tcp_subr.c revision 1.49 1 /* $NetBSD: tcp_subr.c,v 1.49 1998/04/29 20:43:30 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #if NRND > 0
89 #include <sys/rnd.h>
90 #endif
91
92 #include <net/route.h>
93 #include <net/if.h>
94
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/ip.h>
98 #include <netinet/in_pcb.h>
99 #include <netinet/ip_var.h>
100 #include <netinet/ip_icmp.h>
101 #include <netinet/tcp.h>
102 #include <netinet/tcp_fsm.h>
103 #include <netinet/tcp_seq.h>
104 #include <netinet/tcp_timer.h>
105 #include <netinet/tcp_var.h>
106 #include <netinet/tcpip.h>
107
108 /* patchable/settable parameters for tcp */
109 int tcp_mssdflt = TCP_MSS;
110 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
111 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
112 int tcp_do_sack = 1; /* selective acknowledgement */
113 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
114 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
115 int tcp_init_win = 1;
116 int tcp_mss_ifmtu = 0;
117 #ifdef TCP_COMPAT_42
118 int tcp_compat_42 = 1;
119 #else
120 int tcp_compat_42 = 0;
121 #endif
122
123 #ifndef TCBHASHSIZE
124 #define TCBHASHSIZE 128
125 #endif
126 int tcbhashsize = TCBHASHSIZE;
127
128 int tcp_freeq __P((struct tcpcb *));
129
130 /*
131 * Tcp initialization
132 */
133 void
134 tcp_init()
135 {
136
137 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
138 LIST_INIT(&tcp_delacks);
139 if (max_protohdr < sizeof(struct tcpiphdr))
140 max_protohdr = sizeof(struct tcpiphdr);
141 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
142 panic("tcp_init");
143 }
144
145 /*
146 * Create template to be used to send tcp packets on a connection.
147 * Call after host entry created, allocates an mbuf and fills
148 * in a skeletal tcp/ip header, minimizing the amount of work
149 * necessary when the connection is used.
150 */
151 struct tcpiphdr *
152 tcp_template(tp)
153 struct tcpcb *tp;
154 {
155 register struct inpcb *inp = tp->t_inpcb;
156 register struct tcpiphdr *n;
157
158 if ((n = tp->t_template) == 0) {
159 MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
160 M_MBUF, M_NOWAIT);
161 if (n == NULL)
162 return (0);
163 }
164 bzero(n->ti_x1, sizeof n->ti_x1);
165 n->ti_pr = IPPROTO_TCP;
166 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
167 n->ti_src = inp->inp_laddr;
168 n->ti_dst = inp->inp_faddr;
169 n->ti_sport = inp->inp_lport;
170 n->ti_dport = inp->inp_fport;
171 n->ti_seq = 0;
172 n->ti_ack = 0;
173 n->ti_x2 = 0;
174 n->ti_off = 5;
175 n->ti_flags = 0;
176 n->ti_win = 0;
177 n->ti_sum = 0;
178 n->ti_urp = 0;
179 return (n);
180 }
181
182 /*
183 * Send a single message to the TCP at address specified by
184 * the given TCP/IP header. If m == 0, then we make a copy
185 * of the tcpiphdr at ti and send directly to the addressed host.
186 * This is used to force keep alive messages out using the TCP
187 * template for a connection tp->t_template. If flags are given
188 * then we send a message back to the TCP which originated the
189 * segment ti, and discard the mbuf containing it and any other
190 * attached mbufs.
191 *
192 * In any case the ack and sequence number of the transmitted
193 * segment are as specified by the parameters.
194 */
195 int
196 tcp_respond(tp, ti, m, ack, seq, flags)
197 struct tcpcb *tp;
198 register struct tcpiphdr *ti;
199 register struct mbuf *m;
200 tcp_seq ack, seq;
201 int flags;
202 {
203 register int tlen;
204 int win = 0;
205 struct route *ro = 0;
206
207 if (tp) {
208 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
209 ro = &tp->t_inpcb->inp_route;
210 }
211 if (m == 0) {
212 m = m_gethdr(M_DONTWAIT, MT_HEADER);
213 if (m == NULL)
214 return (ENOBUFS);
215
216 if (tcp_compat_42)
217 tlen = 1;
218 else
219 tlen = 0;
220
221 m->m_data += max_linkhdr;
222 *mtod(m, struct tcpiphdr *) = *ti;
223 ti = mtod(m, struct tcpiphdr *);
224 flags = TH_ACK;
225 } else {
226 m_freem(m->m_next);
227 m->m_next = 0;
228 m->m_data = (caddr_t)ti;
229 m->m_len = sizeof (struct tcpiphdr);
230 tlen = 0;
231 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
232 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
233 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
234 #undef xchg
235 }
236 bzero(ti->ti_x1, sizeof ti->ti_x1);
237 ti->ti_seq = htonl(seq);
238 ti->ti_ack = htonl(ack);
239 ti->ti_x2 = 0;
240 if ((flags & TH_SYN) == 0) {
241 if (tp)
242 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
243 else
244 ti->ti_win = htons((u_int16_t)win);
245 ti->ti_off = sizeof (struct tcphdr) >> 2;
246 tlen += sizeof (struct tcphdr);
247 } else
248 tlen += ti->ti_off << 2;
249 ti->ti_len = htons((u_int16_t)tlen);
250 tlen += sizeof (struct ip);
251 m->m_len = tlen;
252 m->m_pkthdr.len = tlen;
253 m->m_pkthdr.rcvif = (struct ifnet *) 0;
254 ti->ti_flags = flags;
255 ti->ti_urp = 0;
256 ti->ti_sum = 0;
257 ti->ti_sum = in_cksum(m, tlen);
258 ((struct ip *)ti)->ip_len = tlen;
259 ((struct ip *)ti)->ip_ttl = ip_defttl;
260 return ip_output(m, NULL, ro, 0, NULL);
261 }
262
263 /*
264 * Create a new TCP control block, making an
265 * empty reassembly queue and hooking it to the argument
266 * protocol control block.
267 */
268 struct tcpcb *
269 tcp_newtcpcb(inp)
270 struct inpcb *inp;
271 {
272 register struct tcpcb *tp;
273
274 tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
275 if (tp == NULL)
276 return ((struct tcpcb *)0);
277 bzero((caddr_t)tp, sizeof(struct tcpcb));
278 LIST_INIT(&tp->segq);
279 LIST_INIT(&tp->timeq);
280 tp->t_peermss = tcp_mssdflt;
281 tp->t_ourmss = tcp_mssdflt;
282 tp->t_segsz = tcp_mssdflt;
283
284 tp->t_flags = 0;
285 if (tcp_do_rfc1323 && tcp_do_win_scale)
286 tp->t_flags |= TF_REQ_SCALE;
287 if (tcp_do_rfc1323 && tcp_do_timestamps)
288 tp->t_flags |= TF_REQ_TSTMP;
289 if (tcp_do_sack == 2)
290 tp->t_flags |= TF_WILL_SACK;
291 else if (tcp_do_sack == 1)
292 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
293 tp->t_flags |= TF_CANT_TXSACK;
294 tp->t_inpcb = inp;
295 /*
296 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
297 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
298 * reasonable initial retransmit time.
299 */
300 tp->t_srtt = TCPTV_SRTTBASE;
301 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
302 tp->t_rttmin = TCPTV_MIN;
303 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
304 TCPTV_MIN, TCPTV_REXMTMAX);
305 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
306 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
307 inp->inp_ip.ip_ttl = ip_defttl;
308 inp->inp_ppcb = (caddr_t)tp;
309 return (tp);
310 }
311
312 /*
313 * Drop a TCP connection, reporting
314 * the specified error. If connection is synchronized,
315 * then send a RST to peer.
316 */
317 struct tcpcb *
318 tcp_drop(tp, errno)
319 register struct tcpcb *tp;
320 int errno;
321 {
322 struct socket *so = tp->t_inpcb->inp_socket;
323
324 if (TCPS_HAVERCVDSYN(tp->t_state)) {
325 tp->t_state = TCPS_CLOSED;
326 (void) tcp_output(tp);
327 tcpstat.tcps_drops++;
328 } else
329 tcpstat.tcps_conndrops++;
330 if (errno == ETIMEDOUT && tp->t_softerror)
331 errno = tp->t_softerror;
332 so->so_error = errno;
333 return (tcp_close(tp));
334 }
335
336 /*
337 * Close a TCP control block:
338 * discard all space held by the tcp
339 * discard internet protocol block
340 * wake up any sleepers
341 */
342 struct tcpcb *
343 tcp_close(tp)
344 register struct tcpcb *tp;
345 {
346 struct inpcb *inp = tp->t_inpcb;
347 struct socket *so = inp->inp_socket;
348 #ifdef RTV_RTT
349 register struct rtentry *rt;
350
351 /*
352 * If we sent enough data to get some meaningful characteristics,
353 * save them in the routing entry. 'Enough' is arbitrarily
354 * defined as the sendpipesize (default 4K) * 16. This would
355 * give us 16 rtt samples assuming we only get one sample per
356 * window (the usual case on a long haul net). 16 samples is
357 * enough for the srtt filter to converge to within 5% of the correct
358 * value; fewer samples and we could save a very bogus rtt.
359 *
360 * Don't update the default route's characteristics and don't
361 * update anything that the user "locked".
362 */
363 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
364 (rt = inp->inp_route.ro_rt) &&
365 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
366 register u_long i = 0;
367
368 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
369 i = tp->t_srtt *
370 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
371 if (rt->rt_rmx.rmx_rtt && i)
372 /*
373 * filter this update to half the old & half
374 * the new values, converting scale.
375 * See route.h and tcp_var.h for a
376 * description of the scaling constants.
377 */
378 rt->rt_rmx.rmx_rtt =
379 (rt->rt_rmx.rmx_rtt + i) / 2;
380 else
381 rt->rt_rmx.rmx_rtt = i;
382 }
383 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
384 i = tp->t_rttvar *
385 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
386 if (rt->rt_rmx.rmx_rttvar && i)
387 rt->rt_rmx.rmx_rttvar =
388 (rt->rt_rmx.rmx_rttvar + i) / 2;
389 else
390 rt->rt_rmx.rmx_rttvar = i;
391 }
392 /*
393 * update the pipelimit (ssthresh) if it has been updated
394 * already or if a pipesize was specified & the threshhold
395 * got below half the pipesize. I.e., wait for bad news
396 * before we start updating, then update on both good
397 * and bad news.
398 */
399 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
400 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
401 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
402 /*
403 * convert the limit from user data bytes to
404 * packets then to packet data bytes.
405 */
406 i = (i + tp->t_segsz / 2) / tp->t_segsz;
407 if (i < 2)
408 i = 2;
409 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
410 if (rt->rt_rmx.rmx_ssthresh)
411 rt->rt_rmx.rmx_ssthresh =
412 (rt->rt_rmx.rmx_ssthresh + i) / 2;
413 else
414 rt->rt_rmx.rmx_ssthresh = i;
415 }
416 }
417 #endif /* RTV_RTT */
418 /* free the reassembly queue, if any */
419 (void) tcp_freeq(tp);
420 TCP_CLEAR_DELACK(tp);
421
422 if (tp->t_template)
423 FREE(tp->t_template, M_MBUF);
424 free(tp, M_PCB);
425 inp->inp_ppcb = 0;
426 soisdisconnected(so);
427 in_pcbdetach(inp);
428 tcpstat.tcps_closed++;
429 return ((struct tcpcb *)0);
430 }
431
432 int
433 tcp_freeq(tp)
434 struct tcpcb *tp;
435 {
436 register struct ipqent *qe;
437 int rv = 0;
438 #ifdef TCPREASS_DEBUG
439 int i = 0;
440 #endif
441
442 while ((qe = tp->segq.lh_first) != NULL) {
443 #ifdef TCPREASS_DEBUG
444 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
445 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
446 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
447 #endif
448 LIST_REMOVE(qe, ipqe_q);
449 LIST_REMOVE(qe, ipqe_timeq);
450 m_freem(qe->ipqe_m);
451 FREE(qe, M_IPQ);
452 rv = 1;
453 }
454 return (rv);
455 }
456
457 /*
458 * Protocol drain routine. Called when memory is in short supply.
459 */
460 void
461 tcp_drain()
462 {
463 register struct inpcb *inp;
464 register struct tcpcb *tp;
465
466 /*
467 * Free the sequence queue of all TCP connections.
468 */
469 inp = tcbtable.inpt_queue.cqh_first;
470 if (inp) /* XXX */
471 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
472 inp = inp->inp_queue.cqe_next) {
473 if ((tp = intotcpcb(inp)) != NULL) {
474 if (tcp_freeq(tp))
475 tcpstat.tcps_connsdrained++;
476 }
477 }
478 }
479
480 /*
481 * Notify a tcp user of an asynchronous error;
482 * store error as soft error, but wake up user
483 * (for now, won't do anything until can select for soft error).
484 */
485 void
486 tcp_notify(inp, error)
487 struct inpcb *inp;
488 int error;
489 {
490 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
491 register struct socket *so = inp->inp_socket;
492
493 /*
494 * Ignore some errors if we are hooked up.
495 * If connection hasn't completed, has retransmitted several times,
496 * and receives a second error, give up now. This is better
497 * than waiting a long time to establish a connection that
498 * can never complete.
499 */
500 if (tp->t_state == TCPS_ESTABLISHED &&
501 (error == EHOSTUNREACH || error == ENETUNREACH ||
502 error == EHOSTDOWN)) {
503 return;
504 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
505 tp->t_rxtshift > 3 && tp->t_softerror)
506 so->so_error = error;
507 else
508 tp->t_softerror = error;
509 wakeup((caddr_t) &so->so_timeo);
510 sorwakeup(so);
511 sowwakeup(so);
512 }
513
514 void *
515 tcp_ctlinput(cmd, sa, v)
516 int cmd;
517 struct sockaddr *sa;
518 register void *v;
519 {
520 register struct ip *ip = v;
521 register struct tcphdr *th;
522 extern int inetctlerrmap[];
523 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
524 int errno;
525 int nmatch;
526
527 if ((unsigned)cmd >= PRC_NCMDS)
528 return NULL;
529 errno = inetctlerrmap[cmd];
530 if (cmd == PRC_QUENCH)
531 notify = tcp_quench;
532 else if (PRC_IS_REDIRECT(cmd))
533 notify = in_rtchange, ip = 0;
534 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
535 notify = tcp_mtudisc, ip = 0;
536 else if (cmd == PRC_HOSTDEAD)
537 ip = 0;
538 else if (errno == 0)
539 return NULL;
540 if (ip) {
541 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
542 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
543 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
544 if (nmatch == 0 && syn_cache_count &&
545 (inetctlerrmap[cmd] == EHOSTUNREACH ||
546 inetctlerrmap[cmd] == ENETUNREACH ||
547 inetctlerrmap[cmd] == EHOSTDOWN))
548 syn_cache_unreach(ip, th);
549 } else
550 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
551 notify);
552 return NULL;
553 }
554
555 /*
556 * When a source quench is received, close congestion window
557 * to one segment. We will gradually open it again as we proceed.
558 */
559 void
560 tcp_quench(inp, errno)
561 struct inpcb *inp;
562 int errno;
563 {
564 struct tcpcb *tp = intotcpcb(inp);
565
566 if (tp)
567 tp->snd_cwnd = TCP_INITIAL_WINDOW(1, tp->t_segsz);
568 }
569
570 /*
571 * On receipt of path MTU corrections, flush old route and replace it
572 * with the new one. Retransmit all unacknowledged packets, to ensure
573 * that all packets will be received.
574 */
575 void
576 tcp_mtudisc(inp, errno)
577 struct inpcb *inp;
578 int errno;
579 {
580 struct tcpcb *tp = intotcpcb(inp);
581 struct rtentry *rt = in_pcbrtentry(inp);
582
583 if (tp != 0) {
584 if (rt != 0) {
585 /*
586 * If this was not a host route, remove and realloc.
587 */
588 if ((rt->rt_flags & RTF_HOST) == 0) {
589 in_rtchange(inp, errno);
590 if ((rt = in_pcbrtentry(inp)) == 0)
591 return;
592 }
593
594 /*
595 * Slow start out of the error condition. We
596 * use the MTU because we know it's smaller
597 * than the previously transmitted segment.
598 */
599 if (rt->rt_rmx.rmx_mtu != 0)
600 tp->snd_cwnd =
601 TCP_INITIAL_WINDOW(tcp_init_win,
602 rt->rt_rmx.rmx_mtu);
603 }
604
605 /*
606 * Resend unacknowledged packets.
607 */
608 tp->snd_nxt = tp->snd_una;
609 tcp_output(tp);
610 }
611 }
612
613
614 /*
615 * Compute the MSS to advertise to the peer. Called only during
616 * the 3-way handshake. If we are the server (peer initiated
617 * connection), we are called with the TCPCB for the listen
618 * socket. If we are the client (we initiated connection), we
619 * are called witht he TCPCB for the actual connection.
620 */
621 u_long
622 tcp_mss_to_advertise(ifp)
623 const struct ifnet *ifp;
624 {
625 extern u_long in_maxmtu;
626 u_long mss = 0;
627
628 /*
629 * In order to avoid defeating path MTU discovery on the peer,
630 * we advertise the max MTU of all attached networks as our MSS,
631 * per RFC 1191, section 3.1.
632 *
633 * We provide the option to advertise just the MTU of
634 * the interface on which we hope this connection will
635 * be receiving. If we are responding to a SYN, we
636 * will have a pretty good idea about this, but when
637 * initiating a connection there is a bit more doubt.
638 *
639 * We also need to ensure that loopback has a large enough
640 * MSS, as the loopback MTU is never included in in_maxmtu.
641 */
642
643 if (ifp != NULL)
644 mss = ifp->if_mtu;
645
646 if (tcp_mss_ifmtu == 0)
647 mss = max(in_maxmtu, mss);
648
649 if (mss > sizeof(struct tcpiphdr))
650 mss -= sizeof(struct tcpiphdr);
651
652 mss = max(tcp_mssdflt, mss);
653 return (mss);
654 }
655
656 /*
657 * Set connection variables based on the peer's advertised MSS.
658 * We are passed the TCPCB for the actual connection. If we
659 * are the server, we are called by the compressed state engine
660 * when the 3-way handshake is complete. If we are the client,
661 * we are called when we recieve the SYN,ACK from the server.
662 *
663 * NOTE: Our advertised MSS value must be initialized in the TCPCB
664 * before this routine is called!
665 */
666 void
667 tcp_mss_from_peer(tp, offer)
668 struct tcpcb *tp;
669 int offer;
670 {
671 struct inpcb *inp = tp->t_inpcb;
672 struct socket *so = inp->inp_socket;
673 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
674 struct rtentry *rt = in_pcbrtentry(inp);
675 #endif
676 u_long bufsize;
677 int mss;
678
679 /*
680 * As per RFC1122, use the default MSS value, unless they
681 * sent us an offer. Do not accept offers less than 32 bytes.
682 */
683 mss = tcp_mssdflt;
684 if (offer)
685 mss = offer;
686 mss = max(mss, 32); /* sanity */
687 mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
688
689 /*
690 * If there's a pipesize, change the socket buffer to that size.
691 * Make the socket buffer an integral number of MSS units. If
692 * the MSS is larger than the socket buffer, artificially decrease
693 * the MSS.
694 */
695 #ifdef RTV_SPIPE
696 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
697 bufsize = rt->rt_rmx.rmx_sendpipe;
698 else
699 #endif
700 bufsize = so->so_snd.sb_hiwat;
701 if (bufsize < mss)
702 mss = bufsize;
703 else {
704 bufsize = roundup(bufsize, mss);
705 if (bufsize > sb_max)
706 bufsize = sb_max;
707 (void) sbreserve(&so->so_snd, bufsize);
708 }
709 tp->t_peermss = mss;
710 tp->t_segsz = mss;
711
712 #ifdef RTV_SSTHRESH
713 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
714 /*
715 * There's some sort of gateway or interface buffer
716 * limit on the path. Use this to set the slow
717 * start threshold, but set the threshold to no less
718 * than 2 * MSS.
719 */
720 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
721 }
722 #endif
723 }
724
725 /*
726 * Processing necessary when a TCP connection is established.
727 */
728 void
729 tcp_established(tp)
730 struct tcpcb *tp;
731 {
732 struct inpcb *inp = tp->t_inpcb;
733 struct socket *so = inp->inp_socket;
734 #ifdef RTV_RPIPE
735 struct rtentry *rt = in_pcbrtentry(inp);
736 #endif
737 u_long bufsize;
738
739 tp->t_state = TCPS_ESTABLISHED;
740 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
741
742 #ifdef RTV_RPIPE
743 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
744 bufsize = rt->rt_rmx.rmx_recvpipe;
745 else
746 #endif
747 bufsize = so->so_rcv.sb_hiwat;
748 if (bufsize > tp->t_ourmss) {
749 bufsize = roundup(bufsize, tp->t_ourmss);
750 if (bufsize > sb_max)
751 bufsize = sb_max;
752 (void) sbreserve(&so->so_rcv, bufsize);
753 }
754 }
755
756 /*
757 * Check if there's an initial rtt or rttvar. Convert from the
758 * route-table units to scaled multiples of the slow timeout timer.
759 * Called only during the 3-way handshake.
760 */
761 void
762 tcp_rmx_rtt(tp)
763 struct tcpcb *tp;
764 {
765 #ifdef RTV_RTT
766 struct rtentry *rt;
767 int rtt;
768
769 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
770 return;
771
772 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
773 /*
774 * XXX The lock bit for MTU indicates that the value
775 * is also a minimum value; this is subject to time.
776 */
777 if (rt->rt_rmx.rmx_locks & RTV_RTT)
778 TCPT_RANGESET(tp->t_rttmin,
779 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
780 TCPTV_MIN, TCPTV_REXMTMAX);
781 tp->t_srtt = rtt /
782 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
783 if (rt->rt_rmx.rmx_rttvar) {
784 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
785 ((RTM_RTTUNIT / PR_SLOWHZ) >>
786 (TCP_RTTVAR_SHIFT + 2));
787 } else {
788 /* Default variation is +- 1 rtt */
789 tp->t_rttvar =
790 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
791 }
792 TCPT_RANGESET(tp->t_rxtcur,
793 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
794 tp->t_rttmin, TCPTV_REXMTMAX);
795 }
796 #endif
797 }
798
799 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
800
801 /*
802 * Get a new sequence value given a tcp control block
803 */
804 tcp_seq
805 tcp_new_iss(tp, len, addin)
806 void *tp;
807 u_long len;
808 tcp_seq addin;
809 {
810 tcp_seq tcp_iss;
811
812 /*
813 * add randomness about this connection, but do not estimate
814 * entropy from the timing, since the physical device driver would
815 * have done that for us.
816 */
817 #if NRND > 0
818 if (tp != NULL)
819 rnd_add_data(NULL, tp, len, 0);
820 #endif
821
822 /*
823 * randomize.
824 */
825 #if NRND > 0
826 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
827 #else
828 tcp_iss = random();
829 #endif
830
831 /*
832 * If we were asked to add some amount to a known value,
833 * we will take a random value obtained above, mask off the upper
834 * bits, and add in the known value. We also add in a constant to
835 * ensure that we are at least a certain distance from the original
836 * value.
837 *
838 * This is used when an old connection is in timed wait
839 * and we have a new one coming in, for instance.
840 */
841 if (addin != 0) {
842 #ifdef TCPISS_DEBUG
843 printf("Random %08x, ", tcp_iss);
844 #endif
845 tcp_iss &= TCP_ISS_RANDOM_MASK;
846 tcp_iss = tcp_iss + addin + TCP_ISSINCR;
847 tcp_iss_seq += TCP_ISSINCR;
848 tcp_iss += tcp_iss_seq;
849 #ifdef TCPISS_DEBUG
850 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
851 #endif
852 } else {
853 tcp_iss &= TCP_ISS_RANDOM_MASK;
854 tcp_iss_seq += TCP_ISSINCR;
855 tcp_iss += tcp_iss_seq;
856 #ifdef TCPISS_DEBUG
857 printf("ISS %08x\n", tcp_iss);
858 #endif
859 }
860
861 if (tcp_compat_42) {
862 /*
863 * Limit it to the positive range for really old TCP
864 * implementations.
865 */
866 if ((int)tcp_iss < 0)
867 tcp_iss &= 0x7fffffff; /* XXX */
868 }
869
870 return tcp_iss;
871 }
872
873
874 /*
875 * Determine the length of the TCP options for this connection.
876 *
877 * XXX: What do we do for SACK, when we add that? Just reserve
878 * all of the space? Otherwise we can't exactly be incrementing
879 * cwnd by an amount that varies depending on the amount we last
880 * had to SACK!
881 */
882
883 u_int
884 tcp_optlen(tp)
885 struct tcpcb *tp;
886 {
887 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
888 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
889 return TCPOLEN_TSTAMP_APPA;
890 else
891 return 0;
892 }
893