Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.254
      1 /*	$NetBSD: tcp_subr.c,v 1.254 2014/01/02 18:52:04 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     50  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     51  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     53  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     54  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     55  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     56  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     57  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     58  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     59  * POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 /*
     63  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     64  *	The Regents of the University of California.  All rights reserved.
     65  *
     66  * Redistribution and use in source and binary forms, with or without
     67  * modification, are permitted provided that the following conditions
     68  * are met:
     69  * 1. Redistributions of source code must retain the above copyright
     70  *    notice, this list of conditions and the following disclaimer.
     71  * 2. Redistributions in binary form must reproduce the above copyright
     72  *    notice, this list of conditions and the following disclaimer in the
     73  *    documentation and/or other materials provided with the distribution.
     74  * 3. Neither the name of the University nor the names of its contributors
     75  *    may be used to endorse or promote products derived from this software
     76  *    without specific prior written permission.
     77  *
     78  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     79  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     80  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     81  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     82  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     83  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     84  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     85  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     86  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     87  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     88  * SUCH DAMAGE.
     89  *
     90  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     91  */
     92 
     93 #include <sys/cdefs.h>
     94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.254 2014/01/02 18:52:04 pooka Exp $");
     95 
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_tcp_compat_42.h"
     99 #include "opt_inet_csum.h"
    100 #include "opt_mbuftrace.h"
    101 
    102 #include <sys/param.h>
    103 #include <sys/atomic.h>
    104 #include <sys/proc.h>
    105 #include <sys/systm.h>
    106 #include <sys/malloc.h>
    107 #include <sys/mbuf.h>
    108 #include <sys/once.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/protosw.h>
    112 #include <sys/errno.h>
    113 #include <sys/kernel.h>
    114 #include <sys/pool.h>
    115 #include <sys/md5.h>
    116 #include <sys/cprng.h>
    117 
    118 #include <net/route.h>
    119 #include <net/if.h>
    120 
    121 #include <netinet/in.h>
    122 #include <netinet/in_systm.h>
    123 #include <netinet/ip.h>
    124 #include <netinet/in_pcb.h>
    125 #include <netinet/ip_var.h>
    126 #include <netinet/ip_icmp.h>
    127 
    128 #ifdef INET6
    129 #ifndef INET
    130 #include <netinet/in.h>
    131 #endif
    132 #include <netinet/ip6.h>
    133 #include <netinet6/in6_pcb.h>
    134 #include <netinet6/ip6_var.h>
    135 #include <netinet6/in6_var.h>
    136 #include <netinet6/ip6protosw.h>
    137 #include <netinet/icmp6.h>
    138 #include <netinet6/nd6.h>
    139 #endif
    140 
    141 #include <netinet/tcp.h>
    142 #include <netinet/tcp_fsm.h>
    143 #include <netinet/tcp_seq.h>
    144 #include <netinet/tcp_timer.h>
    145 #include <netinet/tcp_var.h>
    146 #include <netinet/tcp_vtw.h>
    147 #include <netinet/tcp_private.h>
    148 #include <netinet/tcp_congctl.h>
    149 #include <netinet/tcpip.h>
    150 
    151 #ifdef IPSEC
    152 #include <netipsec/ipsec.h>
    153 #include <netipsec/xform.h>
    154 #ifdef INET6
    155 #include <netipsec/ipsec6.h>
    156 #endif
    157  #include <netipsec/key.h>
    158 #endif	/* IPSEC*/
    159 
    160 
    161 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    162 u_int32_t tcp_now;		/* slow ticks, for RFC 1323 timestamps */
    163 
    164 percpu_t *tcpstat_percpu;
    165 
    166 /* patchable/settable parameters for tcp */
    167 int 	tcp_mssdflt = TCP_MSS;
    168 int	tcp_minmss = TCP_MINMSS;
    169 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    170 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    171 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    172 int	tcp_do_sack = 1;	/* selective acknowledgement */
    173 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    174 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    175 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    176 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    177 #ifndef TCP_INIT_WIN
    178 #define	TCP_INIT_WIN	4	/* initial slow start window */
    179 #endif
    180 #ifndef TCP_INIT_WIN_LOCAL
    181 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    182 #endif
    183 /*
    184  * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
    185  * This is to simulate current behavior for iw == 4
    186  */
    187 int tcp_init_win_max[] = {
    188 	 1 * 1460,
    189 	 1 * 1460,
    190 	 2 * 1460,
    191 	 2 * 1460,
    192 	 3 * 1460,
    193 	 5 * 1460,
    194 	 6 * 1460,
    195 	 7 * 1460,
    196 	 8 * 1460,
    197 	 9 * 1460,
    198 	10 * 1460
    199 };
    200 int	tcp_init_win = TCP_INIT_WIN;
    201 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    202 int	tcp_mss_ifmtu = 0;
    203 #ifdef TCP_COMPAT_42
    204 int	tcp_compat_42 = 1;
    205 #else
    206 int	tcp_compat_42 = 0;
    207 #endif
    208 int	tcp_rst_ppslim = 100;	/* 100pps */
    209 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    210 int	tcp_do_loopback_cksum = 0;
    211 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    212 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    213 int	tcp_sack_tp_maxholes = 32;
    214 int	tcp_sack_globalmaxholes = 1024;
    215 int	tcp_sack_globalholes = 0;
    216 int	tcp_ecn_maxretries = 1;
    217 int	tcp_msl_enable = 1;		/* enable TIME_WAIT truncation	*/
    218 int	tcp_msl_loop   = PR_SLOWHZ;	/* MSL for loopback		*/
    219 int	tcp_msl_local  = 5 * PR_SLOWHZ;	/* MSL for 'local'		*/
    220 int	tcp_msl_remote = TCPTV_MSL;	/* MSL otherwise		*/
    221 int	tcp_msl_remote_threshold = TCPTV_SRTTDFLT;	/* RTT threshold */
    222 int	tcp_rttlocal = 0;		/* Use RTT to decide who's 'local' */
    223 
    224 int	tcp4_vtw_enable = 0;		/* 1 to enable */
    225 int	tcp6_vtw_enable = 0;		/* 1 to enable */
    226 int	tcp_vtw_was_enabled = 0;
    227 int	tcp_vtw_entries = 1 << 16;	/* 64K vestigial TIME_WAIT entries */
    228 
    229 /* tcb hash */
    230 #ifndef TCBHASHSIZE
    231 #define	TCBHASHSIZE	128
    232 #endif
    233 int	tcbhashsize = TCBHASHSIZE;
    234 
    235 /* syn hash parameters */
    236 #define	TCP_SYN_HASH_SIZE	293
    237 #define	TCP_SYN_BUCKET_SIZE	35
    238 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    239 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    240 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    241 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    242 
    243 int	tcp_freeq(struct tcpcb *);
    244 
    245 #ifdef INET
    246 static void	tcp_mtudisc_callback(struct in_addr);
    247 #endif
    248 
    249 #ifdef INET6
    250 void	tcp6_mtudisc(struct in6pcb *, int);
    251 #endif
    252 
    253 static struct pool tcpcb_pool;
    254 
    255 static int tcp_drainwanted;
    256 
    257 #ifdef TCP_CSUM_COUNTERS
    258 #include <sys/device.h>
    259 
    260 #if defined(INET)
    261 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp", "hwcsum bad");
    263 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp", "hwcsum ok");
    265 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp", "hwcsum data");
    267 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp", "swcsum");
    269 
    270 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    271 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    272 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    273 EVCNT_ATTACH_STATIC(tcp_swcsum);
    274 #endif /* defined(INET) */
    275 
    276 #if defined(INET6)
    277 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     NULL, "tcp6", "hwcsum bad");
    279 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     NULL, "tcp6", "hwcsum ok");
    281 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     NULL, "tcp6", "hwcsum data");
    283 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     NULL, "tcp6", "swcsum");
    285 
    286 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    287 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    288 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    289 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    290 #endif /* defined(INET6) */
    291 #endif /* TCP_CSUM_COUNTERS */
    292 
    293 
    294 #ifdef TCP_OUTPUT_COUNTERS
    295 #include <sys/device.h>
    296 
    297 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    298     NULL, "tcp", "output big header");
    299 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    300     NULL, "tcp", "output predict hit");
    301 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    302     NULL, "tcp", "output predict miss");
    303 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    304     NULL, "tcp", "output copy small");
    305 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    306     NULL, "tcp", "output copy big");
    307 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    308     NULL, "tcp", "output reference big");
    309 
    310 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    311 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    312 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    313 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    314 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    315 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    316 
    317 #endif /* TCP_OUTPUT_COUNTERS */
    318 
    319 #ifdef TCP_REASS_COUNTERS
    320 #include <sys/device.h>
    321 
    322 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    323     NULL, "tcp_reass", "calls");
    324 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    325     &tcp_reass_, "tcp_reass", "insert into empty queue");
    326 struct evcnt tcp_reass_iteration[8] = {
    327     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    328     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    329     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    330     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    331     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    332     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    333     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    334     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    335 };
    336 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    337     &tcp_reass_, "tcp_reass", "prepend to first");
    338 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    339     &tcp_reass_, "tcp_reass", "prepend");
    340 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    341     &tcp_reass_, "tcp_reass", "insert");
    342 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    343     &tcp_reass_, "tcp_reass", "insert at tail");
    344 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    345     &tcp_reass_, "tcp_reass", "append");
    346 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    347     &tcp_reass_, "tcp_reass", "append to tail fragment");
    348 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    349     &tcp_reass_, "tcp_reass", "overlap at end");
    350 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    351     &tcp_reass_, "tcp_reass", "overlap at start");
    352 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    353     &tcp_reass_, "tcp_reass", "duplicate segment");
    354 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    355     &tcp_reass_, "tcp_reass", "duplicate fragment");
    356 
    357 EVCNT_ATTACH_STATIC(tcp_reass_);
    358 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    359 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    361 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    362 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    363 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    364 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    365 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    366 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    367 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    368 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    369 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    370 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    371 EVCNT_ATTACH_STATIC(tcp_reass_append);
    372 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    373 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    374 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    375 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    376 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    377 
    378 #endif /* TCP_REASS_COUNTERS */
    379 
    380 #ifdef MBUFTRACE
    381 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    382 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    383 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    384 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
    385 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
    386 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
    387 #endif
    388 
    389 callout_t tcp_slowtimo_ch;
    390 
    391 static int
    392 do_tcpinit(void)
    393 {
    394 
    395 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    396 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    397 	    NULL, IPL_SOFTNET);
    398 
    399 	tcp_usrreq_init();
    400 
    401 	/* Initialize timer state. */
    402 	tcp_timer_init();
    403 
    404 	/* Initialize the compressed state engine. */
    405 	syn_cache_init();
    406 
    407 	/* Initialize the congestion control algorithms. */
    408 	tcp_congctl_init();
    409 
    410 	/* Initialize the TCPCB template. */
    411 	tcp_tcpcb_template();
    412 
    413 	/* Initialize reassembly queue */
    414 	tcpipqent_init();
    415 
    416 	/* SACK */
    417 	tcp_sack_init();
    418 
    419 	MOWNER_ATTACH(&tcp_tx_mowner);
    420 	MOWNER_ATTACH(&tcp_rx_mowner);
    421 	MOWNER_ATTACH(&tcp_reass_mowner);
    422 	MOWNER_ATTACH(&tcp_sock_mowner);
    423 	MOWNER_ATTACH(&tcp_sock_tx_mowner);
    424 	MOWNER_ATTACH(&tcp_sock_rx_mowner);
    425 	MOWNER_ATTACH(&tcp_mowner);
    426 
    427 	tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
    428 
    429 	vtw_earlyinit();
    430 
    431 	callout_init(&tcp_slowtimo_ch, CALLOUT_MPSAFE);
    432 	callout_reset(&tcp_slowtimo_ch, 1, tcp_slowtimo, NULL);
    433 
    434 	return 0;
    435 }
    436 
    437 void
    438 tcp_init_common(unsigned basehlen)
    439 {
    440 	static ONCE_DECL(dotcpinit);
    441 	unsigned hlen = basehlen + sizeof(struct tcphdr);
    442 	unsigned oldhlen;
    443 
    444 	if (max_linkhdr + hlen > MHLEN)
    445 		panic("tcp_init");
    446 	while ((oldhlen = max_protohdr) < hlen)
    447 		atomic_cas_uint(&max_protohdr, oldhlen, hlen);
    448 
    449 	RUN_ONCE(&dotcpinit, do_tcpinit);
    450 }
    451 
    452 /*
    453  * Tcp initialization
    454  */
    455 void
    456 tcp_init(void)
    457 {
    458 
    459 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    460 
    461 	tcp_init_common(sizeof(struct ip));
    462 }
    463 
    464 /*
    465  * Create template to be used to send tcp packets on a connection.
    466  * Call after host entry created, allocates an mbuf and fills
    467  * in a skeletal tcp/ip header, minimizing the amount of work
    468  * necessary when the connection is used.
    469  */
    470 struct mbuf *
    471 tcp_template(struct tcpcb *tp)
    472 {
    473 	struct inpcb *inp = tp->t_inpcb;
    474 #ifdef INET6
    475 	struct in6pcb *in6p = tp->t_in6pcb;
    476 #endif
    477 	struct tcphdr *n;
    478 	struct mbuf *m;
    479 	int hlen;
    480 
    481 	switch (tp->t_family) {
    482 	case AF_INET:
    483 		hlen = sizeof(struct ip);
    484 		if (inp)
    485 			break;
    486 #ifdef INET6
    487 		if (in6p) {
    488 			/* mapped addr case */
    489 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    490 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    491 				break;
    492 		}
    493 #endif
    494 		return NULL;	/*EINVAL*/
    495 #ifdef INET6
    496 	case AF_INET6:
    497 		hlen = sizeof(struct ip6_hdr);
    498 		if (in6p) {
    499 			/* more sainty check? */
    500 			break;
    501 		}
    502 		return NULL;	/*EINVAL*/
    503 #endif
    504 	default:
    505 		hlen = 0;	/*pacify gcc*/
    506 		return NULL;	/*EAFNOSUPPORT*/
    507 	}
    508 #ifdef DIAGNOSTIC
    509 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    510 		panic("mclbytes too small for t_template");
    511 #endif
    512 	m = tp->t_template;
    513 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    514 		;
    515 	else {
    516 		if (m)
    517 			m_freem(m);
    518 		m = tp->t_template = NULL;
    519 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    520 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    521 			MCLGET(m, M_DONTWAIT);
    522 			if ((m->m_flags & M_EXT) == 0) {
    523 				m_free(m);
    524 				m = NULL;
    525 			}
    526 		}
    527 		if (m == NULL)
    528 			return NULL;
    529 		MCLAIM(m, &tcp_mowner);
    530 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    531 	}
    532 
    533 	memset(mtod(m, void *), 0, m->m_len);
    534 
    535 	n = (struct tcphdr *)(mtod(m, char *) + hlen);
    536 
    537 	switch (tp->t_family) {
    538 	case AF_INET:
    539 	    {
    540 		struct ipovly *ipov;
    541 		mtod(m, struct ip *)->ip_v = 4;
    542 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    543 		ipov = mtod(m, struct ipovly *);
    544 		ipov->ih_pr = IPPROTO_TCP;
    545 		ipov->ih_len = htons(sizeof(struct tcphdr));
    546 		if (inp) {
    547 			ipov->ih_src = inp->inp_laddr;
    548 			ipov->ih_dst = inp->inp_faddr;
    549 		}
    550 #ifdef INET6
    551 		else if (in6p) {
    552 			/* mapped addr case */
    553 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    554 				sizeof(ipov->ih_src));
    555 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    556 				sizeof(ipov->ih_dst));
    557 		}
    558 #endif
    559 		/*
    560 		 * Compute the pseudo-header portion of the checksum
    561 		 * now.  We incrementally add in the TCP option and
    562 		 * payload lengths later, and then compute the TCP
    563 		 * checksum right before the packet is sent off onto
    564 		 * the wire.
    565 		 */
    566 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    567 		    ipov->ih_dst.s_addr,
    568 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    569 		break;
    570 	    }
    571 #ifdef INET6
    572 	case AF_INET6:
    573 	    {
    574 		struct ip6_hdr *ip6;
    575 		mtod(m, struct ip *)->ip_v = 6;
    576 		ip6 = mtod(m, struct ip6_hdr *);
    577 		ip6->ip6_nxt = IPPROTO_TCP;
    578 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    579 		ip6->ip6_src = in6p->in6p_laddr;
    580 		ip6->ip6_dst = in6p->in6p_faddr;
    581 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    582 		if (ip6_auto_flowlabel) {
    583 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    584 			ip6->ip6_flow |=
    585 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    586 		}
    587 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    588 		ip6->ip6_vfc |= IPV6_VERSION;
    589 
    590 		/*
    591 		 * Compute the pseudo-header portion of the checksum
    592 		 * now.  We incrementally add in the TCP option and
    593 		 * payload lengths later, and then compute the TCP
    594 		 * checksum right before the packet is sent off onto
    595 		 * the wire.
    596 		 */
    597 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    598 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    599 		    htonl(IPPROTO_TCP));
    600 		break;
    601 	    }
    602 #endif
    603 	}
    604 	if (inp) {
    605 		n->th_sport = inp->inp_lport;
    606 		n->th_dport = inp->inp_fport;
    607 	}
    608 #ifdef INET6
    609 	else if (in6p) {
    610 		n->th_sport = in6p->in6p_lport;
    611 		n->th_dport = in6p->in6p_fport;
    612 	}
    613 #endif
    614 	n->th_seq = 0;
    615 	n->th_ack = 0;
    616 	n->th_x2 = 0;
    617 	n->th_off = 5;
    618 	n->th_flags = 0;
    619 	n->th_win = 0;
    620 	n->th_urp = 0;
    621 	return (m);
    622 }
    623 
    624 /*
    625  * Send a single message to the TCP at address specified by
    626  * the given TCP/IP header.  If m == 0, then we make a copy
    627  * of the tcpiphdr at ti and send directly to the addressed host.
    628  * This is used to force keep alive messages out using the TCP
    629  * template for a connection tp->t_template.  If flags are given
    630  * then we send a message back to the TCP which originated the
    631  * segment ti, and discard the mbuf containing it and any other
    632  * attached mbufs.
    633  *
    634  * In any case the ack and sequence number of the transmitted
    635  * segment are as specified by the parameters.
    636  */
    637 int
    638 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    639     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    640 {
    641 #ifdef INET6
    642 	struct rtentry *rt;
    643 #endif
    644 	struct route *ro;
    645 	int error, tlen, win = 0;
    646 	int hlen;
    647 	struct ip *ip;
    648 #ifdef INET6
    649 	struct ip6_hdr *ip6;
    650 #endif
    651 	int family;	/* family on packet, not inpcb/in6pcb! */
    652 	struct tcphdr *th;
    653 	struct socket *so;
    654 
    655 	if (tp != NULL && (flags & TH_RST) == 0) {
    656 #ifdef DIAGNOSTIC
    657 		if (tp->t_inpcb && tp->t_in6pcb)
    658 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    659 #endif
    660 #ifdef INET
    661 		if (tp->t_inpcb)
    662 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    663 #endif
    664 #ifdef INET6
    665 		if (tp->t_in6pcb)
    666 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    667 #endif
    668 	}
    669 
    670 	th = NULL;	/* Quell uninitialized warning */
    671 	ip = NULL;
    672 #ifdef INET6
    673 	ip6 = NULL;
    674 #endif
    675 	if (m == 0) {
    676 		if (!template)
    677 			return EINVAL;
    678 
    679 		/* get family information from template */
    680 		switch (mtod(template, struct ip *)->ip_v) {
    681 		case 4:
    682 			family = AF_INET;
    683 			hlen = sizeof(struct ip);
    684 			break;
    685 #ifdef INET6
    686 		case 6:
    687 			family = AF_INET6;
    688 			hlen = sizeof(struct ip6_hdr);
    689 			break;
    690 #endif
    691 		default:
    692 			return EAFNOSUPPORT;
    693 		}
    694 
    695 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    696 		if (m) {
    697 			MCLAIM(m, &tcp_tx_mowner);
    698 			MCLGET(m, M_DONTWAIT);
    699 			if ((m->m_flags & M_EXT) == 0) {
    700 				m_free(m);
    701 				m = NULL;
    702 			}
    703 		}
    704 		if (m == NULL)
    705 			return (ENOBUFS);
    706 
    707 		if (tcp_compat_42)
    708 			tlen = 1;
    709 		else
    710 			tlen = 0;
    711 
    712 		m->m_data += max_linkhdr;
    713 		bcopy(mtod(template, void *), mtod(m, void *),
    714 			template->m_len);
    715 		switch (family) {
    716 		case AF_INET:
    717 			ip = mtod(m, struct ip *);
    718 			th = (struct tcphdr *)(ip + 1);
    719 			break;
    720 #ifdef INET6
    721 		case AF_INET6:
    722 			ip6 = mtod(m, struct ip6_hdr *);
    723 			th = (struct tcphdr *)(ip6 + 1);
    724 			break;
    725 #endif
    726 #if 0
    727 		default:
    728 			/* noone will visit here */
    729 			m_freem(m);
    730 			return EAFNOSUPPORT;
    731 #endif
    732 		}
    733 		flags = TH_ACK;
    734 	} else {
    735 
    736 		if ((m->m_flags & M_PKTHDR) == 0) {
    737 #if 0
    738 			printf("non PKTHDR to tcp_respond\n");
    739 #endif
    740 			m_freem(m);
    741 			return EINVAL;
    742 		}
    743 #ifdef DIAGNOSTIC
    744 		if (!th0)
    745 			panic("th0 == NULL in tcp_respond");
    746 #endif
    747 
    748 		/* get family information from m */
    749 		switch (mtod(m, struct ip *)->ip_v) {
    750 		case 4:
    751 			family = AF_INET;
    752 			hlen = sizeof(struct ip);
    753 			ip = mtod(m, struct ip *);
    754 			break;
    755 #ifdef INET6
    756 		case 6:
    757 			family = AF_INET6;
    758 			hlen = sizeof(struct ip6_hdr);
    759 			ip6 = mtod(m, struct ip6_hdr *);
    760 			break;
    761 #endif
    762 		default:
    763 			m_freem(m);
    764 			return EAFNOSUPPORT;
    765 		}
    766 		/* clear h/w csum flags inherited from rx packet */
    767 		m->m_pkthdr.csum_flags = 0;
    768 
    769 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    770 			tlen = sizeof(*th0);
    771 		else
    772 			tlen = th0->th_off << 2;
    773 
    774 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    775 		    mtod(m, char *) + hlen == (char *)th0) {
    776 			m->m_len = hlen + tlen;
    777 			m_freem(m->m_next);
    778 			m->m_next = NULL;
    779 		} else {
    780 			struct mbuf *n;
    781 
    782 #ifdef DIAGNOSTIC
    783 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    784 				m_freem(m);
    785 				return EMSGSIZE;
    786 			}
    787 #endif
    788 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    789 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    790 				MCLGET(n, M_DONTWAIT);
    791 				if ((n->m_flags & M_EXT) == 0) {
    792 					m_freem(n);
    793 					n = NULL;
    794 				}
    795 			}
    796 			if (!n) {
    797 				m_freem(m);
    798 				return ENOBUFS;
    799 			}
    800 
    801 			MCLAIM(n, &tcp_tx_mowner);
    802 			n->m_data += max_linkhdr;
    803 			n->m_len = hlen + tlen;
    804 			m_copyback(n, 0, hlen, mtod(m, void *));
    805 			m_copyback(n, hlen, tlen, (void *)th0);
    806 
    807 			m_freem(m);
    808 			m = n;
    809 			n = NULL;
    810 		}
    811 
    812 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    813 		switch (family) {
    814 		case AF_INET:
    815 			ip = mtod(m, struct ip *);
    816 			th = (struct tcphdr *)(ip + 1);
    817 			ip->ip_p = IPPROTO_TCP;
    818 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    819 			ip->ip_p = IPPROTO_TCP;
    820 			break;
    821 #ifdef INET6
    822 		case AF_INET6:
    823 			ip6 = mtod(m, struct ip6_hdr *);
    824 			th = (struct tcphdr *)(ip6 + 1);
    825 			ip6->ip6_nxt = IPPROTO_TCP;
    826 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    827 			ip6->ip6_nxt = IPPROTO_TCP;
    828 			break;
    829 #endif
    830 #if 0
    831 		default:
    832 			/* noone will visit here */
    833 			m_freem(m);
    834 			return EAFNOSUPPORT;
    835 #endif
    836 		}
    837 		xchg(th->th_dport, th->th_sport, u_int16_t);
    838 #undef xchg
    839 		tlen = 0;	/*be friendly with the following code*/
    840 	}
    841 	th->th_seq = htonl(seq);
    842 	th->th_ack = htonl(ack);
    843 	th->th_x2 = 0;
    844 	if ((flags & TH_SYN) == 0) {
    845 		if (tp)
    846 			win >>= tp->rcv_scale;
    847 		if (win > TCP_MAXWIN)
    848 			win = TCP_MAXWIN;
    849 		th->th_win = htons((u_int16_t)win);
    850 		th->th_off = sizeof (struct tcphdr) >> 2;
    851 		tlen += sizeof(*th);
    852 	} else
    853 		tlen += th->th_off << 2;
    854 	m->m_len = hlen + tlen;
    855 	m->m_pkthdr.len = hlen + tlen;
    856 	m->m_pkthdr.rcvif = NULL;
    857 	th->th_flags = flags;
    858 	th->th_urp = 0;
    859 
    860 	switch (family) {
    861 #ifdef INET
    862 	case AF_INET:
    863 	    {
    864 		struct ipovly *ipov = (struct ipovly *)ip;
    865 		memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
    866 		ipov->ih_len = htons((u_int16_t)tlen);
    867 
    868 		th->th_sum = 0;
    869 		th->th_sum = in_cksum(m, hlen + tlen);
    870 		ip->ip_len = htons(hlen + tlen);
    871 		ip->ip_ttl = ip_defttl;
    872 		break;
    873 	    }
    874 #endif
    875 #ifdef INET6
    876 	case AF_INET6:
    877 	    {
    878 		th->th_sum = 0;
    879 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    880 				tlen);
    881 		ip6->ip6_plen = htons(tlen);
    882 		if (tp && tp->t_in6pcb) {
    883 			struct ifnet *oifp;
    884 			ro = &tp->t_in6pcb->in6p_route;
    885 			oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
    886 			                                           : NULL;
    887 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    888 		} else
    889 			ip6->ip6_hlim = ip6_defhlim;
    890 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    891 		if (ip6_auto_flowlabel) {
    892 			ip6->ip6_flow |=
    893 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    894 		}
    895 		break;
    896 	    }
    897 #endif
    898 	}
    899 
    900 	if (tp && tp->t_inpcb)
    901 		so = tp->t_inpcb->inp_socket;
    902 #ifdef INET6
    903 	else if (tp && tp->t_in6pcb)
    904 		so = tp->t_in6pcb->in6p_socket;
    905 #endif
    906 	else
    907 		so = NULL;
    908 
    909 	if (tp != NULL && tp->t_inpcb != NULL) {
    910 		ro = &tp->t_inpcb->inp_route;
    911 #ifdef DIAGNOSTIC
    912 		if (family != AF_INET)
    913 			panic("tcp_respond: address family mismatch");
    914 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    915 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    916 			    ntohl(ip->ip_dst.s_addr),
    917 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    918 		}
    919 #endif
    920 	}
    921 #ifdef INET6
    922 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    923 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    924 #ifdef DIAGNOSTIC
    925 		if (family == AF_INET) {
    926 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    927 				panic("tcp_respond: not mapped addr");
    928 			if (memcmp(&ip->ip_dst,
    929 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    930 			    sizeof(ip->ip_dst)) != 0) {
    931 				panic("tcp_respond: ip_dst != in6p_faddr");
    932 			}
    933 		} else if (family == AF_INET6) {
    934 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    935 			    &tp->t_in6pcb->in6p_faddr))
    936 				panic("tcp_respond: ip6_dst != in6p_faddr");
    937 		} else
    938 			panic("tcp_respond: address family mismatch");
    939 #endif
    940 	}
    941 #endif
    942 	else
    943 		ro = NULL;
    944 
    945 	switch (family) {
    946 #ifdef INET
    947 	case AF_INET:
    948 		error = ip_output(m, NULL, ro,
    949 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
    950 		break;
    951 #endif
    952 #ifdef INET6
    953 	case AF_INET6:
    954 		error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
    955 		break;
    956 #endif
    957 	default:
    958 		error = EAFNOSUPPORT;
    959 		break;
    960 	}
    961 
    962 	return (error);
    963 }
    964 
    965 /*
    966  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    967  * a bunch of members individually, we maintain this template for the
    968  * static and mostly-static components of the TCPCB, and copy it into
    969  * the new TCPCB instead.
    970  */
    971 static struct tcpcb tcpcb_template = {
    972 	.t_srtt = TCPTV_SRTTBASE,
    973 	.t_rttmin = TCPTV_MIN,
    974 
    975 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    976 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    977 	.snd_numholes = 0,
    978 	.snd_cubic_wmax = 0,
    979 	.snd_cubic_wmax_last = 0,
    980 	.snd_cubic_ctime = 0,
    981 
    982 	.t_partialacks = -1,
    983 	.t_bytes_acked = 0,
    984 };
    985 
    986 /*
    987  * Updates the TCPCB template whenever a parameter that would affect
    988  * the template is changed.
    989  */
    990 void
    991 tcp_tcpcb_template(void)
    992 {
    993 	struct tcpcb *tp = &tcpcb_template;
    994 	int flags;
    995 
    996 	tp->t_peermss = tcp_mssdflt;
    997 	tp->t_ourmss = tcp_mssdflt;
    998 	tp->t_segsz = tcp_mssdflt;
    999 
   1000 	flags = 0;
   1001 	if (tcp_do_rfc1323 && tcp_do_win_scale)
   1002 		flags |= TF_REQ_SCALE;
   1003 	if (tcp_do_rfc1323 && tcp_do_timestamps)
   1004 		flags |= TF_REQ_TSTMP;
   1005 	tp->t_flags = flags;
   1006 
   1007 	/*
   1008 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
   1009 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
   1010 	 * reasonable initial retransmit time.
   1011 	 */
   1012 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
   1013 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   1014 	    TCPTV_MIN, TCPTV_REXMTMAX);
   1015 
   1016 	/* Keep Alive */
   1017 	tp->t_keepinit = tcp_keepinit;
   1018 	tp->t_keepidle = tcp_keepidle;
   1019 	tp->t_keepintvl = tcp_keepintvl;
   1020 	tp->t_keepcnt = tcp_keepcnt;
   1021 	tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
   1022 
   1023 	/* MSL */
   1024 	tp->t_msl = TCPTV_MSL;
   1025 }
   1026 
   1027 /*
   1028  * Create a new TCP control block, making an
   1029  * empty reassembly queue and hooking it to the argument
   1030  * protocol control block.
   1031  */
   1032 /* family selects inpcb, or in6pcb */
   1033 struct tcpcb *
   1034 tcp_newtcpcb(int family, void *aux)
   1035 {
   1036 #ifdef INET6
   1037 	struct rtentry *rt;
   1038 #endif
   1039 	struct tcpcb *tp;
   1040 	int i;
   1041 
   1042 	/* XXX Consider using a pool_cache for speed. */
   1043 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
   1044 	if (tp == NULL)
   1045 		return (NULL);
   1046 	memcpy(tp, &tcpcb_template, sizeof(*tp));
   1047 	TAILQ_INIT(&tp->segq);
   1048 	TAILQ_INIT(&tp->timeq);
   1049 	tp->t_family = family;		/* may be overridden later on */
   1050 	TAILQ_INIT(&tp->snd_holes);
   1051 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
   1052 
   1053 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
   1054 	for (i = 0; i < TCPT_NTIMERS; i++) {
   1055 		callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
   1056 		TCP_TIMER_INIT(tp, i);
   1057 	}
   1058 	callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
   1059 
   1060 	switch (family) {
   1061 	case AF_INET:
   1062 	    {
   1063 		struct inpcb *inp = (struct inpcb *)aux;
   1064 
   1065 		inp->inp_ip.ip_ttl = ip_defttl;
   1066 		inp->inp_ppcb = (void *)tp;
   1067 
   1068 		tp->t_inpcb = inp;
   1069 		tp->t_mtudisc = ip_mtudisc;
   1070 		break;
   1071 	    }
   1072 #ifdef INET6
   1073 	case AF_INET6:
   1074 	    {
   1075 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1076 
   1077 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1078 			(rt = rtcache_validate(&in6p->in6p_route)) != NULL
   1079 			    ? rt->rt_ifp
   1080 			    : NULL);
   1081 		in6p->in6p_ppcb = (void *)tp;
   1082 
   1083 		tp->t_in6pcb = in6p;
   1084 		/* for IPv6, always try to run path MTU discovery */
   1085 		tp->t_mtudisc = 1;
   1086 		break;
   1087 	    }
   1088 #endif /* INET6 */
   1089 	default:
   1090 		for (i = 0; i < TCPT_NTIMERS; i++)
   1091 			callout_destroy(&tp->t_timer[i]);
   1092 		callout_destroy(&tp->t_delack_ch);
   1093 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1094 		return (NULL);
   1095 	}
   1096 
   1097 	/*
   1098 	 * Initialize our timebase.  When we send timestamps, we take
   1099 	 * the delta from tcp_now -- this means each connection always
   1100 	 * gets a timebase of 1, which makes it, among other things,
   1101 	 * more difficult to determine how long a system has been up,
   1102 	 * and thus how many TCP sequence increments have occurred.
   1103 	 *
   1104 	 * We start with 1, because 0 doesn't work with linux, which
   1105 	 * considers timestamp 0 in a SYN packet as a bug and disables
   1106 	 * timestamps.
   1107 	 */
   1108 	tp->ts_timebase = tcp_now - 1;
   1109 
   1110 	tcp_congctl_select(tp, tcp_congctl_global_name);
   1111 
   1112 	return (tp);
   1113 }
   1114 
   1115 /*
   1116  * Drop a TCP connection, reporting
   1117  * the specified error.  If connection is synchronized,
   1118  * then send a RST to peer.
   1119  */
   1120 struct tcpcb *
   1121 tcp_drop(struct tcpcb *tp, int errno)
   1122 {
   1123 	struct socket *so = NULL;
   1124 
   1125 #ifdef DIAGNOSTIC
   1126 	if (tp->t_inpcb && tp->t_in6pcb)
   1127 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1128 #endif
   1129 #ifdef INET
   1130 	if (tp->t_inpcb)
   1131 		so = tp->t_inpcb->inp_socket;
   1132 #endif
   1133 #ifdef INET6
   1134 	if (tp->t_in6pcb)
   1135 		so = tp->t_in6pcb->in6p_socket;
   1136 #endif
   1137 	if (!so)
   1138 		return NULL;
   1139 
   1140 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1141 		tp->t_state = TCPS_CLOSED;
   1142 		(void) tcp_output(tp);
   1143 		TCP_STATINC(TCP_STAT_DROPS);
   1144 	} else
   1145 		TCP_STATINC(TCP_STAT_CONNDROPS);
   1146 	if (errno == ETIMEDOUT && tp->t_softerror)
   1147 		errno = tp->t_softerror;
   1148 	so->so_error = errno;
   1149 	return (tcp_close(tp));
   1150 }
   1151 
   1152 /*
   1153  * Close a TCP control block:
   1154  *	discard all space held by the tcp
   1155  *	discard internet protocol block
   1156  *	wake up any sleepers
   1157  */
   1158 struct tcpcb *
   1159 tcp_close(struct tcpcb *tp)
   1160 {
   1161 	struct inpcb *inp;
   1162 #ifdef INET6
   1163 	struct in6pcb *in6p;
   1164 #endif
   1165 	struct socket *so;
   1166 #ifdef RTV_RTT
   1167 	struct rtentry *rt;
   1168 #endif
   1169 	struct route *ro;
   1170 	int j;
   1171 
   1172 	inp = tp->t_inpcb;
   1173 #ifdef INET6
   1174 	in6p = tp->t_in6pcb;
   1175 #endif
   1176 	so = NULL;
   1177 	ro = NULL;
   1178 	if (inp) {
   1179 		so = inp->inp_socket;
   1180 		ro = &inp->inp_route;
   1181 	}
   1182 #ifdef INET6
   1183 	else if (in6p) {
   1184 		so = in6p->in6p_socket;
   1185 		ro = (struct route *)&in6p->in6p_route;
   1186 	}
   1187 #endif
   1188 
   1189 #ifdef RTV_RTT
   1190 	/*
   1191 	 * If we sent enough data to get some meaningful characteristics,
   1192 	 * save them in the routing entry.  'Enough' is arbitrarily
   1193 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1194 	 * give us 16 rtt samples assuming we only get one sample per
   1195 	 * window (the usual case on a long haul net).  16 samples is
   1196 	 * enough for the srtt filter to converge to within 5% of the correct
   1197 	 * value; fewer samples and we could save a very bogus rtt.
   1198 	 *
   1199 	 * Don't update the default route's characteristics and don't
   1200 	 * update anything that the user "locked".
   1201 	 */
   1202 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1203 	    ro && (rt = rtcache_validate(ro)) != NULL &&
   1204 	    !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
   1205 		u_long i = 0;
   1206 
   1207 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1208 			i = tp->t_srtt *
   1209 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1210 			if (rt->rt_rmx.rmx_rtt && i)
   1211 				/*
   1212 				 * filter this update to half the old & half
   1213 				 * the new values, converting scale.
   1214 				 * See route.h and tcp_var.h for a
   1215 				 * description of the scaling constants.
   1216 				 */
   1217 				rt->rt_rmx.rmx_rtt =
   1218 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1219 			else
   1220 				rt->rt_rmx.rmx_rtt = i;
   1221 		}
   1222 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1223 			i = tp->t_rttvar *
   1224 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1225 			if (rt->rt_rmx.rmx_rttvar && i)
   1226 				rt->rt_rmx.rmx_rttvar =
   1227 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1228 			else
   1229 				rt->rt_rmx.rmx_rttvar = i;
   1230 		}
   1231 		/*
   1232 		 * update the pipelimit (ssthresh) if it has been updated
   1233 		 * already or if a pipesize was specified & the threshhold
   1234 		 * got below half the pipesize.  I.e., wait for bad news
   1235 		 * before we start updating, then update on both good
   1236 		 * and bad news.
   1237 		 */
   1238 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1239 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1240 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1241 			/*
   1242 			 * convert the limit from user data bytes to
   1243 			 * packets then to packet data bytes.
   1244 			 */
   1245 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1246 			if (i < 2)
   1247 				i = 2;
   1248 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1249 			if (rt->rt_rmx.rmx_ssthresh)
   1250 				rt->rt_rmx.rmx_ssthresh =
   1251 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1252 			else
   1253 				rt->rt_rmx.rmx_ssthresh = i;
   1254 		}
   1255 	}
   1256 #endif /* RTV_RTT */
   1257 	/* free the reassembly queue, if any */
   1258 	TCP_REASS_LOCK(tp);
   1259 	(void) tcp_freeq(tp);
   1260 	TCP_REASS_UNLOCK(tp);
   1261 
   1262 	/* free the SACK holes list. */
   1263 	tcp_free_sackholes(tp);
   1264 	tcp_congctl_release(tp);
   1265 	syn_cache_cleanup(tp);
   1266 
   1267 	if (tp->t_template) {
   1268 		m_free(tp->t_template);
   1269 		tp->t_template = NULL;
   1270 	}
   1271 
   1272 	/*
   1273 	 * Detaching the pcb will unlock the socket/tcpcb, and stopping
   1274 	 * the timers can also drop the lock.  We need to prevent access
   1275 	 * to the tcpcb as it's half torn down.  Flag the pcb as dead
   1276 	 * (prevents access by timers) and only then detach it.
   1277 	 */
   1278 	tp->t_flags |= TF_DEAD;
   1279 	if (inp) {
   1280 		inp->inp_ppcb = 0;
   1281 		soisdisconnected(so);
   1282 		in_pcbdetach(inp);
   1283 	}
   1284 #ifdef INET6
   1285 	else if (in6p) {
   1286 		in6p->in6p_ppcb = 0;
   1287 		soisdisconnected(so);
   1288 		in6_pcbdetach(in6p);
   1289 	}
   1290 #endif
   1291 	/*
   1292 	 * pcb is no longer visble elsewhere, so we can safely release
   1293 	 * the lock in callout_halt() if needed.
   1294 	 */
   1295 	TCP_STATINC(TCP_STAT_CLOSED);
   1296 	for (j = 0; j < TCPT_NTIMERS; j++) {
   1297 		callout_halt(&tp->t_timer[j], softnet_lock);
   1298 		callout_destroy(&tp->t_timer[j]);
   1299 	}
   1300 	callout_halt(&tp->t_delack_ch, softnet_lock);
   1301 	callout_destroy(&tp->t_delack_ch);
   1302 	pool_put(&tcpcb_pool, tp);
   1303 
   1304 	return NULL;
   1305 }
   1306 
   1307 int
   1308 tcp_freeq(struct tcpcb *tp)
   1309 {
   1310 	struct ipqent *qe;
   1311 	int rv = 0;
   1312 #ifdef TCPREASS_DEBUG
   1313 	int i = 0;
   1314 #endif
   1315 
   1316 	TCP_REASS_LOCK_CHECK(tp);
   1317 
   1318 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1319 #ifdef TCPREASS_DEBUG
   1320 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1321 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1322 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1323 #endif
   1324 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1325 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1326 		m_freem(qe->ipqe_m);
   1327 		tcpipqent_free(qe);
   1328 		rv = 1;
   1329 	}
   1330 	tp->t_segqlen = 0;
   1331 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1332 	return (rv);
   1333 }
   1334 
   1335 void
   1336 tcp_fasttimo(void)
   1337 {
   1338 	if (tcp_drainwanted) {
   1339 		tcp_drain();
   1340 		tcp_drainwanted = 0;
   1341 	}
   1342 }
   1343 
   1344 void
   1345 tcp_drainstub(void)
   1346 {
   1347 	tcp_drainwanted = 1;
   1348 }
   1349 
   1350 /*
   1351  * Protocol drain routine.  Called when memory is in short supply.
   1352  * Called from pr_fasttimo thus a callout context.
   1353  */
   1354 void
   1355 tcp_drain(void)
   1356 {
   1357 	struct inpcb_hdr *inph;
   1358 	struct tcpcb *tp;
   1359 
   1360 	mutex_enter(softnet_lock);
   1361 	KERNEL_LOCK(1, NULL);
   1362 
   1363 	/*
   1364 	 * Free the sequence queue of all TCP connections.
   1365 	 */
   1366 	TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1367 		switch (inph->inph_af) {
   1368 		case AF_INET:
   1369 			tp = intotcpcb((struct inpcb *)inph);
   1370 			break;
   1371 #ifdef INET6
   1372 		case AF_INET6:
   1373 			tp = in6totcpcb((struct in6pcb *)inph);
   1374 			break;
   1375 #endif
   1376 		default:
   1377 			tp = NULL;
   1378 			break;
   1379 		}
   1380 		if (tp != NULL) {
   1381 			/*
   1382 			 * We may be called from a device's interrupt
   1383 			 * context.  If the tcpcb is already busy,
   1384 			 * just bail out now.
   1385 			 */
   1386 			if (tcp_reass_lock_try(tp) == 0)
   1387 				continue;
   1388 			if (tcp_freeq(tp))
   1389 				TCP_STATINC(TCP_STAT_CONNSDRAINED);
   1390 			TCP_REASS_UNLOCK(tp);
   1391 		}
   1392 	}
   1393 
   1394 	KERNEL_UNLOCK_ONE(NULL);
   1395 	mutex_exit(softnet_lock);
   1396 }
   1397 
   1398 /*
   1399  * Notify a tcp user of an asynchronous error;
   1400  * store error as soft error, but wake up user
   1401  * (for now, won't do anything until can select for soft error).
   1402  */
   1403 void
   1404 tcp_notify(struct inpcb *inp, int error)
   1405 {
   1406 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1407 	struct socket *so = inp->inp_socket;
   1408 
   1409 	/*
   1410 	 * Ignore some errors if we are hooked up.
   1411 	 * If connection hasn't completed, has retransmitted several times,
   1412 	 * and receives a second error, give up now.  This is better
   1413 	 * than waiting a long time to establish a connection that
   1414 	 * can never complete.
   1415 	 */
   1416 	if (tp->t_state == TCPS_ESTABLISHED &&
   1417 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1418 	      error == EHOSTDOWN)) {
   1419 		return;
   1420 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1421 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1422 		so->so_error = error;
   1423 	else
   1424 		tp->t_softerror = error;
   1425 	cv_broadcast(&so->so_cv);
   1426 	sorwakeup(so);
   1427 	sowwakeup(so);
   1428 }
   1429 
   1430 #ifdef INET6
   1431 void
   1432 tcp6_notify(struct in6pcb *in6p, int error)
   1433 {
   1434 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1435 	struct socket *so = in6p->in6p_socket;
   1436 
   1437 	/*
   1438 	 * Ignore some errors if we are hooked up.
   1439 	 * If connection hasn't completed, has retransmitted several times,
   1440 	 * and receives a second error, give up now.  This is better
   1441 	 * than waiting a long time to establish a connection that
   1442 	 * can never complete.
   1443 	 */
   1444 	if (tp->t_state == TCPS_ESTABLISHED &&
   1445 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1446 	      error == EHOSTDOWN)) {
   1447 		return;
   1448 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1449 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1450 		so->so_error = error;
   1451 	else
   1452 		tp->t_softerror = error;
   1453 	cv_broadcast(&so->so_cv);
   1454 	sorwakeup(so);
   1455 	sowwakeup(so);
   1456 }
   1457 #endif
   1458 
   1459 #ifdef INET6
   1460 void *
   1461 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
   1462 {
   1463 	struct tcphdr th;
   1464 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1465 	int nmatch;
   1466 	struct ip6_hdr *ip6;
   1467 	const struct sockaddr_in6 *sa6_src = NULL;
   1468 	const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
   1469 	struct mbuf *m;
   1470 	int off;
   1471 
   1472 	if (sa->sa_family != AF_INET6 ||
   1473 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1474 		return NULL;
   1475 	if ((unsigned)cmd >= PRC_NCMDS)
   1476 		return NULL;
   1477 	else if (cmd == PRC_QUENCH) {
   1478 		/*
   1479 		 * Don't honor ICMP Source Quench messages meant for
   1480 		 * TCP connections.
   1481 		 */
   1482 		return NULL;
   1483 	} else if (PRC_IS_REDIRECT(cmd))
   1484 		notify = in6_rtchange, d = NULL;
   1485 	else if (cmd == PRC_MSGSIZE)
   1486 		; /* special code is present, see below */
   1487 	else if (cmd == PRC_HOSTDEAD)
   1488 		d = NULL;
   1489 	else if (inet6ctlerrmap[cmd] == 0)
   1490 		return NULL;
   1491 
   1492 	/* if the parameter is from icmp6, decode it. */
   1493 	if (d != NULL) {
   1494 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1495 		m = ip6cp->ip6c_m;
   1496 		ip6 = ip6cp->ip6c_ip6;
   1497 		off = ip6cp->ip6c_off;
   1498 		sa6_src = ip6cp->ip6c_src;
   1499 	} else {
   1500 		m = NULL;
   1501 		ip6 = NULL;
   1502 		sa6_src = &sa6_any;
   1503 		off = 0;
   1504 	}
   1505 
   1506 	if (ip6) {
   1507 		/*
   1508 		 * XXX: We assume that when ip6 is non NULL,
   1509 		 * M and OFF are valid.
   1510 		 */
   1511 
   1512 		/* check if we can safely examine src and dst ports */
   1513 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1514 			if (cmd == PRC_MSGSIZE)
   1515 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1516 			return NULL;
   1517 		}
   1518 
   1519 		memset(&th, 0, sizeof(th));
   1520 		m_copydata(m, off, sizeof(th), (void *)&th);
   1521 
   1522 		if (cmd == PRC_MSGSIZE) {
   1523 			int valid = 0;
   1524 
   1525 			/*
   1526 			 * Check to see if we have a valid TCP connection
   1527 			 * corresponding to the address in the ICMPv6 message
   1528 			 * payload.
   1529 			 */
   1530 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1531 			    th.th_dport,
   1532 			    (const struct in6_addr *)&sa6_src->sin6_addr,
   1533 						  th.th_sport, 0, 0))
   1534 				valid++;
   1535 
   1536 			/*
   1537 			 * Depending on the value of "valid" and routing table
   1538 			 * size (mtudisc_{hi,lo}wat), we will:
   1539 			 * - recalcurate the new MTU and create the
   1540 			 *   corresponding routing entry, or
   1541 			 * - ignore the MTU change notification.
   1542 			 */
   1543 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1544 
   1545 			/*
   1546 			 * no need to call in6_pcbnotify, it should have been
   1547 			 * called via callback if necessary
   1548 			 */
   1549 			return NULL;
   1550 		}
   1551 
   1552 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1553 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1554 		if (nmatch == 0 && syn_cache_count &&
   1555 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1556 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1557 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1558 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1559 					  sa, &th);
   1560 	} else {
   1561 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1562 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1563 	}
   1564 
   1565 	return NULL;
   1566 }
   1567 #endif
   1568 
   1569 #ifdef INET
   1570 /* assumes that ip header and tcp header are contiguous on mbuf */
   1571 void *
   1572 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
   1573 {
   1574 	struct ip *ip = v;
   1575 	struct tcphdr *th;
   1576 	struct icmp *icp;
   1577 	extern const int inetctlerrmap[];
   1578 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1579 	int errno;
   1580 	int nmatch;
   1581 	struct tcpcb *tp;
   1582 	u_int mtu;
   1583 	tcp_seq seq;
   1584 	struct inpcb *inp;
   1585 #ifdef INET6
   1586 	struct in6pcb *in6p;
   1587 	struct in6_addr src6, dst6;
   1588 #endif
   1589 
   1590 	if (sa->sa_family != AF_INET ||
   1591 	    sa->sa_len != sizeof(struct sockaddr_in))
   1592 		return NULL;
   1593 	if ((unsigned)cmd >= PRC_NCMDS)
   1594 		return NULL;
   1595 	errno = inetctlerrmap[cmd];
   1596 	if (cmd == PRC_QUENCH)
   1597 		/*
   1598 		 * Don't honor ICMP Source Quench messages meant for
   1599 		 * TCP connections.
   1600 		 */
   1601 		return NULL;
   1602 	else if (PRC_IS_REDIRECT(cmd))
   1603 		notify = in_rtchange, ip = 0;
   1604 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1605 		/*
   1606 		 * Check to see if we have a valid TCP connection
   1607 		 * corresponding to the address in the ICMP message
   1608 		 * payload.
   1609 		 *
   1610 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1611 		 */
   1612 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1613 #ifdef INET6
   1614 		memset(&src6, 0, sizeof(src6));
   1615 		memset(&dst6, 0, sizeof(dst6));
   1616 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1617 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1618 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1619 #endif
   1620 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1621 						th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
   1622 #ifdef INET6
   1623 			in6p = NULL;
   1624 #else
   1625 			;
   1626 #endif
   1627 #ifdef INET6
   1628 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1629 						       th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
   1630 			;
   1631 #endif
   1632 		else
   1633 			return NULL;
   1634 
   1635 		/*
   1636 		 * Now that we've validated that we are actually communicating
   1637 		 * with the host indicated in the ICMP message, locate the
   1638 		 * ICMP header, recalculate the new MTU, and create the
   1639 		 * corresponding routing entry.
   1640 		 */
   1641 		icp = (struct icmp *)((char *)ip -
   1642 		    offsetof(struct icmp, icmp_ip));
   1643 		if (inp) {
   1644 			if ((tp = intotcpcb(inp)) == NULL)
   1645 				return NULL;
   1646 		}
   1647 #ifdef INET6
   1648 		else if (in6p) {
   1649 			if ((tp = in6totcpcb(in6p)) == NULL)
   1650 				return NULL;
   1651 		}
   1652 #endif
   1653 		else
   1654 			return NULL;
   1655 		seq = ntohl(th->th_seq);
   1656 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1657 			return NULL;
   1658 		/*
   1659 		 * If the ICMP message advertises a Next-Hop MTU
   1660 		 * equal or larger than the maximum packet size we have
   1661 		 * ever sent, drop the message.
   1662 		 */
   1663 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1664 		if (mtu >= tp->t_pmtud_mtu_sent)
   1665 			return NULL;
   1666 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1667 			/*
   1668 			 * Calculate new MTU, and create corresponding
   1669 			 * route (traditional PMTUD).
   1670 			 */
   1671 			tp->t_flags &= ~TF_PMTUD_PEND;
   1672 			icmp_mtudisc(icp, ip->ip_dst);
   1673 		} else {
   1674 			/*
   1675 			 * Record the information got in the ICMP
   1676 			 * message; act on it later.
   1677 			 * If we had already recorded an ICMP message,
   1678 			 * replace the old one only if the new message
   1679 			 * refers to an older TCP segment
   1680 			 */
   1681 			if (tp->t_flags & TF_PMTUD_PEND) {
   1682 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1683 					return NULL;
   1684 			} else
   1685 				tp->t_flags |= TF_PMTUD_PEND;
   1686 			tp->t_pmtud_th_seq = seq;
   1687 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1688 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1689 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1690 		}
   1691 		return NULL;
   1692 	} else if (cmd == PRC_HOSTDEAD)
   1693 		ip = 0;
   1694 	else if (errno == 0)
   1695 		return NULL;
   1696 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1697 		th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
   1698 		nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
   1699 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1700 		if (nmatch == 0 && syn_cache_count &&
   1701 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1702 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1703 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1704 			struct sockaddr_in sin;
   1705 			memset(&sin, 0, sizeof(sin));
   1706 			sin.sin_len = sizeof(sin);
   1707 			sin.sin_family = AF_INET;
   1708 			sin.sin_port = th->th_sport;
   1709 			sin.sin_addr = ip->ip_src;
   1710 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1711 		}
   1712 
   1713 		/* XXX mapped address case */
   1714 	} else
   1715 		in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
   1716 		    notify);
   1717 	return NULL;
   1718 }
   1719 
   1720 /*
   1721  * When a source quench is received, we are being notified of congestion.
   1722  * Close the congestion window down to the Loss Window (one segment).
   1723  * We will gradually open it again as we proceed.
   1724  */
   1725 void
   1726 tcp_quench(struct inpcb *inp, int errno)
   1727 {
   1728 	struct tcpcb *tp = intotcpcb(inp);
   1729 
   1730 	if (tp) {
   1731 		tp->snd_cwnd = tp->t_segsz;
   1732 		tp->t_bytes_acked = 0;
   1733 	}
   1734 }
   1735 #endif
   1736 
   1737 #ifdef INET6
   1738 void
   1739 tcp6_quench(struct in6pcb *in6p, int errno)
   1740 {
   1741 	struct tcpcb *tp = in6totcpcb(in6p);
   1742 
   1743 	if (tp) {
   1744 		tp->snd_cwnd = tp->t_segsz;
   1745 		tp->t_bytes_acked = 0;
   1746 	}
   1747 }
   1748 #endif
   1749 
   1750 #ifdef INET
   1751 /*
   1752  * Path MTU Discovery handlers.
   1753  */
   1754 void
   1755 tcp_mtudisc_callback(struct in_addr faddr)
   1756 {
   1757 #ifdef INET6
   1758 	struct in6_addr in6;
   1759 #endif
   1760 
   1761 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1762 #ifdef INET6
   1763 	memset(&in6, 0, sizeof(in6));
   1764 	in6.s6_addr16[5] = 0xffff;
   1765 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1766 	tcp6_mtudisc_callback(&in6);
   1767 #endif
   1768 }
   1769 
   1770 /*
   1771  * On receipt of path MTU corrections, flush old route and replace it
   1772  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1773  * that all packets will be received.
   1774  */
   1775 void
   1776 tcp_mtudisc(struct inpcb *inp, int errno)
   1777 {
   1778 	struct tcpcb *tp = intotcpcb(inp);
   1779 	struct rtentry *rt = in_pcbrtentry(inp);
   1780 
   1781 	if (tp != 0) {
   1782 		if (rt != 0) {
   1783 			/*
   1784 			 * If this was not a host route, remove and realloc.
   1785 			 */
   1786 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1787 				in_rtchange(inp, errno);
   1788 				if ((rt = in_pcbrtentry(inp)) == 0)
   1789 					return;
   1790 			}
   1791 
   1792 			/*
   1793 			 * Slow start out of the error condition.  We
   1794 			 * use the MTU because we know it's smaller
   1795 			 * than the previously transmitted segment.
   1796 			 *
   1797 			 * Note: This is more conservative than the
   1798 			 * suggestion in draft-floyd-incr-init-win-03.
   1799 			 */
   1800 			if (rt->rt_rmx.rmx_mtu != 0)
   1801 				tp->snd_cwnd =
   1802 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1803 				    rt->rt_rmx.rmx_mtu);
   1804 		}
   1805 
   1806 		/*
   1807 		 * Resend unacknowledged packets.
   1808 		 */
   1809 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1810 		tcp_output(tp);
   1811 	}
   1812 }
   1813 #endif
   1814 
   1815 #ifdef INET6
   1816 /*
   1817  * Path MTU Discovery handlers.
   1818  */
   1819 void
   1820 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1821 {
   1822 	struct sockaddr_in6 sin6;
   1823 
   1824 	memset(&sin6, 0, sizeof(sin6));
   1825 	sin6.sin6_family = AF_INET6;
   1826 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1827 	sin6.sin6_addr = *faddr;
   1828 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1829 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1830 }
   1831 
   1832 void
   1833 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1834 {
   1835 	struct tcpcb *tp = in6totcpcb(in6p);
   1836 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1837 
   1838 	if (tp != 0) {
   1839 		if (rt != 0) {
   1840 			/*
   1841 			 * If this was not a host route, remove and realloc.
   1842 			 */
   1843 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1844 				in6_rtchange(in6p, errno);
   1845 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1846 					return;
   1847 			}
   1848 
   1849 			/*
   1850 			 * Slow start out of the error condition.  We
   1851 			 * use the MTU because we know it's smaller
   1852 			 * than the previously transmitted segment.
   1853 			 *
   1854 			 * Note: This is more conservative than the
   1855 			 * suggestion in draft-floyd-incr-init-win-03.
   1856 			 */
   1857 			if (rt->rt_rmx.rmx_mtu != 0)
   1858 				tp->snd_cwnd =
   1859 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1860 				    rt->rt_rmx.rmx_mtu);
   1861 		}
   1862 
   1863 		/*
   1864 		 * Resend unacknowledged packets.
   1865 		 */
   1866 		tp->snd_nxt = tp->sack_newdata = tp->snd_una;
   1867 		tcp_output(tp);
   1868 	}
   1869 }
   1870 #endif /* INET6 */
   1871 
   1872 /*
   1873  * Compute the MSS to advertise to the peer.  Called only during
   1874  * the 3-way handshake.  If we are the server (peer initiated
   1875  * connection), we are called with a pointer to the interface
   1876  * on which the SYN packet arrived.  If we are the client (we
   1877  * initiated connection), we are called with a pointer to the
   1878  * interface out which this connection should go.
   1879  *
   1880  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1881  * header size from MSS advertisement.  MSS option must hold the maximum
   1882  * segment size we can accept, so it must always be:
   1883  *	 max(if mtu) - ip header - tcp header
   1884  */
   1885 u_long
   1886 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1887 {
   1888 	extern u_long in_maxmtu;
   1889 	u_long mss = 0;
   1890 	u_long hdrsiz;
   1891 
   1892 	/*
   1893 	 * In order to avoid defeating path MTU discovery on the peer,
   1894 	 * we advertise the max MTU of all attached networks as our MSS,
   1895 	 * per RFC 1191, section 3.1.
   1896 	 *
   1897 	 * We provide the option to advertise just the MTU of
   1898 	 * the interface on which we hope this connection will
   1899 	 * be receiving.  If we are responding to a SYN, we
   1900 	 * will have a pretty good idea about this, but when
   1901 	 * initiating a connection there is a bit more doubt.
   1902 	 *
   1903 	 * We also need to ensure that loopback has a large enough
   1904 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1905 	 */
   1906 
   1907 	if (ifp != NULL)
   1908 		switch (af) {
   1909 		case AF_INET:
   1910 			mss = ifp->if_mtu;
   1911 			break;
   1912 #ifdef INET6
   1913 		case AF_INET6:
   1914 			mss = IN6_LINKMTU(ifp);
   1915 			break;
   1916 #endif
   1917 		}
   1918 
   1919 	if (tcp_mss_ifmtu == 0)
   1920 		switch (af) {
   1921 		case AF_INET:
   1922 			mss = max(in_maxmtu, mss);
   1923 			break;
   1924 #ifdef INET6
   1925 		case AF_INET6:
   1926 			mss = max(in6_maxmtu, mss);
   1927 			break;
   1928 #endif
   1929 		}
   1930 
   1931 	switch (af) {
   1932 	case AF_INET:
   1933 		hdrsiz = sizeof(struct ip);
   1934 		break;
   1935 #ifdef INET6
   1936 	case AF_INET6:
   1937 		hdrsiz = sizeof(struct ip6_hdr);
   1938 		break;
   1939 #endif
   1940 	default:
   1941 		hdrsiz = 0;
   1942 		break;
   1943 	}
   1944 	hdrsiz += sizeof(struct tcphdr);
   1945 	if (mss > hdrsiz)
   1946 		mss -= hdrsiz;
   1947 
   1948 	mss = max(tcp_mssdflt, mss);
   1949 	return (mss);
   1950 }
   1951 
   1952 /*
   1953  * Set connection variables based on the peer's advertised MSS.
   1954  * We are passed the TCPCB for the actual connection.  If we
   1955  * are the server, we are called by the compressed state engine
   1956  * when the 3-way handshake is complete.  If we are the client,
   1957  * we are called when we receive the SYN,ACK from the server.
   1958  *
   1959  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1960  * before this routine is called!
   1961  */
   1962 void
   1963 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1964 {
   1965 	struct socket *so;
   1966 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1967 	struct rtentry *rt;
   1968 #endif
   1969 	u_long bufsize;
   1970 	int mss;
   1971 
   1972 #ifdef DIAGNOSTIC
   1973 	if (tp->t_inpcb && tp->t_in6pcb)
   1974 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1975 #endif
   1976 	so = NULL;
   1977 	rt = NULL;
   1978 #ifdef INET
   1979 	if (tp->t_inpcb) {
   1980 		so = tp->t_inpcb->inp_socket;
   1981 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1982 		rt = in_pcbrtentry(tp->t_inpcb);
   1983 #endif
   1984 	}
   1985 #endif
   1986 #ifdef INET6
   1987 	if (tp->t_in6pcb) {
   1988 		so = tp->t_in6pcb->in6p_socket;
   1989 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1990 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1991 #endif
   1992 	}
   1993 #endif
   1994 
   1995 	/*
   1996 	 * As per RFC1122, use the default MSS value, unless they
   1997 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1998 	 */
   1999 	mss = tcp_mssdflt;
   2000 	if (offer)
   2001 		mss = offer;
   2002 	mss = max(mss, 256);		/* sanity */
   2003 	tp->t_peermss = mss;
   2004 	mss -= tcp_optlen(tp);
   2005 #ifdef INET
   2006 	if (tp->t_inpcb)
   2007 		mss -= ip_optlen(tp->t_inpcb);
   2008 #endif
   2009 #ifdef INET6
   2010 	if (tp->t_in6pcb)
   2011 		mss -= ip6_optlen(tp->t_in6pcb);
   2012 #endif
   2013 
   2014 	/*
   2015 	 * If there's a pipesize, change the socket buffer to that size.
   2016 	 * Make the socket buffer an integral number of MSS units.  If
   2017 	 * the MSS is larger than the socket buffer, artificially decrease
   2018 	 * the MSS.
   2019 	 */
   2020 #ifdef RTV_SPIPE
   2021 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   2022 		bufsize = rt->rt_rmx.rmx_sendpipe;
   2023 	else
   2024 #endif
   2025 	{
   2026 		KASSERT(so != NULL);
   2027 		bufsize = so->so_snd.sb_hiwat;
   2028 	}
   2029 	if (bufsize < mss)
   2030 		mss = bufsize;
   2031 	else {
   2032 		bufsize = roundup(bufsize, mss);
   2033 		if (bufsize > sb_max)
   2034 			bufsize = sb_max;
   2035 		(void) sbreserve(&so->so_snd, bufsize, so);
   2036 	}
   2037 	tp->t_segsz = mss;
   2038 
   2039 #ifdef RTV_SSTHRESH
   2040 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   2041 		/*
   2042 		 * There's some sort of gateway or interface buffer
   2043 		 * limit on the path.  Use this to set the slow
   2044 		 * start threshold, but set the threshold to no less
   2045 		 * than 2 * MSS.
   2046 		 */
   2047 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   2048 	}
   2049 #endif
   2050 }
   2051 
   2052 /*
   2053  * Processing necessary when a TCP connection is established.
   2054  */
   2055 void
   2056 tcp_established(struct tcpcb *tp)
   2057 {
   2058 	struct socket *so;
   2059 #ifdef RTV_RPIPE
   2060 	struct rtentry *rt;
   2061 #endif
   2062 	u_long bufsize;
   2063 
   2064 #ifdef DIAGNOSTIC
   2065 	if (tp->t_inpcb && tp->t_in6pcb)
   2066 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2067 #endif
   2068 	so = NULL;
   2069 	rt = NULL;
   2070 #ifdef INET
   2071 	/* This is a while() to reduce the dreadful stairstepping below */
   2072 	while (tp->t_inpcb) {
   2073 		so = tp->t_inpcb->inp_socket;
   2074 #if defined(RTV_RPIPE)
   2075 		rt = in_pcbrtentry(tp->t_inpcb);
   2076 #endif
   2077 		if (__predict_true(tcp_msl_enable)) {
   2078 			if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
   2079 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
   2080 				break;
   2081 			}
   2082 
   2083 			if (__predict_false(tcp_rttlocal)) {
   2084 				/* This may be adjusted by tcp_input */
   2085 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2086 				break;
   2087 			}
   2088 			if (in_localaddr(tp->t_inpcb->inp_faddr)) {
   2089 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2090 				break;
   2091 			}
   2092 		}
   2093 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
   2094 		break;
   2095 	}
   2096 #endif
   2097 #ifdef INET6
   2098 	/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
   2099 	while (!tp->t_inpcb && tp->t_in6pcb) {
   2100 		so = tp->t_in6pcb->in6p_socket;
   2101 #if defined(RTV_RPIPE)
   2102 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2103 #endif
   2104 		if (__predict_true(tcp_msl_enable)) {
   2105 			extern const struct in6_addr in6addr_loopback;
   2106 
   2107 			if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
   2108 					       &in6addr_loopback)) {
   2109 				tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
   2110 				break;
   2111 			}
   2112 
   2113 			if (__predict_false(tcp_rttlocal)) {
   2114 				/* This may be adjusted by tcp_input */
   2115 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2116 				break;
   2117 			}
   2118 			if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
   2119 				tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
   2120 				break;
   2121 			}
   2122 		}
   2123 		tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
   2124 		break;
   2125 	}
   2126 #endif
   2127 
   2128 	tp->t_state = TCPS_ESTABLISHED;
   2129 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   2130 
   2131 #ifdef RTV_RPIPE
   2132 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2133 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2134 	else
   2135 #endif
   2136 	{
   2137 		KASSERT(so != NULL);
   2138 		bufsize = so->so_rcv.sb_hiwat;
   2139 	}
   2140 	if (bufsize > tp->t_ourmss) {
   2141 		bufsize = roundup(bufsize, tp->t_ourmss);
   2142 		if (bufsize > sb_max)
   2143 			bufsize = sb_max;
   2144 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2145 	}
   2146 }
   2147 
   2148 /*
   2149  * Check if there's an initial rtt or rttvar.  Convert from the
   2150  * route-table units to scaled multiples of the slow timeout timer.
   2151  * Called only during the 3-way handshake.
   2152  */
   2153 void
   2154 tcp_rmx_rtt(struct tcpcb *tp)
   2155 {
   2156 #ifdef RTV_RTT
   2157 	struct rtentry *rt = NULL;
   2158 	int rtt;
   2159 
   2160 #ifdef DIAGNOSTIC
   2161 	if (tp->t_inpcb && tp->t_in6pcb)
   2162 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2163 #endif
   2164 #ifdef INET
   2165 	if (tp->t_inpcb)
   2166 		rt = in_pcbrtentry(tp->t_inpcb);
   2167 #endif
   2168 #ifdef INET6
   2169 	if (tp->t_in6pcb)
   2170 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2171 #endif
   2172 	if (rt == NULL)
   2173 		return;
   2174 
   2175 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2176 		/*
   2177 		 * XXX The lock bit for MTU indicates that the value
   2178 		 * is also a minimum value; this is subject to time.
   2179 		 */
   2180 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2181 			TCPT_RANGESET(tp->t_rttmin,
   2182 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2183 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2184 		tp->t_srtt = rtt /
   2185 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2186 		if (rt->rt_rmx.rmx_rttvar) {
   2187 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2188 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2189 				(TCP_RTTVAR_SHIFT + 2));
   2190 		} else {
   2191 			/* Default variation is +- 1 rtt */
   2192 			tp->t_rttvar =
   2193 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2194 		}
   2195 		TCPT_RANGESET(tp->t_rxtcur,
   2196 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2197 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2198 	}
   2199 #endif
   2200 }
   2201 
   2202 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2203 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2204 
   2205 /*
   2206  * Get a new sequence value given a tcp control block
   2207  */
   2208 tcp_seq
   2209 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2210 {
   2211 
   2212 #ifdef INET
   2213 	if (tp->t_inpcb != NULL) {
   2214 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2215 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2216 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2217 		    addin));
   2218 	}
   2219 #endif
   2220 #ifdef INET6
   2221 	if (tp->t_in6pcb != NULL) {
   2222 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2223 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2224 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2225 		    addin));
   2226 	}
   2227 #endif
   2228 	/* Not possible. */
   2229 	panic("tcp_new_iss");
   2230 }
   2231 
   2232 /*
   2233  * This routine actually generates a new TCP initial sequence number.
   2234  */
   2235 tcp_seq
   2236 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2237     size_t addrsz, tcp_seq addin)
   2238 {
   2239 	tcp_seq tcp_iss;
   2240 
   2241 	static bool tcp_iss_gotten_secret;
   2242 
   2243 	/*
   2244 	 * If we haven't been here before, initialize our cryptographic
   2245 	 * hash secret.
   2246 	 */
   2247 	if (tcp_iss_gotten_secret == false) {
   2248 		cprng_strong(kern_cprng,
   2249 			     tcp_iss_secret, sizeof(tcp_iss_secret), FASYNC);
   2250 		tcp_iss_gotten_secret = true;
   2251 	}
   2252 
   2253 	if (tcp_do_rfc1948) {
   2254 		MD5_CTX ctx;
   2255 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2256 
   2257 		/*
   2258 		 * Compute the base value of the ISS.  It is a hash
   2259 		 * of (saddr, sport, daddr, dport, secret).
   2260 		 */
   2261 		MD5Init(&ctx);
   2262 
   2263 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2264 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2265 
   2266 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2267 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2268 
   2269 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2270 
   2271 		MD5Final(hash, &ctx);
   2272 
   2273 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2274 
   2275 		/*
   2276 		 * Now increment our "timer", and add it in to
   2277 		 * the computed value.
   2278 		 *
   2279 		 * XXX Use `addin'?
   2280 		 * XXX TCP_ISSINCR too large to use?
   2281 		 */
   2282 		tcp_iss_seq += TCP_ISSINCR;
   2283 #ifdef TCPISS_DEBUG
   2284 		printf("ISS hash 0x%08x, ", tcp_iss);
   2285 #endif
   2286 		tcp_iss += tcp_iss_seq + addin;
   2287 #ifdef TCPISS_DEBUG
   2288 		printf("new ISS 0x%08x\n", tcp_iss);
   2289 #endif
   2290 	} else {
   2291 		/*
   2292 		 * Randomize.
   2293 		 */
   2294 		tcp_iss = cprng_fast32();
   2295 
   2296 		/*
   2297 		 * If we were asked to add some amount to a known value,
   2298 		 * we will take a random value obtained above, mask off
   2299 		 * the upper bits, and add in the known value.  We also
   2300 		 * add in a constant to ensure that we are at least a
   2301 		 * certain distance from the original value.
   2302 		 *
   2303 		 * This is used when an old connection is in timed wait
   2304 		 * and we have a new one coming in, for instance.
   2305 		 */
   2306 		if (addin != 0) {
   2307 #ifdef TCPISS_DEBUG
   2308 			printf("Random %08x, ", tcp_iss);
   2309 #endif
   2310 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2311 			tcp_iss += addin + TCP_ISSINCR;
   2312 #ifdef TCPISS_DEBUG
   2313 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2314 #endif
   2315 		} else {
   2316 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2317 			tcp_iss += tcp_iss_seq;
   2318 			tcp_iss_seq += TCP_ISSINCR;
   2319 #ifdef TCPISS_DEBUG
   2320 			printf("ISS %08x\n", tcp_iss);
   2321 #endif
   2322 		}
   2323 	}
   2324 
   2325 	if (tcp_compat_42) {
   2326 		/*
   2327 		 * Limit it to the positive range for really old TCP
   2328 		 * implementations.
   2329 		 * Just AND off the top bit instead of checking if
   2330 		 * is set first - saves a branch 50% of the time.
   2331 		 */
   2332 		tcp_iss &= 0x7fffffff;		/* XXX */
   2333 	}
   2334 
   2335 	return (tcp_iss);
   2336 }
   2337 
   2338 #if defined(IPSEC)
   2339 /* compute ESP/AH header size for TCP, including outer IP header. */
   2340 size_t
   2341 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2342 {
   2343 	struct inpcb *inp;
   2344 	size_t hdrsiz;
   2345 
   2346 	/* XXX mapped addr case (tp->t_in6pcb) */
   2347 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2348 		return 0;
   2349 	switch (tp->t_family) {
   2350 	case AF_INET:
   2351 		/* XXX: should use currect direction. */
   2352 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2353 		break;
   2354 	default:
   2355 		hdrsiz = 0;
   2356 		break;
   2357 	}
   2358 
   2359 	return hdrsiz;
   2360 }
   2361 
   2362 #ifdef INET6
   2363 size_t
   2364 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2365 {
   2366 	struct in6pcb *in6p;
   2367 	size_t hdrsiz;
   2368 
   2369 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2370 		return 0;
   2371 	switch (tp->t_family) {
   2372 	case AF_INET6:
   2373 		/* XXX: should use currect direction. */
   2374 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2375 		break;
   2376 	case AF_INET:
   2377 		/* mapped address case - tricky */
   2378 	default:
   2379 		hdrsiz = 0;
   2380 		break;
   2381 	}
   2382 
   2383 	return hdrsiz;
   2384 }
   2385 #endif
   2386 #endif /*IPSEC*/
   2387 
   2388 /*
   2389  * Determine the length of the TCP options for this connection.
   2390  *
   2391  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2392  *       all of the space?  Otherwise we can't exactly be incrementing
   2393  *       cwnd by an amount that varies depending on the amount we last
   2394  *       had to SACK!
   2395  */
   2396 
   2397 u_int
   2398 tcp_optlen(struct tcpcb *tp)
   2399 {
   2400 	u_int optlen;
   2401 
   2402 	optlen = 0;
   2403 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2404 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2405 		optlen += TCPOLEN_TSTAMP_APPA;
   2406 
   2407 #ifdef TCP_SIGNATURE
   2408 	if (tp->t_flags & TF_SIGNATURE)
   2409 		optlen += TCPOLEN_SIGNATURE + 2;
   2410 #endif /* TCP_SIGNATURE */
   2411 
   2412 	return optlen;
   2413 }
   2414 
   2415 u_int
   2416 tcp_hdrsz(struct tcpcb *tp)
   2417 {
   2418 	u_int hlen;
   2419 
   2420 	switch (tp->t_family) {
   2421 #ifdef INET6
   2422 	case AF_INET6:
   2423 		hlen = sizeof(struct ip6_hdr);
   2424 		break;
   2425 #endif
   2426 	case AF_INET:
   2427 		hlen = sizeof(struct ip);
   2428 		break;
   2429 	default:
   2430 		hlen = 0;
   2431 		break;
   2432 	}
   2433 	hlen += sizeof(struct tcphdr);
   2434 
   2435 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2436 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2437 		hlen += TCPOLEN_TSTAMP_APPA;
   2438 #ifdef TCP_SIGNATURE
   2439 	if (tp->t_flags & TF_SIGNATURE)
   2440 		hlen += TCPOLEN_SIGLEN;
   2441 #endif
   2442 	return hlen;
   2443 }
   2444 
   2445 void
   2446 tcp_statinc(u_int stat)
   2447 {
   2448 
   2449 	KASSERT(stat < TCP_NSTATS);
   2450 	TCP_STATINC(stat);
   2451 }
   2452 
   2453 void
   2454 tcp_statadd(u_int stat, uint64_t val)
   2455 {
   2456 
   2457 	KASSERT(stat < TCP_NSTATS);
   2458 	TCP_STATADD(stat, val);
   2459 }
   2460