. This is better
1412 * than waiting a long time to establish a connection that
1413 * can never complete.
1414 */
1415 if (tp->t_state == TCPS_ESTABLISHED &&
1416 (error == EHOSTUNREACH || error == ENETUNREACH ||
1417 error == EHOSTDOWN)) {
1418 return;
1419 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1420 tp->t_rxtshift > 3 && tp->t_softerror)
1421 so->so_error = error;
1422 else
1423 tp->t_softerror = error;
1424 cv_broadcast(&so->so_cv);
1425 sorwakeup(so);
1426 sowwakeup(so);
1427 }
1428
1429 #ifdef INET6
1430 void
1431 tcp6_notify(struct in6pcb *in6p, int error)
1432 {
1433 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1434 struct socket *so = in6p->in6p_socket;
1435
1436 /*
1437 * Ignore some errors if we are hooked up.
1438 * If connection hasn't completed, has retransmitted several times,
1439 * and receives a second error, give up now. This is better
1440 * than waiting a long time to establish a connection that
1441 * can never complete.
1442 */
1443 if (tp->t_state == TCPS_ESTABLISHED &&
1444 (error == EHOSTUNREACH || error == ENETUNREACH ||
1445 error == EHOSTDOWN)) {
1446 return;
1447 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1448 tp->t_rxtshift > 3 && tp->t_softerror)
1449 so->so_error = error;
1450 else
1451 tp->t_softerror = error;
1452 cv_broadcast(&so->so_cv);
1453 sorwakeup(so);
1454 sowwakeup(so);
1455 }
1456 #endif
1457
1458 #ifdef INET6
1459 void *
1460 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1461 {
1462 struct tcphdr th;
1463 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1464 int nmatch;
1465 struct ip6_hdr *ip6;
1466 const struct sockaddr_in6 *sa6_src = NULL;
1467 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1468 struct mbuf *m;
1469 int off;
1470
1471 if (sa->sa_family != AF_INET6 ||
1472 sa->sa_len != sizeof(struct sockaddr_in6))
1473 return NULL;
1474 if ((unsigned)cmd >= PRC_NCMDS)
1475 return NULL;
1476 else if (cmd == PRC_QUENCH) {
1477 /*
1478 * Don't honor ICMP Source Quench messages meant for
1479 * TCP connections.
1480 */
1481 return NULL;
1482 } else if (PRC_IS_REDIRECT(cmd))
1483 notify = in6_rtchange, d = NULL;
1484 else if (cmd == PRC_MSGSIZE)
1485 ; /* special code is present, see below */
1486 else if (cmd == PRC_HOSTDEAD)
1487 d = NULL;
1488 else if (inet6ctlerrmap[cmd] == 0)
1489 return NULL;
1490
1491 /* if the parameter is from icmp6, decode it. */
1492 if (d != NULL) {
1493 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1494 m = ip6cp->ip6c_m;
1495 ip6 = ip6cp->ip6c_ip6;
1496 off = ip6cp->ip6c_off;
1497 sa6_src = ip6cp->ip6c_src;
1498 } else {
1499 m = NULL;
1500 ip6 = NULL;
1501 sa6_src = &sa6_any;
1502 off = 0;
1503 }
1504
1505 if (ip6) {
1506 /*
1507 * XXX: We assume that when ip6 is non NULL,
1508 * M and OFF are valid.
1509 */
1510
1511 /* check if we can safely examine src and dst ports */
1512 if (m->m_pkthdr.len < off + sizeof(th)) {
1513 if (cmd == PRC_MSGSIZE)
1514 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1515 return NULL;
1516 }
1517
1518 memset(&th, 0, sizeof(th));
1519 m_copydata(m, off, sizeof(th), (void *)&th);
1520
1521 if (cmd == PRC_MSGSIZE) {
1522 int valid = 0;
1523
1524 /*
1525 * Check to see if we have a valid TCP connection
1526 * corresponding to the address in the ICMPv6 message
1527 * payload.
1528 */
1529 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1530 th.th_dport,
1531 (const struct in6_addr *)&sa6_src->sin6_addr,
1532 th.th_sport, 0, 0))
1533 valid++;
1534
1535 /*
1536 * Depending on the value of "valid" and routing table
1537 * size (mtudisc_{hi,lo}wat), we will:
1538 * - recalcurate the new MTU and create the
1539 * corresponding routing entry, or
1540 * - ignore the MTU change notification.
1541 */
1542 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1543
1544 /*
1545 * no need to call in6_pcbnotify, it should have been
1546 * called via callback if necessary
1547 */
1548 return NULL;
1549 }
1550
1551 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1552 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1553 if (nmatch == 0 && syn_cache_count &&
1554 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1555 inet6ctlerrmap[cmd] == ENETUNREACH ||
1556 inet6ctlerrmap[cmd] == EHOSTDOWN))
1557 syn_cache_unreach((const struct sockaddr *)sa6_src,
1558 sa, &th);
1559 } else {
1560 (void) in6_pcbnotify(&tcbtable, sa, 0,
1561 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1562 }
1563
1564 return NULL;
1565 }
1566 #endif
1567
1568 #ifdef INET
1569 /* assumes that ip header and tcp header are contiguous on mbuf */
1570 void *
1571 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1572 {
1573 struct ip *ip = v;
1574 struct tcphdr *th;
1575 struct icmp *icp;
1576 extern const int inetctlerrmap[];
1577 void (*notify)(struct inpcb *, int) = tcp_notify;
1578 int errno;
1579 int nmatch;
1580 struct tcpcb *tp;
1581 u_int mtu;
1582 tcp_seq seq;
1583 struct inpcb *inp;
1584 #ifdef INET6
1585 struct in6pcb *in6p;
1586 struct in6_addr src6, dst6;
1587 #endif
1588
1589 if (sa->sa_family != AF_INET ||
1590 sa->sa_len != sizeof(struct sockaddr_in))
1591 return NULL;
1592 if ((unsigned)cmd >= PRC_NCMDS)
1593 return NULL;
1594 errno = inetctlerrmap[cmd];
1595 if (cmd == PRC_QUENCH)
1596 /*
1597 * Don't honor ICMP Source Quench messages meant for
1598 * TCP connections.
1599 */
1600 return NULL;
1601 else if (PRC_IS_REDIRECT(cmd))
1602 notify = in_rtchange, ip = 0;
1603 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1604 /*
1605 * Check to see if we have a valid TCP connection
1606 * corresponding to the address in the ICMP message
1607 * payload.
1608 *
1609 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1610 */
1611 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1612 #ifdef INET6
1613 memset(&src6, 0, sizeof(src6));
1614 memset(&dst6, 0, sizeof(dst6));
1615 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1616 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1617 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1618 #endif
1619 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1620 th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1621 #ifdef INET6
1622 in6p = NULL;
1623 #else
1624 ;
1625 #endif
1626 #ifdef INET6
1627 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1628 th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1629 ;
1630 #endif
1631 else
1632 return NULL;
1633
1634 /*
1635 * Now that we've validated that we are actually communicating
1636 * with the host indicated in the ICMP message, locate the
1637 * ICMP header, recalculate the new MTU, and create the
1638 * corresponding routing entry.
1639 */
1640 icp = (struct icmp *)((char *)ip -
1641 offsetof(struct icmp, icmp_ip));
1642 if (inp) {
1643 if ((tp = intotcpcb(inp)) == NULL)
1644 return NULL;
1645 }
1646 #ifdef INET6
1647 else if (in6p) {
1648 if ((tp = in6totcpcb(in6p)) == NULL)
1649 return NULL;
1650 }
1651 #endif
1652 else
1653 return NULL;
1654 seq = ntohl(th->th_seq);
1655 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1656 return NULL;
1657 /*
1658 * If the ICMP message advertises a Next-Hop MTU
1659 * equal or larger than the maximum packet size we have
1660 * ever sent, drop the message.
1661 */
1662 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1663 if (mtu >= tp->t_pmtud_mtu_sent)
1664 return NULL;
1665 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1666 /*
1667 * Calculate new MTU, and create corresponding
1668 * route (traditional PMTUD).
1669 */
1670 tp->t_flags &= ~TF_PMTUD_PEND;
1671 icmp_mtudisc(icp, ip->ip_dst);
1672 } else {
1673 /*
1674 * Record the information got in the ICMP
1675 * message; act on it later.
1676 * If we had already recorded an ICMP message,
1677 * replace the old one only if the new message
1678 * refers to an older TCP segment
1679 */
1680 if (tp->t_flags & TF_PMTUD_PEND) {
1681 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1682 return NULL;
1683 } else
1684 tp->t_flags |= TF_PMTUD_PEND;
1685 tp->t_pmtud_th_seq = seq;
1686 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1687 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1688 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1689 }
1690 return NULL;
1691 } else if (cmd == PRC_HOSTDEAD)
1692 ip = 0;
1693 else if (errno == 0)
1694 return NULL;
1695 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1696 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1697 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1698 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1699 if (nmatch == 0 && syn_cache_count &&
1700 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1701 inetctlerrmap[cmd] == ENETUNREACH ||
1702 inetctlerrmap[cmd] == EHOSTDOWN)) {
1703 struct sockaddr_in sin;
1704 memset(&sin, 0, sizeof(sin));
1705 sin.sin_len = sizeof(sin);
1706 sin.sin_family = AF_INET;
1707 sin.sin_port = th->th_sport;
1708 sin.sin_addr = ip->ip_src;
1709 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1710 }
1711
1712 /* XXX mapped address case */
1713 } else
1714 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1715 notify);
1716 return NULL;
1717 }
1718
1719 /*
1720 * When a source quench is received, we are being notified of congestion.
1721 * Close the congestion window down to the Loss Window (one segment).
1722 * We will gradually open it again as we proceed.
1723 */
1724 void
1725 tcp_quench(struct inpcb *inp, int errno)
1726 {
1727 struct tcpcb *tp = intotcpcb(inp);
1728
1729 if (tp) {
1730 tp->snd_cwnd = tp->t_segsz;
1731 tp->t_bytes_acked = 0;
1732 }
1733 }
1734 #endif
1735
1736 #ifdef INET6
1737 void
1738 tcp6_quench(struct in6pcb *in6p, int errno)
1739 {
1740 struct tcpcb *tp = in6totcpcb(in6p);
1741
1742 if (tp) {
1743 tp->snd_cwnd = tp->t_segsz;
1744 tp->t_bytes_acked = 0;
1745 }
1746 }
1747 #endif
1748
1749 #ifdef INET
1750 /*
1751 * Path MTU Discovery handlers.
1752 */
1753 void
1754 tcp_mtudisc_callback(struct in_addr faddr)
1755 {
1756 #ifdef INET6
1757 struct in6_addr in6;
1758 #endif
1759
1760 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1761 #ifdef INET6
1762 memset(&in6, 0, sizeof(in6));
1763 in6.s6_addr16[5] = 0xffff;
1764 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1765 tcp6_mtudisc_callback(&in6);
1766 #endif
1767 }
1768
1769 /*
1770 * On receipt of path MTU corrections, flush old route and replace it
1771 * with the new one. Retransmit all unacknowledged packets, to ensure
1772 * that all packets will be received.
1773 */
1774 void
1775 tcp_mtudisc(struct inpcb *inp, int errno)
1776 {
1777 struct tcpcb *tp = intotcpcb(inp);
1778 struct rtentry *rt = in_pcbrtentry(inp);
1779
1780 if (tp != 0) {
1781 if (rt != 0) {
1782 /*
1783 * If this was not a host route, remove and realloc.
1784 */
1785 if ((rt->rt_flags & RTF_HOST) == 0) {
1786 in_rtchange(inp, errno);
1787 if ((rt = in_pcbrtentry(inp)) == 0)
1788 return;
1789 }
1790
1791 /*
1792 * Slow start out of the error condition. We
1793 * use the MTU because we know it's smaller
1794 * than the previously transmitted segment.
1795 *
1796 * Note: This is more conservative than the
1797 * suggestion in draft-floyd-incr-init-win-03.
1798 */
1799 if (rt->rt_rmx.rmx_mtu != 0)
1800 tp->snd_cwnd =
1801 TCP_INITIAL_WINDOW(tcp_init_win,
1802 rt->rt_rmx.rmx_mtu);
1803 }
1804
1805 /*
1806 * Resend unacknowledged packets.
1807 */
1808 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1809 tcp_output(tp);
1810 }
1811 }
1812 #endif
1813
1814 #ifdef INET6
1815 /*
1816 * Path MTU Discovery handlers.
1817 */
1818 void
1819 tcp6_mtudisc_callback(struct in6_addr *faddr)
1820 {
1821 struct sockaddr_in6 sin6;
1822
1823 memset(&sin6, 0, sizeof(sin6));
1824 sin6.sin6_family = AF_INET6;
1825 sin6.sin6_len = sizeof(struct sockaddr_in6);
1826 sin6.sin6_addr = *faddr;
1827 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1828 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1829 }
1830
1831 void
1832 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1833 {
1834 struct tcpcb *tp = in6totcpcb(in6p);
1835 struct rtentry *rt = in6_pcbrtentry(in6p);
1836
1837 if (tp != 0) {
1838 if (rt != 0) {
1839 /*
1840 * If this was not a host route, remove and realloc.
1841 */
1842 if ((rt->rt_flags & RTF_HOST) == 0) {
1843 in6_rtchange(in6p, errno);
1844 if ((rt = in6_pcbrtentry(in6p)) == 0)
1845 return;
1846 }
1847
1848 /*
1849 * Slow start out of the error condition. We
1850 * use the MTU because we know it's smaller
1851 * than the previously transmitted segment.
1852 *
1853 * Note: This is more conservative than the
1854 * suggestion in draft-floyd-incr-init-win-03.
1855 */
1856 if (rt->rt_rmx.rmx_mtu != 0)
1857 tp->snd_cwnd =
1858 TCP_INITIAL_WINDOW(tcp_init_win,
1859 rt->rt_rmx.rmx_mtu);
1860 }
1861
1862 /*
1863 * Resend unacknowledged packets.
1864 */
1865 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1866 tcp_output(tp);
1867 }
1868 }
1869 #endif /* INET6 */
1870
1871 /*
1872 * Compute the MSS to advertise to the peer. Called only during
1873 * the 3-way handshake. If we are the server (peer initiated
1874 * connection), we are called with a pointer to the interface
1875 * on which the SYN packet arrived. If we are the client (we
1876 * initiated connection), we are called with a pointer to the
1877 * interface out which this connection should go.
1878 *
1879 * NOTE: Do not subtract IP option/extension header size nor IPsec
1880 * header size from MSS advertisement. MSS option must hold the maximum
1881 * segment size we can accept, so it must always be:
1882 * max(if mtu) - ip header - tcp header
1883 */
1884 u_long
1885 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1886 {
1887 extern u_long in_maxmtu;
1888 u_long mss = 0;
1889 u_long hdrsiz;
1890
1891 /*
1892 * In order to avoid defeating path MTU discovery on the peer,
1893 * we advertise the max MTU of all attached networks as our MSS,
1894 * per RFC 1191, section 3.1.
1895 *
1896 * We provide the option to advertise just the MTU of
1897 * the interface on which we hope this connection will
1898 * be receiving. If we are responding to a SYN, we
1899 * will have a pretty good idea about this, but when
1900 * initiating a connection there is a bit more doubt.
1901 *
1902 * We also need to ensure that loopback has a large enough
1903 * MSS, as the loopback MTU is never included in in_maxmtu.
1904 */
1905
1906 if (ifp != NULL)
1907 switch (af) {
1908 case AF_INET:
1909 mss = ifp->if_mtu;
1910 break;
1911 #ifdef INET6
1912 case AF_INET6:
1913 mss = IN6_LINKMTU(ifp);
1914 break;
1915 #endif
1916 }
1917
1918 if (tcp_mss_ifmtu == 0)
1919 switch (af) {
1920 case AF_INET:
1921 mss = max(in_maxmtu, mss);
1922 break;
1923 #ifdef INET6
1924 case AF_INET6:
1925 mss = max(in6_maxmtu, mss);
1926 break;
1927 #endif
1928 }
1929
1930 switch (af) {
1931 case AF_INET:
1932 hdrsiz = sizeof(struct ip);
1933 break;
1934 #ifdef INET6
1935 case AF_INET6:
1936 hdrsiz = sizeof(struct ip6_hdr);
1937 break;
1938 #endif
1939 default:
1940 hdrsiz = 0;
1941 break;
1942 }
1943 hdrsiz += sizeof(struct tcphdr);
1944 if (mss > hdrsiz)
1945 mss -= hdrsiz;
1946
1947 mss = max(tcp_mssdflt, mss);
1948 return (mss);
1949 }
1950
1951 /*
1952 * Set connection variables based on the peer's advertised MSS.
1953 * We are passed the TCPCB for the actual connection. If we
1954 * are the server, we are called by the compressed state engine
1955 * when the 3-way handshake is complete. If we are the client,
1956 * we are called when we receive the SYN,ACK from the server.
1957 *
1958 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1959 * before this routine is called!
1960 */
1961 void
1962 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1963 {
1964 struct socket *so;
1965 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1966 struct rtentry *rt;
1967 #endif
1968 u_long bufsize;
1969 int mss;
1970
1971 #ifdef DIAGNOSTIC
1972 if (tp->t_inpcb && tp->t_in6pcb)
1973 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1974 #endif
1975 so = NULL;
1976 rt = NULL;
1977 #ifdef INET
1978 if (tp->t_inpcb) {
1979 so = tp->t_inpcb->inp_socket;
1980 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1981 rt = in_pcbrtentry(tp->t_inpcb);
1982 #endif
1983 }
1984 #endif
1985 #ifdef INET6
1986 if (tp->t_in6pcb) {
1987 so = tp->t_in6pcb->in6p_socket;
1988 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1989 rt = in6_pcbrtentry(tp->t_in6pcb);
1990 #endif
1991 }
1992 #endif
1993
1994 /*
1995 * As per RFC1122, use the default MSS value, unless they
1996 * sent us an offer. Do not accept offers less than 256 bytes.
1997 */
1998 mss = tcp_mssdflt;
1999 if (offer)
2000 mss = offer;
2001 mss = max(mss, 256); /* sanity */
2002 tp->t_peermss = mss;
2003 mss -= tcp_optlen(tp);
2004 #ifdef INET
2005 if (tp->t_inpcb)
2006 mss -= ip_optlen(tp->t_inpcb);
2007 #endif
2008 #ifdef INET6
2009 if (tp->t_in6pcb)
2010 mss -= ip6_optlen(tp->t_in6pcb);
2011 #endif
2012
2013 /*
2014 * If there's a pipesize, change the socket buffer to that size.
2015 * Make the socket buffer an integral number of MSS units. If
2016 * the MSS is larger than the socket buffer, artificially decrease
2017 * the MSS.
2018 */
2019 #ifdef RTV_SPIPE
2020 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
2021 bufsize = rt->rt_rmx.rmx_sendpipe;
2022 else
2023 #endif
2024 {
2025 KASSERT(so != NULL);
2026 bufsize = so->so_snd.sb_hiwat;
2027 }
2028 if (bufsize < mss)
2029 mss = bufsize;
2030 else {
2031 bufsize = roundup(bufsize, mss);
2032 if (bufsize > sb_max)
2033 bufsize = sb_max;
2034 (void) sbreserve(&so->so_snd, bufsize, so);
2035 }
2036 tp->t_segsz = mss;
2037
2038 #ifdef RTV_SSTHRESH
2039 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2040 /*
2041 * There's some sort of gateway or interface buffer
2042 * limit on the path. Use this to set the slow
2043 * start threshold, but set the threshold to no less
2044 * than 2 * MSS.
2045 */
2046 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2047 }
2048 #endif
2049 }
2050
2051 /*
2052 * Processing necessary when a TCP connection is established.
2053 */
2054 void
2055 tcp_established(struct tcpcb *tp)
2056 {
2057 struct socket *so;
2058 #ifdef RTV_RPIPE
2059 struct rtentry *rt;
2060 #endif
2061 u_long bufsize;
2062
2063 #ifdef DIAGNOSTIC
2064 if (tp->t_inpcb && tp->t_in6pcb)
2065 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2066 #endif
2067 so = NULL;
2068 rt = NULL;
2069 #ifdef INET
2070 /* This is a while() to reduce the dreadful stairstepping below */
2071 while (tp->t_inpcb) {
2072 so = tp->t_inpcb->inp_socket;
2073 #if defined(RTV_RPIPE)
2074 rt = in_pcbrtentry(tp->t_inpcb);
2075 #endif
2076 if (__predict_true(tcp_msl_enable)) {
2077 if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2078 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2079 break;
2080 }
2081
2082 if (__predict_false(tcp_rttlocal)) {
2083 /* This may be adjusted by tcp_input */
2084 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2085 break;
2086 }
2087 if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2088 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2089 break;
2090 }
2091 }
2092 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2093 break;
2094 }
2095 #endif
2096 #ifdef INET6
2097 /* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2098 while (!tp->t_inpcb && tp->t_in6pcb) {
2099 so = tp->t_in6pcb->in6p_socket;
2100 #if defined(RTV_RPIPE)
2101 rt = in6_pcbrtentry(tp->t_in6pcb);
2102 #endif
2103 if (__predict_true(tcp_msl_enable)) {
2104 extern const struct in6_addr in6addr_loopback;
2105
2106 if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2107 &in6addr_loopback)) {
2108 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2109 break;
2110 }
2111
2112 if (__predict_false(tcp_rttlocal)) {
2113 /* This may be adjusted by tcp_input */
2114 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2115 break;
2116 }
2117 if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2118 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2119 break;
2120 }
2121 }
2122 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2123 break;
2124 }
2125 #endif
2126
2127 tp->t_state = TCPS_ESTABLISHED;
2128 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2129
2130 #ifdef RTV_RPIPE
2131 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2132 bufsize = rt->rt_rmx.rmx_recvpipe;
2133 else
2134 #endif
2135 {
2136 KASSERT(so != NULL);
2137 bufsize = so->so_rcv.sb_hiwat;
2138 }
2139 if (bufsize > tp->t_ourmss) {
2140 bufsize = roundup(bufsize, tp->t_ourmss);
2141 if (bufsize > sb_max)
2142 bufsize = sb_max;
2143 (void) sbreserve(&so->so_rcv, bufsize, so);
2144 }
2145 }
2146
2147 /*
2148 * Check if there's an initial rtt or rttvar. Convert from the
2149 * route-table units to scaled multiples of the slow timeout timer.
2150 * Called only during the 3-way handshake.
2151 */
2152 void
2153 tcp_rmx_rtt(struct tcpcb *tp)
2154 {
2155 #ifdef RTV_RTT
2156 struct rtentry *rt = NULL;
2157 int rtt;
2158
2159 #ifdef DIAGNOSTIC
2160 if (tp->t_inpcb && tp->t_in6pcb)
2161 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2162 #endif
2163 #ifdef INET
2164 if (tp->t_inpcb)
2165 rt = in_pcbrtentry(tp->t_inpcb);
2166 #endif
2167 #ifdef INET6
2168 if (tp->t_in6pcb)
2169 rt = in6_pcbrtentry(tp->t_in6pcb);
2170 #endif
2171 if (rt == NULL)
2172 return;
2173
2174 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2175 /*
2176 * XXX The lock bit for MTU indicates that the value
2177 * is also a minimum value; this is subject to time.
2178 */
2179 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2180 TCPT_RANGESET(tp->t_rttmin,
2181 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2182 TCPTV_MIN, TCPTV_REXMTMAX);
2183 tp->t_srtt = rtt /
2184 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2185 if (rt->rt_rmx.rmx_rttvar) {
2186 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2187 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2188 (TCP_RTTVAR_SHIFT + 2));
2189 } else {
2190 /* Default variation is +- 1 rtt */
2191 tp->t_rttvar =
2192 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2193 }
2194 TCPT_RANGESET(tp->t_rxtcur,
2195 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2196 tp->t_rttmin, TCPTV_REXMTMAX);
2197 }
2198 #endif
2199 }
2200
2201 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2202 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2203
2204 /*
2205 * Get a new sequence value given a tcp control block
2206 */
2207 tcp_seq
2208 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2209 {
2210
2211 #ifdef INET
2212 if (tp->t_inpcb != NULL) {
2213 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2214 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2215 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2216 addin));
2217 }
2218 #endif
2219 #ifdef INET6
2220 if (tp->t_in6pcb != NULL) {
2221 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2222 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2223 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2224 addin));
2225 }
2226 #endif
2227 /* Not possible. */
2228 panic("tcp_new_iss");
2229 }
2230
2231 /*
2232 * This routine actually generates a new TCP initial sequence number.
2233 */
2234 tcp_seq
2235 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2236 size_t addrsz, tcp_seq addin)
2237 {
2238 tcp_seq tcp_iss;
2239
2240 static bool tcp_iss_gotten_secret;
2241
2242 /*
2243 * If we haven't been here before, initialize our cryptographic
2244 * hash secret.
2245 */
2246 if (tcp_iss_gotten_secret == false) {
2247 cprng_strong(kern_cprng,
2248 tcp_iss_secret, sizeof(tcp_iss_secret), FASYNC);
2249 tcp_iss_gotten_secret = true;
2250 }
2251
2252 if (tcp_do_rfc1948) {
2253 MD5_CTX ctx;
2254 u_int8_t hash[16]; /* XXX MD5 knowledge */
2255
2256 /*
2257 * Compute the base value of the ISS. It is a hash
2258 * of (saddr, sport, daddr, dport, secret).
2259 */
2260 MD5Init(&ctx);
2261
2262 MD5Update(&ctx, (u_char *) laddr, addrsz);
2263 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2264
2265 MD5Update(&ctx, (u_char *) faddr, addrsz);
2266 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2267
2268 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2269
2270 MD5Final(hash, &ctx);
2271
2272 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2273
2274 /*
2275 * Now increment our "timer", and add it in to
2276 * the computed value.
2277 *
2278 * XXX Use `addin'?
2279 * XXX TCP_ISSINCR too large to use?
2280 */
2281 tcp_iss_seq += TCP_ISSINCR;
2282 #ifdef TCPISS_DEBUG
2283 printf("ISS hash 0x%08x, ", tcp_iss);
2284 #endif
2285 tcp_iss += tcp_iss_seq + addin;
2286 #ifdef TCPISS_DEBUG
2287 printf("new ISS 0x%08x\n", tcp_iss);
2288 #endif
2289 } else {
2290 /*
2291 * Randomize.
2292 */
2293 tcp_iss = cprng_fast32();
2294
2295 /*
2296 * If we were asked to add some amount to a known value,
2297 * we will take a random value obtained above, mask off
2298 * the upper bits, and add in the known value. We also
2299 * add in a constant to ensure that we are at least a
2300 * certain distance from the original value.
2301 *
2302 * This is used when an old connection is in timed wait
2303 * and we have a new one coming in, for instance.
2304 */
2305 if (addin != 0) {
2306 #ifdef TCPISS_DEBUG
2307 printf("Random %08x, ", tcp_iss);
2308 #endif
2309 tcp_iss &= TCP_ISS_RANDOM_MASK;
2310 tcp_iss += addin + TCP_ISSINCR;
2311 #ifdef TCPISS_DEBUG
2312 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2313 #endif
2314 } else {
2315 tcp_iss &= TCP_ISS_RANDOM_MASK;
2316 tcp_iss += tcp_iss_seq;
2317 tcp_iss_seq += TCP_ISSINCR;
2318 #ifdef TCPISS_DEBUG
2319 printf("ISS %08x\n", tcp_iss);
2320 #endif
2321 }
2322 }
2323
2324 if (tcp_compat_42) {
2325 /*
2326 * Limit it to the positive range for really old TCP
2327 * implementations.
2328 * Just AND off the top bit instead of checking if
2329 * is set first - saves a branch 50% of the time.
2330 */
2331 tcp_iss &= 0x7fffffff; /* XXX */
2332 }
2333
2334 return (tcp_iss);
2335 }
2336
2337 #if defined(IPSEC)
2338 /* compute ESP/AH header size for TCP, including outer IP header. */
2339 size_t
2340 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2341 {
2342 struct inpcb *inp;
2343 size_t hdrsiz;
2344
2345 /* XXX mapped addr case (tp->t_in6pcb) */
2346 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2347 return 0;
2348 switch (tp->t_family) {
2349 case AF_INET:
2350 /* XXX: should use currect direction. */
2351 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2352 break;
2353 default:
2354 hdrsiz = 0;
2355 break;
2356 }
2357
2358 return hdrsiz;
2359 }
2360
2361 #ifdef INET6
2362 size_t
2363 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2364 {
2365 struct in6pcb *in6p;
2366 size_t hdrsiz;
2367
2368 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2369 return 0;
2370 switch (tp->t_family) {
2371 case AF_INET6:
2372 /* XXX: should use currect direction. */
2373 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2374 break;
2375 case AF_INET:
2376 /* mapped address case - tricky */
2377 default:
2378 hdrsiz = 0;
2379 break;
2380 }
2381
2382 return hdrsiz;
2383 }
2384 #endif
2385 #endif /*IPSEC*/
2386
2387 /*
2388 * Determine the length of the TCP options for this connection.
2389 *
2390 * XXX: What do we do for SACK, when we add that? Just reserve
2391 * all of the space? Otherwise we can't exactly be incrementing
2392 * cwnd by an amount that varies depending on the amount we last
2393 * had to SACK!
2394 */
2395
2396 u_int
2397 tcp_optlen(struct tcpcb *tp)
2398 {
2399 u_int optlen;
2400
2401 optlen = 0;
2402 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2403 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2404 optlen += TCPOLEN_TSTAMP_APPA;
2405
2406 #ifdef TCP_SIGNATURE
2407 if (tp->t_flags & TF_SIGNATURE)
2408 optlen += TCPOLEN_SIGNATURE + 2;
2409 #endif /* TCP_SIGNATURE */
2410
2411 return optlen;
2412 }
2413
2414 u_int
2415 tcp_hdrsz(struct tcpcb *tp)
2416 {
2417 u_int hlen;
2418
2419 switch (tp->t_family) {
2420 #ifdef INET6
2421 case AF_INET6:
2422 hlen = sizeof(struct ip6_hdr);
2423 break;
2424 #endif
2425 case AF_INET:
2426 hlen = sizeof(struct ip);
2427 break;
2428 default:
2429 hlen = 0;
2430 break;
2431 }
2432 hlen += sizeof(struct tcphdr);
2433
2434 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2435 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2436 hlen += TCPOLEN_TSTAMP_APPA;
2437 #ifdef TCP_SIGNATURE
2438 if (tp->t_flags & TF_SIGNATURE)
2439 hlen += TCPOLEN_SIGLEN;
2440 #endif
2441 return hlen;
2442 }
2443
2444 void
2445 tcp_statinc(u_int stat)
2446 {
2447
2448 KASSERT(stat < TCP_NSTATS);
2449 TCP_STATINC(stat);
2450 }
2451
2452 void
2453 tcp_statadd(u_int stat, uint64_t val)
2454 {
2455
2456 KASSERT(stat < TCP_NSTATS);
2457 TCP_STATADD(stat, val);
2458 }
2459