tcp_subr.c revision 1.47 1 /* $NetBSD: tcp_subr.c,v 1.47 1998/04/13 21:18:19 kml Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #if NRND > 0
89 #include <sys/rnd.h>
90 #endif
91
92 #include <net/route.h>
93 #include <net/if.h>
94
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/ip.h>
98 #include <netinet/in_pcb.h>
99 #include <netinet/ip_var.h>
100 #include <netinet/ip_icmp.h>
101 #include <netinet/tcp.h>
102 #include <netinet/tcp_fsm.h>
103 #include <netinet/tcp_seq.h>
104 #include <netinet/tcp_timer.h>
105 #include <netinet/tcp_var.h>
106 #include <netinet/tcpip.h>
107
108 /* patchable/settable parameters for tcp */
109 int tcp_mssdflt = TCP_MSS;
110 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
111 int tcp_do_rfc1323 = 1;
112 int tcp_init_win = 1;
113 int tcp_mss_ifmtu = 0;
114
115 #ifndef TCBHASHSIZE
116 #define TCBHASHSIZE 128
117 #endif
118 int tcbhashsize = TCBHASHSIZE;
119
120 int tcp_freeq __P((struct tcpcb *));
121
122 /*
123 * Tcp initialization
124 */
125 void
126 tcp_init()
127 {
128
129 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
130 LIST_INIT(&tcp_delacks);
131 if (max_protohdr < sizeof(struct tcpiphdr))
132 max_protohdr = sizeof(struct tcpiphdr);
133 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
134 panic("tcp_init");
135 }
136
137 /*
138 * Create template to be used to send tcp packets on a connection.
139 * Call after host entry created, allocates an mbuf and fills
140 * in a skeletal tcp/ip header, minimizing the amount of work
141 * necessary when the connection is used.
142 */
143 struct tcpiphdr *
144 tcp_template(tp)
145 struct tcpcb *tp;
146 {
147 register struct inpcb *inp = tp->t_inpcb;
148 register struct tcpiphdr *n;
149
150 if ((n = tp->t_template) == 0) {
151 MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
152 M_MBUF, M_NOWAIT);
153 if (n == NULL)
154 return (0);
155 }
156 bzero(n->ti_x1, sizeof n->ti_x1);
157 n->ti_pr = IPPROTO_TCP;
158 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
159 n->ti_src = inp->inp_laddr;
160 n->ti_dst = inp->inp_faddr;
161 n->ti_sport = inp->inp_lport;
162 n->ti_dport = inp->inp_fport;
163 n->ti_seq = 0;
164 n->ti_ack = 0;
165 n->ti_x2 = 0;
166 n->ti_off = 5;
167 n->ti_flags = 0;
168 n->ti_win = 0;
169 n->ti_sum = 0;
170 n->ti_urp = 0;
171 return (n);
172 }
173
174 /*
175 * Send a single message to the TCP at address specified by
176 * the given TCP/IP header. If m == 0, then we make a copy
177 * of the tcpiphdr at ti and send directly to the addressed host.
178 * This is used to force keep alive messages out using the TCP
179 * template for a connection tp->t_template. If flags are given
180 * then we send a message back to the TCP which originated the
181 * segment ti, and discard the mbuf containing it and any other
182 * attached mbufs.
183 *
184 * In any case the ack and sequence number of the transmitted
185 * segment are as specified by the parameters.
186 */
187 int
188 tcp_respond(tp, ti, m, ack, seq, flags)
189 struct tcpcb *tp;
190 register struct tcpiphdr *ti;
191 register struct mbuf *m;
192 tcp_seq ack, seq;
193 int flags;
194 {
195 register int tlen;
196 int win = 0;
197 struct route *ro = 0;
198
199 if (tp) {
200 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
201 ro = &tp->t_inpcb->inp_route;
202 }
203 if (m == 0) {
204 m = m_gethdr(M_DONTWAIT, MT_HEADER);
205 if (m == NULL)
206 return (ENOBUFS);
207 #ifdef TCP_COMPAT_42
208 tlen = 1;
209 #else
210 tlen = 0;
211 #endif
212 m->m_data += max_linkhdr;
213 *mtod(m, struct tcpiphdr *) = *ti;
214 ti = mtod(m, struct tcpiphdr *);
215 flags = TH_ACK;
216 } else {
217 m_freem(m->m_next);
218 m->m_next = 0;
219 m->m_data = (caddr_t)ti;
220 m->m_len = sizeof (struct tcpiphdr);
221 tlen = 0;
222 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
223 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
224 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
225 #undef xchg
226 }
227 bzero(ti->ti_x1, sizeof ti->ti_x1);
228 ti->ti_seq = htonl(seq);
229 ti->ti_ack = htonl(ack);
230 ti->ti_x2 = 0;
231 if ((flags & TH_SYN) == 0) {
232 if (tp)
233 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
234 else
235 ti->ti_win = htons((u_int16_t)win);
236 ti->ti_off = sizeof (struct tcphdr) >> 2;
237 tlen += sizeof (struct tcphdr);
238 } else
239 tlen += ti->ti_off << 2;
240 ti->ti_len = htons((u_int16_t)tlen);
241 tlen += sizeof (struct ip);
242 m->m_len = tlen;
243 m->m_pkthdr.len = tlen;
244 m->m_pkthdr.rcvif = (struct ifnet *) 0;
245 ti->ti_flags = flags;
246 ti->ti_urp = 0;
247 ti->ti_sum = 0;
248 ti->ti_sum = in_cksum(m, tlen);
249 ((struct ip *)ti)->ip_len = tlen;
250 ((struct ip *)ti)->ip_ttl = ip_defttl;
251 return ip_output(m, NULL, ro, 0, NULL);
252 }
253
254 /*
255 * Create a new TCP control block, making an
256 * empty reassembly queue and hooking it to the argument
257 * protocol control block.
258 */
259 struct tcpcb *
260 tcp_newtcpcb(inp)
261 struct inpcb *inp;
262 {
263 register struct tcpcb *tp;
264
265 tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
266 if (tp == NULL)
267 return ((struct tcpcb *)0);
268 bzero((caddr_t)tp, sizeof(struct tcpcb));
269 LIST_INIT(&tp->segq);
270 tp->t_peermss = tcp_mssdflt;
271 tp->t_ourmss = tcp_mssdflt;
272 tp->t_segsz = tcp_mssdflt;
273
274 tp->t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
275 tp->t_inpcb = inp;
276 /*
277 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
278 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
279 * reasonable initial retransmit time.
280 */
281 tp->t_srtt = TCPTV_SRTTBASE;
282 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
283 tp->t_rttmin = TCPTV_MIN;
284 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
285 TCPTV_MIN, TCPTV_REXMTMAX);
286 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
287 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
288 inp->inp_ip.ip_ttl = ip_defttl;
289 inp->inp_ppcb = (caddr_t)tp;
290 return (tp);
291 }
292
293 /*
294 * Drop a TCP connection, reporting
295 * the specified error. If connection is synchronized,
296 * then send a RST to peer.
297 */
298 struct tcpcb *
299 tcp_drop(tp, errno)
300 register struct tcpcb *tp;
301 int errno;
302 {
303 struct socket *so = tp->t_inpcb->inp_socket;
304
305 if (TCPS_HAVERCVDSYN(tp->t_state)) {
306 tp->t_state = TCPS_CLOSED;
307 (void) tcp_output(tp);
308 tcpstat.tcps_drops++;
309 } else
310 tcpstat.tcps_conndrops++;
311 if (errno == ETIMEDOUT && tp->t_softerror)
312 errno = tp->t_softerror;
313 so->so_error = errno;
314 return (tcp_close(tp));
315 }
316
317 /*
318 * Close a TCP control block:
319 * discard all space held by the tcp
320 * discard internet protocol block
321 * wake up any sleepers
322 */
323 struct tcpcb *
324 tcp_close(tp)
325 register struct tcpcb *tp;
326 {
327 struct inpcb *inp = tp->t_inpcb;
328 struct socket *so = inp->inp_socket;
329 #ifdef RTV_RTT
330 register struct rtentry *rt;
331
332 /*
333 * If we sent enough data to get some meaningful characteristics,
334 * save them in the routing entry. 'Enough' is arbitrarily
335 * defined as the sendpipesize (default 4K) * 16. This would
336 * give us 16 rtt samples assuming we only get one sample per
337 * window (the usual case on a long haul net). 16 samples is
338 * enough for the srtt filter to converge to within 5% of the correct
339 * value; fewer samples and we could save a very bogus rtt.
340 *
341 * Don't update the default route's characteristics and don't
342 * update anything that the user "locked".
343 */
344 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
345 (rt = inp->inp_route.ro_rt) &&
346 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
347 register u_long i = 0;
348
349 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
350 i = tp->t_srtt *
351 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
352 if (rt->rt_rmx.rmx_rtt && i)
353 /*
354 * filter this update to half the old & half
355 * the new values, converting scale.
356 * See route.h and tcp_var.h for a
357 * description of the scaling constants.
358 */
359 rt->rt_rmx.rmx_rtt =
360 (rt->rt_rmx.rmx_rtt + i) / 2;
361 else
362 rt->rt_rmx.rmx_rtt = i;
363 }
364 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
365 i = tp->t_rttvar *
366 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
367 if (rt->rt_rmx.rmx_rttvar && i)
368 rt->rt_rmx.rmx_rttvar =
369 (rt->rt_rmx.rmx_rttvar + i) / 2;
370 else
371 rt->rt_rmx.rmx_rttvar = i;
372 }
373 /*
374 * update the pipelimit (ssthresh) if it has been updated
375 * already or if a pipesize was specified & the threshhold
376 * got below half the pipesize. I.e., wait for bad news
377 * before we start updating, then update on both good
378 * and bad news.
379 */
380 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
381 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
382 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
383 /*
384 * convert the limit from user data bytes to
385 * packets then to packet data bytes.
386 */
387 i = (i + tp->t_segsz / 2) / tp->t_segsz;
388 if (i < 2)
389 i = 2;
390 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
391 if (rt->rt_rmx.rmx_ssthresh)
392 rt->rt_rmx.rmx_ssthresh =
393 (rt->rt_rmx.rmx_ssthresh + i) / 2;
394 else
395 rt->rt_rmx.rmx_ssthresh = i;
396 }
397 }
398 #endif /* RTV_RTT */
399 /* free the reassembly queue, if any */
400 (void) tcp_freeq(tp);
401 TCP_CLEAR_DELACK(tp);
402
403 if (tp->t_template)
404 FREE(tp->t_template, M_MBUF);
405 free(tp, M_PCB);
406 inp->inp_ppcb = 0;
407 soisdisconnected(so);
408 in_pcbdetach(inp);
409 tcpstat.tcps_closed++;
410 return ((struct tcpcb *)0);
411 }
412
413 int
414 tcp_freeq(tp)
415 struct tcpcb *tp;
416 {
417 register struct ipqent *qe;
418 int rv = 0;
419
420 while ((qe = tp->segq.lh_first) != NULL) {
421 LIST_REMOVE(qe, ipqe_q);
422 m_freem(qe->ipqe_m);
423 FREE(qe, M_IPQ);
424 rv = 1;
425 }
426 return (rv);
427 }
428
429 /*
430 * Protocol drain routine. Called when memory is in short supply.
431 */
432 void
433 tcp_drain()
434 {
435 register struct inpcb *inp;
436 register struct tcpcb *tp;
437
438 /*
439 * Free the sequence queue of all TCP connections.
440 */
441 inp = tcbtable.inpt_queue.cqh_first;
442 if (inp) /* XXX */
443 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
444 inp = inp->inp_queue.cqe_next) {
445 if ((tp = intotcpcb(inp)) != NULL) {
446 if (tcp_freeq(tp))
447 tcpstat.tcps_connsdrained++;
448 }
449 }
450 }
451
452 /*
453 * Notify a tcp user of an asynchronous error;
454 * store error as soft error, but wake up user
455 * (for now, won't do anything until can select for soft error).
456 */
457 void
458 tcp_notify(inp, error)
459 struct inpcb *inp;
460 int error;
461 {
462 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
463 register struct socket *so = inp->inp_socket;
464
465 /*
466 * Ignore some errors if we are hooked up.
467 * If connection hasn't completed, has retransmitted several times,
468 * and receives a second error, give up now. This is better
469 * than waiting a long time to establish a connection that
470 * can never complete.
471 */
472 if (tp->t_state == TCPS_ESTABLISHED &&
473 (error == EHOSTUNREACH || error == ENETUNREACH ||
474 error == EHOSTDOWN)) {
475 return;
476 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
477 tp->t_rxtshift > 3 && tp->t_softerror)
478 so->so_error = error;
479 else
480 tp->t_softerror = error;
481 wakeup((caddr_t) &so->so_timeo);
482 sorwakeup(so);
483 sowwakeup(so);
484 }
485
486 void *
487 tcp_ctlinput(cmd, sa, v)
488 int cmd;
489 struct sockaddr *sa;
490 register void *v;
491 {
492 register struct ip *ip = v;
493 register struct tcphdr *th;
494 extern int inetctlerrmap[];
495 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
496 int errno;
497 int nmatch;
498
499 if ((unsigned)cmd >= PRC_NCMDS)
500 return NULL;
501 errno = inetctlerrmap[cmd];
502 if (cmd == PRC_QUENCH)
503 notify = tcp_quench;
504 else if (PRC_IS_REDIRECT(cmd))
505 notify = in_rtchange, ip = 0;
506 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
507 notify = tcp_mtudisc, ip = 0;
508 else if (cmd == PRC_HOSTDEAD)
509 ip = 0;
510 else if (errno == 0)
511 return NULL;
512 if (ip) {
513 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
514 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
515 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
516 if (nmatch == 0 && syn_cache_count &&
517 (inetctlerrmap[cmd] == EHOSTUNREACH ||
518 inetctlerrmap[cmd] == ENETUNREACH ||
519 inetctlerrmap[cmd] == EHOSTDOWN))
520 syn_cache_unreach(ip, th);
521 } else
522 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
523 notify);
524 return NULL;
525 }
526
527 /*
528 * When a source quench is received, close congestion window
529 * to one segment. We will gradually open it again as we proceed.
530 */
531 void
532 tcp_quench(inp, errno)
533 struct inpcb *inp;
534 int errno;
535 {
536 struct tcpcb *tp = intotcpcb(inp);
537
538 if (tp)
539 tp->snd_cwnd = TCP_INITIAL_WINDOW(1, tp->t_segsz);
540 }
541
542 /*
543 * On receipt of path MTU corrections, flush old route and replace it
544 * with the new one. Retransmit all unacknowledged packets, to ensure
545 * that all packets will be received.
546 */
547 void
548 tcp_mtudisc(inp, errno)
549 struct inpcb *inp;
550 int errno;
551 {
552 struct tcpcb *tp = intotcpcb(inp);
553 struct rtentry *rt = in_pcbrtentry(inp);
554
555 if (tp != 0) {
556 if (rt != 0) {
557 /*
558 * If this was not a host route, remove and realloc.
559 */
560 if ((rt->rt_flags & RTF_HOST) == 0) {
561 in_rtchange(inp, errno);
562 if ((rt = in_pcbrtentry(inp)) == 0)
563 return;
564 }
565
566 /*
567 * Slow start out of the error condition. We
568 * use the MTU because we know it's smaller
569 * than the previously transmitted segment.
570 */
571 if (rt->rt_rmx.rmx_mtu != 0)
572 tp->snd_cwnd =
573 TCP_INITIAL_WINDOW(tcp_init_win,
574 rt->rt_rmx.rmx_mtu);
575 }
576
577 /*
578 * Resend unacknowledged packets.
579 */
580 tp->snd_nxt = tp->snd_una;
581 tcp_output(tp);
582 }
583 }
584
585
586 /*
587 * Compute the MSS to advertise to the peer. Called only during
588 * the 3-way handshake. If we are the server (peer initiated
589 * connection), we are called with the TCPCB for the listen
590 * socket. If we are the client (we initiated connection), we
591 * are called witht he TCPCB for the actual connection.
592 */
593 u_long
594 tcp_mss_to_advertise(ifp)
595 const struct ifnet *ifp;
596 {
597 extern u_long in_maxmtu;
598 u_long mss = 0;
599
600 /*
601 * In order to avoid defeating path MTU discovery on the peer,
602 * we advertise the max MTU of all attached networks as our MSS,
603 * per RFC 1191, section 3.1.
604 *
605 * We provide the option to advertise just the MTU of
606 * the interface on which we hope this connection will
607 * be receiving. If we are responding to a SYN, we
608 * will have a pretty good idea about this, but when
609 * initiating a connection there is a bit more doubt.
610 *
611 * We also need to ensure that loopback has a large enough
612 * MSS, as the loopback MTU is never included in in_maxmtu.
613 */
614
615 if (ifp != NULL)
616 mss = ifp->if_mtu;
617
618 if (tcp_mss_ifmtu == 0)
619 mss = max(in_maxmtu, mss);
620
621 if (mss > sizeof(struct tcpiphdr))
622 mss -= sizeof(struct tcpiphdr);
623
624 mss = max(tcp_mssdflt, mss);
625 return (mss);
626 }
627
628 /*
629 * Set connection variables based on the peer's advertised MSS.
630 * We are passed the TCPCB for the actual connection. If we
631 * are the server, we are called by the compressed state engine
632 * when the 3-way handshake is complete. If we are the client,
633 * we are called when we recieve the SYN,ACK from the server.
634 *
635 * NOTE: Our advertised MSS value must be initialized in the TCPCB
636 * before this routine is called!
637 */
638 void
639 tcp_mss_from_peer(tp, offer)
640 struct tcpcb *tp;
641 int offer;
642 {
643 struct inpcb *inp = tp->t_inpcb;
644 struct socket *so = inp->inp_socket;
645 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
646 struct rtentry *rt = in_pcbrtentry(inp);
647 #endif
648 u_long bufsize;
649 int mss;
650
651 /*
652 * As per RFC1122, use the default MSS value, unless they
653 * sent us an offer. Do not accept offers less than 32 bytes.
654 */
655 mss = tcp_mssdflt;
656 if (offer)
657 mss = offer;
658 mss = max(mss, 32); /* sanity */
659 mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
660
661 /*
662 * If there's a pipesize, change the socket buffer to that size.
663 * Make the socket buffer an integral number of MSS units. If
664 * the MSS is larger than the socket buffer, artificially decrease
665 * the MSS.
666 */
667 #ifdef RTV_SPIPE
668 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
669 bufsize = rt->rt_rmx.rmx_sendpipe;
670 else
671 #endif
672 bufsize = so->so_snd.sb_hiwat;
673 if (bufsize < mss)
674 mss = bufsize;
675 else {
676 bufsize = roundup(bufsize, mss);
677 if (bufsize > sb_max)
678 bufsize = sb_max;
679 (void) sbreserve(&so->so_snd, bufsize);
680 }
681 tp->t_peermss = mss;
682 tp->t_segsz = mss;
683
684 #ifdef RTV_SSTHRESH
685 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
686 /*
687 * There's some sort of gateway or interface buffer
688 * limit on the path. Use this to set the slow
689 * start threshold, but set the threshold to no less
690 * than 2 * MSS.
691 */
692 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
693 }
694 #endif
695 }
696
697 /*
698 * Processing necessary when a TCP connection is established.
699 */
700 void
701 tcp_established(tp)
702 struct tcpcb *tp;
703 {
704 struct inpcb *inp = tp->t_inpcb;
705 struct socket *so = inp->inp_socket;
706 #ifdef RTV_RPIPE
707 struct rtentry *rt = in_pcbrtentry(inp);
708 #endif
709 u_long bufsize;
710
711 tp->t_state = TCPS_ESTABLISHED;
712 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
713
714 #ifdef RTV_RPIPE
715 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
716 bufsize = rt->rt_rmx.rmx_recvpipe;
717 else
718 #endif
719 bufsize = so->so_rcv.sb_hiwat;
720 if (bufsize > tp->t_ourmss) {
721 bufsize = roundup(bufsize, tp->t_ourmss);
722 if (bufsize > sb_max)
723 bufsize = sb_max;
724 (void) sbreserve(&so->so_rcv, bufsize);
725 }
726 }
727
728 /*
729 * Check if there's an initial rtt or rttvar. Convert from the
730 * route-table units to scaled multiples of the slow timeout timer.
731 * Called only during the 3-way handshake.
732 */
733 void
734 tcp_rmx_rtt(tp)
735 struct tcpcb *tp;
736 {
737 #ifdef RTV_RTT
738 struct rtentry *rt;
739 int rtt;
740
741 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
742 return;
743
744 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
745 /*
746 * XXX The lock bit for MTU indicates that the value
747 * is also a minimum value; this is subject to time.
748 */
749 if (rt->rt_rmx.rmx_locks & RTV_RTT)
750 TCPT_RANGESET(tp->t_rttmin,
751 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
752 TCPTV_MIN, TCPTV_REXMTMAX);
753 tp->t_srtt = rtt /
754 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
755 if (rt->rt_rmx.rmx_rttvar) {
756 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
757 ((RTM_RTTUNIT / PR_SLOWHZ) >>
758 (TCP_RTTVAR_SHIFT + 2));
759 } else {
760 /* Default variation is +- 1 rtt */
761 tp->t_rttvar =
762 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
763 }
764 TCPT_RANGESET(tp->t_rxtcur,
765 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
766 tp->t_rttmin, TCPTV_REXMTMAX);
767 }
768 #endif
769 }
770
771 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
772
773 /*
774 * Get a new sequence value given a tcp control block
775 */
776 tcp_seq
777 tcp_new_iss(tp, len, addin)
778 void *tp;
779 u_long len;
780 tcp_seq addin;
781 {
782 tcp_seq tcp_iss;
783
784 /*
785 * add randomness about this connection, but do not estimate
786 * entropy from the timing, since the physical device driver would
787 * have done that for us.
788 */
789 #if NRND > 0
790 if (tp != NULL)
791 rnd_add_data(NULL, tp, len, 0);
792 #endif
793
794 /*
795 * randomize.
796 */
797 #if NRND > 0
798 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
799 #else
800 tcp_iss = random();
801 #endif
802
803 /*
804 * If we were asked to add some amount to a known value,
805 * we will take a random value obtained above, mask off the upper
806 * bits, and add in the known value. We also add in a constant to
807 * ensure that we are at least a certain distance from the original
808 * value.
809 *
810 * This is used when an old connection is in timed wait
811 * and we have a new one coming in, for instance.
812 */
813 if (addin != 0) {
814 #ifdef TCPISS_DEBUG
815 printf("Random %08x, ", tcp_iss);
816 #endif
817 tcp_iss &= TCP_ISS_RANDOM_MASK;
818 tcp_iss = tcp_iss + addin + TCP_ISSINCR;
819 tcp_iss_seq += TCP_ISSINCR;
820 tcp_iss += tcp_iss_seq;
821 #ifdef TCPISS_DEBUG
822 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
823 #endif
824 } else {
825 tcp_iss &= TCP_ISS_RANDOM_MASK;
826 tcp_iss_seq += TCP_ISSINCR;
827 tcp_iss += tcp_iss_seq;
828 #ifdef TCPISS_DEBUG
829 printf("ISS %08x\n", tcp_iss);
830 #endif
831 }
832
833 #ifdef TCP_COMPAT_42
834 /*
835 * limit it to the positive range for really old TCP implementations
836 */
837 if ((int)tcp_iss < 0)
838 tcp_iss &= 0x7fffffff; /* XXX */
839 #endif
840
841 return tcp_iss;
842 }
843
844
845 /*
846 * Determine the length of the TCP options for this connection.
847 *
848 * XXX: What do we do for SACK, when we add that? Just reserve
849 * all of the space? Otherwise we can't exactly be incrementing
850 * cwnd by an amount that varies depending on the amount we last
851 * had to SACK!
852 */
853
854 u_int
855 tcp_optlen(tp)
856 struct tcpcb *tp;
857 {
858 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
859 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
860 return TCPOLEN_TSTAMP_APPA;
861 else
862 return 0;
863 }
864
865
866