tcp_subr.c revision 1.261 1 /* $NetBSD: tcp_subr.c,v 1.261 2015/05/16 10:09:20 kefren Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.261 2015/05/16 10:09:20 kefren Exp $");
95
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_tcp_compat_42.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101
102 #include <sys/param.h>
103 #include <sys/atomic.h>
104 #include <sys/proc.h>
105 #include <sys/systm.h>
106 #include <sys/mbuf.h>
107 #include <sys/once.h>
108 #include <sys/socket.h>
109 #include <sys/socketvar.h>
110 #include <sys/protosw.h>
111 #include <sys/errno.h>
112 #include <sys/kernel.h>
113 #include <sys/pool.h>
114 #include <sys/md5.h>
115 #include <sys/cprng.h>
116
117 #include <net/route.h>
118 #include <net/if.h>
119
120 #include <netinet/in.h>
121 #include <netinet/in_systm.h>
122 #include <netinet/ip.h>
123 #include <netinet/in_pcb.h>
124 #include <netinet/ip_var.h>
125 #include <netinet/ip_icmp.h>
126
127 #ifdef INET6
128 #ifndef INET
129 #include <netinet/in.h>
130 #endif
131 #include <netinet/ip6.h>
132 #include <netinet6/in6_pcb.h>
133 #include <netinet6/ip6_var.h>
134 #include <netinet6/in6_var.h>
135 #include <netinet6/ip6protosw.h>
136 #include <netinet/icmp6.h>
137 #include <netinet6/nd6.h>
138 #endif
139
140 #include <netinet/tcp.h>
141 #include <netinet/tcp_fsm.h>
142 #include <netinet/tcp_seq.h>
143 #include <netinet/tcp_timer.h>
144 #include <netinet/tcp_var.h>
145 #include <netinet/tcp_vtw.h>
146 #include <netinet/tcp_private.h>
147 #include <netinet/tcp_congctl.h>
148 #include <netinet/tcpip.h>
149
150 #ifdef IPSEC
151 #include <netipsec/ipsec.h>
152 #include <netipsec/xform.h>
153 #ifdef INET6
154 #include <netipsec/ipsec6.h>
155 #endif
156 #include <netipsec/key.h>
157 #endif /* IPSEC*/
158
159
160 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
161 u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
162
163 percpu_t *tcpstat_percpu;
164
165 /* patchable/settable parameters for tcp */
166 int tcp_mssdflt = TCP_MSS;
167 int tcp_minmss = TCP_MINMSS;
168 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
169 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
170 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
171 int tcp_do_sack = 1; /* selective acknowledgement */
172 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
173 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
174 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
175 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
176 #ifndef TCP_INIT_WIN
177 #define TCP_INIT_WIN 4 /* initial slow start window */
178 #endif
179 #ifndef TCP_INIT_WIN_LOCAL
180 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
181 #endif
182 /*
183 * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
184 * This is to simulate current behavior for iw == 4
185 */
186 int tcp_init_win_max[] = {
187 1 * 1460,
188 1 * 1460,
189 2 * 1460,
190 2 * 1460,
191 3 * 1460,
192 5 * 1460,
193 6 * 1460,
194 7 * 1460,
195 8 * 1460,
196 9 * 1460,
197 10 * 1460
198 };
199 int tcp_init_win = TCP_INIT_WIN;
200 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
201 int tcp_mss_ifmtu = 0;
202 #ifdef TCP_COMPAT_42
203 int tcp_compat_42 = 1;
204 #else
205 int tcp_compat_42 = 0;
206 #endif
207 int tcp_rst_ppslim = 100; /* 100pps */
208 int tcp_ackdrop_ppslim = 100; /* 100pps */
209 int tcp_do_loopback_cksum = 0;
210 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
211 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
212 int tcp_sack_tp_maxholes = 32;
213 int tcp_sack_globalmaxholes = 1024;
214 int tcp_sack_globalholes = 0;
215 int tcp_ecn_maxretries = 1;
216 int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
217 int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
218 int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
219 int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
220 int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
221 int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
222
223 int tcp4_vtw_enable = 0; /* 1 to enable */
224 int tcp6_vtw_enable = 0; /* 1 to enable */
225 int tcp_vtw_was_enabled = 0;
226 int tcp_vtw_entries = 1 << 4; /* 16 vestigial TIME_WAIT entries */
227
228 /* tcb hash */
229 #ifndef TCBHASHSIZE
230 #define TCBHASHSIZE 128
231 #endif
232 int tcbhashsize = TCBHASHSIZE;
233
234 /* syn hash parameters */
235 #define TCP_SYN_HASH_SIZE 293
236 #define TCP_SYN_BUCKET_SIZE 35
237 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
238 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
239 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
240 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
241
242 int tcp_freeq(struct tcpcb *);
243
244 #ifdef INET
245 static void tcp_mtudisc_callback(struct in_addr);
246 #endif
247
248 #ifdef INET6
249 void tcp6_mtudisc(struct in6pcb *, int);
250 #endif
251
252 static struct pool tcpcb_pool;
253
254 static int tcp_drainwanted;
255
256 #ifdef TCP_CSUM_COUNTERS
257 #include <sys/device.h>
258
259 #if defined(INET)
260 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
261 NULL, "tcp", "hwcsum bad");
262 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
263 NULL, "tcp", "hwcsum ok");
264 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp", "hwcsum data");
266 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp", "swcsum");
268
269 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
270 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
271 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
272 EVCNT_ATTACH_STATIC(tcp_swcsum);
273 #endif /* defined(INET) */
274
275 #if defined(INET6)
276 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
277 NULL, "tcp6", "hwcsum bad");
278 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
279 NULL, "tcp6", "hwcsum ok");
280 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 NULL, "tcp6", "hwcsum data");
282 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp6", "swcsum");
284
285 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
286 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
287 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
288 EVCNT_ATTACH_STATIC(tcp6_swcsum);
289 #endif /* defined(INET6) */
290 #endif /* TCP_CSUM_COUNTERS */
291
292
293 #ifdef TCP_OUTPUT_COUNTERS
294 #include <sys/device.h>
295
296 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 NULL, "tcp", "output big header");
298 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 NULL, "tcp", "output predict hit");
300 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 NULL, "tcp", "output predict miss");
302 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 NULL, "tcp", "output copy small");
304 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 NULL, "tcp", "output copy big");
306 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 NULL, "tcp", "output reference big");
308
309 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
310 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
311 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
312 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
313 EVCNT_ATTACH_STATIC(tcp_output_copybig);
314 EVCNT_ATTACH_STATIC(tcp_output_refbig);
315
316 #endif /* TCP_OUTPUT_COUNTERS */
317
318 #ifdef TCP_REASS_COUNTERS
319 #include <sys/device.h>
320
321 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
322 NULL, "tcp_reass", "calls");
323 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324 &tcp_reass_, "tcp_reass", "insert into empty queue");
325 struct evcnt tcp_reass_iteration[8] = {
326 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
327 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
328 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
329 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
330 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
331 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
332 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
333 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
334 };
335 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336 &tcp_reass_, "tcp_reass", "prepend to first");
337 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338 &tcp_reass_, "tcp_reass", "prepend");
339 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340 &tcp_reass_, "tcp_reass", "insert");
341 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 &tcp_reass_, "tcp_reass", "insert at tail");
343 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
344 &tcp_reass_, "tcp_reass", "append");
345 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
346 &tcp_reass_, "tcp_reass", "append to tail fragment");
347 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
348 &tcp_reass_, "tcp_reass", "overlap at end");
349 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
350 &tcp_reass_, "tcp_reass", "overlap at start");
351 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
352 &tcp_reass_, "tcp_reass", "duplicate segment");
353 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
354 &tcp_reass_, "tcp_reass", "duplicate fragment");
355
356 EVCNT_ATTACH_STATIC(tcp_reass_);
357 EVCNT_ATTACH_STATIC(tcp_reass_empty);
358 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
359 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
360 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
361 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
362 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
363 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
364 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
365 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
366 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
367 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
368 EVCNT_ATTACH_STATIC(tcp_reass_insert);
369 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
370 EVCNT_ATTACH_STATIC(tcp_reass_append);
371 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
372 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
373 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
374 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
375 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
376
377 #endif /* TCP_REASS_COUNTERS */
378
379 #ifdef MBUFTRACE
380 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
381 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
382 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
383 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
384 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
385 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
386 #endif
387
388 callout_t tcp_slowtimo_ch;
389
390 static int
391 do_tcpinit(void)
392 {
393
394 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
395 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
396 NULL, IPL_SOFTNET);
397
398 tcp_usrreq_init();
399
400 /* Initialize timer state. */
401 tcp_timer_init();
402
403 /* Initialize the compressed state engine. */
404 syn_cache_init();
405
406 /* Initialize the congestion control algorithms. */
407 tcp_congctl_init();
408
409 /* Initialize the TCPCB template. */
410 tcp_tcpcb_template();
411
412 /* Initialize reassembly queue */
413 tcpipqent_init();
414
415 /* SACK */
416 tcp_sack_init();
417
418 MOWNER_ATTACH(&tcp_tx_mowner);
419 MOWNER_ATTACH(&tcp_rx_mowner);
420 MOWNER_ATTACH(&tcp_reass_mowner);
421 MOWNER_ATTACH(&tcp_sock_mowner);
422 MOWNER_ATTACH(&tcp_sock_tx_mowner);
423 MOWNER_ATTACH(&tcp_sock_rx_mowner);
424 MOWNER_ATTACH(&tcp_mowner);
425
426 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
427
428 vtw_earlyinit();
429
430 callout_init(&tcp_slowtimo_ch, CALLOUT_MPSAFE);
431 callout_reset(&tcp_slowtimo_ch, 1, tcp_slowtimo, NULL);
432
433 return 0;
434 }
435
436 void
437 tcp_init_common(unsigned basehlen)
438 {
439 static ONCE_DECL(dotcpinit);
440 unsigned hlen = basehlen + sizeof(struct tcphdr);
441 unsigned oldhlen;
442
443 if (max_linkhdr + hlen > MHLEN)
444 panic("tcp_init");
445 while ((oldhlen = max_protohdr) < hlen)
446 atomic_cas_uint(&max_protohdr, oldhlen, hlen);
447
448 RUN_ONCE(&dotcpinit, do_tcpinit);
449 }
450
451 /*
452 * Tcp initialization
453 */
454 void
455 tcp_init(void)
456 {
457
458 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
459
460 tcp_init_common(sizeof(struct ip));
461 }
462
463 /*
464 * Create template to be used to send tcp packets on a connection.
465 * Call after host entry created, allocates an mbuf and fills
466 * in a skeletal tcp/ip header, minimizing the amount of work
467 * necessary when the connection is used.
468 */
469 struct mbuf *
470 tcp_template(struct tcpcb *tp)
471 {
472 struct inpcb *inp = tp->t_inpcb;
473 #ifdef INET6
474 struct in6pcb *in6p = tp->t_in6pcb;
475 #endif
476 struct tcphdr *n;
477 struct mbuf *m;
478 int hlen;
479
480 switch (tp->t_family) {
481 case AF_INET:
482 hlen = sizeof(struct ip);
483 if (inp)
484 break;
485 #ifdef INET6
486 if (in6p) {
487 /* mapped addr case */
488 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
489 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
490 break;
491 }
492 #endif
493 return NULL; /*EINVAL*/
494 #ifdef INET6
495 case AF_INET6:
496 hlen = sizeof(struct ip6_hdr);
497 if (in6p) {
498 /* more sainty check? */
499 break;
500 }
501 return NULL; /*EINVAL*/
502 #endif
503 default:
504 hlen = 0; /*pacify gcc*/
505 return NULL; /*EAFNOSUPPORT*/
506 }
507 #ifdef DIAGNOSTIC
508 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
509 panic("mclbytes too small for t_template");
510 #endif
511 m = tp->t_template;
512 if (m && m->m_len == hlen + sizeof(struct tcphdr))
513 ;
514 else {
515 if (m)
516 m_freem(m);
517 m = tp->t_template = NULL;
518 MGETHDR(m, M_DONTWAIT, MT_HEADER);
519 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
520 MCLGET(m, M_DONTWAIT);
521 if ((m->m_flags & M_EXT) == 0) {
522 m_free(m);
523 m = NULL;
524 }
525 }
526 if (m == NULL)
527 return NULL;
528 MCLAIM(m, &tcp_mowner);
529 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
530 }
531
532 memset(mtod(m, void *), 0, m->m_len);
533
534 n = (struct tcphdr *)(mtod(m, char *) + hlen);
535
536 switch (tp->t_family) {
537 case AF_INET:
538 {
539 struct ipovly *ipov;
540 mtod(m, struct ip *)->ip_v = 4;
541 mtod(m, struct ip *)->ip_hl = hlen >> 2;
542 ipov = mtod(m, struct ipovly *);
543 ipov->ih_pr = IPPROTO_TCP;
544 ipov->ih_len = htons(sizeof(struct tcphdr));
545 if (inp) {
546 ipov->ih_src = inp->inp_laddr;
547 ipov->ih_dst = inp->inp_faddr;
548 }
549 #ifdef INET6
550 else if (in6p) {
551 /* mapped addr case */
552 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
553 sizeof(ipov->ih_src));
554 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
555 sizeof(ipov->ih_dst));
556 }
557 #endif
558 /*
559 * Compute the pseudo-header portion of the checksum
560 * now. We incrementally add in the TCP option and
561 * payload lengths later, and then compute the TCP
562 * checksum right before the packet is sent off onto
563 * the wire.
564 */
565 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
566 ipov->ih_dst.s_addr,
567 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
568 break;
569 }
570 #ifdef INET6
571 case AF_INET6:
572 {
573 struct ip6_hdr *ip6;
574 mtod(m, struct ip *)->ip_v = 6;
575 ip6 = mtod(m, struct ip6_hdr *);
576 ip6->ip6_nxt = IPPROTO_TCP;
577 ip6->ip6_plen = htons(sizeof(struct tcphdr));
578 ip6->ip6_src = in6p->in6p_laddr;
579 ip6->ip6_dst = in6p->in6p_faddr;
580 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
581 if (ip6_auto_flowlabel) {
582 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
583 ip6->ip6_flow |=
584 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
585 }
586 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
587 ip6->ip6_vfc |= IPV6_VERSION;
588
589 /*
590 * Compute the pseudo-header portion of the checksum
591 * now. We incrementally add in the TCP option and
592 * payload lengths later, and then compute the TCP
593 * checksum right before the packet is sent off onto
594 * the wire.
595 */
596 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
597 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
598 htonl(IPPROTO_TCP));
599 break;
600 }
601 #endif
602 }
603 if (inp) {
604 n->th_sport = inp->inp_lport;
605 n->th_dport = inp->inp_fport;
606 }
607 #ifdef INET6
608 else if (in6p) {
609 n->th_sport = in6p->in6p_lport;
610 n->th_dport = in6p->in6p_fport;
611 }
612 #endif
613 n->th_seq = 0;
614 n->th_ack = 0;
615 n->th_x2 = 0;
616 n->th_off = 5;
617 n->th_flags = 0;
618 n->th_win = 0;
619 n->th_urp = 0;
620 return (m);
621 }
622
623 /*
624 * Send a single message to the TCP at address specified by
625 * the given TCP/IP header. If m == 0, then we make a copy
626 * of the tcpiphdr at ti and send directly to the addressed host.
627 * This is used to force keep alive messages out using the TCP
628 * template for a connection tp->t_template. If flags are given
629 * then we send a message back to the TCP which originated the
630 * segment ti, and discard the mbuf containing it and any other
631 * attached mbufs.
632 *
633 * In any case the ack and sequence number of the transmitted
634 * segment are as specified by the parameters.
635 */
636 int
637 tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
638 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
639 {
640 struct route *ro;
641 int error, tlen, win = 0;
642 int hlen;
643 struct ip *ip;
644 #ifdef INET6
645 struct ip6_hdr *ip6;
646 #endif
647 int family; /* family on packet, not inpcb/in6pcb! */
648 struct tcphdr *th;
649 struct socket *so;
650
651 if (tp != NULL && (flags & TH_RST) == 0) {
652 #ifdef DIAGNOSTIC
653 if (tp->t_inpcb && tp->t_in6pcb)
654 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
655 #endif
656 #ifdef INET
657 if (tp->t_inpcb)
658 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
659 #endif
660 #ifdef INET6
661 if (tp->t_in6pcb)
662 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
663 #endif
664 }
665
666 th = NULL; /* Quell uninitialized warning */
667 ip = NULL;
668 #ifdef INET6
669 ip6 = NULL;
670 #endif
671 if (m == 0) {
672 if (!mtemplate)
673 return EINVAL;
674
675 /* get family information from template */
676 switch (mtod(mtemplate, struct ip *)->ip_v) {
677 case 4:
678 family = AF_INET;
679 hlen = sizeof(struct ip);
680 break;
681 #ifdef INET6
682 case 6:
683 family = AF_INET6;
684 hlen = sizeof(struct ip6_hdr);
685 break;
686 #endif
687 default:
688 return EAFNOSUPPORT;
689 }
690
691 MGETHDR(m, M_DONTWAIT, MT_HEADER);
692 if (m) {
693 MCLAIM(m, &tcp_tx_mowner);
694 MCLGET(m, M_DONTWAIT);
695 if ((m->m_flags & M_EXT) == 0) {
696 m_free(m);
697 m = NULL;
698 }
699 }
700 if (m == NULL)
701 return (ENOBUFS);
702
703 if (tcp_compat_42)
704 tlen = 1;
705 else
706 tlen = 0;
707
708 m->m_data += max_linkhdr;
709 bcopy(mtod(mtemplate, void *), mtod(m, void *),
710 mtemplate->m_len);
711 switch (family) {
712 case AF_INET:
713 ip = mtod(m, struct ip *);
714 th = (struct tcphdr *)(ip + 1);
715 break;
716 #ifdef INET6
717 case AF_INET6:
718 ip6 = mtod(m, struct ip6_hdr *);
719 th = (struct tcphdr *)(ip6 + 1);
720 break;
721 #endif
722 #if 0
723 default:
724 /* noone will visit here */
725 m_freem(m);
726 return EAFNOSUPPORT;
727 #endif
728 }
729 flags = TH_ACK;
730 } else {
731
732 if ((m->m_flags & M_PKTHDR) == 0) {
733 #if 0
734 printf("non PKTHDR to tcp_respond\n");
735 #endif
736 m_freem(m);
737 return EINVAL;
738 }
739 #ifdef DIAGNOSTIC
740 if (!th0)
741 panic("th0 == NULL in tcp_respond");
742 #endif
743
744 /* get family information from m */
745 switch (mtod(m, struct ip *)->ip_v) {
746 case 4:
747 family = AF_INET;
748 hlen = sizeof(struct ip);
749 ip = mtod(m, struct ip *);
750 break;
751 #ifdef INET6
752 case 6:
753 family = AF_INET6;
754 hlen = sizeof(struct ip6_hdr);
755 ip6 = mtod(m, struct ip6_hdr *);
756 break;
757 #endif
758 default:
759 m_freem(m);
760 return EAFNOSUPPORT;
761 }
762 /* clear h/w csum flags inherited from rx packet */
763 m->m_pkthdr.csum_flags = 0;
764
765 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
766 tlen = sizeof(*th0);
767 else
768 tlen = th0->th_off << 2;
769
770 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
771 mtod(m, char *) + hlen == (char *)th0) {
772 m->m_len = hlen + tlen;
773 m_freem(m->m_next);
774 m->m_next = NULL;
775 } else {
776 struct mbuf *n;
777
778 #ifdef DIAGNOSTIC
779 if (max_linkhdr + hlen + tlen > MCLBYTES) {
780 m_freem(m);
781 return EMSGSIZE;
782 }
783 #endif
784 MGETHDR(n, M_DONTWAIT, MT_HEADER);
785 if (n && max_linkhdr + hlen + tlen > MHLEN) {
786 MCLGET(n, M_DONTWAIT);
787 if ((n->m_flags & M_EXT) == 0) {
788 m_freem(n);
789 n = NULL;
790 }
791 }
792 if (!n) {
793 m_freem(m);
794 return ENOBUFS;
795 }
796
797 MCLAIM(n, &tcp_tx_mowner);
798 n->m_data += max_linkhdr;
799 n->m_len = hlen + tlen;
800 m_copyback(n, 0, hlen, mtod(m, void *));
801 m_copyback(n, hlen, tlen, (void *)th0);
802
803 m_freem(m);
804 m = n;
805 n = NULL;
806 }
807
808 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
809 switch (family) {
810 case AF_INET:
811 ip = mtod(m, struct ip *);
812 th = (struct tcphdr *)(ip + 1);
813 ip->ip_p = IPPROTO_TCP;
814 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
815 ip->ip_p = IPPROTO_TCP;
816 break;
817 #ifdef INET6
818 case AF_INET6:
819 ip6 = mtod(m, struct ip6_hdr *);
820 th = (struct tcphdr *)(ip6 + 1);
821 ip6->ip6_nxt = IPPROTO_TCP;
822 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
823 ip6->ip6_nxt = IPPROTO_TCP;
824 break;
825 #endif
826 #if 0
827 default:
828 /* noone will visit here */
829 m_freem(m);
830 return EAFNOSUPPORT;
831 #endif
832 }
833 xchg(th->th_dport, th->th_sport, u_int16_t);
834 #undef xchg
835 tlen = 0; /*be friendly with the following code*/
836 }
837 th->th_seq = htonl(seq);
838 th->th_ack = htonl(ack);
839 th->th_x2 = 0;
840 if ((flags & TH_SYN) == 0) {
841 if (tp)
842 win >>= tp->rcv_scale;
843 if (win > TCP_MAXWIN)
844 win = TCP_MAXWIN;
845 th->th_win = htons((u_int16_t)win);
846 th->th_off = sizeof (struct tcphdr) >> 2;
847 tlen += sizeof(*th);
848 } else
849 tlen += th->th_off << 2;
850 m->m_len = hlen + tlen;
851 m->m_pkthdr.len = hlen + tlen;
852 m->m_pkthdr.rcvif = NULL;
853 th->th_flags = flags;
854 th->th_urp = 0;
855
856 switch (family) {
857 #ifdef INET
858 case AF_INET:
859 {
860 struct ipovly *ipov = (struct ipovly *)ip;
861 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
862 ipov->ih_len = htons((u_int16_t)tlen);
863
864 th->th_sum = 0;
865 th->th_sum = in_cksum(m, hlen + tlen);
866 ip->ip_len = htons(hlen + tlen);
867 ip->ip_ttl = ip_defttl;
868 break;
869 }
870 #endif
871 #ifdef INET6
872 case AF_INET6:
873 {
874 th->th_sum = 0;
875 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
876 tlen);
877 ip6->ip6_plen = htons(tlen);
878 if (tp && tp->t_in6pcb)
879 ip6->ip6_hlim = in6_selecthlim_rt(tp->t_in6pcb);
880 else
881 ip6->ip6_hlim = ip6_defhlim;
882 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
883 if (ip6_auto_flowlabel) {
884 ip6->ip6_flow |=
885 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
886 }
887 break;
888 }
889 #endif
890 }
891
892 if (tp && tp->t_inpcb)
893 so = tp->t_inpcb->inp_socket;
894 #ifdef INET6
895 else if (tp && tp->t_in6pcb)
896 so = tp->t_in6pcb->in6p_socket;
897 #endif
898 else
899 so = NULL;
900
901 if (tp != NULL && tp->t_inpcb != NULL) {
902 ro = &tp->t_inpcb->inp_route;
903 #ifdef DIAGNOSTIC
904 if (family != AF_INET)
905 panic("tcp_respond: address family mismatch");
906 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
907 panic("tcp_respond: ip_dst %x != inp_faddr %x",
908 ntohl(ip->ip_dst.s_addr),
909 ntohl(tp->t_inpcb->inp_faddr.s_addr));
910 }
911 #endif
912 }
913 #ifdef INET6
914 else if (tp != NULL && tp->t_in6pcb != NULL) {
915 ro = (struct route *)&tp->t_in6pcb->in6p_route;
916 #ifdef DIAGNOSTIC
917 if (family == AF_INET) {
918 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
919 panic("tcp_respond: not mapped addr");
920 if (memcmp(&ip->ip_dst,
921 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
922 sizeof(ip->ip_dst)) != 0) {
923 panic("tcp_respond: ip_dst != in6p_faddr");
924 }
925 } else if (family == AF_INET6) {
926 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
927 &tp->t_in6pcb->in6p_faddr))
928 panic("tcp_respond: ip6_dst != in6p_faddr");
929 } else
930 panic("tcp_respond: address family mismatch");
931 #endif
932 }
933 #endif
934 else
935 ro = NULL;
936
937 switch (family) {
938 #ifdef INET
939 case AF_INET:
940 error = ip_output(m, NULL, ro,
941 (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
942 break;
943 #endif
944 #ifdef INET6
945 case AF_INET6:
946 error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
947 break;
948 #endif
949 default:
950 error = EAFNOSUPPORT;
951 break;
952 }
953
954 return (error);
955 }
956
957 /*
958 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
959 * a bunch of members individually, we maintain this template for the
960 * static and mostly-static components of the TCPCB, and copy it into
961 * the new TCPCB instead.
962 */
963 static struct tcpcb tcpcb_template = {
964 .t_srtt = TCPTV_SRTTBASE,
965 .t_rttmin = TCPTV_MIN,
966
967 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
968 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
969 .snd_numholes = 0,
970 .snd_cubic_wmax = 0,
971 .snd_cubic_wmax_last = 0,
972 .snd_cubic_ctime = 0,
973
974 .t_partialacks = -1,
975 .t_bytes_acked = 0,
976 .t_sndrexmitpack = 0,
977 .t_rcvoopack = 0,
978 .t_sndzerowin = 0,
979 };
980
981 /*
982 * Updates the TCPCB template whenever a parameter that would affect
983 * the template is changed.
984 */
985 void
986 tcp_tcpcb_template(void)
987 {
988 struct tcpcb *tp = &tcpcb_template;
989 int flags;
990
991 tp->t_peermss = tcp_mssdflt;
992 tp->t_ourmss = tcp_mssdflt;
993 tp->t_segsz = tcp_mssdflt;
994
995 flags = 0;
996 if (tcp_do_rfc1323 && tcp_do_win_scale)
997 flags |= TF_REQ_SCALE;
998 if (tcp_do_rfc1323 && tcp_do_timestamps)
999 flags |= TF_REQ_TSTMP;
1000 tp->t_flags = flags;
1001
1002 /*
1003 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
1004 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
1005 * reasonable initial retransmit time.
1006 */
1007 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
1008 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1009 TCPTV_MIN, TCPTV_REXMTMAX);
1010
1011 /* Keep Alive */
1012 tp->t_keepinit = tcp_keepinit;
1013 tp->t_keepidle = tcp_keepidle;
1014 tp->t_keepintvl = tcp_keepintvl;
1015 tp->t_keepcnt = tcp_keepcnt;
1016 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
1017
1018 /* MSL */
1019 tp->t_msl = TCPTV_MSL;
1020 }
1021
1022 /*
1023 * Create a new TCP control block, making an
1024 * empty reassembly queue and hooking it to the argument
1025 * protocol control block.
1026 */
1027 /* family selects inpcb, or in6pcb */
1028 struct tcpcb *
1029 tcp_newtcpcb(int family, void *aux)
1030 {
1031 struct tcpcb *tp;
1032 int i;
1033
1034 /* XXX Consider using a pool_cache for speed. */
1035 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
1036 if (tp == NULL)
1037 return (NULL);
1038 memcpy(tp, &tcpcb_template, sizeof(*tp));
1039 TAILQ_INIT(&tp->segq);
1040 TAILQ_INIT(&tp->timeq);
1041 tp->t_family = family; /* may be overridden later on */
1042 TAILQ_INIT(&tp->snd_holes);
1043 LIST_INIT(&tp->t_sc); /* XXX can template this */
1044
1045 /* Don't sweat this loop; hopefully the compiler will unroll it. */
1046 for (i = 0; i < TCPT_NTIMERS; i++) {
1047 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
1048 TCP_TIMER_INIT(tp, i);
1049 }
1050 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
1051
1052 switch (family) {
1053 case AF_INET:
1054 {
1055 struct inpcb *inp = (struct inpcb *)aux;
1056
1057 inp->inp_ip.ip_ttl = ip_defttl;
1058 inp->inp_ppcb = (void *)tp;
1059
1060 tp->t_inpcb = inp;
1061 tp->t_mtudisc = ip_mtudisc;
1062 break;
1063 }
1064 #ifdef INET6
1065 case AF_INET6:
1066 {
1067 struct in6pcb *in6p = (struct in6pcb *)aux;
1068
1069 in6p->in6p_ip6.ip6_hlim = in6_selecthlim_rt(in6p);
1070 in6p->in6p_ppcb = (void *)tp;
1071
1072 tp->t_in6pcb = in6p;
1073 /* for IPv6, always try to run path MTU discovery */
1074 tp->t_mtudisc = 1;
1075 break;
1076 }
1077 #endif /* INET6 */
1078 default:
1079 for (i = 0; i < TCPT_NTIMERS; i++)
1080 callout_destroy(&tp->t_timer[i]);
1081 callout_destroy(&tp->t_delack_ch);
1082 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1083 return (NULL);
1084 }
1085
1086 /*
1087 * Initialize our timebase. When we send timestamps, we take
1088 * the delta from tcp_now -- this means each connection always
1089 * gets a timebase of 1, which makes it, among other things,
1090 * more difficult to determine how long a system has been up,
1091 * and thus how many TCP sequence increments have occurred.
1092 *
1093 * We start with 1, because 0 doesn't work with linux, which
1094 * considers timestamp 0 in a SYN packet as a bug and disables
1095 * timestamps.
1096 */
1097 tp->ts_timebase = tcp_now - 1;
1098
1099 tcp_congctl_select(tp, tcp_congctl_global_name);
1100
1101 return (tp);
1102 }
1103
1104 /*
1105 * Drop a TCP connection, reporting
1106 * the specified error. If connection is synchronized,
1107 * then send a RST to peer.
1108 */
1109 struct tcpcb *
1110 tcp_drop(struct tcpcb *tp, int errno)
1111 {
1112 struct socket *so = NULL;
1113
1114 #ifdef DIAGNOSTIC
1115 if (tp->t_inpcb && tp->t_in6pcb)
1116 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1117 #endif
1118 #ifdef INET
1119 if (tp->t_inpcb)
1120 so = tp->t_inpcb->inp_socket;
1121 #endif
1122 #ifdef INET6
1123 if (tp->t_in6pcb)
1124 so = tp->t_in6pcb->in6p_socket;
1125 #endif
1126 if (!so)
1127 return NULL;
1128
1129 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1130 tp->t_state = TCPS_CLOSED;
1131 (void) tcp_output(tp);
1132 TCP_STATINC(TCP_STAT_DROPS);
1133 } else
1134 TCP_STATINC(TCP_STAT_CONNDROPS);
1135 if (errno == ETIMEDOUT && tp->t_softerror)
1136 errno = tp->t_softerror;
1137 so->so_error = errno;
1138 return (tcp_close(tp));
1139 }
1140
1141 /*
1142 * Close a TCP control block:
1143 * discard all space held by the tcp
1144 * discard internet protocol block
1145 * wake up any sleepers
1146 */
1147 struct tcpcb *
1148 tcp_close(struct tcpcb *tp)
1149 {
1150 struct inpcb *inp;
1151 #ifdef INET6
1152 struct in6pcb *in6p;
1153 #endif
1154 struct socket *so;
1155 #ifdef RTV_RTT
1156 struct rtentry *rt;
1157 #endif
1158 struct route *ro;
1159 int j;
1160
1161 inp = tp->t_inpcb;
1162 #ifdef INET6
1163 in6p = tp->t_in6pcb;
1164 #endif
1165 so = NULL;
1166 ro = NULL;
1167 if (inp) {
1168 so = inp->inp_socket;
1169 ro = &inp->inp_route;
1170 }
1171 #ifdef INET6
1172 else if (in6p) {
1173 so = in6p->in6p_socket;
1174 ro = (struct route *)&in6p->in6p_route;
1175 }
1176 #endif
1177
1178 #ifdef RTV_RTT
1179 /*
1180 * If we sent enough data to get some meaningful characteristics,
1181 * save them in the routing entry. 'Enough' is arbitrarily
1182 * defined as the sendpipesize (default 4K) * 16. This would
1183 * give us 16 rtt samples assuming we only get one sample per
1184 * window (the usual case on a long haul net). 16 samples is
1185 * enough for the srtt filter to converge to within 5% of the correct
1186 * value; fewer samples and we could save a very bogus rtt.
1187 *
1188 * Don't update the default route's characteristics and don't
1189 * update anything that the user "locked".
1190 */
1191 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1192 ro && (rt = rtcache_validate(ro)) != NULL &&
1193 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1194 u_long i = 0;
1195
1196 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1197 i = tp->t_srtt *
1198 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1199 if (rt->rt_rmx.rmx_rtt && i)
1200 /*
1201 * filter this update to half the old & half
1202 * the new values, converting scale.
1203 * See route.h and tcp_var.h for a
1204 * description of the scaling constants.
1205 */
1206 rt->rt_rmx.rmx_rtt =
1207 (rt->rt_rmx.rmx_rtt + i) / 2;
1208 else
1209 rt->rt_rmx.rmx_rtt = i;
1210 }
1211 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1212 i = tp->t_rttvar *
1213 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1214 if (rt->rt_rmx.rmx_rttvar && i)
1215 rt->rt_rmx.rmx_rttvar =
1216 (rt->rt_rmx.rmx_rttvar + i) / 2;
1217 else
1218 rt->rt_rmx.rmx_rttvar = i;
1219 }
1220 /*
1221 * update the pipelimit (ssthresh) if it has been updated
1222 * already or if a pipesize was specified & the threshhold
1223 * got below half the pipesize. I.e., wait for bad news
1224 * before we start updating, then update on both good
1225 * and bad news.
1226 */
1227 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1228 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1229 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1230 /*
1231 * convert the limit from user data bytes to
1232 * packets then to packet data bytes.
1233 */
1234 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1235 if (i < 2)
1236 i = 2;
1237 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1238 if (rt->rt_rmx.rmx_ssthresh)
1239 rt->rt_rmx.rmx_ssthresh =
1240 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1241 else
1242 rt->rt_rmx.rmx_ssthresh = i;
1243 }
1244 }
1245 #endif /* RTV_RTT */
1246 /* free the reassembly queue, if any */
1247 TCP_REASS_LOCK(tp);
1248 (void) tcp_freeq(tp);
1249 TCP_REASS_UNLOCK(tp);
1250
1251 /* free the SACK holes list. */
1252 tcp_free_sackholes(tp);
1253 tcp_congctl_release(tp);
1254 syn_cache_cleanup(tp);
1255
1256 if (tp->t_template) {
1257 m_free(tp->t_template);
1258 tp->t_template = NULL;
1259 }
1260
1261 /*
1262 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1263 * the timers can also drop the lock. We need to prevent access
1264 * to the tcpcb as it's half torn down. Flag the pcb as dead
1265 * (prevents access by timers) and only then detach it.
1266 */
1267 tp->t_flags |= TF_DEAD;
1268 if (inp) {
1269 inp->inp_ppcb = 0;
1270 soisdisconnected(so);
1271 in_pcbdetach(inp);
1272 }
1273 #ifdef INET6
1274 else if (in6p) {
1275 in6p->in6p_ppcb = 0;
1276 soisdisconnected(so);
1277 in6_pcbdetach(in6p);
1278 }
1279 #endif
1280 /*
1281 * pcb is no longer visble elsewhere, so we can safely release
1282 * the lock in callout_halt() if needed.
1283 */
1284 TCP_STATINC(TCP_STAT_CLOSED);
1285 for (j = 0; j < TCPT_NTIMERS; j++) {
1286 callout_halt(&tp->t_timer[j], softnet_lock);
1287 callout_destroy(&tp->t_timer[j]);
1288 }
1289 callout_halt(&tp->t_delack_ch, softnet_lock);
1290 callout_destroy(&tp->t_delack_ch);
1291 pool_put(&tcpcb_pool, tp);
1292
1293 return NULL;
1294 }
1295
1296 int
1297 tcp_freeq(struct tcpcb *tp)
1298 {
1299 struct ipqent *qe;
1300 int rv = 0;
1301 #ifdef TCPREASS_DEBUG
1302 int i = 0;
1303 #endif
1304
1305 TCP_REASS_LOCK_CHECK(tp);
1306
1307 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1308 #ifdef TCPREASS_DEBUG
1309 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1310 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1311 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1312 #endif
1313 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1314 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1315 m_freem(qe->ipqe_m);
1316 tcpipqent_free(qe);
1317 rv = 1;
1318 }
1319 tp->t_segqlen = 0;
1320 KASSERT(TAILQ_EMPTY(&tp->timeq));
1321 return (rv);
1322 }
1323
1324 void
1325 tcp_fasttimo(void)
1326 {
1327 if (tcp_drainwanted) {
1328 tcp_drain();
1329 tcp_drainwanted = 0;
1330 }
1331 }
1332
1333 void
1334 tcp_drainstub(void)
1335 {
1336 tcp_drainwanted = 1;
1337 }
1338
1339 /*
1340 * Protocol drain routine. Called when memory is in short supply.
1341 * Called from pr_fasttimo thus a callout context.
1342 */
1343 void
1344 tcp_drain(void)
1345 {
1346 struct inpcb_hdr *inph;
1347 struct tcpcb *tp;
1348
1349 mutex_enter(softnet_lock);
1350 KERNEL_LOCK(1, NULL);
1351
1352 /*
1353 * Free the sequence queue of all TCP connections.
1354 */
1355 TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1356 switch (inph->inph_af) {
1357 case AF_INET:
1358 tp = intotcpcb((struct inpcb *)inph);
1359 break;
1360 #ifdef INET6
1361 case AF_INET6:
1362 tp = in6totcpcb((struct in6pcb *)inph);
1363 break;
1364 #endif
1365 default:
1366 tp = NULL;
1367 break;
1368 }
1369 if (tp != NULL) {
1370 /*
1371 * We may be called from a device's interrupt
1372 * context. If the tcpcb is already busy,
1373 * just bail out now.
1374 */
1375 if (tcp_reass_lock_try(tp) == 0)
1376 continue;
1377 if (tcp_freeq(tp))
1378 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1379 TCP_REASS_UNLOCK(tp);
1380 }
1381 }
1382
1383 KERNEL_UNLOCK_ONE(NULL);
1384 mutex_exit(softnet_lock);
1385 }
1386
1387 /*
1388 * Notify a tcp user of an asynchronous error;
1389 * store error as soft error, but wake up user
1390 * (for now, won't do anything until can select for soft error).
1391 */
1392 void
1393 tcp_notify(struct inpcb *inp, int error)
1394 {
1395 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1396 struct socket *so = inp->inp_socket;
1397
1398 /*
1399 * Ignore some errors if we are hooked up.
1400 * If connection hasn't completed, has retransmitted several times,
1401 * and receives a second error, give up now. This is better
1402 * than waiting a long time to establish a connection that
1403 * can never complete.
1404 */
1405 if (tp->t_state == TCPS_ESTABLISHED &&
1406 (error == EHOSTUNREACH || error == ENETUNREACH ||
1407 error == EHOSTDOWN)) {
1408 return;
1409 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1410 tp->t_rxtshift > 3 && tp->t_softerror)
1411 so->so_error = error;
1412 else
1413 tp->t_softerror = error;
1414 cv_broadcast(&so->so_cv);
1415 sorwakeup(so);
1416 sowwakeup(so);
1417 }
1418
1419 #ifdef INET6
1420 void
1421 tcp6_notify(struct in6pcb *in6p, int error)
1422 {
1423 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1424 struct socket *so = in6p->in6p_socket;
1425
1426 /*
1427 * Ignore some errors if we are hooked up.
1428 * If connection hasn't completed, has retransmitted several times,
1429 * and receives a second error, give up now. This is better
1430 * than waiting a long time to establish a connection that
1431 * can never complete.
1432 */
1433 if (tp->t_state == TCPS_ESTABLISHED &&
1434 (error == EHOSTUNREACH || error == ENETUNREACH ||
1435 error == EHOSTDOWN)) {
1436 return;
1437 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1438 tp->t_rxtshift > 3 && tp->t_softerror)
1439 so->so_error = error;
1440 else
1441 tp->t_softerror = error;
1442 cv_broadcast(&so->so_cv);
1443 sorwakeup(so);
1444 sowwakeup(so);
1445 }
1446 #endif
1447
1448 #ifdef INET6
1449 void *
1450 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1451 {
1452 struct tcphdr th;
1453 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1454 int nmatch;
1455 struct ip6_hdr *ip6;
1456 const struct sockaddr_in6 *sa6_src = NULL;
1457 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1458 struct mbuf *m;
1459 int off;
1460
1461 if (sa->sa_family != AF_INET6 ||
1462 sa->sa_len != sizeof(struct sockaddr_in6))
1463 return NULL;
1464 if ((unsigned)cmd >= PRC_NCMDS)
1465 return NULL;
1466 else if (cmd == PRC_QUENCH) {
1467 /*
1468 * Don't honor ICMP Source Quench messages meant for
1469 * TCP connections.
1470 */
1471 return NULL;
1472 } else if (PRC_IS_REDIRECT(cmd))
1473 notify = in6_rtchange, d = NULL;
1474 else if (cmd == PRC_MSGSIZE)
1475 ; /* special code is present, see below */
1476 else if (cmd == PRC_HOSTDEAD)
1477 d = NULL;
1478 else if (inet6ctlerrmap[cmd] == 0)
1479 return NULL;
1480
1481 /* if the parameter is from icmp6, decode it. */
1482 if (d != NULL) {
1483 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1484 m = ip6cp->ip6c_m;
1485 ip6 = ip6cp->ip6c_ip6;
1486 off = ip6cp->ip6c_off;
1487 sa6_src = ip6cp->ip6c_src;
1488 } else {
1489 m = NULL;
1490 ip6 = NULL;
1491 sa6_src = &sa6_any;
1492 off = 0;
1493 }
1494
1495 if (ip6) {
1496 /*
1497 * XXX: We assume that when ip6 is non NULL,
1498 * M and OFF are valid.
1499 */
1500
1501 /* check if we can safely examine src and dst ports */
1502 if (m->m_pkthdr.len < off + sizeof(th)) {
1503 if (cmd == PRC_MSGSIZE)
1504 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1505 return NULL;
1506 }
1507
1508 memset(&th, 0, sizeof(th));
1509 m_copydata(m, off, sizeof(th), (void *)&th);
1510
1511 if (cmd == PRC_MSGSIZE) {
1512 int valid = 0;
1513
1514 /*
1515 * Check to see if we have a valid TCP connection
1516 * corresponding to the address in the ICMPv6 message
1517 * payload.
1518 */
1519 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1520 th.th_dport,
1521 (const struct in6_addr *)&sa6_src->sin6_addr,
1522 th.th_sport, 0, 0))
1523 valid++;
1524
1525 /*
1526 * Depending on the value of "valid" and routing table
1527 * size (mtudisc_{hi,lo}wat), we will:
1528 * - recalcurate the new MTU and create the
1529 * corresponding routing entry, or
1530 * - ignore the MTU change notification.
1531 */
1532 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1533
1534 /*
1535 * no need to call in6_pcbnotify, it should have been
1536 * called via callback if necessary
1537 */
1538 return NULL;
1539 }
1540
1541 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1542 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1543 if (nmatch == 0 && syn_cache_count &&
1544 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1545 inet6ctlerrmap[cmd] == ENETUNREACH ||
1546 inet6ctlerrmap[cmd] == EHOSTDOWN))
1547 syn_cache_unreach((const struct sockaddr *)sa6_src,
1548 sa, &th);
1549 } else {
1550 (void) in6_pcbnotify(&tcbtable, sa, 0,
1551 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1552 }
1553
1554 return NULL;
1555 }
1556 #endif
1557
1558 #ifdef INET
1559 /* assumes that ip header and tcp header are contiguous on mbuf */
1560 void *
1561 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1562 {
1563 struct ip *ip = v;
1564 struct tcphdr *th;
1565 struct icmp *icp;
1566 extern const int inetctlerrmap[];
1567 void (*notify)(struct inpcb *, int) = tcp_notify;
1568 int errno;
1569 int nmatch;
1570 struct tcpcb *tp;
1571 u_int mtu;
1572 tcp_seq seq;
1573 struct inpcb *inp;
1574 #ifdef INET6
1575 struct in6pcb *in6p;
1576 struct in6_addr src6, dst6;
1577 #endif
1578
1579 if (sa->sa_family != AF_INET ||
1580 sa->sa_len != sizeof(struct sockaddr_in))
1581 return NULL;
1582 if ((unsigned)cmd >= PRC_NCMDS)
1583 return NULL;
1584 errno = inetctlerrmap[cmd];
1585 if (cmd == PRC_QUENCH)
1586 /*
1587 * Don't honor ICMP Source Quench messages meant for
1588 * TCP connections.
1589 */
1590 return NULL;
1591 else if (PRC_IS_REDIRECT(cmd))
1592 notify = in_rtchange, ip = 0;
1593 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1594 /*
1595 * Check to see if we have a valid TCP connection
1596 * corresponding to the address in the ICMP message
1597 * payload.
1598 *
1599 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1600 */
1601 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1602 #ifdef INET6
1603 memset(&src6, 0, sizeof(src6));
1604 memset(&dst6, 0, sizeof(dst6));
1605 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1606 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1607 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1608 #endif
1609 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1610 th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1611 #ifdef INET6
1612 in6p = NULL;
1613 #else
1614 ;
1615 #endif
1616 #ifdef INET6
1617 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1618 th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1619 ;
1620 #endif
1621 else
1622 return NULL;
1623
1624 /*
1625 * Now that we've validated that we are actually communicating
1626 * with the host indicated in the ICMP message, locate the
1627 * ICMP header, recalculate the new MTU, and create the
1628 * corresponding routing entry.
1629 */
1630 icp = (struct icmp *)((char *)ip -
1631 offsetof(struct icmp, icmp_ip));
1632 if (inp) {
1633 if ((tp = intotcpcb(inp)) == NULL)
1634 return NULL;
1635 }
1636 #ifdef INET6
1637 else if (in6p) {
1638 if ((tp = in6totcpcb(in6p)) == NULL)
1639 return NULL;
1640 }
1641 #endif
1642 else
1643 return NULL;
1644 seq = ntohl(th->th_seq);
1645 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1646 return NULL;
1647 /*
1648 * If the ICMP message advertises a Next-Hop MTU
1649 * equal or larger than the maximum packet size we have
1650 * ever sent, drop the message.
1651 */
1652 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1653 if (mtu >= tp->t_pmtud_mtu_sent)
1654 return NULL;
1655 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1656 /*
1657 * Calculate new MTU, and create corresponding
1658 * route (traditional PMTUD).
1659 */
1660 tp->t_flags &= ~TF_PMTUD_PEND;
1661 icmp_mtudisc(icp, ip->ip_dst);
1662 } else {
1663 /*
1664 * Record the information got in the ICMP
1665 * message; act on it later.
1666 * If we had already recorded an ICMP message,
1667 * replace the old one only if the new message
1668 * refers to an older TCP segment
1669 */
1670 if (tp->t_flags & TF_PMTUD_PEND) {
1671 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1672 return NULL;
1673 } else
1674 tp->t_flags |= TF_PMTUD_PEND;
1675 tp->t_pmtud_th_seq = seq;
1676 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1677 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1678 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1679 }
1680 return NULL;
1681 } else if (cmd == PRC_HOSTDEAD)
1682 ip = 0;
1683 else if (errno == 0)
1684 return NULL;
1685 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1686 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1687 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1688 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1689 if (nmatch == 0 && syn_cache_count &&
1690 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1691 inetctlerrmap[cmd] == ENETUNREACH ||
1692 inetctlerrmap[cmd] == EHOSTDOWN)) {
1693 struct sockaddr_in sin;
1694 memset(&sin, 0, sizeof(sin));
1695 sin.sin_len = sizeof(sin);
1696 sin.sin_family = AF_INET;
1697 sin.sin_port = th->th_sport;
1698 sin.sin_addr = ip->ip_src;
1699 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1700 }
1701
1702 /* XXX mapped address case */
1703 } else
1704 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1705 notify);
1706 return NULL;
1707 }
1708
1709 /*
1710 * When a source quench is received, we are being notified of congestion.
1711 * Close the congestion window down to the Loss Window (one segment).
1712 * We will gradually open it again as we proceed.
1713 */
1714 void
1715 tcp_quench(struct inpcb *inp, int errno)
1716 {
1717 struct tcpcb *tp = intotcpcb(inp);
1718
1719 if (tp) {
1720 tp->snd_cwnd = tp->t_segsz;
1721 tp->t_bytes_acked = 0;
1722 }
1723 }
1724 #endif
1725
1726 #ifdef INET6
1727 void
1728 tcp6_quench(struct in6pcb *in6p, int errno)
1729 {
1730 struct tcpcb *tp = in6totcpcb(in6p);
1731
1732 if (tp) {
1733 tp->snd_cwnd = tp->t_segsz;
1734 tp->t_bytes_acked = 0;
1735 }
1736 }
1737 #endif
1738
1739 #ifdef INET
1740 /*
1741 * Path MTU Discovery handlers.
1742 */
1743 void
1744 tcp_mtudisc_callback(struct in_addr faddr)
1745 {
1746 #ifdef INET6
1747 struct in6_addr in6;
1748 #endif
1749
1750 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1751 #ifdef INET6
1752 memset(&in6, 0, sizeof(in6));
1753 in6.s6_addr16[5] = 0xffff;
1754 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1755 tcp6_mtudisc_callback(&in6);
1756 #endif
1757 }
1758
1759 /*
1760 * On receipt of path MTU corrections, flush old route and replace it
1761 * with the new one. Retransmit all unacknowledged packets, to ensure
1762 * that all packets will be received.
1763 */
1764 void
1765 tcp_mtudisc(struct inpcb *inp, int errno)
1766 {
1767 struct tcpcb *tp = intotcpcb(inp);
1768 struct rtentry *rt = in_pcbrtentry(inp);
1769
1770 if (tp != 0) {
1771 if (rt != 0) {
1772 /*
1773 * If this was not a host route, remove and realloc.
1774 */
1775 if ((rt->rt_flags & RTF_HOST) == 0) {
1776 in_rtchange(inp, errno);
1777 if ((rt = in_pcbrtentry(inp)) == 0)
1778 return;
1779 }
1780
1781 /*
1782 * Slow start out of the error condition. We
1783 * use the MTU because we know it's smaller
1784 * than the previously transmitted segment.
1785 *
1786 * Note: This is more conservative than the
1787 * suggestion in draft-floyd-incr-init-win-03.
1788 */
1789 if (rt->rt_rmx.rmx_mtu != 0)
1790 tp->snd_cwnd =
1791 TCP_INITIAL_WINDOW(tcp_init_win,
1792 rt->rt_rmx.rmx_mtu);
1793 }
1794
1795 /*
1796 * Resend unacknowledged packets.
1797 */
1798 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1799 tcp_output(tp);
1800 }
1801 }
1802 #endif
1803
1804 #ifdef INET6
1805 /*
1806 * Path MTU Discovery handlers.
1807 */
1808 void
1809 tcp6_mtudisc_callback(struct in6_addr *faddr)
1810 {
1811 struct sockaddr_in6 sin6;
1812
1813 memset(&sin6, 0, sizeof(sin6));
1814 sin6.sin6_family = AF_INET6;
1815 sin6.sin6_len = sizeof(struct sockaddr_in6);
1816 sin6.sin6_addr = *faddr;
1817 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1818 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1819 }
1820
1821 void
1822 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1823 {
1824 struct tcpcb *tp = in6totcpcb(in6p);
1825 struct rtentry *rt = in6_pcbrtentry(in6p);
1826
1827 if (tp != 0) {
1828 if (rt != 0) {
1829 /*
1830 * If this was not a host route, remove and realloc.
1831 */
1832 if ((rt->rt_flags & RTF_HOST) == 0) {
1833 in6_rtchange(in6p, errno);
1834 if ((rt = in6_pcbrtentry(in6p)) == 0)
1835 return;
1836 }
1837
1838 /*
1839 * Slow start out of the error condition. We
1840 * use the MTU because we know it's smaller
1841 * than the previously transmitted segment.
1842 *
1843 * Note: This is more conservative than the
1844 * suggestion in draft-floyd-incr-init-win-03.
1845 */
1846 if (rt->rt_rmx.rmx_mtu != 0)
1847 tp->snd_cwnd =
1848 TCP_INITIAL_WINDOW(tcp_init_win,
1849 rt->rt_rmx.rmx_mtu);
1850 }
1851
1852 /*
1853 * Resend unacknowledged packets.
1854 */
1855 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1856 tcp_output(tp);
1857 }
1858 }
1859 #endif /* INET6 */
1860
1861 /*
1862 * Compute the MSS to advertise to the peer. Called only during
1863 * the 3-way handshake. If we are the server (peer initiated
1864 * connection), we are called with a pointer to the interface
1865 * on which the SYN packet arrived. If we are the client (we
1866 * initiated connection), we are called with a pointer to the
1867 * interface out which this connection should go.
1868 *
1869 * NOTE: Do not subtract IP option/extension header size nor IPsec
1870 * header size from MSS advertisement. MSS option must hold the maximum
1871 * segment size we can accept, so it must always be:
1872 * max(if mtu) - ip header - tcp header
1873 */
1874 u_long
1875 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1876 {
1877 extern u_long in_maxmtu;
1878 u_long mss = 0;
1879 u_long hdrsiz;
1880
1881 /*
1882 * In order to avoid defeating path MTU discovery on the peer,
1883 * we advertise the max MTU of all attached networks as our MSS,
1884 * per RFC 1191, section 3.1.
1885 *
1886 * We provide the option to advertise just the MTU of
1887 * the interface on which we hope this connection will
1888 * be receiving. If we are responding to a SYN, we
1889 * will have a pretty good idea about this, but when
1890 * initiating a connection there is a bit more doubt.
1891 *
1892 * We also need to ensure that loopback has a large enough
1893 * MSS, as the loopback MTU is never included in in_maxmtu.
1894 */
1895
1896 if (ifp != NULL)
1897 switch (af) {
1898 case AF_INET:
1899 mss = ifp->if_mtu;
1900 break;
1901 #ifdef INET6
1902 case AF_INET6:
1903 mss = IN6_LINKMTU(ifp);
1904 break;
1905 #endif
1906 }
1907
1908 if (tcp_mss_ifmtu == 0)
1909 switch (af) {
1910 case AF_INET:
1911 mss = max(in_maxmtu, mss);
1912 break;
1913 #ifdef INET6
1914 case AF_INET6:
1915 mss = max(in6_maxmtu, mss);
1916 break;
1917 #endif
1918 }
1919
1920 switch (af) {
1921 case AF_INET:
1922 hdrsiz = sizeof(struct ip);
1923 break;
1924 #ifdef INET6
1925 case AF_INET6:
1926 hdrsiz = sizeof(struct ip6_hdr);
1927 break;
1928 #endif
1929 default:
1930 hdrsiz = 0;
1931 break;
1932 }
1933 hdrsiz += sizeof(struct tcphdr);
1934 if (mss > hdrsiz)
1935 mss -= hdrsiz;
1936
1937 mss = max(tcp_mssdflt, mss);
1938 return (mss);
1939 }
1940
1941 /*
1942 * Set connection variables based on the peer's advertised MSS.
1943 * We are passed the TCPCB for the actual connection. If we
1944 * are the server, we are called by the compressed state engine
1945 * when the 3-way handshake is complete. If we are the client,
1946 * we are called when we receive the SYN,ACK from the server.
1947 *
1948 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1949 * before this routine is called!
1950 */
1951 void
1952 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1953 {
1954 struct socket *so;
1955 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1956 struct rtentry *rt;
1957 #endif
1958 u_long bufsize;
1959 int mss;
1960
1961 #ifdef DIAGNOSTIC
1962 if (tp->t_inpcb && tp->t_in6pcb)
1963 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1964 #endif
1965 so = NULL;
1966 rt = NULL;
1967 #ifdef INET
1968 if (tp->t_inpcb) {
1969 so = tp->t_inpcb->inp_socket;
1970 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1971 rt = in_pcbrtentry(tp->t_inpcb);
1972 #endif
1973 }
1974 #endif
1975 #ifdef INET6
1976 if (tp->t_in6pcb) {
1977 so = tp->t_in6pcb->in6p_socket;
1978 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1979 rt = in6_pcbrtentry(tp->t_in6pcb);
1980 #endif
1981 }
1982 #endif
1983
1984 /*
1985 * As per RFC1122, use the default MSS value, unless they
1986 * sent us an offer. Do not accept offers less than 256 bytes.
1987 */
1988 mss = tcp_mssdflt;
1989 if (offer)
1990 mss = offer;
1991 mss = max(mss, 256); /* sanity */
1992 tp->t_peermss = mss;
1993 mss -= tcp_optlen(tp);
1994 #ifdef INET
1995 if (tp->t_inpcb)
1996 mss -= ip_optlen(tp->t_inpcb);
1997 #endif
1998 #ifdef INET6
1999 if (tp->t_in6pcb)
2000 mss -= ip6_optlen(tp->t_in6pcb);
2001 #endif
2002
2003 /*
2004 * If there's a pipesize, change the socket buffer to that size.
2005 * Make the socket buffer an integral number of MSS units. If
2006 * the MSS is larger than the socket buffer, artificially decrease
2007 * the MSS.
2008 */
2009 #ifdef RTV_SPIPE
2010 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
2011 bufsize = rt->rt_rmx.rmx_sendpipe;
2012 else
2013 #endif
2014 {
2015 KASSERT(so != NULL);
2016 bufsize = so->so_snd.sb_hiwat;
2017 }
2018 if (bufsize < mss)
2019 mss = bufsize;
2020 else {
2021 bufsize = roundup(bufsize, mss);
2022 if (bufsize > sb_max)
2023 bufsize = sb_max;
2024 (void) sbreserve(&so->so_snd, bufsize, so);
2025 }
2026 tp->t_segsz = mss;
2027
2028 #ifdef RTV_SSTHRESH
2029 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2030 /*
2031 * There's some sort of gateway or interface buffer
2032 * limit on the path. Use this to set the slow
2033 * start threshold, but set the threshold to no less
2034 * than 2 * MSS.
2035 */
2036 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2037 }
2038 #endif
2039 }
2040
2041 /*
2042 * Processing necessary when a TCP connection is established.
2043 */
2044 void
2045 tcp_established(struct tcpcb *tp)
2046 {
2047 struct socket *so;
2048 #ifdef RTV_RPIPE
2049 struct rtentry *rt;
2050 #endif
2051 u_long bufsize;
2052
2053 #ifdef DIAGNOSTIC
2054 if (tp->t_inpcb && tp->t_in6pcb)
2055 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2056 #endif
2057 so = NULL;
2058 rt = NULL;
2059 #ifdef INET
2060 /* This is a while() to reduce the dreadful stairstepping below */
2061 while (tp->t_inpcb) {
2062 so = tp->t_inpcb->inp_socket;
2063 #if defined(RTV_RPIPE)
2064 rt = in_pcbrtentry(tp->t_inpcb);
2065 #endif
2066 if (__predict_true(tcp_msl_enable)) {
2067 if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
2068 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2069 break;
2070 }
2071
2072 if (__predict_false(tcp_rttlocal)) {
2073 /* This may be adjusted by tcp_input */
2074 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2075 break;
2076 }
2077 if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2078 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2079 break;
2080 }
2081 }
2082 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2083 break;
2084 }
2085 #endif
2086 #ifdef INET6
2087 /* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2088 while (!tp->t_inpcb && tp->t_in6pcb) {
2089 so = tp->t_in6pcb->in6p_socket;
2090 #if defined(RTV_RPIPE)
2091 rt = in6_pcbrtentry(tp->t_in6pcb);
2092 #endif
2093 if (__predict_true(tcp_msl_enable)) {
2094 extern const struct in6_addr in6addr_loopback;
2095
2096 if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2097 &in6addr_loopback)) {
2098 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2099 break;
2100 }
2101
2102 if (__predict_false(tcp_rttlocal)) {
2103 /* This may be adjusted by tcp_input */
2104 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2105 break;
2106 }
2107 if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2108 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2109 break;
2110 }
2111 }
2112 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2113 break;
2114 }
2115 #endif
2116
2117 tp->t_state = TCPS_ESTABLISHED;
2118 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2119
2120 #ifdef RTV_RPIPE
2121 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2122 bufsize = rt->rt_rmx.rmx_recvpipe;
2123 else
2124 #endif
2125 {
2126 KASSERT(so != NULL);
2127 bufsize = so->so_rcv.sb_hiwat;
2128 }
2129 if (bufsize > tp->t_ourmss) {
2130 bufsize = roundup(bufsize, tp->t_ourmss);
2131 if (bufsize > sb_max)
2132 bufsize = sb_max;
2133 (void) sbreserve(&so->so_rcv, bufsize, so);
2134 }
2135 }
2136
2137 /*
2138 * Check if there's an initial rtt or rttvar. Convert from the
2139 * route-table units to scaled multiples of the slow timeout timer.
2140 * Called only during the 3-way handshake.
2141 */
2142 void
2143 tcp_rmx_rtt(struct tcpcb *tp)
2144 {
2145 #ifdef RTV_RTT
2146 struct rtentry *rt = NULL;
2147 int rtt;
2148
2149 #ifdef DIAGNOSTIC
2150 if (tp->t_inpcb && tp->t_in6pcb)
2151 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2152 #endif
2153 #ifdef INET
2154 if (tp->t_inpcb)
2155 rt = in_pcbrtentry(tp->t_inpcb);
2156 #endif
2157 #ifdef INET6
2158 if (tp->t_in6pcb)
2159 rt = in6_pcbrtentry(tp->t_in6pcb);
2160 #endif
2161 if (rt == NULL)
2162 return;
2163
2164 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2165 /*
2166 * XXX The lock bit for MTU indicates that the value
2167 * is also a minimum value; this is subject to time.
2168 */
2169 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2170 TCPT_RANGESET(tp->t_rttmin,
2171 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2172 TCPTV_MIN, TCPTV_REXMTMAX);
2173 tp->t_srtt = rtt /
2174 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2175 if (rt->rt_rmx.rmx_rttvar) {
2176 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2177 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2178 (TCP_RTTVAR_SHIFT + 2));
2179 } else {
2180 /* Default variation is +- 1 rtt */
2181 tp->t_rttvar =
2182 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2183 }
2184 TCPT_RANGESET(tp->t_rxtcur,
2185 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2186 tp->t_rttmin, TCPTV_REXMTMAX);
2187 }
2188 #endif
2189 }
2190
2191 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2192
2193 /*
2194 * Get a new sequence value given a tcp control block
2195 */
2196 tcp_seq
2197 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2198 {
2199
2200 #ifdef INET
2201 if (tp->t_inpcb != NULL) {
2202 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2203 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2204 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2205 addin));
2206 }
2207 #endif
2208 #ifdef INET6
2209 if (tp->t_in6pcb != NULL) {
2210 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2211 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2212 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2213 addin));
2214 }
2215 #endif
2216 /* Not possible. */
2217 panic("tcp_new_iss");
2218 }
2219
2220 /*
2221 * This routine actually generates a new TCP initial sequence number.
2222 */
2223 tcp_seq
2224 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2225 size_t addrsz, tcp_seq addin)
2226 {
2227 tcp_seq tcp_iss;
2228
2229 /* RFC1948 specifics */
2230 static bool tcp_iss_gotten_secret;
2231 static u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2232
2233 if (tcp_do_rfc1948) {
2234 MD5_CTX ctx;
2235 u_int8_t hash[16]; /* XXX MD5 knowledge */
2236
2237 /*
2238 * If we haven't been here before, initialize our cryptographic
2239 * hash secret.
2240 */
2241 if (tcp_iss_gotten_secret == false) {
2242 cprng_strong(kern_cprng,
2243 tcp_iss_secret, sizeof(tcp_iss_secret), 0);
2244 tcp_iss_gotten_secret = true;
2245 }
2246
2247 /*
2248 * Compute the base value of the ISS. It is a hash
2249 * of (saddr, sport, daddr, dport, secret).
2250 */
2251 MD5Init(&ctx);
2252
2253 MD5Update(&ctx, (u_char *) laddr, addrsz);
2254 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2255
2256 MD5Update(&ctx, (u_char *) faddr, addrsz);
2257 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2258
2259 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2260
2261 MD5Final(hash, &ctx);
2262
2263 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2264
2265 /*
2266 * Now increment our "timer", and add it in to
2267 * the computed value.
2268 *
2269 * XXX Use `addin'?
2270 * XXX TCP_ISSINCR too large to use?
2271 */
2272 tcp_iss_seq += TCP_ISSINCR;
2273 #ifdef TCPISS_DEBUG
2274 printf("ISS hash 0x%08x, ", tcp_iss);
2275 #endif
2276 tcp_iss += tcp_iss_seq + addin;
2277 #ifdef TCPISS_DEBUG
2278 printf("new ISS 0x%08x\n", tcp_iss);
2279 #endif
2280 } else {
2281 /*
2282 * Randomize.
2283 */
2284 tcp_iss = cprng_fast32();
2285
2286 /*
2287 * If we were asked to add some amount to a known value,
2288 * we will take a random value obtained above, mask off
2289 * the upper bits, and add in the known value. We also
2290 * add in a constant to ensure that we are at least a
2291 * certain distance from the original value.
2292 *
2293 * This is used when an old connection is in timed wait
2294 * and we have a new one coming in, for instance.
2295 */
2296 if (addin != 0) {
2297 #ifdef TCPISS_DEBUG
2298 printf("Random %08x, ", tcp_iss);
2299 #endif
2300 tcp_iss &= TCP_ISS_RANDOM_MASK;
2301 tcp_iss += addin + TCP_ISSINCR;
2302 #ifdef TCPISS_DEBUG
2303 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2304 #endif
2305 } else {
2306 tcp_iss &= TCP_ISS_RANDOM_MASK;
2307 tcp_iss += tcp_iss_seq;
2308 tcp_iss_seq += TCP_ISSINCR;
2309 #ifdef TCPISS_DEBUG
2310 printf("ISS %08x\n", tcp_iss);
2311 #endif
2312 }
2313 }
2314
2315 if (tcp_compat_42) {
2316 /*
2317 * Limit it to the positive range for really old TCP
2318 * implementations.
2319 * Just AND off the top bit instead of checking if
2320 * is set first - saves a branch 50% of the time.
2321 */
2322 tcp_iss &= 0x7fffffff; /* XXX */
2323 }
2324
2325 return (tcp_iss);
2326 }
2327
2328 #if defined(IPSEC)
2329 /* compute ESP/AH header size for TCP, including outer IP header. */
2330 size_t
2331 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2332 {
2333 struct inpcb *inp;
2334 size_t hdrsiz;
2335
2336 /* XXX mapped addr case (tp->t_in6pcb) */
2337 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2338 return 0;
2339 switch (tp->t_family) {
2340 case AF_INET:
2341 /* XXX: should use currect direction. */
2342 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2343 break;
2344 default:
2345 hdrsiz = 0;
2346 break;
2347 }
2348
2349 return hdrsiz;
2350 }
2351
2352 #ifdef INET6
2353 size_t
2354 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2355 {
2356 struct in6pcb *in6p;
2357 size_t hdrsiz;
2358
2359 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2360 return 0;
2361 switch (tp->t_family) {
2362 case AF_INET6:
2363 /* XXX: should use currect direction. */
2364 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2365 break;
2366 case AF_INET:
2367 /* mapped address case - tricky */
2368 default:
2369 hdrsiz = 0;
2370 break;
2371 }
2372
2373 return hdrsiz;
2374 }
2375 #endif
2376 #endif /*IPSEC*/
2377
2378 /*
2379 * Determine the length of the TCP options for this connection.
2380 *
2381 * XXX: What do we do for SACK, when we add that? Just reserve
2382 * all of the space? Otherwise we can't exactly be incrementing
2383 * cwnd by an amount that varies depending on the amount we last
2384 * had to SACK!
2385 */
2386
2387 u_int
2388 tcp_optlen(struct tcpcb *tp)
2389 {
2390 u_int optlen;
2391
2392 optlen = 0;
2393 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2394 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2395 optlen += TCPOLEN_TSTAMP_APPA;
2396
2397 #ifdef TCP_SIGNATURE
2398 if (tp->t_flags & TF_SIGNATURE)
2399 optlen += TCPOLEN_SIGNATURE + 2;
2400 #endif /* TCP_SIGNATURE */
2401
2402 return optlen;
2403 }
2404
2405 u_int
2406 tcp_hdrsz(struct tcpcb *tp)
2407 {
2408 u_int hlen;
2409
2410 switch (tp->t_family) {
2411 #ifdef INET6
2412 case AF_INET6:
2413 hlen = sizeof(struct ip6_hdr);
2414 break;
2415 #endif
2416 case AF_INET:
2417 hlen = sizeof(struct ip);
2418 break;
2419 default:
2420 hlen = 0;
2421 break;
2422 }
2423 hlen += sizeof(struct tcphdr);
2424
2425 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2426 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2427 hlen += TCPOLEN_TSTAMP_APPA;
2428 #ifdef TCP_SIGNATURE
2429 if (tp->t_flags & TF_SIGNATURE)
2430 hlen += TCPOLEN_SIGLEN;
2431 #endif
2432 return hlen;
2433 }
2434
2435 void
2436 tcp_statinc(u_int stat)
2437 {
2438
2439 KASSERT(stat < TCP_NSTATS);
2440 TCP_STATINC(stat);
2441 }
2442
2443 void
2444 tcp_statadd(u_int stat, uint64_t val)
2445 {
2446
2447 KASSERT(stat < TCP_NSTATS);
2448 TCP_STATADD(stat, val);
2449 }
2450