tcp_subr.c revision 1.282 1 /* $NetBSD: tcp_subr.c,v 1.282 2018/12/27 16:59:17 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
50 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
51 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
52 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
53 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
54 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
55 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
56 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
57 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
58 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
59 * POSSIBILITY OF SUCH DAMAGE.
60 */
61
62 /*
63 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
64 * The Regents of the University of California. All rights reserved.
65 *
66 * Redistribution and use in source and binary forms, with or without
67 * modification, are permitted provided that the following conditions
68 * are met:
69 * 1. Redistributions of source code must retain the above copyright
70 * notice, this list of conditions and the following disclaimer.
71 * 2. Redistributions in binary form must reproduce the above copyright
72 * notice, this list of conditions and the following disclaimer in the
73 * documentation and/or other materials provided with the distribution.
74 * 3. Neither the name of the University nor the names of its contributors
75 * may be used to endorse or promote products derived from this software
76 * without specific prior written permission.
77 *
78 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
79 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
80 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
81 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
82 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
83 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
84 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
85 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
86 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
87 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
88 * SUCH DAMAGE.
89 *
90 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
91 */
92
93 #include <sys/cdefs.h>
94 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.282 2018/12/27 16:59:17 maxv Exp $");
95
96 #ifdef _KERNEL_OPT
97 #include "opt_inet.h"
98 #include "opt_ipsec.h"
99 #include "opt_inet_csum.h"
100 #include "opt_mbuftrace.h"
101 #endif
102
103 #include <sys/param.h>
104 #include <sys/atomic.h>
105 #include <sys/proc.h>
106 #include <sys/systm.h>
107 #include <sys/mbuf.h>
108 #include <sys/once.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/protosw.h>
112 #include <sys/errno.h>
113 #include <sys/kernel.h>
114 #include <sys/pool.h>
115 #include <sys/md5.h>
116 #include <sys/cprng.h>
117
118 #include <net/route.h>
119 #include <net/if.h>
120
121 #include <netinet/in.h>
122 #include <netinet/in_systm.h>
123 #include <netinet/ip.h>
124 #include <netinet/in_pcb.h>
125 #include <netinet/ip_var.h>
126 #include <netinet/ip_icmp.h>
127
128 #ifdef INET6
129 #include <netinet/ip6.h>
130 #include <netinet6/in6_pcb.h>
131 #include <netinet6/ip6_var.h>
132 #include <netinet6/in6_var.h>
133 #include <netinet6/ip6protosw.h>
134 #include <netinet/icmp6.h>
135 #include <netinet6/nd6.h>
136 #endif
137
138 #include <netinet/tcp.h>
139 #include <netinet/tcp_fsm.h>
140 #include <netinet/tcp_seq.h>
141 #include <netinet/tcp_timer.h>
142 #include <netinet/tcp_var.h>
143 #include <netinet/tcp_vtw.h>
144 #include <netinet/tcp_private.h>
145 #include <netinet/tcp_congctl.h>
146
147 #ifdef IPSEC
148 #include <netipsec/ipsec.h>
149 #ifdef INET6
150 #include <netipsec/ipsec6.h>
151 #endif
152 #include <netipsec/key.h>
153 #endif
154
155
156 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
157 u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
158
159 percpu_t *tcpstat_percpu;
160
161 /* patchable/settable parameters for tcp */
162 int tcp_mssdflt = TCP_MSS;
163 int tcp_minmss = TCP_MINMSS;
164 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
165 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
166 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
167 int tcp_do_sack = 1; /* selective acknowledgement */
168 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
169 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
170 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
171 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
172 #ifndef TCP_INIT_WIN
173 #define TCP_INIT_WIN 4 /* initial slow start window */
174 #endif
175 #ifndef TCP_INIT_WIN_LOCAL
176 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
177 #endif
178 /*
179 * Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
180 * This is to simulate current behavior for iw == 4
181 */
182 int tcp_init_win_max[] = {
183 1 * 1460,
184 1 * 1460,
185 2 * 1460,
186 2 * 1460,
187 3 * 1460,
188 5 * 1460,
189 6 * 1460,
190 7 * 1460,
191 8 * 1460,
192 9 * 1460,
193 10 * 1460
194 };
195 int tcp_init_win = TCP_INIT_WIN;
196 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
197 int tcp_mss_ifmtu = 0;
198 int tcp_rst_ppslim = 100; /* 100pps */
199 int tcp_ackdrop_ppslim = 100; /* 100pps */
200 int tcp_do_loopback_cksum = 0;
201 int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
202 int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
203 int tcp_sack_tp_maxholes = 32;
204 int tcp_sack_globalmaxholes = 1024;
205 int tcp_sack_globalholes = 0;
206 int tcp_ecn_maxretries = 1;
207 int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
208 int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
209 int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
210 int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
211 int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
212 int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
213
214 int tcp4_vtw_enable = 0; /* 1 to enable */
215 int tcp6_vtw_enable = 0; /* 1 to enable */
216 int tcp_vtw_was_enabled = 0;
217 int tcp_vtw_entries = 1 << 4; /* 16 vestigial TIME_WAIT entries */
218
219 /* tcb hash */
220 #ifndef TCBHASHSIZE
221 #define TCBHASHSIZE 128
222 #endif
223 int tcbhashsize = TCBHASHSIZE;
224
225 /* syn hash parameters */
226 #define TCP_SYN_HASH_SIZE 293
227 #define TCP_SYN_BUCKET_SIZE 35
228 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
229 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
230 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
231 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
232
233 int tcp_freeq(struct tcpcb *);
234 static int tcp_iss_secret_init(void);
235
236 static void tcp_mtudisc_callback(struct in_addr);
237
238 #ifdef INET6
239 static void tcp6_mtudisc(struct in6pcb *, int);
240 #endif
241
242 static struct pool tcpcb_pool;
243
244 static int tcp_drainwanted;
245
246 #ifdef TCP_CSUM_COUNTERS
247 #include <sys/device.h>
248
249 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250 NULL, "tcp", "hwcsum bad");
251 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp", "hwcsum ok");
253 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 NULL, "tcp", "hwcsum data");
255 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
256 NULL, "tcp", "swcsum");
257
258 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
259 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
260 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
261 EVCNT_ATTACH_STATIC(tcp_swcsum);
262
263 #if defined(INET6)
264 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp6", "hwcsum bad");
266 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp6", "hwcsum ok");
268 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
269 NULL, "tcp6", "hwcsum data");
270 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
271 NULL, "tcp6", "swcsum");
272
273 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
274 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
275 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
276 EVCNT_ATTACH_STATIC(tcp6_swcsum);
277 #endif /* defined(INET6) */
278 #endif /* TCP_CSUM_COUNTERS */
279
280
281 #ifdef TCP_OUTPUT_COUNTERS
282 #include <sys/device.h>
283
284 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 NULL, "tcp", "output big header");
286 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287 NULL, "tcp", "output predict hit");
288 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289 NULL, "tcp", "output predict miss");
290 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
291 NULL, "tcp", "output copy small");
292 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
293 NULL, "tcp", "output copy big");
294 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
295 NULL, "tcp", "output reference big");
296
297 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
298 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
299 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
300 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
301 EVCNT_ATTACH_STATIC(tcp_output_copybig);
302 EVCNT_ATTACH_STATIC(tcp_output_refbig);
303
304 #endif /* TCP_OUTPUT_COUNTERS */
305
306 #ifdef TCP_REASS_COUNTERS
307 #include <sys/device.h>
308
309 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
310 NULL, "tcp_reass", "calls");
311 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
312 &tcp_reass_, "tcp_reass", "insert into empty queue");
313 struct evcnt tcp_reass_iteration[8] = {
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
318 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
319 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
320 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
321 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
322 };
323 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324 &tcp_reass_, "tcp_reass", "prepend to first");
325 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
326 &tcp_reass_, "tcp_reass", "prepend");
327 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
328 &tcp_reass_, "tcp_reass", "insert");
329 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
330 &tcp_reass_, "tcp_reass", "insert at tail");
331 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
332 &tcp_reass_, "tcp_reass", "append");
333 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
334 &tcp_reass_, "tcp_reass", "append to tail fragment");
335 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336 &tcp_reass_, "tcp_reass", "overlap at end");
337 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338 &tcp_reass_, "tcp_reass", "overlap at start");
339 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
340 &tcp_reass_, "tcp_reass", "duplicate segment");
341 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
342 &tcp_reass_, "tcp_reass", "duplicate fragment");
343
344 EVCNT_ATTACH_STATIC(tcp_reass_);
345 EVCNT_ATTACH_STATIC(tcp_reass_empty);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
351 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
352 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
353 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
354 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
355 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
356 EVCNT_ATTACH_STATIC(tcp_reass_insert);
357 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
358 EVCNT_ATTACH_STATIC(tcp_reass_append);
359 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
360 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
361 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
362 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
363 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
364
365 #endif /* TCP_REASS_COUNTERS */
366
367 #ifdef MBUFTRACE
368 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
369 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
370 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
371 struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
372 struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
373 struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
374 #endif
375
376 static int
377 do_tcpinit(void)
378 {
379
380 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
381 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
382 NULL, IPL_SOFTNET);
383
384 tcp_usrreq_init();
385
386 /* Initialize timer state. */
387 tcp_timer_init();
388
389 /* Initialize the compressed state engine. */
390 syn_cache_init();
391
392 /* Initialize the congestion control algorithms. */
393 tcp_congctl_init();
394
395 /* Initialize the TCPCB template. */
396 tcp_tcpcb_template();
397
398 /* Initialize reassembly queue */
399 tcpipqent_init();
400
401 /* SACK */
402 tcp_sack_init();
403
404 MOWNER_ATTACH(&tcp_tx_mowner);
405 MOWNER_ATTACH(&tcp_rx_mowner);
406 MOWNER_ATTACH(&tcp_reass_mowner);
407 MOWNER_ATTACH(&tcp_sock_mowner);
408 MOWNER_ATTACH(&tcp_sock_tx_mowner);
409 MOWNER_ATTACH(&tcp_sock_rx_mowner);
410 MOWNER_ATTACH(&tcp_mowner);
411
412 tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
413
414 vtw_earlyinit();
415
416 tcp_slowtimo_init();
417
418 return 0;
419 }
420
421 void
422 tcp_init_common(unsigned basehlen)
423 {
424 static ONCE_DECL(dotcpinit);
425 unsigned hlen = basehlen + sizeof(struct tcphdr);
426 unsigned oldhlen;
427
428 if (max_linkhdr + hlen > MHLEN)
429 panic("tcp_init");
430 while ((oldhlen = max_protohdr) < hlen)
431 atomic_cas_uint(&max_protohdr, oldhlen, hlen);
432
433 RUN_ONCE(&dotcpinit, do_tcpinit);
434 }
435
436 /*
437 * Tcp initialization
438 */
439 void
440 tcp_init(void)
441 {
442
443 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
444
445 tcp_init_common(sizeof(struct ip));
446 }
447
448 /*
449 * Create template to be used to send tcp packets on a connection.
450 * Call after host entry created, allocates an mbuf and fills
451 * in a skeletal tcp/ip header, minimizing the amount of work
452 * necessary when the connection is used.
453 */
454 struct mbuf *
455 tcp_template(struct tcpcb *tp)
456 {
457 struct inpcb *inp = tp->t_inpcb;
458 #ifdef INET6
459 struct in6pcb *in6p = tp->t_in6pcb;
460 #endif
461 struct tcphdr *n;
462 struct mbuf *m;
463 int hlen;
464
465 switch (tp->t_family) {
466 case AF_INET:
467 hlen = sizeof(struct ip);
468 if (inp)
469 break;
470 #ifdef INET6
471 if (in6p) {
472 /* mapped addr case */
473 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
474 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
475 break;
476 }
477 #endif
478 return NULL; /*EINVAL*/
479 #ifdef INET6
480 case AF_INET6:
481 hlen = sizeof(struct ip6_hdr);
482 if (in6p) {
483 /* more sainty check? */
484 break;
485 }
486 return NULL; /*EINVAL*/
487 #endif
488 default:
489 return NULL; /*EAFNOSUPPORT*/
490 }
491
492 KASSERT(hlen + sizeof(struct tcphdr) <= MCLBYTES);
493
494 m = tp->t_template;
495 if (m && m->m_len == hlen + sizeof(struct tcphdr)) {
496 ;
497 } else {
498 if (m)
499 m_freem(m);
500 m = tp->t_template = NULL;
501 MGETHDR(m, M_DONTWAIT, MT_HEADER);
502 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
503 MCLGET(m, M_DONTWAIT);
504 if ((m->m_flags & M_EXT) == 0) {
505 m_free(m);
506 m = NULL;
507 }
508 }
509 if (m == NULL)
510 return NULL;
511 MCLAIM(m, &tcp_mowner);
512 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
513 }
514
515 memset(mtod(m, void *), 0, m->m_len);
516
517 n = (struct tcphdr *)(mtod(m, char *) + hlen);
518
519 switch (tp->t_family) {
520 case AF_INET:
521 {
522 struct ipovly *ipov;
523 mtod(m, struct ip *)->ip_v = 4;
524 mtod(m, struct ip *)->ip_hl = hlen >> 2;
525 ipov = mtod(m, struct ipovly *);
526 ipov->ih_pr = IPPROTO_TCP;
527 ipov->ih_len = htons(sizeof(struct tcphdr));
528 if (inp) {
529 ipov->ih_src = inp->inp_laddr;
530 ipov->ih_dst = inp->inp_faddr;
531 }
532 #ifdef INET6
533 else if (in6p) {
534 /* mapped addr case */
535 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
536 sizeof(ipov->ih_src));
537 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
538 sizeof(ipov->ih_dst));
539 }
540 #endif
541
542 /*
543 * Compute the pseudo-header portion of the checksum
544 * now. We incrementally add in the TCP option and
545 * payload lengths later, and then compute the TCP
546 * checksum right before the packet is sent off onto
547 * the wire.
548 */
549 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
550 ipov->ih_dst.s_addr,
551 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
552 break;
553 }
554 #ifdef INET6
555 case AF_INET6:
556 {
557 struct ip6_hdr *ip6;
558 mtod(m, struct ip *)->ip_v = 6;
559 ip6 = mtod(m, struct ip6_hdr *);
560 ip6->ip6_nxt = IPPROTO_TCP;
561 ip6->ip6_plen = htons(sizeof(struct tcphdr));
562 ip6->ip6_src = in6p->in6p_laddr;
563 ip6->ip6_dst = in6p->in6p_faddr;
564 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
565 if (ip6_auto_flowlabel) {
566 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
567 ip6->ip6_flow |=
568 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
569 }
570 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
571 ip6->ip6_vfc |= IPV6_VERSION;
572
573 /*
574 * Compute the pseudo-header portion of the checksum
575 * now. We incrementally add in the TCP option and
576 * payload lengths later, and then compute the TCP
577 * checksum right before the packet is sent off onto
578 * the wire.
579 */
580 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
581 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
582 htonl(IPPROTO_TCP));
583 break;
584 }
585 #endif
586 }
587
588 if (inp) {
589 n->th_sport = inp->inp_lport;
590 n->th_dport = inp->inp_fport;
591 }
592 #ifdef INET6
593 else if (in6p) {
594 n->th_sport = in6p->in6p_lport;
595 n->th_dport = in6p->in6p_fport;
596 }
597 #endif
598
599 n->th_seq = 0;
600 n->th_ack = 0;
601 n->th_x2 = 0;
602 n->th_off = 5;
603 n->th_flags = 0;
604 n->th_win = 0;
605 n->th_urp = 0;
606 return m;
607 }
608
609 /*
610 * Send a single message to the TCP at address specified by
611 * the given TCP/IP header. If m == 0, then we make a copy
612 * of the tcpiphdr at ti and send directly to the addressed host.
613 * This is used to force keep alive messages out using the TCP
614 * template for a connection tp->t_template. If flags are given
615 * then we send a message back to the TCP which originated the
616 * segment ti, and discard the mbuf containing it and any other
617 * attached mbufs.
618 *
619 * In any case the ack and sequence number of the transmitted
620 * segment are as specified by the parameters.
621 */
622 int
623 tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
624 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
625 {
626 struct route *ro;
627 int error, tlen, win = 0;
628 int hlen;
629 struct ip *ip;
630 #ifdef INET6
631 struct ip6_hdr *ip6;
632 #endif
633 int family; /* family on packet, not inpcb/in6pcb! */
634 struct tcphdr *th;
635
636 if (tp != NULL && (flags & TH_RST) == 0) {
637 KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
638
639 if (tp->t_inpcb)
640 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
641 #ifdef INET6
642 if (tp->t_in6pcb)
643 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
644 #endif
645 }
646
647 th = NULL; /* Quell uninitialized warning */
648 ip = NULL;
649 #ifdef INET6
650 ip6 = NULL;
651 #endif
652 if (m == NULL) {
653 if (!mtemplate)
654 return EINVAL;
655
656 /* get family information from template */
657 switch (mtod(mtemplate, struct ip *)->ip_v) {
658 case 4:
659 family = AF_INET;
660 hlen = sizeof(struct ip);
661 break;
662 #ifdef INET6
663 case 6:
664 family = AF_INET6;
665 hlen = sizeof(struct ip6_hdr);
666 break;
667 #endif
668 default:
669 return EAFNOSUPPORT;
670 }
671
672 MGETHDR(m, M_DONTWAIT, MT_HEADER);
673 if (m) {
674 MCLAIM(m, &tcp_tx_mowner);
675 MCLGET(m, M_DONTWAIT);
676 if ((m->m_flags & M_EXT) == 0) {
677 m_free(m);
678 m = NULL;
679 }
680 }
681 if (m == NULL)
682 return ENOBUFS;
683
684 tlen = 0;
685
686 m->m_data += max_linkhdr;
687 bcopy(mtod(mtemplate, void *), mtod(m, void *),
688 mtemplate->m_len);
689 switch (family) {
690 case AF_INET:
691 ip = mtod(m, struct ip *);
692 th = (struct tcphdr *)(ip + 1);
693 break;
694 #ifdef INET6
695 case AF_INET6:
696 ip6 = mtod(m, struct ip6_hdr *);
697 th = (struct tcphdr *)(ip6 + 1);
698 break;
699 #endif
700 }
701 flags = TH_ACK;
702 } else {
703 if ((m->m_flags & M_PKTHDR) == 0) {
704 m_freem(m);
705 return EINVAL;
706 }
707 KASSERT(th0 != NULL);
708
709 /* get family information from m */
710 switch (mtod(m, struct ip *)->ip_v) {
711 case 4:
712 family = AF_INET;
713 hlen = sizeof(struct ip);
714 ip = mtod(m, struct ip *);
715 break;
716 #ifdef INET6
717 case 6:
718 family = AF_INET6;
719 hlen = sizeof(struct ip6_hdr);
720 ip6 = mtod(m, struct ip6_hdr *);
721 break;
722 #endif
723 default:
724 m_freem(m);
725 return EAFNOSUPPORT;
726 }
727 /* clear h/w csum flags inherited from rx packet */
728 m->m_pkthdr.csum_flags = 0;
729
730 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
731 tlen = sizeof(*th0);
732 else
733 tlen = th0->th_off << 2;
734
735 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
736 mtod(m, char *) + hlen == (char *)th0) {
737 m->m_len = hlen + tlen;
738 m_freem(m->m_next);
739 m->m_next = NULL;
740 } else {
741 struct mbuf *n;
742
743 KASSERT(max_linkhdr + hlen + tlen <= MCLBYTES);
744
745 MGETHDR(n, M_DONTWAIT, MT_HEADER);
746 if (n && max_linkhdr + hlen + tlen > MHLEN) {
747 MCLGET(n, M_DONTWAIT);
748 if ((n->m_flags & M_EXT) == 0) {
749 m_freem(n);
750 n = NULL;
751 }
752 }
753 if (!n) {
754 m_freem(m);
755 return ENOBUFS;
756 }
757
758 MCLAIM(n, &tcp_tx_mowner);
759 n->m_data += max_linkhdr;
760 n->m_len = hlen + tlen;
761 m_copyback(n, 0, hlen, mtod(m, void *));
762 m_copyback(n, hlen, tlen, (void *)th0);
763
764 m_freem(m);
765 m = n;
766 n = NULL;
767 }
768
769 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
770 switch (family) {
771 case AF_INET:
772 ip = mtod(m, struct ip *);
773 th = (struct tcphdr *)(ip + 1);
774 ip->ip_p = IPPROTO_TCP;
775 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
776 ip->ip_p = IPPROTO_TCP;
777 break;
778 #ifdef INET6
779 case AF_INET6:
780 ip6 = mtod(m, struct ip6_hdr *);
781 th = (struct tcphdr *)(ip6 + 1);
782 ip6->ip6_nxt = IPPROTO_TCP;
783 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
784 ip6->ip6_nxt = IPPROTO_TCP;
785 break;
786 #endif
787 }
788 xchg(th->th_dport, th->th_sport, u_int16_t);
789 #undef xchg
790 tlen = 0; /*be friendly with the following code*/
791 }
792 th->th_seq = htonl(seq);
793 th->th_ack = htonl(ack);
794 th->th_x2 = 0;
795 if ((flags & TH_SYN) == 0) {
796 if (tp)
797 win >>= tp->rcv_scale;
798 if (win > TCP_MAXWIN)
799 win = TCP_MAXWIN;
800 th->th_win = htons((u_int16_t)win);
801 th->th_off = sizeof (struct tcphdr) >> 2;
802 tlen += sizeof(*th);
803 } else {
804 tlen += th->th_off << 2;
805 }
806 m->m_len = hlen + tlen;
807 m->m_pkthdr.len = hlen + tlen;
808 m_reset_rcvif(m);
809 th->th_flags = flags;
810 th->th_urp = 0;
811
812 switch (family) {
813 case AF_INET:
814 {
815 struct ipovly *ipov = (struct ipovly *)ip;
816 memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
817 ipov->ih_len = htons((u_int16_t)tlen);
818
819 th->th_sum = 0;
820 th->th_sum = in_cksum(m, hlen + tlen);
821 ip->ip_len = htons(hlen + tlen);
822 ip->ip_ttl = ip_defttl;
823 break;
824 }
825 #ifdef INET6
826 case AF_INET6:
827 {
828 th->th_sum = 0;
829 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
830 tlen);
831 ip6->ip6_plen = htons(tlen);
832 if (tp && tp->t_in6pcb)
833 ip6->ip6_hlim = in6_selecthlim_rt(tp->t_in6pcb);
834 else
835 ip6->ip6_hlim = ip6_defhlim;
836 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
837 if (ip6_auto_flowlabel) {
838 ip6->ip6_flow |=
839 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
840 }
841 break;
842 }
843 #endif
844 }
845
846 if (tp != NULL && tp->t_inpcb != NULL) {
847 ro = &tp->t_inpcb->inp_route;
848 KASSERT(family == AF_INET);
849 KASSERT(in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr));
850 }
851 #ifdef INET6
852 else if (tp != NULL && tp->t_in6pcb != NULL) {
853 ro = (struct route *)&tp->t_in6pcb->in6p_route;
854
855 #ifdef DIAGNOSTIC
856 if (family == AF_INET) {
857 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
858 panic("tcp_respond: not mapped addr");
859 if (memcmp(&ip->ip_dst,
860 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
861 sizeof(ip->ip_dst)) != 0) {
862 panic("tcp_respond: ip_dst != in6p_faddr");
863 }
864 } else if (family == AF_INET6) {
865 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
866 &tp->t_in6pcb->in6p_faddr))
867 panic("tcp_respond: ip6_dst != in6p_faddr");
868 } else
869 panic("tcp_respond: address family mismatch");
870 #endif
871 }
872 #endif
873 else
874 ro = NULL;
875
876 switch (family) {
877 case AF_INET:
878 error = ip_output(m, NULL, ro,
879 (tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL,
880 tp ? tp->t_inpcb : NULL);
881 break;
882 #ifdef INET6
883 case AF_INET6:
884 error = ip6_output(m, NULL, ro, 0, NULL,
885 tp ? tp->t_in6pcb : NULL, NULL);
886 break;
887 #endif
888 default:
889 error = EAFNOSUPPORT;
890 break;
891 }
892
893 return error;
894 }
895
896 /*
897 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
898 * a bunch of members individually, we maintain this template for the
899 * static and mostly-static components of the TCPCB, and copy it into
900 * the new TCPCB instead.
901 */
902 static struct tcpcb tcpcb_template = {
903 .t_srtt = TCPTV_SRTTBASE,
904 .t_rttmin = TCPTV_MIN,
905
906 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
907 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
908 .snd_numholes = 0,
909 .snd_cubic_wmax = 0,
910 .snd_cubic_wmax_last = 0,
911 .snd_cubic_ctime = 0,
912
913 .t_partialacks = -1,
914 .t_bytes_acked = 0,
915 .t_sndrexmitpack = 0,
916 .t_rcvoopack = 0,
917 .t_sndzerowin = 0,
918 };
919
920 /*
921 * Updates the TCPCB template whenever a parameter that would affect
922 * the template is changed.
923 */
924 void
925 tcp_tcpcb_template(void)
926 {
927 struct tcpcb *tp = &tcpcb_template;
928 int flags;
929
930 tp->t_peermss = tcp_mssdflt;
931 tp->t_ourmss = tcp_mssdflt;
932 tp->t_segsz = tcp_mssdflt;
933
934 flags = 0;
935 if (tcp_do_rfc1323 && tcp_do_win_scale)
936 flags |= TF_REQ_SCALE;
937 if (tcp_do_rfc1323 && tcp_do_timestamps)
938 flags |= TF_REQ_TSTMP;
939 tp->t_flags = flags;
940
941 /*
942 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
943 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
944 * reasonable initial retransmit time.
945 */
946 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
947 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
948 TCPTV_MIN, TCPTV_REXMTMAX);
949
950 /* Keep Alive */
951 tp->t_keepinit = tcp_keepinit;
952 tp->t_keepidle = tcp_keepidle;
953 tp->t_keepintvl = tcp_keepintvl;
954 tp->t_keepcnt = tcp_keepcnt;
955 tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
956
957 /* MSL */
958 tp->t_msl = TCPTV_MSL;
959 }
960
961 /*
962 * Create a new TCP control block, making an
963 * empty reassembly queue and hooking it to the argument
964 * protocol control block.
965 */
966 /* family selects inpcb, or in6pcb */
967 struct tcpcb *
968 tcp_newtcpcb(int family, void *aux)
969 {
970 struct tcpcb *tp;
971 int i;
972
973 /* XXX Consider using a pool_cache for speed. */
974 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
975 if (tp == NULL)
976 return NULL;
977 memcpy(tp, &tcpcb_template, sizeof(*tp));
978 TAILQ_INIT(&tp->segq);
979 TAILQ_INIT(&tp->timeq);
980 tp->t_family = family; /* may be overridden later on */
981 TAILQ_INIT(&tp->snd_holes);
982 LIST_INIT(&tp->t_sc); /* XXX can template this */
983
984 /* Don't sweat this loop; hopefully the compiler will unroll it. */
985 for (i = 0; i < TCPT_NTIMERS; i++) {
986 callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
987 TCP_TIMER_INIT(tp, i);
988 }
989 callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
990
991 switch (family) {
992 case AF_INET:
993 {
994 struct inpcb *inp = (struct inpcb *)aux;
995
996 inp->inp_ip.ip_ttl = ip_defttl;
997 inp->inp_ppcb = (void *)tp;
998
999 tp->t_inpcb = inp;
1000 tp->t_mtudisc = ip_mtudisc;
1001 break;
1002 }
1003 #ifdef INET6
1004 case AF_INET6:
1005 {
1006 struct in6pcb *in6p = (struct in6pcb *)aux;
1007
1008 in6p->in6p_ip6.ip6_hlim = in6_selecthlim_rt(in6p);
1009 in6p->in6p_ppcb = (void *)tp;
1010
1011 tp->t_in6pcb = in6p;
1012 /* for IPv6, always try to run path MTU discovery */
1013 tp->t_mtudisc = 1;
1014 break;
1015 }
1016 #endif /* INET6 */
1017 default:
1018 for (i = 0; i < TCPT_NTIMERS; i++)
1019 callout_destroy(&tp->t_timer[i]);
1020 callout_destroy(&tp->t_delack_ch);
1021 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1022 return NULL;
1023 }
1024
1025 /*
1026 * Initialize our timebase. When we send timestamps, we take
1027 * the delta from tcp_now -- this means each connection always
1028 * gets a timebase of 1, which makes it, among other things,
1029 * more difficult to determine how long a system has been up,
1030 * and thus how many TCP sequence increments have occurred.
1031 *
1032 * We start with 1, because 0 doesn't work with linux, which
1033 * considers timestamp 0 in a SYN packet as a bug and disables
1034 * timestamps.
1035 */
1036 tp->ts_timebase = tcp_now - 1;
1037
1038 tcp_congctl_select(tp, tcp_congctl_global_name);
1039
1040 return tp;
1041 }
1042
1043 /*
1044 * Drop a TCP connection, reporting
1045 * the specified error. If connection is synchronized,
1046 * then send a RST to peer.
1047 */
1048 struct tcpcb *
1049 tcp_drop(struct tcpcb *tp, int errno)
1050 {
1051 struct socket *so = NULL;
1052
1053 KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1054
1055 if (tp->t_inpcb)
1056 so = tp->t_inpcb->inp_socket;
1057 #ifdef INET6
1058 if (tp->t_in6pcb)
1059 so = tp->t_in6pcb->in6p_socket;
1060 #endif
1061 if (!so)
1062 return NULL;
1063
1064 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1065 tp->t_state = TCPS_CLOSED;
1066 (void) tcp_output(tp);
1067 TCP_STATINC(TCP_STAT_DROPS);
1068 } else
1069 TCP_STATINC(TCP_STAT_CONNDROPS);
1070 if (errno == ETIMEDOUT && tp->t_softerror)
1071 errno = tp->t_softerror;
1072 so->so_error = errno;
1073 return (tcp_close(tp));
1074 }
1075
1076 /*
1077 * Close a TCP control block:
1078 * discard all space held by the tcp
1079 * discard internet protocol block
1080 * wake up any sleepers
1081 */
1082 struct tcpcb *
1083 tcp_close(struct tcpcb *tp)
1084 {
1085 struct inpcb *inp;
1086 #ifdef INET6
1087 struct in6pcb *in6p;
1088 #endif
1089 struct socket *so;
1090 #ifdef RTV_RTT
1091 struct rtentry *rt = NULL;
1092 #endif
1093 struct route *ro;
1094 int j;
1095
1096 inp = tp->t_inpcb;
1097 #ifdef INET6
1098 in6p = tp->t_in6pcb;
1099 #endif
1100 so = NULL;
1101 ro = NULL;
1102 if (inp) {
1103 so = inp->inp_socket;
1104 ro = &inp->inp_route;
1105 }
1106 #ifdef INET6
1107 else if (in6p) {
1108 so = in6p->in6p_socket;
1109 ro = (struct route *)&in6p->in6p_route;
1110 }
1111 #endif
1112
1113 #ifdef RTV_RTT
1114 /*
1115 * If we sent enough data to get some meaningful characteristics,
1116 * save them in the routing entry. 'Enough' is arbitrarily
1117 * defined as the sendpipesize (default 4K) * 16. This would
1118 * give us 16 rtt samples assuming we only get one sample per
1119 * window (the usual case on a long haul net). 16 samples is
1120 * enough for the srtt filter to converge to within 5% of the correct
1121 * value; fewer samples and we could save a very bogus rtt.
1122 *
1123 * Don't update the default route's characteristics and don't
1124 * update anything that the user "locked".
1125 */
1126 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1127 ro && (rt = rtcache_validate(ro)) != NULL &&
1128 !in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
1129 u_long i = 0;
1130
1131 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1132 i = tp->t_srtt *
1133 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1134 if (rt->rt_rmx.rmx_rtt && i)
1135 /*
1136 * filter this update to half the old & half
1137 * the new values, converting scale.
1138 * See route.h and tcp_var.h for a
1139 * description of the scaling constants.
1140 */
1141 rt->rt_rmx.rmx_rtt =
1142 (rt->rt_rmx.rmx_rtt + i) / 2;
1143 else
1144 rt->rt_rmx.rmx_rtt = i;
1145 }
1146 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1147 i = tp->t_rttvar *
1148 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1149 if (rt->rt_rmx.rmx_rttvar && i)
1150 rt->rt_rmx.rmx_rttvar =
1151 (rt->rt_rmx.rmx_rttvar + i) / 2;
1152 else
1153 rt->rt_rmx.rmx_rttvar = i;
1154 }
1155 /*
1156 * update the pipelimit (ssthresh) if it has been updated
1157 * already or if a pipesize was specified & the threshhold
1158 * got below half the pipesize. I.e., wait for bad news
1159 * before we start updating, then update on both good
1160 * and bad news.
1161 */
1162 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1163 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1164 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1165 /*
1166 * convert the limit from user data bytes to
1167 * packets then to packet data bytes.
1168 */
1169 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1170 if (i < 2)
1171 i = 2;
1172 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1173 if (rt->rt_rmx.rmx_ssthresh)
1174 rt->rt_rmx.rmx_ssthresh =
1175 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1176 else
1177 rt->rt_rmx.rmx_ssthresh = i;
1178 }
1179 }
1180 rtcache_unref(rt, ro);
1181 #endif /* RTV_RTT */
1182 /* free the reassembly queue, if any */
1183 TCP_REASS_LOCK(tp);
1184 (void) tcp_freeq(tp);
1185 TCP_REASS_UNLOCK(tp);
1186
1187 /* free the SACK holes list. */
1188 tcp_free_sackholes(tp);
1189 tcp_congctl_release(tp);
1190 syn_cache_cleanup(tp);
1191
1192 if (tp->t_template) {
1193 m_free(tp->t_template);
1194 tp->t_template = NULL;
1195 }
1196
1197 /*
1198 * Detaching the pcb will unlock the socket/tcpcb, and stopping
1199 * the timers can also drop the lock. We need to prevent access
1200 * to the tcpcb as it's half torn down. Flag the pcb as dead
1201 * (prevents access by timers) and only then detach it.
1202 */
1203 tp->t_flags |= TF_DEAD;
1204 if (inp) {
1205 inp->inp_ppcb = 0;
1206 soisdisconnected(so);
1207 in_pcbdetach(inp);
1208 }
1209 #ifdef INET6
1210 else if (in6p) {
1211 in6p->in6p_ppcb = 0;
1212 soisdisconnected(so);
1213 in6_pcbdetach(in6p);
1214 }
1215 #endif
1216 /*
1217 * pcb is no longer visble elsewhere, so we can safely release
1218 * the lock in callout_halt() if needed.
1219 */
1220 TCP_STATINC(TCP_STAT_CLOSED);
1221 for (j = 0; j < TCPT_NTIMERS; j++) {
1222 callout_halt(&tp->t_timer[j], softnet_lock);
1223 callout_destroy(&tp->t_timer[j]);
1224 }
1225 callout_halt(&tp->t_delack_ch, softnet_lock);
1226 callout_destroy(&tp->t_delack_ch);
1227 pool_put(&tcpcb_pool, tp);
1228
1229 return NULL;
1230 }
1231
1232 int
1233 tcp_freeq(struct tcpcb *tp)
1234 {
1235 struct ipqent *qe;
1236 int rv = 0;
1237
1238 TCP_REASS_LOCK_CHECK(tp);
1239
1240 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1241 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1242 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1243 m_freem(qe->ipqe_m);
1244 tcpipqent_free(qe);
1245 rv = 1;
1246 }
1247 tp->t_segqlen = 0;
1248 KASSERT(TAILQ_EMPTY(&tp->timeq));
1249 return (rv);
1250 }
1251
1252 void
1253 tcp_fasttimo(void)
1254 {
1255 if (tcp_drainwanted) {
1256 tcp_drain();
1257 tcp_drainwanted = 0;
1258 }
1259 }
1260
1261 void
1262 tcp_drainstub(void)
1263 {
1264 tcp_drainwanted = 1;
1265 }
1266
1267 /*
1268 * Protocol drain routine. Called when memory is in short supply.
1269 * Called from pr_fasttimo thus a callout context.
1270 */
1271 void
1272 tcp_drain(void)
1273 {
1274 struct inpcb_hdr *inph;
1275 struct tcpcb *tp;
1276
1277 mutex_enter(softnet_lock);
1278 KERNEL_LOCK(1, NULL);
1279
1280 /*
1281 * Free the sequence queue of all TCP connections.
1282 */
1283 TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1284 switch (inph->inph_af) {
1285 case AF_INET:
1286 tp = intotcpcb((struct inpcb *)inph);
1287 break;
1288 #ifdef INET6
1289 case AF_INET6:
1290 tp = in6totcpcb((struct in6pcb *)inph);
1291 break;
1292 #endif
1293 default:
1294 tp = NULL;
1295 break;
1296 }
1297 if (tp != NULL) {
1298 /*
1299 * We may be called from a device's interrupt
1300 * context. If the tcpcb is already busy,
1301 * just bail out now.
1302 */
1303 if (tcp_reass_lock_try(tp) == 0)
1304 continue;
1305 if (tcp_freeq(tp))
1306 TCP_STATINC(TCP_STAT_CONNSDRAINED);
1307 TCP_REASS_UNLOCK(tp);
1308 }
1309 }
1310
1311 KERNEL_UNLOCK_ONE(NULL);
1312 mutex_exit(softnet_lock);
1313 }
1314
1315 /*
1316 * Notify a tcp user of an asynchronous error;
1317 * store error as soft error, but wake up user
1318 * (for now, won't do anything until can select for soft error).
1319 */
1320 void
1321 tcp_notify(struct inpcb *inp, int error)
1322 {
1323 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1324 struct socket *so = inp->inp_socket;
1325
1326 /*
1327 * Ignore some errors if we are hooked up.
1328 * If connection hasn't completed, has retransmitted several times,
1329 * and receives a second error, give up now. This is better
1330 * than waiting a long time to establish a connection that
1331 * can never complete.
1332 */
1333 if (tp->t_state == TCPS_ESTABLISHED &&
1334 (error == EHOSTUNREACH || error == ENETUNREACH ||
1335 error == EHOSTDOWN)) {
1336 return;
1337 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1338 tp->t_rxtshift > 3 && tp->t_softerror)
1339 so->so_error = error;
1340 else
1341 tp->t_softerror = error;
1342 cv_broadcast(&so->so_cv);
1343 sorwakeup(so);
1344 sowwakeup(so);
1345 }
1346
1347 #ifdef INET6
1348 void
1349 tcp6_notify(struct in6pcb *in6p, int error)
1350 {
1351 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1352 struct socket *so = in6p->in6p_socket;
1353
1354 /*
1355 * Ignore some errors if we are hooked up.
1356 * If connection hasn't completed, has retransmitted several times,
1357 * and receives a second error, give up now. This is better
1358 * than waiting a long time to establish a connection that
1359 * can never complete.
1360 */
1361 if (tp->t_state == TCPS_ESTABLISHED &&
1362 (error == EHOSTUNREACH || error == ENETUNREACH ||
1363 error == EHOSTDOWN)) {
1364 return;
1365 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1366 tp->t_rxtshift > 3 && tp->t_softerror)
1367 so->so_error = error;
1368 else
1369 tp->t_softerror = error;
1370 cv_broadcast(&so->so_cv);
1371 sorwakeup(so);
1372 sowwakeup(so);
1373 }
1374 #endif
1375
1376 #ifdef INET6
1377 void *
1378 tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
1379 {
1380 struct tcphdr th;
1381 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1382 int nmatch;
1383 struct ip6_hdr *ip6;
1384 const struct sockaddr_in6 *sa6_src = NULL;
1385 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
1386 struct mbuf *m;
1387 int off;
1388
1389 if (sa->sa_family != AF_INET6 ||
1390 sa->sa_len != sizeof(struct sockaddr_in6))
1391 return NULL;
1392 if ((unsigned)cmd >= PRC_NCMDS)
1393 return NULL;
1394 else if (cmd == PRC_QUENCH) {
1395 /*
1396 * Don't honor ICMP Source Quench messages meant for
1397 * TCP connections.
1398 */
1399 return NULL;
1400 } else if (PRC_IS_REDIRECT(cmd))
1401 notify = in6_rtchange, d = NULL;
1402 else if (cmd == PRC_MSGSIZE)
1403 ; /* special code is present, see below */
1404 else if (cmd == PRC_HOSTDEAD)
1405 d = NULL;
1406 else if (inet6ctlerrmap[cmd] == 0)
1407 return NULL;
1408
1409 /* if the parameter is from icmp6, decode it. */
1410 if (d != NULL) {
1411 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1412 m = ip6cp->ip6c_m;
1413 ip6 = ip6cp->ip6c_ip6;
1414 off = ip6cp->ip6c_off;
1415 sa6_src = ip6cp->ip6c_src;
1416 } else {
1417 m = NULL;
1418 ip6 = NULL;
1419 sa6_src = &sa6_any;
1420 off = 0;
1421 }
1422
1423 if (ip6) {
1424 /* check if we can safely examine src and dst ports */
1425 if (m->m_pkthdr.len < off + sizeof(th)) {
1426 if (cmd == PRC_MSGSIZE)
1427 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1428 return NULL;
1429 }
1430
1431 memset(&th, 0, sizeof(th));
1432 m_copydata(m, off, sizeof(th), (void *)&th);
1433
1434 if (cmd == PRC_MSGSIZE) {
1435 int valid = 0;
1436
1437 /*
1438 * Check to see if we have a valid TCP connection
1439 * corresponding to the address in the ICMPv6 message
1440 * payload.
1441 */
1442 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1443 th.th_dport,
1444 (const struct in6_addr *)&sa6_src->sin6_addr,
1445 th.th_sport, 0, 0))
1446 valid++;
1447
1448 /*
1449 * Depending on the value of "valid" and routing table
1450 * size (mtudisc_{hi,lo}wat), we will:
1451 * - recalcurate the new MTU and create the
1452 * corresponding routing entry, or
1453 * - ignore the MTU change notification.
1454 */
1455 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1456
1457 /*
1458 * no need to call in6_pcbnotify, it should have been
1459 * called via callback if necessary
1460 */
1461 return NULL;
1462 }
1463
1464 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1465 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1466 if (nmatch == 0 && syn_cache_count &&
1467 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1468 inet6ctlerrmap[cmd] == ENETUNREACH ||
1469 inet6ctlerrmap[cmd] == EHOSTDOWN))
1470 syn_cache_unreach((const struct sockaddr *)sa6_src,
1471 sa, &th);
1472 } else {
1473 (void) in6_pcbnotify(&tcbtable, sa, 0,
1474 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1475 }
1476
1477 return NULL;
1478 }
1479 #endif
1480
1481 /* assumes that ip header and tcp header are contiguous on mbuf */
1482 void *
1483 tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
1484 {
1485 struct ip *ip = v;
1486 struct tcphdr *th;
1487 struct icmp *icp;
1488 extern const int inetctlerrmap[];
1489 void (*notify)(struct inpcb *, int) = tcp_notify;
1490 int errno;
1491 int nmatch;
1492 struct tcpcb *tp;
1493 u_int mtu;
1494 tcp_seq seq;
1495 struct inpcb *inp;
1496 #ifdef INET6
1497 struct in6pcb *in6p;
1498 struct in6_addr src6, dst6;
1499 #endif
1500
1501 if (sa->sa_family != AF_INET ||
1502 sa->sa_len != sizeof(struct sockaddr_in))
1503 return NULL;
1504 if ((unsigned)cmd >= PRC_NCMDS)
1505 return NULL;
1506 errno = inetctlerrmap[cmd];
1507 if (cmd == PRC_QUENCH)
1508 /*
1509 * Don't honor ICMP Source Quench messages meant for
1510 * TCP connections.
1511 */
1512 return NULL;
1513 else if (PRC_IS_REDIRECT(cmd))
1514 notify = in_rtchange, ip = 0;
1515 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1516 /*
1517 * Check to see if we have a valid TCP connection
1518 * corresponding to the address in the ICMP message
1519 * payload.
1520 *
1521 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1522 */
1523 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1524 #ifdef INET6
1525 in6_in_2_v4mapin6(&ip->ip_src, &src6);
1526 in6_in_2_v4mapin6(&ip->ip_dst, &dst6);
1527 #endif
1528 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1529 th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
1530 #ifdef INET6
1531 in6p = NULL;
1532 #else
1533 ;
1534 #endif
1535 #ifdef INET6
1536 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1537 th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
1538 ;
1539 #endif
1540 else
1541 return NULL;
1542
1543 /*
1544 * Now that we've validated that we are actually communicating
1545 * with the host indicated in the ICMP message, locate the
1546 * ICMP header, recalculate the new MTU, and create the
1547 * corresponding routing entry.
1548 */
1549 icp = (struct icmp *)((char *)ip -
1550 offsetof(struct icmp, icmp_ip));
1551 if (inp) {
1552 if ((tp = intotcpcb(inp)) == NULL)
1553 return NULL;
1554 }
1555 #ifdef INET6
1556 else if (in6p) {
1557 if ((tp = in6totcpcb(in6p)) == NULL)
1558 return NULL;
1559 }
1560 #endif
1561 else
1562 return NULL;
1563 seq = ntohl(th->th_seq);
1564 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1565 return NULL;
1566 /*
1567 * If the ICMP message advertises a Next-Hop MTU
1568 * equal or larger than the maximum packet size we have
1569 * ever sent, drop the message.
1570 */
1571 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1572 if (mtu >= tp->t_pmtud_mtu_sent)
1573 return NULL;
1574 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1575 /*
1576 * Calculate new MTU, and create corresponding
1577 * route (traditional PMTUD).
1578 */
1579 tp->t_flags &= ~TF_PMTUD_PEND;
1580 icmp_mtudisc(icp, ip->ip_dst);
1581 } else {
1582 /*
1583 * Record the information got in the ICMP
1584 * message; act on it later.
1585 * If we had already recorded an ICMP message,
1586 * replace the old one only if the new message
1587 * refers to an older TCP segment
1588 */
1589 if (tp->t_flags & TF_PMTUD_PEND) {
1590 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1591 return NULL;
1592 } else
1593 tp->t_flags |= TF_PMTUD_PEND;
1594 tp->t_pmtud_th_seq = seq;
1595 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1596 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1597 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1598 }
1599 return NULL;
1600 } else if (cmd == PRC_HOSTDEAD)
1601 ip = 0;
1602 else if (errno == 0)
1603 return NULL;
1604 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1605 th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
1606 nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
1607 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1608 if (nmatch == 0 && syn_cache_count &&
1609 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1610 inetctlerrmap[cmd] == ENETUNREACH ||
1611 inetctlerrmap[cmd] == EHOSTDOWN)) {
1612 struct sockaddr_in sin;
1613 memset(&sin, 0, sizeof(sin));
1614 sin.sin_len = sizeof(sin);
1615 sin.sin_family = AF_INET;
1616 sin.sin_port = th->th_sport;
1617 sin.sin_addr = ip->ip_src;
1618 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1619 }
1620
1621 /* XXX mapped address case */
1622 } else
1623 in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
1624 notify);
1625 return NULL;
1626 }
1627
1628 /*
1629 * When a source quench is received, we are being notified of congestion.
1630 * Close the congestion window down to the Loss Window (one segment).
1631 * We will gradually open it again as we proceed.
1632 */
1633 void
1634 tcp_quench(struct inpcb *inp)
1635 {
1636 struct tcpcb *tp = intotcpcb(inp);
1637
1638 if (tp) {
1639 tp->snd_cwnd = tp->t_segsz;
1640 tp->t_bytes_acked = 0;
1641 }
1642 }
1643
1644 #ifdef INET6
1645 void
1646 tcp6_quench(struct in6pcb *in6p)
1647 {
1648 struct tcpcb *tp = in6totcpcb(in6p);
1649
1650 if (tp) {
1651 tp->snd_cwnd = tp->t_segsz;
1652 tp->t_bytes_acked = 0;
1653 }
1654 }
1655 #endif
1656
1657 /*
1658 * Path MTU Discovery handlers.
1659 */
1660 void
1661 tcp_mtudisc_callback(struct in_addr faddr)
1662 {
1663 #ifdef INET6
1664 struct in6_addr in6;
1665 #endif
1666
1667 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1668 #ifdef INET6
1669 in6_in_2_v4mapin6(&faddr, &in6);
1670 tcp6_mtudisc_callback(&in6);
1671 #endif
1672 }
1673
1674 /*
1675 * On receipt of path MTU corrections, flush old route and replace it
1676 * with the new one. Retransmit all unacknowledged packets, to ensure
1677 * that all packets will be received.
1678 */
1679 void
1680 tcp_mtudisc(struct inpcb *inp, int errno)
1681 {
1682 struct tcpcb *tp = intotcpcb(inp);
1683 struct rtentry *rt;
1684
1685 if (tp == NULL)
1686 return;
1687
1688 rt = in_pcbrtentry(inp);
1689 if (rt != NULL) {
1690 /*
1691 * If this was not a host route, remove and realloc.
1692 */
1693 if ((rt->rt_flags & RTF_HOST) == 0) {
1694 in_pcbrtentry_unref(rt, inp);
1695 in_rtchange(inp, errno);
1696 if ((rt = in_pcbrtentry(inp)) == NULL)
1697 return;
1698 }
1699
1700 /*
1701 * Slow start out of the error condition. We
1702 * use the MTU because we know it's smaller
1703 * than the previously transmitted segment.
1704 *
1705 * Note: This is more conservative than the
1706 * suggestion in draft-floyd-incr-init-win-03.
1707 */
1708 if (rt->rt_rmx.rmx_mtu != 0)
1709 tp->snd_cwnd =
1710 TCP_INITIAL_WINDOW(tcp_init_win,
1711 rt->rt_rmx.rmx_mtu);
1712 in_pcbrtentry_unref(rt, inp);
1713 }
1714
1715 /*
1716 * Resend unacknowledged packets.
1717 */
1718 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1719 tcp_output(tp);
1720 }
1721
1722 #ifdef INET6
1723 /*
1724 * Path MTU Discovery handlers.
1725 */
1726 void
1727 tcp6_mtudisc_callback(struct in6_addr *faddr)
1728 {
1729 struct sockaddr_in6 sin6;
1730
1731 memset(&sin6, 0, sizeof(sin6));
1732 sin6.sin6_family = AF_INET6;
1733 sin6.sin6_len = sizeof(struct sockaddr_in6);
1734 sin6.sin6_addr = *faddr;
1735 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1736 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1737 }
1738
1739 void
1740 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1741 {
1742 struct tcpcb *tp = in6totcpcb(in6p);
1743 struct rtentry *rt;
1744
1745 if (tp == NULL)
1746 return;
1747
1748 rt = in6_pcbrtentry(in6p);
1749 if (rt != NULL) {
1750 /*
1751 * If this was not a host route, remove and realloc.
1752 */
1753 if ((rt->rt_flags & RTF_HOST) == 0) {
1754 in6_pcbrtentry_unref(rt, in6p);
1755 in6_rtchange(in6p, errno);
1756 rt = in6_pcbrtentry(in6p);
1757 if (rt == NULL)
1758 return;
1759 }
1760
1761 /*
1762 * Slow start out of the error condition. We
1763 * use the MTU because we know it's smaller
1764 * than the previously transmitted segment.
1765 *
1766 * Note: This is more conservative than the
1767 * suggestion in draft-floyd-incr-init-win-03.
1768 */
1769 if (rt->rt_rmx.rmx_mtu != 0) {
1770 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
1771 rt->rt_rmx.rmx_mtu);
1772 }
1773 in6_pcbrtentry_unref(rt, in6p);
1774 }
1775
1776 /*
1777 * Resend unacknowledged packets.
1778 */
1779 tp->snd_nxt = tp->sack_newdata = tp->snd_una;
1780 tcp_output(tp);
1781 }
1782 #endif /* INET6 */
1783
1784 /*
1785 * Compute the MSS to advertise to the peer. Called only during
1786 * the 3-way handshake. If we are the server (peer initiated
1787 * connection), we are called with a pointer to the interface
1788 * on which the SYN packet arrived. If we are the client (we
1789 * initiated connection), we are called with a pointer to the
1790 * interface out which this connection should go.
1791 *
1792 * NOTE: Do not subtract IP option/extension header size nor IPsec
1793 * header size from MSS advertisement. MSS option must hold the maximum
1794 * segment size we can accept, so it must always be:
1795 * max(if mtu) - ip header - tcp header
1796 */
1797 u_long
1798 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1799 {
1800 extern u_long in_maxmtu;
1801 u_long mss = 0;
1802 u_long hdrsiz;
1803
1804 /*
1805 * In order to avoid defeating path MTU discovery on the peer,
1806 * we advertise the max MTU of all attached networks as our MSS,
1807 * per RFC 1191, section 3.1.
1808 *
1809 * We provide the option to advertise just the MTU of
1810 * the interface on which we hope this connection will
1811 * be receiving. If we are responding to a SYN, we
1812 * will have a pretty good idea about this, but when
1813 * initiating a connection there is a bit more doubt.
1814 *
1815 * We also need to ensure that loopback has a large enough
1816 * MSS, as the loopback MTU is never included in in_maxmtu.
1817 */
1818
1819 if (ifp != NULL)
1820 switch (af) {
1821 case AF_INET:
1822 mss = ifp->if_mtu;
1823 break;
1824 #ifdef INET6
1825 case AF_INET6:
1826 mss = IN6_LINKMTU(ifp);
1827 break;
1828 #endif
1829 }
1830
1831 if (tcp_mss_ifmtu == 0)
1832 switch (af) {
1833 case AF_INET:
1834 mss = uimax(in_maxmtu, mss);
1835 break;
1836 #ifdef INET6
1837 case AF_INET6:
1838 mss = uimax(in6_maxmtu, mss);
1839 break;
1840 #endif
1841 }
1842
1843 switch (af) {
1844 case AF_INET:
1845 hdrsiz = sizeof(struct ip);
1846 break;
1847 #ifdef INET6
1848 case AF_INET6:
1849 hdrsiz = sizeof(struct ip6_hdr);
1850 break;
1851 #endif
1852 default:
1853 hdrsiz = 0;
1854 break;
1855 }
1856 hdrsiz += sizeof(struct tcphdr);
1857 if (mss > hdrsiz)
1858 mss -= hdrsiz;
1859
1860 mss = uimax(tcp_mssdflt, mss);
1861 return (mss);
1862 }
1863
1864 /*
1865 * Set connection variables based on the peer's advertised MSS.
1866 * We are passed the TCPCB for the actual connection. If we
1867 * are the server, we are called by the compressed state engine
1868 * when the 3-way handshake is complete. If we are the client,
1869 * we are called when we receive the SYN,ACK from the server.
1870 *
1871 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1872 * before this routine is called!
1873 */
1874 void
1875 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1876 {
1877 struct socket *so;
1878 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1879 struct rtentry *rt;
1880 #endif
1881 u_long bufsize;
1882 int mss;
1883
1884 KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1885
1886 so = NULL;
1887 rt = NULL;
1888
1889 if (tp->t_inpcb) {
1890 so = tp->t_inpcb->inp_socket;
1891 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1892 rt = in_pcbrtentry(tp->t_inpcb);
1893 #endif
1894 }
1895
1896 #ifdef INET6
1897 if (tp->t_in6pcb) {
1898 so = tp->t_in6pcb->in6p_socket;
1899 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1900 rt = in6_pcbrtentry(tp->t_in6pcb);
1901 #endif
1902 }
1903 #endif
1904
1905 /*
1906 * As per RFC1122, use the default MSS value, unless they
1907 * sent us an offer. Do not accept offers less than 256 bytes.
1908 */
1909 mss = tcp_mssdflt;
1910 if (offer)
1911 mss = offer;
1912 mss = uimax(mss, 256); /* sanity */
1913 tp->t_peermss = mss;
1914 mss -= tcp_optlen(tp);
1915 if (tp->t_inpcb)
1916 mss -= ip_optlen(tp->t_inpcb);
1917 #ifdef INET6
1918 if (tp->t_in6pcb)
1919 mss -= ip6_optlen(tp->t_in6pcb);
1920 #endif
1921 /*
1922 * XXX XXX What if mss goes negative or zero? This can happen if a
1923 * socket has large IPv6 options. We crash below.
1924 */
1925
1926 /*
1927 * If there's a pipesize, change the socket buffer to that size.
1928 * Make the socket buffer an integral number of MSS units. If
1929 * the MSS is larger than the socket buffer, artificially decrease
1930 * the MSS.
1931 */
1932 #ifdef RTV_SPIPE
1933 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1934 bufsize = rt->rt_rmx.rmx_sendpipe;
1935 else
1936 #endif
1937 {
1938 KASSERT(so != NULL);
1939 bufsize = so->so_snd.sb_hiwat;
1940 }
1941 if (bufsize < mss)
1942 mss = bufsize;
1943 else {
1944 bufsize = roundup(bufsize, mss);
1945 if (bufsize > sb_max)
1946 bufsize = sb_max;
1947 (void) sbreserve(&so->so_snd, bufsize, so);
1948 }
1949 tp->t_segsz = mss;
1950
1951 #ifdef RTV_SSTHRESH
1952 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1953 /*
1954 * There's some sort of gateway or interface buffer
1955 * limit on the path. Use this to set the slow
1956 * start threshold, but set the threshold to no less
1957 * than 2 * MSS.
1958 */
1959 tp->snd_ssthresh = uimax(2 * mss, rt->rt_rmx.rmx_ssthresh);
1960 }
1961 #endif
1962 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1963 if (tp->t_inpcb)
1964 in_pcbrtentry_unref(rt, tp->t_inpcb);
1965 #ifdef INET6
1966 if (tp->t_in6pcb)
1967 in6_pcbrtentry_unref(rt, tp->t_in6pcb);
1968 #endif
1969 #endif
1970 }
1971
1972 /*
1973 * Processing necessary when a TCP connection is established.
1974 */
1975 void
1976 tcp_established(struct tcpcb *tp)
1977 {
1978 struct socket *so;
1979 #ifdef RTV_RPIPE
1980 struct rtentry *rt;
1981 #endif
1982 u_long bufsize;
1983
1984 KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
1985
1986 so = NULL;
1987 rt = NULL;
1988
1989 /* This is a while() to reduce the dreadful stairstepping below */
1990 while (tp->t_inpcb) {
1991 so = tp->t_inpcb->inp_socket;
1992 #if defined(RTV_RPIPE)
1993 rt = in_pcbrtentry(tp->t_inpcb);
1994 #endif
1995 if (__predict_true(tcp_msl_enable)) {
1996 if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
1997 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
1998 break;
1999 }
2000
2001 if (__predict_false(tcp_rttlocal)) {
2002 /* This may be adjusted by tcp_input */
2003 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2004 break;
2005 }
2006 if (in_localaddr(tp->t_inpcb->inp_faddr)) {
2007 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2008 break;
2009 }
2010 }
2011 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2012 break;
2013 }
2014
2015 #ifdef INET6
2016 /* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
2017 while (!tp->t_inpcb && tp->t_in6pcb) {
2018 so = tp->t_in6pcb->in6p_socket;
2019 #if defined(RTV_RPIPE)
2020 rt = in6_pcbrtentry(tp->t_in6pcb);
2021 #endif
2022 if (__predict_true(tcp_msl_enable)) {
2023 extern const struct in6_addr in6addr_loopback;
2024
2025 if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
2026 &in6addr_loopback)) {
2027 tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
2028 break;
2029 }
2030
2031 if (__predict_false(tcp_rttlocal)) {
2032 /* This may be adjusted by tcp_input */
2033 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2034 break;
2035 }
2036 if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
2037 tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
2038 break;
2039 }
2040 }
2041 tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
2042 break;
2043 }
2044 #endif
2045
2046 tp->t_state = TCPS_ESTABLISHED;
2047 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
2048
2049 #ifdef RTV_RPIPE
2050 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2051 bufsize = rt->rt_rmx.rmx_recvpipe;
2052 else
2053 #endif
2054 {
2055 KASSERT(so != NULL);
2056 bufsize = so->so_rcv.sb_hiwat;
2057 }
2058 if (bufsize > tp->t_ourmss) {
2059 bufsize = roundup(bufsize, tp->t_ourmss);
2060 if (bufsize > sb_max)
2061 bufsize = sb_max;
2062 (void) sbreserve(&so->so_rcv, bufsize, so);
2063 }
2064 #ifdef RTV_RPIPE
2065 if (tp->t_inpcb)
2066 in_pcbrtentry_unref(rt, tp->t_inpcb);
2067 #ifdef INET6
2068 if (tp->t_in6pcb)
2069 in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2070 #endif
2071 #endif
2072 }
2073
2074 /*
2075 * Check if there's an initial rtt or rttvar. Convert from the
2076 * route-table units to scaled multiples of the slow timeout timer.
2077 * Called only during the 3-way handshake.
2078 */
2079 void
2080 tcp_rmx_rtt(struct tcpcb *tp)
2081 {
2082 #ifdef RTV_RTT
2083 struct rtentry *rt = NULL;
2084 int rtt;
2085
2086 KASSERT(!(tp->t_inpcb && tp->t_in6pcb));
2087
2088 if (tp->t_inpcb)
2089 rt = in_pcbrtentry(tp->t_inpcb);
2090 #ifdef INET6
2091 if (tp->t_in6pcb)
2092 rt = in6_pcbrtentry(tp->t_in6pcb);
2093 #endif
2094 if (rt == NULL)
2095 return;
2096
2097 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2098 /*
2099 * XXX The lock bit for MTU indicates that the value
2100 * is also a minimum value; this is subject to time.
2101 */
2102 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2103 TCPT_RANGESET(tp->t_rttmin,
2104 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2105 TCPTV_MIN, TCPTV_REXMTMAX);
2106 tp->t_srtt = rtt /
2107 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2108 if (rt->rt_rmx.rmx_rttvar) {
2109 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2110 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2111 (TCP_RTTVAR_SHIFT + 2));
2112 } else {
2113 /* Default variation is +- 1 rtt */
2114 tp->t_rttvar =
2115 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2116 }
2117 TCPT_RANGESET(tp->t_rxtcur,
2118 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2119 tp->t_rttmin, TCPTV_REXMTMAX);
2120 }
2121 if (tp->t_inpcb)
2122 in_pcbrtentry_unref(rt, tp->t_inpcb);
2123 #ifdef INET6
2124 if (tp->t_in6pcb)
2125 in6_pcbrtentry_unref(rt, tp->t_in6pcb);
2126 #endif
2127 #endif
2128 }
2129
2130 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2131
2132 /*
2133 * Get a new sequence value given a tcp control block
2134 */
2135 tcp_seq
2136 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2137 {
2138
2139 if (tp->t_inpcb != NULL) {
2140 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2141 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2142 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2143 addin));
2144 }
2145 #ifdef INET6
2146 if (tp->t_in6pcb != NULL) {
2147 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2148 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2149 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2150 addin));
2151 }
2152 #endif
2153
2154 panic("tcp_new_iss: unreachable");
2155 }
2156
2157 static u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2158
2159 /*
2160 * Initialize RFC 1948 ISS Secret
2161 */
2162 static int
2163 tcp_iss_secret_init(void)
2164 {
2165 cprng_strong(kern_cprng,
2166 tcp_iss_secret, sizeof(tcp_iss_secret), 0);
2167
2168 return 0;
2169 }
2170
2171 /*
2172 * This routine actually generates a new TCP initial sequence number.
2173 */
2174 tcp_seq
2175 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2176 size_t addrsz, tcp_seq addin)
2177 {
2178 tcp_seq tcp_iss;
2179
2180 if (tcp_do_rfc1948) {
2181 MD5_CTX ctx;
2182 u_int8_t hash[16]; /* XXX MD5 knowledge */
2183 static ONCE_DECL(tcp_iss_secret_control);
2184
2185 /*
2186 * If we haven't been here before, initialize our cryptographic
2187 * hash secret.
2188 */
2189 RUN_ONCE(&tcp_iss_secret_control, tcp_iss_secret_init);
2190
2191 /*
2192 * Compute the base value of the ISS. It is a hash
2193 * of (saddr, sport, daddr, dport, secret).
2194 */
2195 MD5Init(&ctx);
2196
2197 MD5Update(&ctx, (u_char *) laddr, addrsz);
2198 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2199
2200 MD5Update(&ctx, (u_char *) faddr, addrsz);
2201 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2202
2203 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2204
2205 MD5Final(hash, &ctx);
2206
2207 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2208
2209 /*
2210 * Now increment our "timer", and add it in to
2211 * the computed value.
2212 *
2213 * XXX Use `addin'?
2214 * XXX TCP_ISSINCR too large to use?
2215 */
2216 tcp_iss_seq += TCP_ISSINCR;
2217 #ifdef TCPISS_DEBUG
2218 printf("ISS hash 0x%08x, ", tcp_iss);
2219 #endif
2220 tcp_iss += tcp_iss_seq + addin;
2221 #ifdef TCPISS_DEBUG
2222 printf("new ISS 0x%08x\n", tcp_iss);
2223 #endif
2224 } else {
2225 /*
2226 * Randomize.
2227 */
2228 tcp_iss = cprng_fast32();
2229
2230 /*
2231 * If we were asked to add some amount to a known value,
2232 * we will take a random value obtained above, mask off
2233 * the upper bits, and add in the known value. We also
2234 * add in a constant to ensure that we are at least a
2235 * certain distance from the original value.
2236 *
2237 * This is used when an old connection is in timed wait
2238 * and we have a new one coming in, for instance.
2239 */
2240 if (addin != 0) {
2241 #ifdef TCPISS_DEBUG
2242 printf("Random %08x, ", tcp_iss);
2243 #endif
2244 tcp_iss &= TCP_ISS_RANDOM_MASK;
2245 tcp_iss += addin + TCP_ISSINCR;
2246 #ifdef TCPISS_DEBUG
2247 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2248 #endif
2249 } else {
2250 tcp_iss &= TCP_ISS_RANDOM_MASK;
2251 tcp_iss += tcp_iss_seq;
2252 tcp_iss_seq += TCP_ISSINCR;
2253 #ifdef TCPISS_DEBUG
2254 printf("ISS %08x\n", tcp_iss);
2255 #endif
2256 }
2257 }
2258
2259 return (tcp_iss);
2260 }
2261
2262 #if defined(IPSEC)
2263 /* compute ESP/AH header size for TCP, including outer IP header. */
2264 size_t
2265 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2266 {
2267 struct inpcb *inp;
2268 size_t hdrsiz;
2269
2270 /* XXX mapped addr case (tp->t_in6pcb) */
2271 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2272 return 0;
2273 switch (tp->t_family) {
2274 case AF_INET:
2275 /* XXX: should use correct direction. */
2276 hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2277 break;
2278 default:
2279 hdrsiz = 0;
2280 break;
2281 }
2282
2283 return hdrsiz;
2284 }
2285
2286 #ifdef INET6
2287 size_t
2288 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2289 {
2290 struct in6pcb *in6p;
2291 size_t hdrsiz;
2292
2293 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2294 return 0;
2295 switch (tp->t_family) {
2296 case AF_INET6:
2297 /* XXX: should use correct direction. */
2298 hdrsiz = ipsec_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2299 break;
2300 case AF_INET:
2301 /* mapped address case - tricky */
2302 default:
2303 hdrsiz = 0;
2304 break;
2305 }
2306
2307 return hdrsiz;
2308 }
2309 #endif
2310 #endif /*IPSEC*/
2311
2312 /*
2313 * Determine the length of the TCP options for this connection.
2314 *
2315 * XXX: What do we do for SACK, when we add that? Just reserve
2316 * all of the space? Otherwise we can't exactly be incrementing
2317 * cwnd by an amount that varies depending on the amount we last
2318 * had to SACK!
2319 */
2320
2321 u_int
2322 tcp_optlen(struct tcpcb *tp)
2323 {
2324 u_int optlen;
2325
2326 optlen = 0;
2327 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2328 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2329 optlen += TCPOLEN_TSTAMP_APPA;
2330
2331 #ifdef TCP_SIGNATURE
2332 if (tp->t_flags & TF_SIGNATURE)
2333 optlen += TCPOLEN_SIGLEN;
2334 #endif
2335
2336 return optlen;
2337 }
2338
2339 u_int
2340 tcp_hdrsz(struct tcpcb *tp)
2341 {
2342 u_int hlen;
2343
2344 switch (tp->t_family) {
2345 #ifdef INET6
2346 case AF_INET6:
2347 hlen = sizeof(struct ip6_hdr);
2348 break;
2349 #endif
2350 case AF_INET:
2351 hlen = sizeof(struct ip);
2352 break;
2353 default:
2354 hlen = 0;
2355 break;
2356 }
2357 hlen += sizeof(struct tcphdr);
2358
2359 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2360 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2361 hlen += TCPOLEN_TSTAMP_APPA;
2362 #ifdef TCP_SIGNATURE
2363 if (tp->t_flags & TF_SIGNATURE)
2364 hlen += TCPOLEN_SIGLEN;
2365 #endif
2366 return hlen;
2367 }
2368
2369 void
2370 tcp_statinc(u_int stat)
2371 {
2372
2373 KASSERT(stat < TCP_NSTATS);
2374 TCP_STATINC(stat);
2375 }
2376
2377 void
2378 tcp_statadd(u_int stat, uint64_t val)
2379 {
2380
2381 KASSERT(stat < TCP_NSTATS);
2382 TCP_STATADD(stat, val);
2383 }
2384