tcp_subr.c revision 1.42 1 /* $NetBSD: tcp_subr.c,v 1.42 1998/03/17 23:50:30 kml Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #if NRND > 0
89 #include <sys/rnd.h>
90 #endif
91
92 #include <net/route.h>
93 #include <net/if.h>
94
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/ip.h>
98 #include <netinet/in_pcb.h>
99 #include <netinet/ip_var.h>
100 #include <netinet/ip_icmp.h>
101 #include <netinet/tcp.h>
102 #include <netinet/tcp_fsm.h>
103 #include <netinet/tcp_seq.h>
104 #include <netinet/tcp_timer.h>
105 #include <netinet/tcp_var.h>
106 #include <netinet/tcpip.h>
107
108 /* patchable/settable parameters for tcp */
109 int tcp_mssdflt = TCP_MSS;
110 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
111 int tcp_do_rfc1323 = 1;
112 int tcp_init_win = 1;
113
114 #ifndef TCBHASHSIZE
115 #define TCBHASHSIZE 128
116 #endif
117 int tcbhashsize = TCBHASHSIZE;
118
119 int tcp_freeq __P((struct tcpcb *));
120
121 /*
122 * Tcp initialization
123 */
124 void
125 tcp_init()
126 {
127
128 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
129 LIST_INIT(&tcp_delacks);
130 if (max_protohdr < sizeof(struct tcpiphdr))
131 max_protohdr = sizeof(struct tcpiphdr);
132 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
133 panic("tcp_init");
134 }
135
136 /*
137 * Create template to be used to send tcp packets on a connection.
138 * Call after host entry created, allocates an mbuf and fills
139 * in a skeletal tcp/ip header, minimizing the amount of work
140 * necessary when the connection is used.
141 */
142 struct tcpiphdr *
143 tcp_template(tp)
144 struct tcpcb *tp;
145 {
146 register struct inpcb *inp = tp->t_inpcb;
147 register struct tcpiphdr *n;
148
149 if ((n = tp->t_template) == 0) {
150 MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
151 M_MBUF, M_NOWAIT);
152 if (n == NULL)
153 return (0);
154 }
155 bzero(n->ti_x1, sizeof n->ti_x1);
156 n->ti_pr = IPPROTO_TCP;
157 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
158 n->ti_src = inp->inp_laddr;
159 n->ti_dst = inp->inp_faddr;
160 n->ti_sport = inp->inp_lport;
161 n->ti_dport = inp->inp_fport;
162 n->ti_seq = 0;
163 n->ti_ack = 0;
164 n->ti_x2 = 0;
165 n->ti_off = 5;
166 n->ti_flags = 0;
167 n->ti_win = 0;
168 n->ti_sum = 0;
169 n->ti_urp = 0;
170 return (n);
171 }
172
173 /*
174 * Send a single message to the TCP at address specified by
175 * the given TCP/IP header. If m == 0, then we make a copy
176 * of the tcpiphdr at ti and send directly to the addressed host.
177 * This is used to force keep alive messages out using the TCP
178 * template for a connection tp->t_template. If flags are given
179 * then we send a message back to the TCP which originated the
180 * segment ti, and discard the mbuf containing it and any other
181 * attached mbufs.
182 *
183 * In any case the ack and sequence number of the transmitted
184 * segment are as specified by the parameters.
185 */
186 int
187 tcp_respond(tp, ti, m, ack, seq, flags)
188 struct tcpcb *tp;
189 register struct tcpiphdr *ti;
190 register struct mbuf *m;
191 tcp_seq ack, seq;
192 int flags;
193 {
194 register int tlen;
195 int win = 0;
196 struct route *ro = 0;
197
198 if (tp) {
199 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
200 ro = &tp->t_inpcb->inp_route;
201 }
202 if (m == 0) {
203 m = m_gethdr(M_DONTWAIT, MT_HEADER);
204 if (m == NULL)
205 return (ENOBUFS);
206 #ifdef TCP_COMPAT_42
207 tlen = 1;
208 #else
209 tlen = 0;
210 #endif
211 m->m_data += max_linkhdr;
212 *mtod(m, struct tcpiphdr *) = *ti;
213 ti = mtod(m, struct tcpiphdr *);
214 flags = TH_ACK;
215 } else {
216 m_freem(m->m_next);
217 m->m_next = 0;
218 m->m_data = (caddr_t)ti;
219 m->m_len = sizeof (struct tcpiphdr);
220 tlen = 0;
221 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
222 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
223 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
224 #undef xchg
225 }
226 bzero(ti->ti_x1, sizeof ti->ti_x1);
227 ti->ti_seq = htonl(seq);
228 ti->ti_ack = htonl(ack);
229 ti->ti_x2 = 0;
230 if ((flags & TH_SYN) == 0) {
231 if (tp)
232 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
233 else
234 ti->ti_win = htons((u_int16_t)win);
235 ti->ti_off = sizeof (struct tcphdr) >> 2;
236 tlen += sizeof (struct tcphdr);
237 } else
238 tlen += ti->ti_off << 2;
239 ti->ti_len = htons((u_int16_t)tlen);
240 tlen += sizeof (struct ip);
241 m->m_len = tlen;
242 m->m_pkthdr.len = tlen;
243 m->m_pkthdr.rcvif = (struct ifnet *) 0;
244 ti->ti_flags = flags;
245 ti->ti_urp = 0;
246 ti->ti_sum = 0;
247 ti->ti_sum = in_cksum(m, tlen);
248 ((struct ip *)ti)->ip_len = tlen;
249 ((struct ip *)ti)->ip_ttl = ip_defttl;
250 return ip_output(m, NULL, ro, 0, NULL);
251 }
252
253 /*
254 * Create a new TCP control block, making an
255 * empty reassembly queue and hooking it to the argument
256 * protocol control block.
257 */
258 struct tcpcb *
259 tcp_newtcpcb(inp)
260 struct inpcb *inp;
261 {
262 register struct tcpcb *tp;
263
264 tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
265 if (tp == NULL)
266 return ((struct tcpcb *)0);
267 bzero((caddr_t)tp, sizeof(struct tcpcb));
268 LIST_INIT(&tp->segq);
269 tp->t_peermss = tcp_mssdflt;
270 tp->t_ourmss = tcp_mssdflt;
271 tp->t_segsz = tcp_mssdflt;
272
273 tp->t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
274 tp->t_inpcb = inp;
275 /*
276 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
277 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
278 * reasonable initial retransmit time.
279 */
280 tp->t_srtt = TCPTV_SRTTBASE;
281 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
282 tp->t_rttmin = TCPTV_MIN;
283 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
284 TCPTV_MIN, TCPTV_REXMTMAX);
285 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
286 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
287 inp->inp_ip.ip_ttl = ip_defttl;
288 inp->inp_ppcb = (caddr_t)tp;
289 return (tp);
290 }
291
292 /*
293 * Drop a TCP connection, reporting
294 * the specified error. If connection is synchronized,
295 * then send a RST to peer.
296 */
297 struct tcpcb *
298 tcp_drop(tp, errno)
299 register struct tcpcb *tp;
300 int errno;
301 {
302 struct socket *so = tp->t_inpcb->inp_socket;
303
304 if (TCPS_HAVERCVDSYN(tp->t_state)) {
305 tp->t_state = TCPS_CLOSED;
306 (void) tcp_output(tp);
307 tcpstat.tcps_drops++;
308 } else
309 tcpstat.tcps_conndrops++;
310 if (errno == ETIMEDOUT && tp->t_softerror)
311 errno = tp->t_softerror;
312 so->so_error = errno;
313 return (tcp_close(tp));
314 }
315
316 /*
317 * Close a TCP control block:
318 * discard all space held by the tcp
319 * discard internet protocol block
320 * wake up any sleepers
321 */
322 struct tcpcb *
323 tcp_close(tp)
324 register struct tcpcb *tp;
325 {
326 struct inpcb *inp = tp->t_inpcb;
327 struct socket *so = inp->inp_socket;
328 #ifdef RTV_RTT
329 register struct rtentry *rt;
330
331 /*
332 * If we sent enough data to get some meaningful characteristics,
333 * save them in the routing entry. 'Enough' is arbitrarily
334 * defined as the sendpipesize (default 4K) * 16. This would
335 * give us 16 rtt samples assuming we only get one sample per
336 * window (the usual case on a long haul net). 16 samples is
337 * enough for the srtt filter to converge to within 5% of the correct
338 * value; fewer samples and we could save a very bogus rtt.
339 *
340 * Don't update the default route's characteristics and don't
341 * update anything that the user "locked".
342 */
343 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
344 (rt = inp->inp_route.ro_rt) &&
345 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
346 register u_long i = 0;
347
348 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
349 i = tp->t_srtt *
350 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
351 if (rt->rt_rmx.rmx_rtt && i)
352 /*
353 * filter this update to half the old & half
354 * the new values, converting scale.
355 * See route.h and tcp_var.h for a
356 * description of the scaling constants.
357 */
358 rt->rt_rmx.rmx_rtt =
359 (rt->rt_rmx.rmx_rtt + i) / 2;
360 else
361 rt->rt_rmx.rmx_rtt = i;
362 }
363 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
364 i = tp->t_rttvar *
365 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
366 if (rt->rt_rmx.rmx_rttvar && i)
367 rt->rt_rmx.rmx_rttvar =
368 (rt->rt_rmx.rmx_rttvar + i) / 2;
369 else
370 rt->rt_rmx.rmx_rttvar = i;
371 }
372 /*
373 * update the pipelimit (ssthresh) if it has been updated
374 * already or if a pipesize was specified & the threshhold
375 * got below half the pipesize. I.e., wait for bad news
376 * before we start updating, then update on both good
377 * and bad news.
378 */
379 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
380 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
381 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
382 /*
383 * convert the limit from user data bytes to
384 * packets then to packet data bytes.
385 */
386 i = (i + tp->t_segsz / 2) / tp->t_segsz;
387 if (i < 2)
388 i = 2;
389 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
390 if (rt->rt_rmx.rmx_ssthresh)
391 rt->rt_rmx.rmx_ssthresh =
392 (rt->rt_rmx.rmx_ssthresh + i) / 2;
393 else
394 rt->rt_rmx.rmx_ssthresh = i;
395 }
396 }
397 #endif /* RTV_RTT */
398 /* free the reassembly queue, if any */
399 (void) tcp_freeq(tp);
400 TCP_CLEAR_DELACK(tp);
401
402 if (tp->t_template)
403 FREE(tp->t_template, M_MBUF);
404 free(tp, M_PCB);
405 inp->inp_ppcb = 0;
406 soisdisconnected(so);
407 in_pcbdetach(inp);
408 tcpstat.tcps_closed++;
409 return ((struct tcpcb *)0);
410 }
411
412 int
413 tcp_freeq(tp)
414 struct tcpcb *tp;
415 {
416 register struct ipqent *qe;
417 int rv = 0;
418
419 while ((qe = tp->segq.lh_first) != NULL) {
420 LIST_REMOVE(qe, ipqe_q);
421 m_freem(qe->ipqe_m);
422 FREE(qe, M_IPQ);
423 rv = 1;
424 }
425 return (rv);
426 }
427
428 /*
429 * Protocol drain routine. Called when memory is in short supply.
430 */
431 void
432 tcp_drain()
433 {
434 register struct inpcb *inp;
435 register struct tcpcb *tp;
436
437 /*
438 * Free the sequence queue of all TCP connections.
439 */
440 inp = tcbtable.inpt_queue.cqh_first;
441 if (inp) /* XXX */
442 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
443 inp = inp->inp_queue.cqe_next) {
444 if ((tp = intotcpcb(inp)) != NULL) {
445 if (tcp_freeq(tp))
446 tcpstat.tcps_connsdrained++;
447 }
448 }
449 }
450
451 /*
452 * Notify a tcp user of an asynchronous error;
453 * store error as soft error, but wake up user
454 * (for now, won't do anything until can select for soft error).
455 */
456 void
457 tcp_notify(inp, error)
458 struct inpcb *inp;
459 int error;
460 {
461 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
462 register struct socket *so = inp->inp_socket;
463
464 /*
465 * Ignore some errors if we are hooked up.
466 * If connection hasn't completed, has retransmitted several times,
467 * and receives a second error, give up now. This is better
468 * than waiting a long time to establish a connection that
469 * can never complete.
470 */
471 if (tp->t_state == TCPS_ESTABLISHED &&
472 (error == EHOSTUNREACH || error == ENETUNREACH ||
473 error == EHOSTDOWN)) {
474 return;
475 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
476 tp->t_rxtshift > 3 && tp->t_softerror)
477 so->so_error = error;
478 else
479 tp->t_softerror = error;
480 wakeup((caddr_t) &so->so_timeo);
481 sorwakeup(so);
482 sowwakeup(so);
483 }
484
485 void *
486 tcp_ctlinput(cmd, sa, v)
487 int cmd;
488 struct sockaddr *sa;
489 register void *v;
490 {
491 register struct ip *ip = v;
492 register struct tcphdr *th;
493 extern int inetctlerrmap[];
494 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
495 int errno;
496 int nmatch;
497
498 if ((unsigned)cmd >= PRC_NCMDS)
499 return NULL;
500 errno = inetctlerrmap[cmd];
501 if (cmd == PRC_QUENCH)
502 notify = tcp_quench;
503 else if (PRC_IS_REDIRECT(cmd))
504 notify = in_rtchange, ip = 0;
505 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
506 notify = tcp_mtudisc, ip = 0;
507 else if (cmd == PRC_HOSTDEAD)
508 ip = 0;
509 else if (errno == 0)
510 return NULL;
511 if (ip) {
512 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
513 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
514 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
515 if (nmatch == 0 && syn_cache_count &&
516 (inetctlerrmap[cmd] == EHOSTUNREACH ||
517 inetctlerrmap[cmd] == ENETUNREACH ||
518 inetctlerrmap[cmd] == EHOSTDOWN))
519 syn_cache_unreach(ip, th);
520 } else
521 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
522 notify);
523 return NULL;
524 }
525
526 /*
527 * When a source quench is received, close congestion window
528 * to one segment. We will gradually open it again as we proceed.
529 */
530 void
531 tcp_quench(inp, errno)
532 struct inpcb *inp;
533 int errno;
534 {
535 struct tcpcb *tp = intotcpcb(inp);
536
537 if (tp)
538 tp->snd_cwnd = tp->t_segsz;
539 }
540
541 /*
542 * On receipt of path MTU corrections, flush old route and replace it
543 * with the new one. Retransmit all unacknowledged packets, to ensure
544 * that all packets will be received.
545 */
546 void
547 tcp_mtudisc(inp, errno)
548 struct inpcb *inp;
549 int errno;
550 {
551 struct tcpcb *tp = intotcpcb(inp);
552 struct rtentry *rt = in_pcbrtentry(inp);
553
554 if (tp != 0) {
555 if (rt != 0) {
556 /*
557 * If this was not a host route, remove and realloc.
558 */
559 if ((rt->rt_flags & RTF_HOST) == 0) {
560 in_rtchange(inp, errno);
561 if ((rt = in_pcbrtentry(inp)) == 0)
562 return;
563 }
564
565 /*
566 * Slow start out of the error condition. We
567 * use the MTU because we know it's smaller
568 * than the previously transmitted segment.
569 */
570 if (rt->rt_rmx.rmx_mtu != 0)
571 tp->snd_cwnd =
572 TCP_INITIAL_WINDOW(rt->rt_rmx.rmx_mtu);
573 }
574
575 /*
576 * Resend unacknowledged packets.
577 */
578 tp->snd_nxt = tp->snd_una;
579 tcp_output(tp);
580 }
581 }
582
583
584 /*
585 * Compute the MSS to advertise to the peer. Called only during
586 * the 3-way handshake. If we are the server (peer initiated
587 * connection), we are called with the TCPCB for the listen
588 * socket. If we are the client (we initiated connection), we
589 * are called witht he TCPCB for the actual connection.
590 */
591 int
592 tcp_mss_to_advertise(tp)
593 const struct tcpcb *tp;
594 {
595 extern u_long in_maxmtu;
596 struct inpcb *inp;
597 struct socket *so;
598 int mss;
599
600 inp = tp->t_inpcb;
601 so = inp->inp_socket;
602
603 /*
604 * In order to avoid defeating path MTU discovery on the peer,
605 * we advertise the max MTU of all attached networks as our MSS,
606 * per RFC 1191, section 3.1.
607 *
608 * XXX Should we allow room for the timestamp option if
609 * XXX rfc1323 is enabled?
610 */
611 mss = in_maxmtu - sizeof(struct tcpiphdr);
612
613 return (mss);
614 }
615
616 /*
617 * Set connection variables based on the peer's advertised MSS.
618 * We are passed the TCPCB for the actual connection. If we
619 * are the server, we are called by the compressed state engine
620 * when the 3-way handshake is complete. If we are the client,
621 * we are called when we recieve the SYN,ACK from the server.
622 *
623 * NOTE: Our advertised MSS value must be initialized in the TCPCB
624 * before this routine is called!
625 */
626 void
627 tcp_mss_from_peer(tp, offer)
628 struct tcpcb *tp;
629 int offer;
630 {
631 struct inpcb *inp = tp->t_inpcb;
632 struct socket *so = inp->inp_socket;
633 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
634 struct rtentry *rt = in_pcbrtentry(inp);
635 #endif
636 u_long bufsize;
637 int mss;
638
639 /*
640 * As per RFC1122, use the default MSS value, unless they
641 * sent us an offer. Do not accept offers less than 32 bytes.
642 */
643 mss = tcp_mssdflt;
644 if (offer)
645 mss = offer;
646 mss = max(mss, 32); /* sanity */
647 mss -= tcp_optlen(tp);
648
649 /*
650 * If there's a pipesize, change the socket buffer to that size.
651 * Make the socket buffer an integral number of MSS units. If
652 * the MSS is larger than the socket buffer, artificially decrease
653 * the MSS.
654 */
655 #ifdef RTV_SPIPE
656 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
657 bufsize = rt->rt_rmx.rmx_sendpipe;
658 else
659 #endif
660 bufsize = so->so_snd.sb_hiwat;
661 if (bufsize < mss)
662 mss = bufsize;
663 else {
664 bufsize = roundup(bufsize, mss);
665 if (bufsize > sb_max)
666 bufsize = sb_max;
667 (void) sbreserve(&so->so_snd, bufsize);
668 }
669 tp->t_peermss = mss;
670 tp->t_segsz = mss;
671
672 /* Initialize the initial congestion window. */
673 tp->snd_cwnd = TCP_INITIAL_WINDOW(mss);
674
675 #ifdef RTV_SSTHRESH
676 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
677 /*
678 * There's some sort of gateway or interface buffer
679 * limit on the path. Use this to set the slow
680 * start threshold, but set the threshold to no less
681 * than 2 * MSS.
682 */
683 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
684 }
685 #endif
686 }
687
688 /*
689 * Processing necessary when a TCP connection is established.
690 */
691 void
692 tcp_established(tp)
693 struct tcpcb *tp;
694 {
695 struct inpcb *inp = tp->t_inpcb;
696 struct socket *so = inp->inp_socket;
697 #ifdef RTV_RPIPE
698 struct rtentry *rt = in_pcbrtentry(inp);
699 #endif
700 u_long bufsize;
701
702 tp->t_state = TCPS_ESTABLISHED;
703 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
704
705 #ifdef RTV_RPIPE
706 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
707 bufsize = rt->rt_rmx.rmx_recvpipe;
708 else
709 #endif
710 bufsize = so->so_rcv.sb_hiwat;
711 if (bufsize > tp->t_ourmss) {
712 bufsize = roundup(bufsize, tp->t_ourmss);
713 if (bufsize > sb_max)
714 bufsize = sb_max;
715 (void) sbreserve(&so->so_rcv, bufsize);
716 }
717 }
718
719 /*
720 * Check if there's an initial rtt or rttvar. Convert from the
721 * route-table units to scaled multiples of the slow timeout timer.
722 * Called only during the 3-way handshake.
723 */
724 void
725 tcp_rmx_rtt(tp)
726 struct tcpcb *tp;
727 {
728 #ifdef RTV_RTT
729 struct rtentry *rt;
730 int rtt;
731
732 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
733 return;
734
735 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
736 /*
737 * XXX The lock bit for MTU indicates that the value
738 * is also a minimum value; this is subject to time.
739 */
740 if (rt->rt_rmx.rmx_locks & RTV_RTT)
741 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
742 tp->t_srtt = rtt /
743 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
744 if (rt->rt_rmx.rmx_rttvar) {
745 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
746 ((RTM_RTTUNIT / PR_SLOWHZ) >>
747 (TCP_RTTVAR_SHIFT + 2));
748 } else {
749 /* Default variation is +- 1 rtt */
750 tp->t_rttvar =
751 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
752 }
753 TCPT_RANGESET(tp->t_rxtcur,
754 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
755 tp->t_rttmin, TCPTV_REXMTMAX);
756 }
757 #endif
758 }
759
760 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
761
762 /*
763 * Get a new sequence value given a tcp control block
764 */
765 tcp_seq
766 tcp_new_iss(tp, len, addin)
767 void *tp;
768 u_long len;
769 tcp_seq addin;
770 {
771 tcp_seq tcp_iss;
772
773 /*
774 * add randomness about this connection, but do not estimate
775 * entropy from the timing, since the physical device driver would
776 * have done that for us.
777 */
778 #if NRND > 0
779 if (tp != NULL)
780 rnd_add_data(NULL, tp, len, 0);
781 #endif
782
783 /*
784 * randomize.
785 */
786 #if NRND > 0
787 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
788 #else
789 tcp_iss = random();
790 #endif
791
792 /*
793 * If we were asked to add some amount to a known value,
794 * we will take a random value obtained above, mask off the upper
795 * bits, and add in the known value. We also add in a constant to
796 * ensure that we are at least a certain distance from the original
797 * value.
798 *
799 * This is used when an old connection is in timed wait
800 * and we have a new one coming in, for instance.
801 */
802 if (addin != 0) {
803 #ifdef TCPISS_DEBUG
804 printf("Random %08x, ", tcp_iss);
805 #endif
806 tcp_iss &= TCP_ISS_RANDOM_MASK;
807 tcp_iss = tcp_iss + addin + TCP_ISSINCR;
808 tcp_iss_seq += TCP_ISSINCR;
809 tcp_iss += tcp_iss_seq;
810 #ifdef TCPISS_DEBUG
811 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
812 #endif
813 } else {
814 tcp_iss &= TCP_ISS_RANDOM_MASK;
815 tcp_iss_seq += TCP_ISSINCR;
816 tcp_iss += tcp_iss_seq;
817 #ifdef TCPISS_DEBUG
818 printf("ISS %08x\n", tcp_iss);
819 #endif
820 }
821
822 #ifdef TCP_COMPAT_42
823 /*
824 * limit it to the positive range for really old TCP implementations
825 */
826 if ((int)tcp_iss < 0)
827 tcp_iss &= 0x7fffffff; /* XXX */
828 #endif
829
830 return tcp_iss;
831 }
832
833
834 /*
835 * Determine the length of the TCP options for this connection.
836 *
837 * XXX: What do we do for SACK, when we add that? Just reserve
838 * all of the space? Otherwise we can't exactly be incrementing
839 * cwnd by an amount that varies depending on the amount we last
840 * had to SACK!
841 */
842
843 u_int
844 tcp_optlen(tp)
845 struct tcpcb *tp;
846 {
847 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
848 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
849 return TCPOLEN_TSTAMP_APPA;
850 else
851 return 0;
852 }
853
854
855