tcp_subr.c revision 1.254 1 /* $NetBSD: tcp_subr.c,v 1.254 2014/01/02 18:52:04 pooka Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.254 2014/01/02 18:52:04 pooka Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101
102 #include <sys/param.h>
103 #include <sys/atomic.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/malloc.h>
107 #include <sys/mbuf.h>
108 #include <sys/once.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/protosw.h>
112 #include <sys/errno.h>
113 #include <sys/kernel.h>
114 #include <sys/pool.h>
115 #include <sys/md5.h>
116 #include <sys/cprng.h>
117
118 #include <net/route.h>
119 #include <net/if.h>
120
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_icmp.h>
127
128 #ifdef INET6
129 #ifndef INET
130 #include <netinet/in.h>
131 #endif
132 #include <netinet/ip6.h>
133 #include <netinet6/in6_pcb.h>
134 #include <netinet6/ip6_var.h>
135 #include <netinet6/in6_var.h>
136 #include <netinet6/ip6protosw.h>
137 #include <netinet/icmp6.h>
138 #include <netinet6/nd6.h>
139 #endif
140
141 #include <netinet/tcp.h>
142 #include <netinet/tcp_fsm.h>
143 #include <netinet/tcp_seq.h>
144 #include <netinet/tcp_timer.h>
145 #include <netinet/tcp_var.h>
146 #include <netinet/tcp_vtw.h>
147 #include <netinet/tcp_private.h>
148 #include <netinet/tcp_congctl.h>
149 #include <netinet/tcpip.h>
150
151 #ifdef IPSEC
152 #include <netipsec/ipsec.h>
153 #include <netipsec/xform.h>
154 #ifdef INET6
155 #include <netipsec/ipsec6.h>
156 #endif
157 #include <netipsec/key.h>
158 #endif /* IPSEC*/
159
160
161 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
162 u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
163
164 percpu_t *tcpstat_percpu;
165
166 /* patchable/settable parameters for tcp */
167 int tcp_mssdflt = TCP_MSS;
168 int tcp_minmss = TCP_MINMSS;
169 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
170 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
171 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
172 int tcp_do_sack = 1; /* selective acknowledgement */
173 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
174 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
175 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
176 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
177 #ifndef TCP_INIT_WIN
178 #define TCP_INIT_WIN 4 /* initial slow start window */
179 #endif
180 #ifndef TCP_INIT_WIN_LOCAL
181 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
182 #endif
183 /*
184 * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
185 * This is to simulate current behavior for iw == 4
186 */
187 int tcp_init_win_max[] = {
188 1 * 1460,
189 1 * 1460,
190 2 * 1460,
191 2 * 1460,
192 3 * 1460,
193 5 * 1460,
194 6 * 1460,
195 7 * 1460,
196 8 * 1460,
197 9 * 1460,
198 10 * 1460
199 };
200 int tcp_init_win = TCP_INIT_WIN;
201 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
202 int tcp_mss_ifmtu = 0;
203 #ifdef TCP_COMPAT_42
204 int tcp_compat_42 = 1;
205 #else
206 int tcp_compat_42 = 0;
207 #endif
208 int tcp_rst_ppslim = 100; /* 100pps */
209 int tcp_ackdrop_ppslim = 100; /* 100pps */
210 int tcp_do_loopback_cksum = 0;
211 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
212 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
213 int tcp_sack_tp_maxholes = 32;
214 int tcp_sack_globalmaxholes = 1024;
215 int tcp_sack_globalholes = 0;
216 int tcp_ecn_maxretries = 1;
217 int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
218 int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
219 int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
220 int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
221 int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
222 int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
223
224 int tcp4_vtw_enable = 0; /* 1 to enable */
225 int tcp6_vtw_enable = 0; /* 1 to enable */
226 int tcp_vtw_was_enabled = 0;
227 int tcp_vtw_entries = 1 << 16; /* 64K vestigial TIME_WAIT entries */
228
229 /* tcb hash */
230 #ifndef TCBHASHSIZE
231 #define TCBHASHSIZE 128
232 #endif
233 int tcbhashsize = TCBHASHSIZE;
234
235 /* syn hash parameters */
236 #define TCP_SYN_HASH_SIZE 293
237 #define TCP_SYN_BUCKET_SIZE 35
238 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
239 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
240 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
241 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
242
243 int tcp_freeq(struct tcpcb *);
244
245 #ifdef INET
246 static void tcp_mtudisc_callback(struct in_addr);
247 #endif
248
249 #ifdef INET6
250 void tcp6_mtudisc(struct in6pcb *, int);
251 #endif
252
253 static struct pool tcpcb_pool;
254
255 static int tcp_drainwanted;
256
257 #ifdef TCP_CSUM_COUNTERS
258 #include <sys/device.h>
259
260 #if defined(INET)
261 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "hwcsum bad");
263 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp", "hwcsum ok");
265 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp", "hwcsum data");
267 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp", "swcsum");
269
270 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
271 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
272 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
273 EVCNT_ATTACH_STATIC(tcp_swcsum);
274 #endif /* defined(INET) */
275
276 #if defined(INET6)
277 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 NULL, "tcp6", "hwcsum bad");
279 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 NULL, "tcp6", "hwcsum ok");
281 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 NULL, "tcp6", "hwcsum data");
283 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 NULL, "tcp6", "swcsum");
285
286 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
287 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
288 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
289 EVCNT_ATTACH_STATIC(tcp6_swcsum);
290 #endif /* defined(INET6) */
291 #endif /* TCP_CSUM_COUNTERS */
292
293
294 #ifdef TCP_OUTPUT_COUNTERS
295 #include <sys/device.h>
296
297 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
298 NULL, "tcp", "output big header");
299 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
300 NULL, "tcp", "output predict hit");
301 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
302 NULL, "tcp", "output predict miss");
303 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
304 NULL, "tcp", "output copy small");
305 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
306 NULL, "tcp", "output copy big");
307 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
308 NULL, "tcp", "output reference big");
309
310 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
311 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
312 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
313 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
314 EVCNT_ATTACH_STATIC(tcp_output_copybig);
315 EVCNT_ATTACH_STATIC(tcp_output_refbig);
316
317 #endif /* TCP_OUTPUT_COUNTERS */
318
319 #ifdef TCP_REASS_COUNTERS
320 #include <sys/device.h>
321
322 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
323 NULL, "tcp_reass", "calls");
324 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
325 &tcp_reass_, "tcp_reass", "insert into empty queue");
326 struct evcnt tcp_reass_iteration[8] = {
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
328 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
329 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
331 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
332 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
333 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
334 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
335 };
336 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
337 &tcp_reass_, "tcp_reass", "prepend to first");
338 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
339 &tcp_reass_, "tcp_reass", "prepend");
340 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
341 &tcp_reass_, "tcp_reass", "insert");
342 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
343 &tcp_reass_, "tcp_reass", "insert at tail");
344 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
345 &tcp_reass_, "tcp_reass", "append");
346 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
347 &tcp_reass_, "tcp_reass", "append to tail fragment");
348 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
349 &tcp_reass_, "tcp_reass", "overlap at end");
350 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
351 &tcp_reass_, "tcp_reass", "overlap at start");
352 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
353 &tcp_reass_, "tcp_reass", "duplicate segment");
354 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
355 &tcp_reass_, "tcp_reass", "duplicate fragment");
356
357 EVCNT_ATTACH_STATIC(tcp_reass_);
358 EVCNT_ATTACH_STATIC(tcp_reass_empty);
359 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
361 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
362 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
363 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
364 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
365 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
366 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
367 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
368 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
369 EVCNT_ATTACH_STATIC(tcp_reass_insert);
370 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
371 EVCNT_ATTACH_STATIC(tcp_reass_append);
372 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
373 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
374 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
375 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
376 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
377
378 #endif /* TCP_REASS_COUNTERS */
379
380 #ifdef MBUFTRACE
381 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
382 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
383 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
384 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
385 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
386 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
387 #endif
388
389 callout_t tcp_slowtimo_ch;
390
391 static int
392 do_tcpinit(void)
393 {
394
395 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
396 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
397 NULL, IPL_SOFTNET);
398
399 tcp_usrreq_init();
400
401 /* Initialize timer state. */
402 tcp_timer_init();
403
404 /* Initialize the compressed state engine. */
405 syn_cache_init();
406
407 /* Initialize the congestion control algorithms. */
408 tcp_congctl_init();
409
410 /* Initialize the TCPCB template. */
411 tcp_tcpcb_template();
412
413 /* Initialize reassembly queue */
414 tcpipqent_init();
415
416 /* SACK */
417 tcp_sack_init();
418
419 MOWNER_ATTACH(&tcp_tx_mowner);
420 MOWNER_ATTACH(&tcp_rx_mowner);
421 MOWNER_ATTACH(&tcp_reass_mowner);
422 MOWNER_ATTACH(&tcp_sock_mowner);
423 MOWNER_ATTACH(&tcp_sock_tx_mowner);
424 MOWNER_ATTACH(&tcp_sock_rx_mowner);
425 MOWNER_ATTACH(&tcp_mowner);
426
427 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
428
429 vtw_earlyinit();
430
431 callout_init(&tcp_slowtimo_ch, CALLOUT_MPSAFE);
432 callout_reset(&tcp_slowtimo_ch, 1, tcp_slowtimo, NULL);
433
434 return 0;
435 }
436
437 void
438 tcp_init_common(unsigned basehlen)
439 {
440 static ONCE_DECL(dotcpinit);
441 unsigned hlen = basehlen + sizeof(struct tcphdr);
442 unsigned oldhlen;
443
444 if (max_linkhdr + hlen > MHLEN)
445 panic("tcp_init");
446 while ((oldhlen = max_protohdr) < hlen)
447 atomic_cas_uint(&max_protohdr, oldhlen, hlen);
448
449 RUN_ONCE(&dotcpinit, do_tcpinit);
450 }
451
452 /*
453 * Tcp initialization
454 */
455 void
456 tcp_init(void)
457 {
458
459 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
460
461 tcp_init_common(sizeof(struct ip));
462 }
463
464 /*
465 * Create template to be used to send tcp packets on a connection.
466 * Call after host entry created, allocates an mbuf and fills
467 * in a skeletal tcp/ip header, minimizing the amount of work
468 * necessary when the connection is used.
469 */
470 struct mbuf *
471 tcp_template(struct tcpcb *tp)
472 {
473 struct inpcb *inp = tp->t_inpcb;
474 #ifdef INET6
475 struct in6pcb *in6p = tp->t_in6pcb;
476 #endif
477 struct tcphdr *n;
478 struct mbuf *m;
479 int hlen;
480
481 switch (tp->t_family) {
482 case AF_INET:
483 hlen = sizeof(struct ip);
484 if (inp)
485 break;
486 #ifdef INET6
487 if (in6p) {
488 /* mapped addr case */
489 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
490 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
491 break;
492 }
493 #endif
494 return NULL; /*EINVAL*/
495 #ifdef INET6
496 case AF_INET6:
497 hlen = sizeof(struct ip6_hdr);
498 if (in6p) {
499 /* more sainty check? */
500 break;
501 }
502 return NULL; /*EINVAL*/
503 #endif
504 default:
505 hlen = 0; /*pacify gcc*/
506 return NULL; /*EAFNOSUPPORT*/
507 }
508 #ifdef DIAGNOSTIC
509 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
510 panic("mclbytes too small for t_template");
511 #endif
512 m = tp->t_template;
513 if (m && m->m_len == hlen + sizeof(struct tcphdr))
514 ;
515 else {
516 if (m)
517 m_freem(m);
518 m = tp->t_template = NULL;
519 MGETHDR(m, M_DONTWAIT, MT_HEADER);
520 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
521 MCLGET(m, M_DONTWAIT);
522 if ((m->m_flags & M_EXT) == 0) {
523 m_free(m);
524 m = NULL;
525 }
526 }
527 if (m == NULL)
528 return NULL;
529 MCLAIM(m, &tcp_mowner);
530 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
531 }
532
533 memset(mtod(m, void *), 0, m->m_len);
534
535 n = (struct tcphdr *)(mtod(m, char *) + hlen);
536
537 switch (tp->t_family) {
538 case AF_INET:
539 {
540 struct ipovly *ipov;
541 mtod(m, struct ip *)->ip_v = 4;
542 mtod(m, struct ip *)->ip_hl = hlen >> 2;
543 ipov = mtod(m, struct ipovly *);
544 ipov->ih_pr = IPPROTO_TCP;
545 ipov->ih_len = htons(sizeof(struct tcphdr));
546 if (inp) {
547 ipov->ih_src = inp->inp_laddr;
548 ipov->ih_dst = inp->inp_faddr;
549 }
550 #ifdef INET6
551 else if (in6p) {
552 /* mapped addr case */
553 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
554 sizeof(ipov->ih_src));
555 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
556 sizeof(ipov->ih_dst));
557 }
558 #endif
559 /*
560 * Compute the pseudo-header portion of the checksum
561 * now. We incrementally add in the TCP option and
562 * payload lengths later, and then compute the TCP
563 * checksum right before the packet is sent off onto
564 * the wire.
565 */
566 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
567 ipov->ih_dst.s_addr,
568 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
569 break;
570 }
571 #ifdef INET6
572 case AF_INET6:
573 {
574 struct ip6_hdr *ip6;
575 mtod(m, struct ip *)->ip_v = 6;
576 ip6 = mtod(m, struct ip6_hdr *);
577 ip6->ip6_nxt = IPPROTO_TCP;
578 ip6->ip6_plen = htons(sizeof(struct tcphdr));
579 ip6->ip6_src = in6p->in6p_laddr;
580 ip6->ip6_dst = in6p->in6p_faddr;
581 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
582 if (ip6_auto_flowlabel) {
583 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
584 ip6->ip6_flow |=
585 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
586 }
587 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
588 ip6->ip6_vfc |= IPV6_VERSION;
589
590 /*
591 * Compute the pseudo-header portion of the checksum
592 * now. We incrementally add in the TCP option and
593 * payload lengths later, and then compute the TCP
594 * checksum right before the packet is sent off onto
595 * the wire.
596 */
597 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
598 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
599 htonl(IPPROTO_TCP));
600 break;
601 }
602 #endif
603 }
604 if (inp) {
605 n->th_sport = inp->inp_lport;
606 n->th_dport = inp->inp_fport;
607 }
608 #ifdef INET6
609 else if (in6p) {
610 n->th_sport = in6p->in6p_lport;
611 n->th_dport = in6p->in6p_fport;
612 }
613 #endif
614 n->th_seq = 0;
615 n->th_ack = 0;
616 n->th_x2 = 0;
617 n->th_off = 5;
618 n->th_flags = 0;
619 n->th_win = 0;
620 n->th_urp = 0;
621 return (m);
622 }
623
624 /*
625 * Send a single message to the TCP at address specified by
626 * the given TCP/IP header. If m == 0, then we make a copy
627 * of the tcpiphdr at ti and send directly to the addressed host.
628 * This is used to force keep alive messages out using the TCP
629 * template for a connection tp->t_template. If flags are given
630 * then we send a message back to the TCP which originated the
631 * segment ti, and discard the mbuf containing it and any other
632 * attached mbufs.
633 *
634 * In any case the ack and sequence number of the transmitted
635 * segment are as specified by the parameters.
636 */
637 int
638 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
639 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
640 {
641 #ifdef INET6
642 struct rtentry *rt;
643 #endif
644 struct route *ro;
645 int error, tlen, win = 0;
646 int hlen;
647 struct ip *ip;
648 #ifdef INET6
649 struct ip6_hdr *ip6;
650 #endif
651 int family; /* family on packet, not inpcb/in6pcb! */
652 struct tcphdr *th;
653 struct socket *so;
654
655 if (tp != NULL && (flags & TH_RST) == 0) {
656 #ifdef DIAGNOSTIC
657 if (tp->t_inpcb && tp->t_in6pcb)
658 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
659 #endif
660 #ifdef INET
661 if (tp->t_inpcb)
662 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
663 #endif
664 #ifdef INET6
665 if (tp->t_in6pcb)
666 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
667 #endif
668 }
669
670 th = NULL; /* Quell uninitialized warning */
671 ip = NULL;
672 #ifdef INET6
673 ip6 = NULL;
674 #endif
675 if (m == 0) {
676 if (!template)
677 return EINVAL;
678
679 /* get family information from template */
680 switch (mtod(template, struct ip *)->ip_v) {
681 case 4:
682 family = AF_INET;
683 hlen = sizeof(struct ip);
684 break;
685 #ifdef INET6
686 case 6:
687 family = AF_INET6;
688 hlen = sizeof(struct ip6_hdr);
689 break;
690 #endif
691 default:
692 return EAFNOSUPPORT;
693 }
694
695 MGETHDR(m, M_DONTWAIT, MT_HEADER);
696 if (m) {
697 MCLAIM(m, &tcp_tx_mowner);
698 MCLGET(m, M_DONTWAIT);
699 if ((m->m_flags & M_EXT) == 0) {
700 m_free(m);
701 m = NULL;
702 }
703 }
704 if (m == NULL)
705 return (ENOBUFS);
706
707 if (tcp_compat_42)
708 tlen = 1;
709 else
710 tlen = 0;
711
712 m->m_data += max_linkhdr;
713 bcopy(mtod(template, void *), mtod(m, void *),
714 template->m_len);
715 switch (family) {
716 case AF_INET:
717 ip = mtod(m, struct ip *);
718 th = (struct tcphdr *)(ip + 1);
719 break;
720 #ifdef INET6
721 case AF_INET6:
722 ip6 = mtod(m, struct ip6_hdr *);
723 th = (struct tcphdr *)(ip6 + 1);
724 break;
725 #endif
726 #if 0
727 default:
728 /* noone will visit here */
729 m_freem(m);
730 return EAFNOSUPPORT;
731 #endif
732 }
733 flags = TH_ACK;
734 } else {
735
736 if ((m->m_flags & M_PKTHDR) == 0) {
737 #if 0
738 printf("non PKTHDR to tcp_respond\n");
739 #endif
740 m_freem(m);
741 return EINVAL;
742 }
743 #ifdef DIAGNOSTIC
744 if (!th0)
745 panic("th0 == NULL in tcp_respond");
746 #endif
747
748 /* get family information from m */
749 switch (mtod(m, struct ip *)->ip_v) {
750 case 4:
751 family = AF_INET;
752 hlen = sizeof(struct ip);
753 ip = mtod(m, struct ip *);
754 break;
755 #ifdef INET6
756 case 6:
757 family = AF_INET6;
758 hlen = sizeof(struct ip6_hdr);
759 ip6 = mtod(m, struct ip6_hdr *);
760 break;
761 #endif
762 default:
763 m_freem(m);
764 return EAFNOSUPPORT;
765 }
766 /* clear h/w csum flags inherited from rx packet */
767 m->m_pkthdr.csum_flags = 0;
768
769 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
770 tlen = sizeof(*th0);
771 else
772 tlen = th0->th_off << 2;
773
774 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
775 mtod(m, char *) + hlen == (char *)th0) {
776 m->m_len = hlen + tlen;
777 m_freem(m->m_next);
778 m->m_next = NULL;
779 } else {
780 struct mbuf *n;
781
782 #ifdef DIAGNOSTIC
783 if (max_linkhdr + hlen + tlen > MCLBYTES) {
784 m_freem(m);
785 return EMSGSIZE;
786 }
787 #endif
788 MGETHDR(n, M_DONTWAIT, MT_HEADER);
789 if (n && max_linkhdr + hlen + tlen > MHLEN) {
790 MCLGET(n, M_DONTWAIT);
791 if ((n->m_flags & M_EXT) == 0) {
792 m_freem(n);
793 n = NULL;
794 }
795 }
796 if (!n) {
797 m_freem(m);
798 return ENOBUFS;
799 }
800
801 MCLAIM(n, &tcp_tx_mowner);
802 n->m_data += max_linkhdr;
803 n->m_len = hlen + tlen;
804 m_copyback(n, 0, hlen, mtod(m, void *));
805 m_copyback(n, hlen, tlen, (void *)th0);
806
807 m_freem(m);
808 m = n;
809 n = NULL;
810 }
811
812 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
813 switch (family) {
814 case AF_INET:
815 ip = mtod(m, struct ip *);
816 th = (struct tcphdr *)(ip + 1);
817 ip->ip_p = IPPROTO_TCP;
818 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
819 ip->ip_p = IPPROTO_TCP;
820 break;
821 #ifdef INET6
822 case AF_INET6:
823 ip6 = mtod(m, struct ip6_hdr *);
824 th = (struct tcphdr *)(ip6 + 1);
825 ip6->ip6_nxt = IPPROTO_TCP;
826 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
827 ip6->ip6_nxt = IPPROTO_TCP;
828 break;
829 #endif
830 #if 0
831 default:
832 /* noone will visit here */
833 m_freem(m);
834 return EAFNOSUPPORT;
835 #endif
836 }
837 xchg(th->th_dport, th->th_sport, u_int16_t);
838 #undef xchg
839 tlen = 0; /*be friendly with the following code*/
840 }
841 th->th_seq = htonl(seq);
842 th->th_ack = htonl(ack);
843 th->th_x2 = 0;
844 if ((flags & TH_SYN) == 0) {
845 if (tp)
846 win >>= tp->rcv_scale;
847 if (win > TCP_MAXWIN)
848 win = TCP_MAXWIN;
849 th->th_win = htons((u_int16_t)win);
850 th->th_off = sizeof (struct tcphdr) >> 2;
851 tlen += sizeof(*th);
852 } else
853 tlen += th->th_off << 2;
854 m->m_len = hlen + tlen;
855 m->m_pkthdr.len = hlen + tlen;
856 m->m_pkthdr.rcvif = NULL;
857 th->th_flags = flags;
858 th->th_urp = 0;
859
860 switch (family) {
861 #ifdef INET
862 case AF_INET:
863 {
864 struct ipovly *ipov = (struct ipovly *)ip;
865 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
866 ipov->ih_len = htons((u_int16_t)tlen);
867
868 th->th_sum = 0;
869 th->th_sum = in_cksum(m, hlen + tlen);
870 ip->ip_len = htons(hlen + tlen);
871 ip->ip_ttl = ip_defttl;
872 break;
873 }
874 #endif
875 #ifdef INET6
876 case AF_INET6:
877 {
878 th->th_sum = 0;
879 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
880 tlen);
881 ip6->ip6_plen = htons(tlen);
882 if (tp && tp->t_in6pcb) {
883 struct ifnet *oifp;
884 ro = &tp->t_in6pcb->in6p_route;
885 oifp = (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
886 : NULL;
887 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
888 } else
889 ip6->ip6_hlim = ip6_defhlim;
890 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
891 if (ip6_auto_flowlabel) {
892 ip6->ip6_flow |=
893 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
894 }
895 break;
896 }
897 #endif
898 }
899
900 if (tp && tp->t_inpcb)
901 so = tp->t_inpcb->inp_socket;
902 #ifdef INET6
903 else if (tp && tp->t_in6pcb)
904 so = tp->t_in6pcb->in6p_socket;
905 #endif
906 else
907 so = NULL;
908
909 if (tp != NULL && tp->t_inpcb != NULL) {
910 ro = &tp->t_inpcb->inp_route;
911 #ifdef DIAGNOSTIC
912 if (family != AF_INET)
913 panic("tcp_respond: address family mismatch");
914 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
915 panic("tcp_respond: ip_dst %x != inp_faddr %x",
916 ntohl(ip->ip_dst.s_addr),
917 ntohl(tp->t_inpcb->inp_faddr.s_addr));
918 }
919 #endif
920 }
921 #ifdef INET6
922 else if (tp != NULL && tp->t_in6pcb != NULL) {
923 ro = (struct route *)&tp->t_in6pcb->in6p_route;
924 #ifdef DIAGNOSTIC
925 if (family == AF_INET) {
926 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
927 panic("tcp_respond: not mapped addr");
928 if (memcmp(&ip->ip_dst,
929 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
930 sizeof(ip->ip_dst)) != 0) {
931 panic("tcp_respond: ip_dst != in6p_faddr");
932 }
933 } else if (family == AF_INET6) {
934 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
935 &tp->t_in6pcb->in6p_faddr))
936 panic("tcp_respond: ip6_dst != in6p_faddr");
937 } else
938 panic("tcp_respond: address family mismatch");
939 #endif
940 }
941 #endif
942 else
943 ro = NULL;
944
945 switch (family) {
946 #ifdef INET
947 case AF_INET:
948 error = ip_output(m, NULL, ro,
949 (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
950 break;
951 #endif
952 #ifdef INET6
953 case AF_INET6:
954 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
955 break;
956 #endif
957 default:
958 error = EAFNOSUPPORT;
959 break;
960 }
961
962 return (error);
963 }
964
965 /*
966 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
967 * a bunch of members individually, we maintain this template for the
968 * static and mostly-static components of the TCPCB, and copy it into
969 * the new TCPCB instead.
970 */
971 static struct tcpcb tcpcb_template = {
972 .t_srtt = TCPTV_SRTTBASE,
973 .t_rttmin = TCPTV_MIN,
974
975 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
976 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
977 .snd_numholes = 0,
978 .snd_cubic_wmax = 0,
979 .snd_cubic_wmax_last = 0,
980 .snd_cubic_ctime = 0,
981
982 .t_partialacks = -1,
983 .t_bytes_acked = 0,
984 };
985
986 /*
987 * Updates the TCPCB template whenever a parameter that would affect
988 * the template is changed.
989 */
990 void
991 tcp_tcpcb_template(void)
992 {
993 struct tcpcb *tp = &tcpcb_template;
994 int flags;
995
996 tp->t_peermss = tcp_mssdflt;
997 tp->t_ourmss = tcp_mssdflt;
998 tp->t_segsz = tcp_mssdflt;
999
1000 flags = 0;
1001 if (tcp_do_rfc1323 && tcp_do_win_scale)
1002 flags |= TF_REQ_SCALE;
1003 if (tcp_do_rfc1323 && tcp_do_timestamps)
1004 flags |= TF_REQ_TSTMP;
1005 tp->t_flags = flags;
1006
1007 /*
1008 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1009 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
1010 * reasonable initial retransmit time.
1011 */
1012 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
1013 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1014 TCPTV_MIN, TCPTV_REXMTMAX);
1015
1016 /* Keep Alive */
1017 tp->t_keepinit = tcp_keepinit;
1018 tp->t_keepidle = tcp_keepidle;
1019 tp->t_keepintvl = tcp_keepintvl;
1020 tp->t_keepcnt = tcp_keepcnt;
1021 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
1022
1023 /* MSL */
1024 tp->t_msl = TCPTV_MSL;
1025 }
1026
1027 /*
1028 * Create a new TCP control block, making an
1029 * empty reassembly queue and hooking it to the argument
1030 * protocol control block.
1031 */
1032 /* family selects inpcb, or in6pcb */
1033 struct tcpcb *
1034 tcp_newtcpcb(int family, void *aux)
1035 {
1036 #ifdef INET6
1037 struct rtentry *rt;
1038 #endif
1039 struct tcpcb *tp;
1040 int i;
1041
1042 /* XXX Consider using a pool_cache for speed. */
1043 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
1044 if (tp == NULL)
1045 return (NULL);
1046 memcpy(tp, &tcpcb_template, sizeof(*tp));
1047 TAILQ_INIT(&tp->segq);
1048 TAILQ_INIT(&tp->timeq);
1049 tp->t_family = family; /* may be overridden later on */
1050 TAILQ_INIT(&tp->snd_holes);
1051 LIST_INIT(&tp->t_sc); /* XXX can template this */
1052
1053 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1054 for (i = 0; i < TCPT_NTIMERS; i++) {
1055 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1056 TCP_TIMER_INIT(tp, i);
1057 }
1058 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1059
1060 switch (family) {
1061 case AF_INET:
1062 {
1063 struct inpcb *inp = (struct inpcb *)aux;
1064
1065 inp->inp_ip.ip_ttl = ip_defttl;
1066 inp->inp_ppcb = (void *)tp;
1067
1068 tp->t_inpcb = inp;
1069 tp->t_mtudisc = ip_mtudisc;
1070 break;
1071 }
1072 #ifdef INET6
1073 case AF_INET6:
1074 {
1075 struct in6pcb *in6p = (struct in6pcb *)aux;
1076
1077 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1078 (rt = rtcache_validate(&in6p->in6p_route)) != NULL
1079 ? rt->rt_ifp
1080 : NULL);
1081 in6p->in6p_ppcb = (void *)tp;
1082
1083 tp->t_in6pcb = in6p;
1084 /* for IPv6, always try to run path MTU discovery */
1085 tp->t_mtudisc = 1;
1086 break;
1087 }
1088 #endif /* INET6 */
1089 default:
1090 for (i = 0; i < TCPT_NTIMERS; i++)
1091 callout_destroy(&tp->t_timer[i]);
1092 callout_destroy(&tp->t_delack_ch);
1093 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1094 return (NULL);
1095 }
1096
1097 /*
1098 * Initialize our timebase. When we send timestamps, we take
1099 * the delta from tcp_now -- this means each connection always
1100 * gets a timebase of 1, which makes it, among other things,
1101 * more difficult to determine how long a system has been up,
1102 * and thus how many TCP sequence increments have occurred.
1103 *
1104 * We start with 1, because 0 doesn't work with linux, which
1105 * considers timestamp 0 in a SYN packet as a bug and disables
1106 * timestamps.
1107 */
1108 tp->ts_timebase = tcp_now - 1;
1109
1110 tcp_congctl_select(tp, tcp_congctl_global_name);
1111
1112 return (tp);
1113 }
1114
1115 /*
1116 * Drop a TCP connection, reporting
1117 * the specified error. If connection is synchronized,
1118 * then send a RST to peer.
1119 */
1120 struct tcpcb *
1121 tcp_drop(struct tcpcb *tp, int errno)
1122 {
1123 struct socket *so = NULL;
1124
1125 #ifdef DIAGNOSTIC
1126 if (tp->t_inpcb && tp->t_in6pcb)
1127 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1128 #endif
1129 #ifdef INET
1130 if (tp->t_inpcb)
1131 so = tp->t_inpcb->inp_socket;
1132 #endif
1133 #ifdef INET6
1134 if (tp->t_in6pcb)
1135 so = tp->t_in6pcb->in6p_socket;
1136 #endif
1137 if (!so)
1138 return NULL;
1139
1140 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1141 tp->t_state = TCPS_CLOSED;
1142 (void) tcp_output(tp);
1143 TCP_STATINC(TCP_STAT_DROPS);
1144 } else
1145 TCP_STATINC(TCP_STAT_CONNDROPS);
1146 if (errno == ETIMEDOUT && tp->t_softerror)
1147 errno = tp->t_softerror;
1148 so->so_error = errno;
1149 return (tcp_close(tp));
1150 }
1151
1152 /*
1153 * Close a TCP control block:
1154 * discard all space held by the tcp
1155 * discard internet protocol block
1156 * wake up any sleepers
1157 */
1158 struct tcpcb *
1159 tcp_close(struct tcpcb *tp)
1160 {
1161 struct inpcb *inp;
1162 #ifdef INET6
1163 struct in6pcb *in6p;
1164 #endif
1165 struct socket *so;
1166 #ifdef RTV_RTT
1167 struct rtentry *rt;
1168 #endif
1169 struct route *ro;
1170 int j;
1171
1172 inp = tp->t_inpcb;
1173 #ifdef INET6
1174 in6p = tp->t_in6pcb;
1175 #endif
1176 so = NULL;
1177 ro = NULL;
1178 if (inp) {
1179 so = inp->inp_socket;
1180 ro = &inp->inp_route;
1181 }
1182 #ifdef INET6
1183 else if (in6p) {
1184 so = in6p->in6p_socket;
1185 ro = (struct route *)&in6p->in6p_route;
1186 }
1187 #endif
1188
1189 #ifdef RTV_RTT
1190 /*
1191 * If we sent enough data to get some meaningful characteristics,
1192 * save them in the routing entry. 'Enough' is arbitrarily
1193 * defined as the sendpipesize (default 4K) * 16. This would
1194 * give us 16 rtt samples assuming we only get one sample per
1195 * window (the usual case on a long haul net). 16 samples is
1196 * enough for the srtt filter to converge to within 5% of the correct
1197 * value; fewer samples and we could save a very bogus rtt.
1198 *
1199 * Don't update the default route's characteristics and don't
1200 * update anything that the user "locked".
1201 */
1202 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1203 ro && (rt = rtcache_validate(ro)) != NULL &&
1204 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1205 u_long i = 0;
1206
1207 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1208 i = tp->t_srtt *
1209 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1210 if (rt->rt_rmx.rmx_rtt && i)
1211 /*
1212 * filter this update to half the old & half
1213 * the new values, converting scale.
1214 * See route.h and tcp_var.h for a
1215 * description of the scaling constants.
1216 */
1217 rt->rt_rmx.rmx_rtt =
1218 (rt->rt_rmx.rmx_rtt + i) / 2;
1219 else
1220 rt->rt_rmx.rmx_rtt = i;
1221 }
1222 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1223 i = tp->t_rttvar *
1224 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1225 if (rt->rt_rmx.rmx_rttvar && i)
1226 rt->rt_rmx.rmx_rttvar =
1227 (rt->rt_rmx.rmx_rttvar + i) / 2;
1228 else
1229 rt->rt_rmx.rmx_rttvar = i;
1230 }
1231 /*
1232 * update the pipelimit (ssthresh) if it has been updated
1233 * already or if a pipesize was specified & the threshhold
1234 * got below half the pipesize. I.e., wait for bad news
1235 * before we start updating, then update on both good
1236 * and bad news.
1237 */
1238 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1239 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1240 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1241 /*
1242 * convert the limit from user data bytes to
1243 * packets then to packet data bytes.
1244 */
1245 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1246 if (i < 2)
1247 i = 2;
1248 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1249 if (rt->rt_rmx.rmx_ssthresh)
1250 rt->rt_rmx.rmx_ssthresh =
1251 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1252 else
1253 rt->rt_rmx.rmx_ssthresh = i;
1254 }
1255 }
1256 #endif /* RTV_RTT */
1257 /* free the reassembly queue, if any */
1258 TCP_REASS_LOCK(tp);
1259 (void) tcp_freeq(tp);
1260 TCP_REASS_UNLOCK(tp);
1261
1262 /* free the SACK holes list. */
1263 tcp_free_sackholes(tp);
1264 tcp_congctl_release(tp);
1265 syn_cache_cleanup(tp);
1266
1267 if (tp->t_template) {
1268 m_free(tp->t_template);
1269 tp->t_template = NULL;
1270 }
1271
1272 /*
1273 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1274 * the timers can also drop the lock. We need to prevent access
1275 * to the tcpcb as it's half torn down. Flag the pcb as dead
1276 * (prevents access by timers) and only then detach it.
1277 */
1278 tp->t_flags |= TF_DEAD;
1279 if (inp) {
1280 inp->inp_ppcb = 0;
1281 soisdisconnected(so);
1282 in_pcbdetach(inp);
1283 }
1284 #ifdef INET6
1285 else if (in6p) {
1286 in6p->in6p_ppcb = 0;
1287 soisdisconnected(so);
1288 in6_pcbdetach(in6p);
1289 }
1290 #endif
1291 /*
1292 * pcb is no longer visble elsewhere, so we can safely release
1293 * the lock in callout_halt() if needed.
1294 */
1295 TCP_STATINC(TCP_STAT_CLOSED);
1296 for (j = 0; j < TCPT_NTIMERS; j++) {
1297 callout_halt(&tp->t_timer[j], softnet_lock);
1298 callout_destroy(&tp->t_timer[j]);
1299 }
1300 callout_halt(&tp->t_delack_ch, softnet_lock);
1301 callout_destroy(&tp->t_delack_ch);
1302 pool_put(&tcpcb_pool, tp);
1303
1304 return NULL;
1305 }
1306
1307 int
1308 tcp_freeq(struct tcpcb *tp)
1309 {
1310 struct ipqent *qe;
1311 int rv = 0;
1312 #ifdef TCPREASS_DEBUG
1313 int i = 0;
1314 #endif
1315
1316 TCP_REASS_LOCK_CHECK(tp);
1317
1318 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1319 #ifdef TCPREASS_DEBUG
1320 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1321 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1322 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1323 #endif
1324 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1325 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1326 m_freem(qe->ipqe_m);
1327 tcpipqent_free(qe);
1328 rv = 1;
1329 }
1330 tp->t_segqlen = 0;
1331 KASSERT(TAILQ_EMPTY(&tp->timeq));
1332 return (rv);
1333 }
1334
1335 void
1336 tcp_fasttimo(void)
1337 {
1338 if (tcp_drainwanted) {
1339 tcp_drain();
1340 tcp_drainwanted = 0;
1341 }
1342 }
1343
1344 void
1345 tcp_drainstub(void)
1346 {
1347 tcp_drainwanted = 1;
1348 }
1349
1350 /*
1351 * Protocol drain routine. Called when memory is in short supply.
1352 * Called from pr_fasttimo thus a callout context.
1353 */
1354 void
1355 tcp_drain(void)
1356 {
1357 struct inpcb_hdr *inph;
1358 struct tcpcb *tp;
1359
1360 mutex_enter(softnet_lock);
1361 KERNEL_LOCK(1, NULL);
1362
1363 /*
1364 * Free the sequence queue of all TCP connections.
1365 */
1366 TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1367 switch (inph->inph_af) {
1368 case AF_INET:
1369 tp = intotcpcb((struct inpcb *)inph);
1370 break;
1371 #ifdef INET6
1372 case AF_INET6:
1373 tp = in6totcpcb((struct in6pcb *)inph);
1374 break;
1375 #endif
1376 default:
1377 tp = NULL;
1378 break;
1379 }
1380 if (tp != NULL) {
1381 /*
1382 * We may be called from a device's interrupt
1383 * context. If the tcpcb is already busy,
1384 * just bail out now.
1385 */
1386 if (tcp_reass_lock_try(tp) == 0)
1387 continue;
1388 if (tcp_freeq(tp))
1389 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1390 TCP_REASS_UNLOCK(tp);
1391 }
1392 }
1393
1394 KERNEL_UNLOCK_ONE(NULL);
1395 mutex_exit(softnet_lock);
1396 }
1397
1398 /*
1399 * Notify a tcp user of an asynchronous error;
1400 * store error as soft error, but wake up user
1401 * (for now, won't do anything until can select for soft error).
1402 */
1403 void
1404 tcp_notify(struct inpcb *inp, int error)
1405 {
1406 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1407 struct socket *so = inp->inp_socket;
1408
1409 /*
1410 * Ignore some errors if we are hooked up.
1411 * If connection hasn't completed, has retransmitted several times,
1412 * and receives a second error, give up now. This is better
1413 * than waiting a long time to establish a connection that
1414 * can never complete.
1415 */
1416 if (tp->t_state == TCPS_ESTABLISHED &&
1417 (error == EHOSTUNREACH || error == ENETUNREACH ||
1418 error == EHOSTDOWN)) {
1419 return;
1420 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1421 tp->t_rxtshift > 3 && tp->t_softerror)
1422 so->so_error = error;
1423 else
1424 tp->t_softerror = error;
1425 cv_broadcast(&so->so_cv);
1426 sorwakeup(so);
1427 sowwakeup(so);
1428 }
1429
1430 #ifdef INET6
1431 void
1432 tcp6_notify(struct in6pcb *in6p, int error)
1433 {
1434 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1435 struct socket *so = in6p->in6p_socket;
1436
1437 /*
1438 * Ignore some errors if we are hooked up.
1439 * If connection hasn't completed, has retransmitted several times,
1440 * and receives a second error, give up now. This is better
1441 * than waiting a long time to establish a connection that
1442 * can never complete.
1443 */
1444 if (tp->t_state == TCPS_ESTABLISHED &&
1445 (error == EHOSTUNREACH || error == ENETUNREACH ||
1446 error == EHOSTDOWN)) {
1447 return;
1448 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1449 tp->t_rxtshift > 3 && tp->t_softerror)
1450 so->so_error = error;
1451 else
1452 tp->t_softerror = error;
1453 cv_broadcast(&so->so_cv);
1454 sorwakeup(so);
1455 sowwakeup(so);
1456 }
1457 #endif
1458
1459 #ifdef INET6
1460 void *
1461 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1462 {
1463 struct tcphdr th;
1464 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1465 int nmatch;
1466 struct ip6_hdr *ip6;
1467 const struct sockaddr_in6 *sa6_src = NULL;
1468 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1469 struct mbuf *m;
1470 int off;
1471
1472 if (sa->sa_family != AF_INET6 ||
1473 sa->sa_len != sizeof(struct sockaddr_in6))
1474 return NULL;
1475 if ((unsigned)cmd >= PRC_NCMDS)
1476 return NULL;
1477 else if (cmd == PRC_QUENCH) {
1478 /*
1479 * Don't honor ICMP Source Quench messages meant for
1480 * TCP connections.
1481 */
1482 return NULL;
1483 } else if (PRC_IS_REDIRECT(cmd))
1484 notify = in6_rtchange, d = NULL;
1485 else if (cmd == PRC_MSGSIZE)
1486 ; /* special code is present, see below */
1487 else if (cmd == PRC_HOSTDEAD)
1488 d = NULL;
1489 else if (inet6ctlerrmap[cmd] == 0)
1490 return NULL;
1491
1492 /* if the parameter is from icmp6, decode it. */
1493 if (d != NULL) {
1494 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1495 m = ip6cp->ip6c_m;
1496 ip6 = ip6cp->ip6c_ip6;
1497 off = ip6cp->ip6c_off;
1498 sa6_src = ip6cp->ip6c_src;
1499 } else {
1500 m = NULL;
1501 ip6 = NULL;
1502 sa6_src = &sa6_any;
1503 off = 0;
1504 }
1505
1506 if (ip6) {
1507 /*
1508 * XXX: We assume that when ip6 is non NULL,
1509 * M and OFF are valid.
1510 */
1511
1512 /* check if we can safely examine src and dst ports */
1513 if (m->m_pkthdr.len < off + sizeof(th)) {
1514 if (cmd == PRC_MSGSIZE)
1515 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1516 return NULL;
1517 }
1518
1519 memset(&th, 0, sizeof(th));
1520 m_copydata(m, off, sizeof(th), (void *)&th);
1521
1522 if (cmd == PRC_MSGSIZE) {
1523 int valid = 0;
1524
1525 /*
1526 * Check to see if we have a valid TCP connection
1527 * corresponding to the address in the ICMPv6 message
1528 * payload.
1529 */
1530 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1531 th.th_dport,
1532 (const struct in6_addr *)&sa6_src->sin6_addr,
1533 th.th_sport, 0, 0))
1534 valid++;
1535
1536 /*
1537 * Depending on the value of "valid" and routing table
1538 * size (mtudisc_{hi,lo}wat), we will:
1539 * - recalcurate the new MTU and create the
1540 * corresponding routing entry, or
1541 * - ignore the MTU change notification.
1542 */
1543 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1544
1545 /*
1546 * no need to call in6_pcbnotify, it should have been
1547 * called via callback if necessary
1548 */
1549 return NULL;
1550 }
1551
1552 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1553 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1554 if (nmatch == 0 && syn_cache_count &&
1555 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1556 inet6ctlerrmap[cmd] == ENETUNREACH ||
1557 inet6ctlerrmap[cmd] == EHOSTDOWN))
1558 syn_cache_unreach((const struct sockaddr *)sa6_src,
1559 sa, &th);
1560 } else {
1561 (void) in6_pcbnotify(&tcbtable, sa, 0,
1562 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1563 }
1564
1565 return NULL;
1566 }
1567 #endif
1568
1569 #ifdef INET
1570 /* assumes that ip header and tcp header are contiguous on mbuf */
1571 void *
1572 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1573 {
1574 struct ip *ip = v;
1575 struct tcphdr *th;
1576 struct icmp *icp;
1577 extern const int inetctlerrmap[];
1578 void (*notify)(struct inpcb *, int) = tcp_notify;
1579 int errno;
1580 int nmatch;
1581 struct tcpcb *tp;
1582 u_int mtu;
1583 tcp_seq seq;
1584 struct inpcb *inp;
1585 #ifdef INET6
1586 struct in6pcb *in6p;
1587 struct in6_addr src6, dst6;
1588 #endif
1589
1590 if (sa->sa_family != AF_INET ||
1591 sa->sa_len != sizeof(struct sockaddr_in))
1592 return NULL;
1593 if ((unsigned)cmd >= PRC_NCMDS)
1594 return NULL;
1595 errno = inetctlerrmap[cmd];
1596 if (cmd == PRC_QUENCH)
1597 /*
1598 * Don't honor ICMP Source Quench messages meant for
1599 * TCP connections.
1600 */
1601 return NULL;
1602 else if (PRC_IS_REDIRECT(cmd))
1603 notify = in_rtchange, ip = 0;
1604 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1605 /*
1606 * Check to see if we have a valid TCP connection
1607 * corresponding to the address in the ICMP message
1608 * payload.
1609 *
1610 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1611 */
1612 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1613 #ifdef INET6
1614 memset(&src6, 0, sizeof(src6));
1615 memset(&dst6, 0, sizeof(dst6));
1616 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1617 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1618 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1619 #endif
1620 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1621 th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1622 #ifdef INET6
1623 in6p = NULL;
1624 #else
1625 ;
1626 #endif
1627 #ifdef INET6
1628 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1629 th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1630 ;
1631 #endif
1632 else
1633 return NULL;
1634
1635 /*
1636 * Now that we've validated that we are actually communicating
1637 * with the host indicated in the ICMP message, locate the
1638 * ICMP header, recalculate the new MTU, and create the
1639 * corresponding routing entry.
1640 */
1641 icp = (struct icmp *)((char *)ip -
1642 offsetof(struct icmp, icmp_ip));
1643 if (inp) {
1644 if ((tp = intotcpcb(inp)) == NULL)
1645 return NULL;
1646 }
1647 #ifdef INET6
1648 else if (in6p) {
1649 if ((tp = in6totcpcb(in6p)) == NULL)
1650 return NULL;
1651 }
1652 #endif
1653 else
1654 return NULL;
1655 seq = ntohl(th->th_seq);
1656 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1657 return NULL;
1658 /*
1659 * If the ICMP message advertises a Next-Hop MTU
1660 * equal or larger than the maximum packet size we have
1661 * ever sent, drop the message.
1662 */
1663 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1664 if (mtu >= tp->t_pmtud_mtu_sent)
1665 return NULL;
1666 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1667 /*
1668 * Calculate new MTU, and create corresponding
1669 * route (traditional PMTUD).
1670 */
1671 tp->t_flags &= ~TF_PMTUD_PEND;
1672 icmp_mtudisc(icp, ip->ip_dst);
1673 } else {
1674 /*
1675 * Record the information got in the ICMP
1676 * message; act on it later.
1677 * If we had already recorded an ICMP message,
1678 * replace the old one only if the new message
1679 * refers to an older TCP segment
1680 */
1681 if (tp->t_flags & TF_PMTUD_PEND) {
1682 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1683 return NULL;
1684 } else
1685 tp->t_flags |= TF_PMTUD_PEND;
1686 tp->t_pmtud_th_seq = seq;
1687 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1688 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1689 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1690 }
1691 return NULL;
1692 } else if (cmd == PRC_HOSTDEAD)
1693 ip = 0;
1694 else if (errno == 0)
1695 return NULL;
1696 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1697 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1698 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1699 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1700 if (nmatch == 0 && syn_cache_count &&
1701 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1702 inetctlerrmap[cmd] == ENETUNREACH ||
1703 inetctlerrmap[cmd] == EHOSTDOWN)) {
1704 struct sockaddr_in sin;
1705 memset(&sin, 0, sizeof(sin));
1706 sin.sin_len = sizeof(sin);
1707 sin.sin_family = AF_INET;
1708 sin.sin_port = th->th_sport;
1709 sin.sin_addr = ip->ip_src;
1710 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1711 }
1712
1713 /* XXX mapped address case */
1714 } else
1715 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1716 notify);
1717 return NULL;
1718 }
1719
1720 /*
1721 * When a source quench is received, we are being notified of congestion.
1722 * Close the congestion window down to the Loss Window (one segment).
1723 * We will gradually open it again as we proceed.
1724 */
1725 void
1726 tcp_quench(struct inpcb *inp, int errno)
1727 {
1728 struct tcpcb *tp = intotcpcb(inp);
1729
1730 if (tp) {
1731 tp->snd_cwnd = tp->t_segsz;
1732 tp->t_bytes_acked = 0;
1733 }
1734 }
1735 #endif
1736
1737 #ifdef INET6
1738 void
1739 tcp6_quench(struct in6pcb *in6p, int errno)
1740 {
1741 struct tcpcb *tp = in6totcpcb(in6p);
1742
1743 if (tp) {
1744 tp->snd_cwnd = tp->t_segsz;
1745 tp->t_bytes_acked = 0;
1746 }
1747 }
1748 #endif
1749
1750 #ifdef INET
1751 /*
1752 * Path MTU Discovery handlers.
1753 */
1754 void
1755 tcp_mtudisc_callback(struct in_addr faddr)
1756 {
1757 #ifdef INET6
1758 struct in6_addr in6;
1759 #endif
1760
1761 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1762 #ifdef INET6
1763 memset(&in6, 0, sizeof(in6));
1764 in6.s6_addr16[5] = 0xffff;
1765 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1766 tcp6_mtudisc_callback(&in6);
1767 #endif
1768 }
1769
1770 /*
1771 * On receipt of path MTU corrections, flush old route and replace it
1772 * with the new one. Retransmit all unacknowledged packets, to ensure
1773 * that all packets will be received.
1774 */
1775 void
1776 tcp_mtudisc(struct inpcb *inp, int errno)
1777 {
1778 struct tcpcb *tp = intotcpcb(inp);
1779 struct rtentry *rt = in_pcbrtentry(inp);
1780
1781 if (tp != 0) {
1782 if (rt != 0) {
1783 /*
1784 * If this was not a host route, remove and realloc.
1785 */
1786 if ((rt->rt_flags & RTF_HOST) == 0) {
1787 in_rtchange(inp, errno);
1788 if ((rt = in_pcbrtentry(inp)) == 0)
1789 return;
1790 }
1791
1792 /*
1793 * Slow start out of the error condition. We
1794 * use the MTU because we know it's smaller
1795 * than the previously transmitted segment.
1796 *
1797 * Note: This is more conservative than the
1798 * suggestion in draft-floyd-incr-init-win-03.
1799 */
1800 if (rt->rt_rmx.rmx_mtu != 0)
1801 tp->snd_cwnd =
1802 TCP_INITIAL_WINDOW(tcp_init_win,
1803 rt->rt_rmx.rmx_mtu);
1804 }
1805
1806 /*
1807 * Resend unacknowledged packets.
1808 */
1809 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1810 tcp_output(tp);
1811 }
1812 }
1813 #endif
1814
1815 #ifdef INET6
1816 /*
1817 * Path MTU Discovery handlers.
1818 */
1819 void
1820 tcp6_mtudisc_callback(struct in6_addr *faddr)
1821 {
1822 struct sockaddr_in6 sin6;
1823
1824 memset(&sin6, 0, sizeof(sin6));
1825 sin6.sin6_family = AF_INET6;
1826 sin6.sin6_len = sizeof(struct sockaddr_in6);
1827 sin6.sin6_addr = *faddr;
1828 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1829 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1830 }
1831
1832 void
1833 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1834 {
1835 struct tcpcb *tp = in6totcpcb(in6p);
1836 struct rtentry *rt = in6_pcbrtentry(in6p);
1837
1838 if (tp != 0) {
1839 if (rt != 0) {
1840 /*
1841 * If this was not a host route, remove and realloc.
1842 */
1843 if ((rt->rt_flags & RTF_HOST) == 0) {
1844 in6_rtchange(in6p, errno);
1845 if ((rt = in6_pcbrtentry(in6p)) == 0)
1846 return;
1847 }
1848
1849 /*
1850 * Slow start out of the error condition. We
1851 * use the MTU because we know it's smaller
1852 * than the previously transmitted segment.
1853 *
1854 * Note: This is more conservative than the
1855 * suggestion in draft-floyd-incr-init-win-03.
1856 */
1857 if (rt->rt_rmx.rmx_mtu != 0)
1858 tp->snd_cwnd =
1859 TCP_INITIAL_WINDOW(tcp_init_win,
1860 rt->rt_rmx.rmx_mtu);
1861 }
1862
1863 /*
1864 * Resend unacknowledged packets.
1865 */
1866 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1867 tcp_output(tp);
1868 }
1869 }
1870 #endif /* INET6 */
1871
1872 /*
1873 * Compute the MSS to advertise to the peer. Called only during
1874 * the 3-way handshake. If we are the server (peer initiated
1875 * connection), we are called with a pointer to the interface
1876 * on which the SYN packet arrived. If we are the client (we
1877 * initiated connection), we are called with a pointer to the
1878 * interface out which this connection should go.
1879 *
1880 * NOTE: Do not subtract IP option/extension header size nor IPsec
1881 * header size from MSS advertisement. MSS option must hold the maximum
1882 * segment size we can accept, so it must always be:
1883 * max(if mtu) - ip header - tcp header
1884 */
1885 u_long
1886 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1887 {
1888 extern u_long in_maxmtu;
1889 u_long mss = 0;
1890 u_long hdrsiz;
1891
1892 /*
1893 * In order to avoid defeating path MTU discovery on the peer,
1894 * we advertise the max MTU of all attached networks as our MSS,
1895 * per RFC 1191, section 3.1.
1896 *
1897 * We provide the option to advertise just the MTU of
1898 * the interface on which we hope this connection will
1899 * be receiving. If we are responding to a SYN, we
1900 * will have a pretty good idea about this, but when
1901 * initiating a connection there is a bit more doubt.
1902 *
1903 * We also need to ensure that loopback has a large enough
1904 * MSS, as the loopback MTU is never included in in_maxmtu.
1905 */
1906
1907 if (ifp != NULL)
1908 switch (af) {
1909 case AF_INET:
1910 mss = ifp->if_mtu;
1911 break;
1912 #ifdef INET6
1913 case AF_INET6:
1914 mss = IN6_LINKMTU(ifp);
1915 break;
1916 #endif
1917 }
1918
1919 if (tcp_mss_ifmtu == 0)
1920 switch (af) {
1921 case AF_INET:
1922 mss = max(in_maxmtu, mss);
1923 break;
1924 #ifdef INET6
1925 case AF_INET6:
1926 mss = max(in6_maxmtu, mss);
1927 break;
1928 #endif
1929 }
1930
1931 switch (af) {
1932 case AF_INET:
1933 hdrsiz = sizeof(struct ip);
1934 break;
1935 #ifdef INET6
1936 case AF_INET6:
1937 hdrsiz = sizeof(struct ip6_hdr);
1938 break;
1939 #endif
1940 default:
1941 hdrsiz = 0;
1942 break;
1943 }
1944 hdrsiz += sizeof(struct tcphdr);
1945 if (mss > hdrsiz)
1946 mss -= hdrsiz;
1947
1948 mss = max(tcp_mssdflt, mss);
1949 return (mss);
1950 }
1951
1952 /*
1953 * Set connection variables based on the peer's advertised MSS.
1954 * We are passed the TCPCB for the actual connection. If we
1955 * are the server, we are called by the compressed state engine
1956 * when the 3-way handshake is complete. If we are the client,
1957 * we are called when we receive the SYN,ACK from the server.
1958 *
1959 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1960 * before this routine is called!
1961 */
1962 void
1963 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1964 {
1965 struct socket *so;
1966 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1967 struct rtentry *rt;
1968 #endif
1969 u_long bufsize;
1970 int mss;
1971
1972 #ifdef DIAGNOSTIC
1973 if (tp->t_inpcb && tp->t_in6pcb)
1974 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1975 #endif
1976 so = NULL;
1977 rt = NULL;
1978 #ifdef INET
1979 if (tp->t_inpcb) {
1980 so = tp->t_inpcb->inp_socket;
1981 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1982 rt = in_pcbrtentry(tp->t_inpcb);
1983 #endif
1984 }
1985 #endif
1986 #ifdef INET6
1987 if (tp->t_in6pcb) {
1988 so = tp->t_in6pcb->in6p_socket;
1989 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1990 rt = in6_pcbrtentry(tp->t_in6pcb);
1991 #endif
1992 }
1993 #endif
1994
1995 /*
1996 * As per RFC1122, use the default MSS value, unless they
1997 * sent us an offer. Do not accept offers less than 256 bytes.
1998 */
1999 mss = tcp_mssdflt;
2000 if (offer)
2001 mss = offer;
2002 mss = max(mss, 256); /* sanity */
2003 tp->t_peermss = mss;
2004 mss -= tcp_optlen(tp);
2005 #ifdef INET
2006 if (tp->t_inpcb)
2007 mss -= ip_optlen(tp->t_inpcb);
2008 #endif
2009 #ifdef INET6
2010 if (tp->t_in6pcb)
2011 mss -= ip6_optlen(tp->t_in6pcb);
2012 #endif
2013
2014 /*
2015 * If there's a pipesize, change the socket buffer to that size.
2016 * Make the socket buffer an integral number of MSS units. If
2017 * the MSS is larger than the socket buffer, artificially decrease
2018 * the MSS.
2019 */
2020 #ifdef RTV_SPIPE
2021 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
2022 bufsize = rt->rt_rmx.rmx_sendpipe;
2023 else
2024 #endif
2025 {
2026 KASSERT(so != NULL);
2027 bufsize = so->so_snd.sb_hiwat;
2028 }
2029 if (bufsize < mss)
2030 mss = bufsize;
2031 else {
2032 bufsize = roundup(bufsize, mss);
2033 if (bufsize > sb_max)
2034 bufsize = sb_max;
2035 (void) sbreserve(&so->so_snd, bufsize, so);
2036 }
2037 tp->t_segsz = mss;
2038
2039 #ifdef RTV_SSTHRESH
2040 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2041 /*
2042 * There's some sort of gateway or interface buffer
2043 * limit on the path. Use this to set the slow
2044 * start threshold, but set the threshold to no less
2045 * than 2 * MSS.
2046 */
2047 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2048 }
2049 #endif
2050 }
2051
2052 /*
2053 * Processing necessary when a TCP connection is established.
2054 */
2055 void
2056 tcp_established(struct tcpcb *tp)
2057 {
2058 struct socket *so;
2059 #ifdef RTV_RPIPE
2060 struct rtentry *rt;
2061 #endif
2062 u_long bufsize;
2063
2064 #ifdef DIAGNOSTIC
2065 if (tp->t_inpcb && tp->t_in6pcb)
2066 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2067 #endif
2068 so = NULL;
2069 rt = NULL;
2070 #ifdef INET
2071 /* This is a while() to reduce the dreadful stairstepping below */
2072 while (tp->t_inpcb) {
2073 so = tp->t_inpcb->inp_socket;
2074 #if defined(RTV_RPIPE)
2075 rt = in_pcbrtentry(tp->t_inpcb);
2076 #endif
2077 if (__predict_true(tcp_msl_enable)) {
2078 if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2079 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2080 break;
2081 }
2082
2083 if (__predict_false(tcp_rttlocal)) {
2084 /* This may be adjusted by tcp_input */
2085 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2086 break;
2087 }
2088 if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2089 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2090 break;
2091 }
2092 }
2093 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2094 break;
2095 }
2096 #endif
2097 #ifdef INET6
2098 /* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2099 while (!tp->t_inpcb && tp->t_in6pcb) {
2100 so = tp->t_in6pcb->in6p_socket;
2101 #if defined(RTV_RPIPE)
2102 rt = in6_pcbrtentry(tp->t_in6pcb);
2103 #endif
2104 if (__predict_true(tcp_msl_enable)) {
2105 extern const struct in6_addr in6addr_loopback;
2106
2107 if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2108 &in6addr_loopback)) {
2109 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2110 break;
2111 }
2112
2113 if (__predict_false(tcp_rttlocal)) {
2114 /* This may be adjusted by tcp_input */
2115 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2116 break;
2117 }
2118 if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2119 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2120 break;
2121 }
2122 }
2123 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2124 break;
2125 }
2126 #endif
2127
2128 tp->t_state = TCPS_ESTABLISHED;
2129 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2130
2131 #ifdef RTV_RPIPE
2132 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2133 bufsize = rt->rt_rmx.rmx_recvpipe;
2134 else
2135 #endif
2136 {
2137 KASSERT(so != NULL);
2138 bufsize = so->so_rcv.sb_hiwat;
2139 }
2140 if (bufsize > tp->t_ourmss) {
2141 bufsize = roundup(bufsize, tp->t_ourmss);
2142 if (bufsize > sb_max)
2143 bufsize = sb_max;
2144 (void) sbreserve(&so->so_rcv, bufsize, so);
2145 }
2146 }
2147
2148 /*
2149 * Check if there's an initial rtt or rttvar. Convert from the
2150 * route-table units to scaled multiples of the slow timeout timer.
2151 * Called only during the 3-way handshake.
2152 */
2153 void
2154 tcp_rmx_rtt(struct tcpcb *tp)
2155 {
2156 #ifdef RTV_RTT
2157 struct rtentry *rt = NULL;
2158 int rtt;
2159
2160 #ifdef DIAGNOSTIC
2161 if (tp->t_inpcb && tp->t_in6pcb)
2162 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2163 #endif
2164 #ifdef INET
2165 if (tp->t_inpcb)
2166 rt = in_pcbrtentry(tp->t_inpcb);
2167 #endif
2168 #ifdef INET6
2169 if (tp->t_in6pcb)
2170 rt = in6_pcbrtentry(tp->t_in6pcb);
2171 #endif
2172 if (rt == NULL)
2173 return;
2174
2175 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2176 /*
2177 * XXX The lock bit for MTU indicates that the value
2178 * is also a minimum value; this is subject to time.
2179 */
2180 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2181 TCPT_RANGESET(tp->t_rttmin,
2182 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2183 TCPTV_MIN, TCPTV_REXMTMAX);
2184 tp->t_srtt = rtt /
2185 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2186 if (rt->rt_rmx.rmx_rttvar) {
2187 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2188 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2189 (TCP_RTTVAR_SHIFT + 2));
2190 } else {
2191 /* Default variation is +- 1 rtt */
2192 tp->t_rttvar =
2193 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2194 }
2195 TCPT_RANGESET(tp->t_rxtcur,
2196 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2197 tp->t_rttmin, TCPTV_REXMTMAX);
2198 }
2199 #endif
2200 }
2201
2202 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2203 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2204
2205 /*
2206 * Get a new sequence value given a tcp control block
2207 */
2208 tcp_seq
2209 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2210 {
2211
2212 #ifdef INET
2213 if (tp->t_inpcb != NULL) {
2214 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2215 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2216 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2217 addin));
2218 }
2219 #endif
2220 #ifdef INET6
2221 if (tp->t_in6pcb != NULL) {
2222 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2223 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2224 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2225 addin));
2226 }
2227 #endif
2228 /* Not possible. */
2229 panic("tcp_new_iss");
2230 }
2231
2232 /*
2233 * This routine actually generates a new TCP initial sequence number.
2234 */
2235 tcp_seq
2236 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2237 size_t addrsz, tcp_seq addin)
2238 {
2239 tcp_seq tcp_iss;
2240
2241 static bool tcp_iss_gotten_secret;
2242
2243 /*
2244 * If we haven't been here before, initialize our cryptographic
2245 * hash secret.
2246 */
2247 if (tcp_iss_gotten_secret == false) {
2248 cprng_strong(kern_cprng,
2249 tcp_iss_secret, sizeof(tcp_iss_secret), FASYNC);
2250 tcp_iss_gotten_secret = true;
2251 }
2252
2253 if (tcp_do_rfc1948) {
2254 MD5_CTX ctx;
2255 u_int8_t hash[16]; /* XXX MD5 knowledge */
2256
2257 /*
2258 * Compute the base value of the ISS. It is a hash
2259 * of (saddr, sport, daddr, dport, secret).
2260 */
2261 MD5Init(&ctx);
2262
2263 MD5Update(&ctx, (u_char *) laddr, addrsz);
2264 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2265
2266 MD5Update(&ctx, (u_char *) faddr, addrsz);
2267 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2268
2269 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2270
2271 MD5Final(hash, &ctx);
2272
2273 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2274
2275 /*
2276 * Now increment our "timer", and add it in to
2277 * the computed value.
2278 *
2279 * XXX Use `addin'?
2280 * XXX TCP_ISSINCR too large to use?
2281 */
2282 tcp_iss_seq += TCP_ISSINCR;
2283 #ifdef TCPISS_DEBUG
2284 printf("ISS hash 0x%08x, ", tcp_iss);
2285 #endif
2286 tcp_iss += tcp_iss_seq + addin;
2287 #ifdef TCPISS_DEBUG
2288 printf("new ISS 0x%08x\n", tcp_iss);
2289 #endif
2290 } else {
2291 /*
2292 * Randomize.
2293 */
2294 tcp_iss = cprng_fast32();
2295
2296 /*
2297 * If we were asked to add some amount to a known value,
2298 * we will take a random value obtained above, mask off
2299 * the upper bits, and add in the known value. We also
2300 * add in a constant to ensure that we are at least a
2301 * certain distance from the original value.
2302 *
2303 * This is used when an old connection is in timed wait
2304 * and we have a new one coming in, for instance.
2305 */
2306 if (addin != 0) {
2307 #ifdef TCPISS_DEBUG
2308 printf("Random %08x, ", tcp_iss);
2309 #endif
2310 tcp_iss &= TCP_ISS_RANDOM_MASK;
2311 tcp_iss += addin + TCP_ISSINCR;
2312 #ifdef TCPISS_DEBUG
2313 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2314 #endif
2315 } else {
2316 tcp_iss &= TCP_ISS_RANDOM_MASK;
2317 tcp_iss += tcp_iss_seq;
2318 tcp_iss_seq += TCP_ISSINCR;
2319 #ifdef TCPISS_DEBUG
2320 printf("ISS %08x\n", tcp_iss);
2321 #endif
2322 }
2323 }
2324
2325 if (tcp_compat_42) {
2326 /*
2327 * Limit it to the positive range for really old TCP
2328 * implementations.
2329 * Just AND off the top bit instead of checking if
2330 * is set first - saves a branch 50% of the time.
2331 */
2332 tcp_iss &= 0x7fffffff; /* XXX */
2333 }
2334
2335 return (tcp_iss);
2336 }
2337
2338 #if defined(IPSEC)
2339 /* compute ESP/AH header size for TCP, including outer IP header. */
2340 size_t
2341 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2342 {
2343 struct inpcb *inp;
2344 size_t hdrsiz;
2345
2346 /* XXX mapped addr case (tp->t_in6pcb) */
2347 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2348 return 0;
2349 switch (tp->t_family) {
2350 case AF_INET:
2351 /* XXX: should use currect direction. */
2352 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2353 break;
2354 default:
2355 hdrsiz = 0;
2356 break;
2357 }
2358
2359 return hdrsiz;
2360 }
2361
2362 #ifdef INET6
2363 size_t
2364 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2365 {
2366 struct in6pcb *in6p;
2367 size_t hdrsiz;
2368
2369 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2370 return 0;
2371 switch (tp->t_family) {
2372 case AF_INET6:
2373 /* XXX: should use currect direction. */
2374 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2375 break;
2376 case AF_INET:
2377 /* mapped address case - tricky */
2378 default:
2379 hdrsiz = 0;
2380 break;
2381 }
2382
2383 return hdrsiz;
2384 }
2385 #endif
2386 #endif /*IPSEC*/
2387
2388 /*
2389 * Determine the length of the TCP options for this connection.
2390 *
2391 * XXX: What do we do for SACK, when we add that? Just reserve
2392 * all of the space? Otherwise we can't exactly be incrementing
2393 * cwnd by an amount that varies depending on the amount we last
2394 * had to SACK!
2395 */
2396
2397 u_int
2398 tcp_optlen(struct tcpcb *tp)
2399 {
2400 u_int optlen;
2401
2402 optlen = 0;
2403 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2404 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2405 optlen += TCPOLEN_TSTAMP_APPA;
2406
2407 #ifdef TCP_SIGNATURE
2408 if (tp->t_flags & TF_SIGNATURE)
2409 optlen += TCPOLEN_SIGNATURE + 2;
2410 #endif /* TCP_SIGNATURE */
2411
2412 return optlen;
2413 }
2414
2415 u_int
2416 tcp_hdrsz(struct tcpcb *tp)
2417 {
2418 u_int hlen;
2419
2420 switch (tp->t_family) {
2421 #ifdef INET6
2422 case AF_INET6:
2423 hlen = sizeof(struct ip6_hdr);
2424 break;
2425 #endif
2426 case AF_INET:
2427 hlen = sizeof(struct ip);
2428 break;
2429 default:
2430 hlen = 0;
2431 break;
2432 }
2433 hlen += sizeof(struct tcphdr);
2434
2435 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2436 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2437 hlen += TCPOLEN_TSTAMP_APPA;
2438 #ifdef TCP_SIGNATURE
2439 if (tp->t_flags & TF_SIGNATURE)
2440 hlen += TCPOLEN_SIGLEN;
2441 #endif
2442 return hlen;
2443 }
2444
2445 void
2446 tcp_statinc(u_int stat)
2447 {
2448
2449 KASSERT(stat < TCP_NSTATS);
2450 TCP_STATINC(stat);
2451 }
2452
2453 void
2454 tcp_statadd(u_int stat, uint64_t val)
2455 {
2456
2457 KASSERT(stat < TCP_NSTATS);
2458 TCP_STATADD(stat, val);
2459 }
2460