tcp_subr.c revision 1.35 1 /* $NetBSD: tcp_subr.c,v 1.35 1997/12/10 01:58:07 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_subr.c 8.1 (Berkeley) 6/10/93
36 */
37
38 #include "rnd.h"
39
40 #include <sys/param.h>
41 #include <sys/proc.h>
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/socket.h>
46 #include <sys/socketvar.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #if NRND > 0
51 #include <sys/rnd.h>
52 #endif
53
54 #include <net/route.h>
55 #include <net/if.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60 #include <netinet/in_pcb.h>
61 #include <netinet/ip_var.h>
62 #include <netinet/ip_icmp.h>
63 #include <netinet/tcp.h>
64 #include <netinet/tcp_fsm.h>
65 #include <netinet/tcp_seq.h>
66 #include <netinet/tcp_timer.h>
67 #include <netinet/tcp_var.h>
68 #include <netinet/tcpip.h>
69
70 /* patchable/settable parameters for tcp */
71 int tcp_mssdflt = TCP_MSS;
72 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
73 int tcp_do_rfc1323 = 1;
74
75 #ifndef TCBHASHSIZE
76 #define TCBHASHSIZE 128
77 #endif
78 int tcbhashsize = TCBHASHSIZE;
79
80 int tcp_freeq __P((struct tcpcb *));
81
82 /*
83 * Tcp initialization
84 */
85 void
86 tcp_init()
87 {
88
89 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
90 if (max_protohdr < sizeof(struct tcpiphdr))
91 max_protohdr = sizeof(struct tcpiphdr);
92 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
93 panic("tcp_init");
94 }
95
96 /*
97 * Create template to be used to send tcp packets on a connection.
98 * Call after host entry created, allocates an mbuf and fills
99 * in a skeletal tcp/ip header, minimizing the amount of work
100 * necessary when the connection is used.
101 */
102 struct tcpiphdr *
103 tcp_template(tp)
104 struct tcpcb *tp;
105 {
106 register struct inpcb *inp = tp->t_inpcb;
107 register struct tcpiphdr *n;
108
109 if ((n = tp->t_template) == 0) {
110 MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
111 M_MBUF, M_NOWAIT);
112 if (n == NULL)
113 return (0);
114 }
115 bzero(n->ti_x1, sizeof n->ti_x1);
116 n->ti_pr = IPPROTO_TCP;
117 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
118 n->ti_src = inp->inp_laddr;
119 n->ti_dst = inp->inp_faddr;
120 n->ti_sport = inp->inp_lport;
121 n->ti_dport = inp->inp_fport;
122 n->ti_seq = 0;
123 n->ti_ack = 0;
124 n->ti_x2 = 0;
125 n->ti_off = 5;
126 n->ti_flags = 0;
127 n->ti_win = 0;
128 n->ti_sum = 0;
129 n->ti_urp = 0;
130 return (n);
131 }
132
133 /*
134 * Send a single message to the TCP at address specified by
135 * the given TCP/IP header. If m == 0, then we make a copy
136 * of the tcpiphdr at ti and send directly to the addressed host.
137 * This is used to force keep alive messages out using the TCP
138 * template for a connection tp->t_template. If flags are given
139 * then we send a message back to the TCP which originated the
140 * segment ti, and discard the mbuf containing it and any other
141 * attached mbufs.
142 *
143 * In any case the ack and sequence number of the transmitted
144 * segment are as specified by the parameters.
145 */
146 int
147 tcp_respond(tp, ti, m, ack, seq, flags)
148 struct tcpcb *tp;
149 register struct tcpiphdr *ti;
150 register struct mbuf *m;
151 tcp_seq ack, seq;
152 int flags;
153 {
154 register int tlen;
155 int win = 0;
156 struct route *ro = 0;
157
158 if (tp) {
159 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
160 ro = &tp->t_inpcb->inp_route;
161 }
162 if (m == 0) {
163 m = m_gethdr(M_DONTWAIT, MT_HEADER);
164 if (m == NULL)
165 return (ENOBUFS);
166 #ifdef TCP_COMPAT_42
167 tlen = 1;
168 #else
169 tlen = 0;
170 #endif
171 m->m_data += max_linkhdr;
172 *mtod(m, struct tcpiphdr *) = *ti;
173 ti = mtod(m, struct tcpiphdr *);
174 flags = TH_ACK;
175 } else {
176 m_freem(m->m_next);
177 m->m_next = 0;
178 m->m_data = (caddr_t)ti;
179 m->m_len = sizeof (struct tcpiphdr);
180 tlen = 0;
181 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
182 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
183 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
184 #undef xchg
185 }
186 bzero(ti->ti_x1, sizeof ti->ti_x1);
187 ti->ti_seq = htonl(seq);
188 ti->ti_ack = htonl(ack);
189 ti->ti_x2 = 0;
190 if ((flags & TH_SYN) == 0) {
191 if (tp)
192 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
193 else
194 ti->ti_win = htons((u_int16_t)win);
195 ti->ti_off = sizeof (struct tcphdr) >> 2;
196 tlen += sizeof (struct tcphdr);
197 } else
198 tlen += ti->ti_off << 2;
199 ti->ti_len = htons((u_int16_t)tlen);
200 tlen += sizeof (struct ip);
201 m->m_len = tlen;
202 m->m_pkthdr.len = tlen;
203 m->m_pkthdr.rcvif = (struct ifnet *) 0;
204 ti->ti_flags = flags;
205 ti->ti_urp = 0;
206 ti->ti_sum = 0;
207 ti->ti_sum = in_cksum(m, tlen);
208 ((struct ip *)ti)->ip_len = tlen;
209 ((struct ip *)ti)->ip_ttl = ip_defttl;
210 return ip_output(m, NULL, ro, 0, NULL);
211 }
212
213 /*
214 * Create a new TCP control block, making an
215 * empty reassembly queue and hooking it to the argument
216 * protocol control block.
217 */
218 struct tcpcb *
219 tcp_newtcpcb(inp)
220 struct inpcb *inp;
221 {
222 register struct tcpcb *tp;
223
224 tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
225 if (tp == NULL)
226 return ((struct tcpcb *)0);
227 bzero((caddr_t)tp, sizeof(struct tcpcb));
228 LIST_INIT(&tp->segq);
229 tp->t_peermss = tcp_mssdflt;
230 tp->t_ourmss = tcp_mssdflt;
231 tp->t_segsz = tcp_mssdflt;
232
233 tp->t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
234 tp->t_inpcb = inp;
235 /*
236 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
237 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
238 * reasonable initial retransmit time.
239 */
240 tp->t_srtt = TCPTV_SRTTBASE;
241 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
242 tp->t_rttmin = TCPTV_MIN;
243 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
244 TCPTV_MIN, TCPTV_REXMTMAX);
245 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
246 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
247 inp->inp_ip.ip_ttl = ip_defttl;
248 inp->inp_ppcb = (caddr_t)tp;
249 return (tp);
250 }
251
252 /*
253 * Drop a TCP connection, reporting
254 * the specified error. If connection is synchronized,
255 * then send a RST to peer.
256 */
257 struct tcpcb *
258 tcp_drop(tp, errno)
259 register struct tcpcb *tp;
260 int errno;
261 {
262 struct socket *so = tp->t_inpcb->inp_socket;
263
264 if (TCPS_HAVERCVDSYN(tp->t_state)) {
265 tp->t_state = TCPS_CLOSED;
266 (void) tcp_output(tp);
267 tcpstat.tcps_drops++;
268 } else
269 tcpstat.tcps_conndrops++;
270 if (errno == ETIMEDOUT && tp->t_softerror)
271 errno = tp->t_softerror;
272 so->so_error = errno;
273 return (tcp_close(tp));
274 }
275
276 /*
277 * Close a TCP control block:
278 * discard all space held by the tcp
279 * discard internet protocol block
280 * wake up any sleepers
281 */
282 struct tcpcb *
283 tcp_close(tp)
284 register struct tcpcb *tp;
285 {
286 struct inpcb *inp = tp->t_inpcb;
287 struct socket *so = inp->inp_socket;
288 #ifdef RTV_RTT
289 register struct rtentry *rt;
290
291 /*
292 * If we sent enough data to get some meaningful characteristics,
293 * save them in the routing entry. 'Enough' is arbitrarily
294 * defined as the sendpipesize (default 4K) * 16. This would
295 * give us 16 rtt samples assuming we only get one sample per
296 * window (the usual case on a long haul net). 16 samples is
297 * enough for the srtt filter to converge to within 5% of the correct
298 * value; fewer samples and we could save a very bogus rtt.
299 *
300 * Don't update the default route's characteristics and don't
301 * update anything that the user "locked".
302 */
303 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
304 (rt = inp->inp_route.ro_rt) &&
305 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
306 register u_long i = 0;
307
308 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
309 i = tp->t_srtt *
310 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
311 if (rt->rt_rmx.rmx_rtt && i)
312 /*
313 * filter this update to half the old & half
314 * the new values, converting scale.
315 * See route.h and tcp_var.h for a
316 * description of the scaling constants.
317 */
318 rt->rt_rmx.rmx_rtt =
319 (rt->rt_rmx.rmx_rtt + i) / 2;
320 else
321 rt->rt_rmx.rmx_rtt = i;
322 }
323 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
324 i = tp->t_rttvar *
325 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
326 if (rt->rt_rmx.rmx_rttvar && i)
327 rt->rt_rmx.rmx_rttvar =
328 (rt->rt_rmx.rmx_rttvar + i) / 2;
329 else
330 rt->rt_rmx.rmx_rttvar = i;
331 }
332 /*
333 * update the pipelimit (ssthresh) if it has been updated
334 * already or if a pipesize was specified & the threshhold
335 * got below half the pipesize. I.e., wait for bad news
336 * before we start updating, then update on both good
337 * and bad news.
338 */
339 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
340 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
341 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
342 /*
343 * convert the limit from user data bytes to
344 * packets then to packet data bytes.
345 */
346 i = (i + tp->t_segsz / 2) / tp->t_segsz;
347 if (i < 2)
348 i = 2;
349 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
350 if (rt->rt_rmx.rmx_ssthresh)
351 rt->rt_rmx.rmx_ssthresh =
352 (rt->rt_rmx.rmx_ssthresh + i) / 2;
353 else
354 rt->rt_rmx.rmx_ssthresh = i;
355 }
356 }
357 #endif /* RTV_RTT */
358 /* free the reassembly queue, if any */
359 (void) tcp_freeq(tp);
360
361 if (tp->t_template)
362 FREE(tp->t_template, M_MBUF);
363 free(tp, M_PCB);
364 inp->inp_ppcb = 0;
365 soisdisconnected(so);
366 in_pcbdetach(inp);
367 tcpstat.tcps_closed++;
368 return ((struct tcpcb *)0);
369 }
370
371 int
372 tcp_freeq(tp)
373 struct tcpcb *tp;
374 {
375 register struct ipqent *qe;
376 int rv = 0;
377
378 while ((qe = tp->segq.lh_first) != NULL) {
379 LIST_REMOVE(qe, ipqe_q);
380 m_freem(qe->ipqe_m);
381 FREE(qe, M_IPQ);
382 rv = 1;
383 }
384 return (rv);
385 }
386
387 /*
388 * Protocol drain routine. Called when memory is in short supply.
389 */
390 void
391 tcp_drain()
392 {
393 register struct inpcb *inp;
394 register struct tcpcb *tp;
395
396 /*
397 * Free the sequence queue of all TCP connections.
398 */
399 inp = tcbtable.inpt_queue.cqh_first;
400 if (inp) /* XXX */
401 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
402 inp = inp->inp_queue.cqe_next) {
403 if ((tp = intotcpcb(inp)) != NULL) {
404 if (tcp_freeq(tp))
405 tcpstat.tcps_connsdrained++;
406 }
407 }
408 }
409
410 /*
411 * Notify a tcp user of an asynchronous error;
412 * store error as soft error, but wake up user
413 * (for now, won't do anything until can select for soft error).
414 */
415 void
416 tcp_notify(inp, error)
417 struct inpcb *inp;
418 int error;
419 {
420 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
421 register struct socket *so = inp->inp_socket;
422
423 /*
424 * Ignore some errors if we are hooked up.
425 * If connection hasn't completed, has retransmitted several times,
426 * and receives a second error, give up now. This is better
427 * than waiting a long time to establish a connection that
428 * can never complete.
429 */
430 if (tp->t_state == TCPS_ESTABLISHED &&
431 (error == EHOSTUNREACH || error == ENETUNREACH ||
432 error == EHOSTDOWN)) {
433 return;
434 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
435 tp->t_rxtshift > 3 && tp->t_softerror)
436 so->so_error = error;
437 else
438 tp->t_softerror = error;
439 wakeup((caddr_t) &so->so_timeo);
440 sorwakeup(so);
441 sowwakeup(so);
442 }
443
444 void *
445 tcp_ctlinput(cmd, sa, v)
446 int cmd;
447 struct sockaddr *sa;
448 register void *v;
449 {
450 register struct ip *ip = v;
451 register struct tcphdr *th;
452 extern int inetctlerrmap[];
453 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
454 int errno;
455 int nmatch;
456
457 if ((unsigned)cmd >= PRC_NCMDS)
458 return NULL;
459 errno = inetctlerrmap[cmd];
460 if (cmd == PRC_QUENCH)
461 notify = tcp_quench;
462 else if (PRC_IS_REDIRECT(cmd))
463 notify = in_rtchange, ip = 0;
464 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
465 notify = tcp_mtudisc, ip = 0;
466 else if (cmd == PRC_HOSTDEAD)
467 ip = 0;
468 else if (errno == 0)
469 return NULL;
470 if (ip) {
471 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
472 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
473 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
474 if (nmatch == 0 && syn_cache_count &&
475 (inetctlerrmap[cmd] == EHOSTUNREACH ||
476 inetctlerrmap[cmd] == ENETUNREACH ||
477 inetctlerrmap[cmd] == EHOSTDOWN))
478 syn_cache_unreach(ip, th);
479 } else
480 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
481 notify);
482 return NULL;
483 }
484
485 /*
486 * When a source quench is received, close congestion window
487 * to one segment. We will gradually open it again as we proceed.
488 */
489 void
490 tcp_quench(inp, errno)
491 struct inpcb *inp;
492 int errno;
493 {
494 struct tcpcb *tp = intotcpcb(inp);
495
496 if (tp)
497 tp->snd_cwnd = tp->t_segsz;
498 }
499
500 /*
501 * On receipt of path MTU corrections, flush old route and replace it
502 * with the new one. Retransmit all unacknowledged packets, to ensure
503 * that all packets will be received.
504 */
505
506 void
507 tcp_mtudisc(inp, errno)
508 struct inpcb *inp;
509 int errno;
510 {
511 struct tcpcb *tp = intotcpcb(inp);
512 struct rtentry *rt = in_pcbrtentry(inp);
513
514 if (tp != 0) {
515 if (rt != 0) {
516 /* If this was not a host route, remove and realloc */
517
518 if ((rt->rt_flags & RTF_HOST) == 0) {
519 in_rtchange(inp, errno);
520 if ((rt = in_pcbrtentry(inp)) == 0)
521 return;
522 }
523 if (rt->rt_rmx.rmx_mtu != 0)
524 tp->snd_cwnd = rt->rt_rmx.rmx_mtu;
525 }
526
527 /* Resend unacknowledged packets: */
528
529 tp->snd_nxt = tp->snd_una;
530 tcp_output(tp);
531 }
532 }
533
534
535 /*
536 * Compute the MSS to advertise to the peer. Called only during
537 * the 3-way handshake. If we are the server (peer initiated
538 * connection), we are called with the TCPCB for the listen
539 * socket. If we are the client (we initiated connection), we
540 * are called witht he TCPCB for the actual connection.
541 */
542 int
543 tcp_mss_to_advertise(tp)
544 const struct tcpcb *tp;
545 {
546 extern u_long in_maxmtu;
547 struct inpcb *inp;
548 struct socket *so;
549 int mss;
550
551 inp = tp->t_inpcb;
552 so = inp->inp_socket;
553
554 /*
555 * In order to avoid defeating path MTU discovery on the peer,
556 * we advertise the max MTU of all attached networks as our MSS,
557 * per RFC 1191, section 3.1.
558 *
559 * XXX Should we allow room for the timestamp option if
560 * XXX rfc1323 is enabled?
561 */
562 mss = in_maxmtu - sizeof(struct tcpiphdr);
563
564 return (mss);
565 }
566
567 /*
568 * Set connection variables based on the peer's advertised MSS.
569 * We are passed the TCPCB for the actual connection. If we
570 * are the server, we are called by the compressed state engine
571 * when the 3-way handshake is complete. If we are the client,
572 * we are called when we recieve the SYN,ACK from the server.
573 *
574 * NOTE: Our advertised MSS value must be initialized in the TCPCB
575 * before this routine is called!
576 */
577 void
578 tcp_mss_from_peer(tp, offer)
579 struct tcpcb *tp;
580 int offer;
581 {
582 struct inpcb *inp = tp->t_inpcb;
583 struct socket *so = inp->inp_socket;
584 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
585 struct rtentry *rt = in_pcbrtentry(inp);
586 #endif
587 u_long bufsize;
588 int mss;
589
590 /*
591 * Assume our MSS is the MSS of the peer, unless they sent us
592 * an offer. Do not accept offers less than 32 bytes.
593 */
594 mss = tp->t_ourmss;
595 if (offer)
596 mss = offer;
597 mss = max(mss, 32); /* sanity */
598
599 /*
600 * If there's a pipesize, change the socket buffer to that size.
601 * Make the socket buffer an integral number of MSS units. If
602 * the MSS is larger than the socket buffer, artificially decrease
603 * the MSS.
604 */
605 #ifdef RTV_SPIPE
606 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
607 bufsize = rt->rt_rmx.rmx_sendpipe;
608 else
609 #endif
610 bufsize = so->so_snd.sb_hiwat;
611 if (bufsize < mss)
612 mss = bufsize;
613 else {
614 bufsize = roundup(bufsize, mss);
615 if (bufsize > sb_max)
616 bufsize = sb_max;
617 (void) sbreserve(&so->so_snd, bufsize);
618 }
619 tp->t_peermss = mss;
620 tp->t_segsz = mss;
621
622 /* Initialize the initial congestion window. */
623 tp->snd_cwnd = mss;
624
625 #ifdef RTV_SSTHRESH
626 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
627 /*
628 * There's some sort of gateway or interface buffer
629 * limit on the path. Use this to set the slow
630 * start threshold, but set the threshold to no less
631 * than 2 * MSS.
632 */
633 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
634 }
635 #endif
636 }
637
638 /*
639 * Processing necessary when a TCP connection is established.
640 */
641 void
642 tcp_established(tp)
643 struct tcpcb *tp;
644 {
645 struct inpcb *inp = tp->t_inpcb;
646 struct socket *so = inp->inp_socket;
647 #ifdef RTV_RPIPE
648 struct rtentry *rt = in_pcbrtentry(inp);
649 #endif
650 u_long bufsize;
651
652 tp->t_state = TCPS_ESTABLISHED;
653 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
654
655 #ifdef RTV_RPIPE
656 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
657 bufsize = rt->rt_rmx.rmx_recvpipe;
658 else
659 #endif
660 bufsize = so->so_rcv.sb_hiwat;
661 if (bufsize > tp->t_ourmss) {
662 bufsize = roundup(bufsize, tp->t_ourmss);
663 if (bufsize > sb_max)
664 bufsize = sb_max;
665 (void) sbreserve(&so->so_rcv, bufsize);
666 }
667 }
668
669 /*
670 * Check if there's an initial rtt or rttvar. Convert from the
671 * route-table units to scaled multiples of the slow timeout timer.
672 * Called only during the 3-way handshake.
673 */
674 void
675 tcp_rmx_rtt(tp)
676 struct tcpcb *tp;
677 {
678 #ifdef RTV_RTT
679 struct rtentry *rt;
680 int rtt;
681
682 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
683 return;
684
685 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
686 /*
687 * XXX The lock bit for MTU indicates that the value
688 * is also a minimum value; this is subject to time.
689 */
690 if (rt->rt_rmx.rmx_locks & RTV_RTT)
691 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
692 tp->t_srtt = rtt /
693 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
694 if (rt->rt_rmx.rmx_rttvar) {
695 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
696 ((RTM_RTTUNIT / PR_SLOWHZ) >>
697 (TCP_RTTVAR_SHIFT + 2));
698 } else {
699 /* Default variation is +- 1 rtt */
700 tp->t_rttvar =
701 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
702 }
703 TCPT_RANGESET(tp->t_rxtcur,
704 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
705 tp->t_rttmin, TCPTV_REXMTMAX);
706 }
707 #endif
708 }
709
710 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
711
712 /*
713 * Get a new sequence value given a tcp control block
714 */
715 tcp_seq
716 tcp_new_iss(tp, len, addin)
717 void *tp;
718 u_long len;
719 tcp_seq addin;
720 {
721 tcp_seq tcp_iss;
722
723 /*
724 * add randomness about this connection, but do not estimate
725 * entropy from the timing, since the physical device driver would
726 * have done that for us.
727 */
728 #if NRND > 0
729 if (tp != NULL)
730 rnd_add_data(NULL, tp, len, 0);
731 #endif
732
733 /*
734 * randomize.
735 */
736 #if NRND > 0
737 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
738 #else
739 tcp_iss = random();
740 #endif
741
742 /*
743 * If we were asked to add some amount to a known value,
744 * we will take a random value obtained above, mask off the upper
745 * bits, and add in the known value. We also add in a constant to
746 * ensure that we are at least a certain distance from the original
747 * value.
748 *
749 * This is used when an old connection is in timed wait
750 * and we have a new one coming in, for instance.
751 */
752 if (addin != 0) {
753 #ifdef TCPISS_DEBUG
754 printf("Random %08x, ", tcp_iss);
755 #endif
756 tcp_iss &= TCP_ISS_RANDOM_MASK;
757 tcp_iss = tcp_iss + addin + TCP_ISSINCR;
758 tcp_iss_seq += TCP_ISSINCR;
759 tcp_iss += tcp_iss_seq;
760 #ifdef TCPISS_DEBUG
761 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
762 #endif
763 } else {
764 tcp_iss &= TCP_ISS_RANDOM_MASK;
765 tcp_iss_seq += TCP_ISSINCR;
766 tcp_iss += tcp_iss_seq;
767 #ifdef TCPISS_DEBUG
768 printf("ISS %08x\n", tcp_iss);
769 #endif
770 }
771
772 #ifdef TCP_COMPAT_42
773 /*
774 * limit it to the positive range for really old TCP implementations
775 */
776 if ((int)tcp_iss < 0)
777 tcp_iss &= 0x7fffffff; /* XXX */
778 #endif
779
780 return tcp_iss;
781 }
782