Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.51
      1 /*	$NetBSD: tcp_subr.c,v 1.51 1998/05/06 01:21:21 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
      9  * Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     73  */
     74 
     75 #include "opt_tcp_compat_42.h"
     76 #include "rnd.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/protosw.h>
     86 #include <sys/errno.h>
     87 #include <sys/kernel.h>
     88 #if NRND > 0
     89 #include <sys/rnd.h>
     90 #endif
     91 
     92 #include <net/route.h>
     93 #include <net/if.h>
     94 
     95 #include <netinet/in.h>
     96 #include <netinet/in_systm.h>
     97 #include <netinet/ip.h>
     98 #include <netinet/in_pcb.h>
     99 #include <netinet/ip_var.h>
    100 #include <netinet/ip_icmp.h>
    101 #include <netinet/tcp.h>
    102 #include <netinet/tcp_fsm.h>
    103 #include <netinet/tcp_seq.h>
    104 #include <netinet/tcp_timer.h>
    105 #include <netinet/tcp_var.h>
    106 #include <netinet/tcpip.h>
    107 
    108 /* patchable/settable parameters for tcp */
    109 int 	tcp_mssdflt = TCP_MSS;
    110 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    111 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    112 int	tcp_do_sack = 1;	/* selective acknowledgement */
    113 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    114 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    115 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    116 int	tcp_init_win = 1;
    117 int	tcp_mss_ifmtu = 0;
    118 #ifdef TCP_COMPAT_42
    119 int	tcp_compat_42 = 1;
    120 #else
    121 int	tcp_compat_42 = 0;
    122 #endif
    123 
    124 #ifndef TCBHASHSIZE
    125 #define	TCBHASHSIZE	128
    126 #endif
    127 int	tcbhashsize = TCBHASHSIZE;
    128 
    129 int	tcp_freeq __P((struct tcpcb *));
    130 
    131 /*
    132  * Tcp initialization
    133  */
    134 void
    135 tcp_init()
    136 {
    137 
    138 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    139 	LIST_INIT(&tcp_delacks);
    140 	if (max_protohdr < sizeof(struct tcpiphdr))
    141 		max_protohdr = sizeof(struct tcpiphdr);
    142 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
    143 		panic("tcp_init");
    144 }
    145 
    146 /*
    147  * Create template to be used to send tcp packets on a connection.
    148  * Call after host entry created, allocates an mbuf and fills
    149  * in a skeletal tcp/ip header, minimizing the amount of work
    150  * necessary when the connection is used.
    151  */
    152 struct tcpiphdr *
    153 tcp_template(tp)
    154 	struct tcpcb *tp;
    155 {
    156 	register struct inpcb *inp = tp->t_inpcb;
    157 	register struct tcpiphdr *n;
    158 
    159 	if ((n = tp->t_template) == 0) {
    160 		MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
    161 		    M_MBUF, M_NOWAIT);
    162 		if (n == NULL)
    163 			return (0);
    164 	}
    165 	bzero(n->ti_x1, sizeof n->ti_x1);
    166 	n->ti_pr = IPPROTO_TCP;
    167 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
    168 	n->ti_src = inp->inp_laddr;
    169 	n->ti_dst = inp->inp_faddr;
    170 	n->ti_sport = inp->inp_lport;
    171 	n->ti_dport = inp->inp_fport;
    172 	n->ti_seq = 0;
    173 	n->ti_ack = 0;
    174 	n->ti_x2 = 0;
    175 	n->ti_off = 5;
    176 	n->ti_flags = 0;
    177 	n->ti_win = 0;
    178 	n->ti_sum = 0;
    179 	n->ti_urp = 0;
    180 	return (n);
    181 }
    182 
    183 /*
    184  * Send a single message to the TCP at address specified by
    185  * the given TCP/IP header.  If m == 0, then we make a copy
    186  * of the tcpiphdr at ti and send directly to the addressed host.
    187  * This is used to force keep alive messages out using the TCP
    188  * template for a connection tp->t_template.  If flags are given
    189  * then we send a message back to the TCP which originated the
    190  * segment ti, and discard the mbuf containing it and any other
    191  * attached mbufs.
    192  *
    193  * In any case the ack and sequence number of the transmitted
    194  * segment are as specified by the parameters.
    195  */
    196 int
    197 tcp_respond(tp, ti, m, ack, seq, flags)
    198 	struct tcpcb *tp;
    199 	register struct tcpiphdr *ti;
    200 	register struct mbuf *m;
    201 	tcp_seq ack, seq;
    202 	int flags;
    203 {
    204 	register int tlen;
    205 	int win = 0;
    206 	struct route *ro = 0;
    207 
    208 	if (tp) {
    209 		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    210 		ro = &tp->t_inpcb->inp_route;
    211 	}
    212 	if (m == 0) {
    213 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
    214 		if (m == NULL)
    215 			return (ENOBUFS);
    216 
    217 		if (tcp_compat_42)
    218 			tlen = 1;
    219 		else
    220 			tlen = 0;
    221 
    222 		m->m_data += max_linkhdr;
    223 		*mtod(m, struct tcpiphdr *) = *ti;
    224 		ti = mtod(m, struct tcpiphdr *);
    225 		flags = TH_ACK;
    226 	} else {
    227 		m_freem(m->m_next);
    228 		m->m_next = 0;
    229 		m->m_data = (caddr_t)ti;
    230 		m->m_len = sizeof (struct tcpiphdr);
    231 		tlen = 0;
    232 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    233 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
    234 		xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
    235 #undef xchg
    236 	}
    237 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    238 	ti->ti_seq = htonl(seq);
    239 	ti->ti_ack = htonl(ack);
    240 	ti->ti_x2 = 0;
    241 	if ((flags & TH_SYN) == 0) {
    242 		if (tp)
    243 			ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
    244 		else
    245 			ti->ti_win = htons((u_int16_t)win);
    246 		ti->ti_off = sizeof (struct tcphdr) >> 2;
    247 		tlen += sizeof (struct tcphdr);
    248 	} else
    249 		tlen += ti->ti_off << 2;
    250 	ti->ti_len = htons((u_int16_t)tlen);
    251 	tlen += sizeof (struct ip);
    252 	m->m_len = tlen;
    253 	m->m_pkthdr.len = tlen;
    254 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    255 	ti->ti_flags = flags;
    256 	ti->ti_urp = 0;
    257 	ti->ti_sum = 0;
    258 	ti->ti_sum = in_cksum(m, tlen);
    259 	((struct ip *)ti)->ip_len = tlen;
    260 	((struct ip *)ti)->ip_ttl = ip_defttl;
    261 	return ip_output(m, NULL, ro, 0, NULL);
    262 }
    263 
    264 /*
    265  * Create a new TCP control block, making an
    266  * empty reassembly queue and hooking it to the argument
    267  * protocol control block.
    268  */
    269 struct tcpcb *
    270 tcp_newtcpcb(inp)
    271 	struct inpcb *inp;
    272 {
    273 	register struct tcpcb *tp;
    274 
    275 	tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
    276 	if (tp == NULL)
    277 		return ((struct tcpcb *)0);
    278 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    279 	LIST_INIT(&tp->segq);
    280 	LIST_INIT(&tp->timeq);
    281 	tp->t_peermss = tcp_mssdflt;
    282 	tp->t_ourmss = tcp_mssdflt;
    283 	tp->t_segsz = tcp_mssdflt;
    284 
    285 	tp->t_flags = 0;
    286 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    287 		tp->t_flags |= TF_REQ_SCALE;
    288 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    289 		tp->t_flags |= TF_REQ_TSTMP;
    290 	if (tcp_do_sack == 2)
    291 		tp->t_flags |= TF_WILL_SACK;
    292 	else if (tcp_do_sack == 1)
    293 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    294 	tp->t_flags |= TF_CANT_TXSACK;
    295 	tp->t_inpcb = inp;
    296 	/*
    297 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    298 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    299 	 * reasonable initial retransmit time.
    300 	 */
    301 	tp->t_srtt = TCPTV_SRTTBASE;
    302 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    303 	tp->t_rttmin = TCPTV_MIN;
    304 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    305 	    TCPTV_MIN, TCPTV_REXMTMAX);
    306 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    307 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    308 	inp->inp_ip.ip_ttl = ip_defttl;
    309 	inp->inp_ppcb = (caddr_t)tp;
    310 	return (tp);
    311 }
    312 
    313 /*
    314  * Drop a TCP connection, reporting
    315  * the specified error.  If connection is synchronized,
    316  * then send a RST to peer.
    317  */
    318 struct tcpcb *
    319 tcp_drop(tp, errno)
    320 	register struct tcpcb *tp;
    321 	int errno;
    322 {
    323 	struct socket *so = tp->t_inpcb->inp_socket;
    324 
    325 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    326 		tp->t_state = TCPS_CLOSED;
    327 		(void) tcp_output(tp);
    328 		tcpstat.tcps_drops++;
    329 	} else
    330 		tcpstat.tcps_conndrops++;
    331 	if (errno == ETIMEDOUT && tp->t_softerror)
    332 		errno = tp->t_softerror;
    333 	so->so_error = errno;
    334 	return (tcp_close(tp));
    335 }
    336 
    337 /*
    338  * Close a TCP control block:
    339  *	discard all space held by the tcp
    340  *	discard internet protocol block
    341  *	wake up any sleepers
    342  */
    343 struct tcpcb *
    344 tcp_close(tp)
    345 	register struct tcpcb *tp;
    346 {
    347 	struct inpcb *inp = tp->t_inpcb;
    348 	struct socket *so = inp->inp_socket;
    349 #ifdef RTV_RTT
    350 	register struct rtentry *rt;
    351 
    352 	/*
    353 	 * If we sent enough data to get some meaningful characteristics,
    354 	 * save them in the routing entry.  'Enough' is arbitrarily
    355 	 * defined as the sendpipesize (default 4K) * 16.  This would
    356 	 * give us 16 rtt samples assuming we only get one sample per
    357 	 * window (the usual case on a long haul net).  16 samples is
    358 	 * enough for the srtt filter to converge to within 5% of the correct
    359 	 * value; fewer samples and we could save a very bogus rtt.
    360 	 *
    361 	 * Don't update the default route's characteristics and don't
    362 	 * update anything that the user "locked".
    363 	 */
    364 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    365 	    (rt = inp->inp_route.ro_rt) &&
    366 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    367 		register u_long i = 0;
    368 
    369 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    370 			i = tp->t_srtt *
    371 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    372 			if (rt->rt_rmx.rmx_rtt && i)
    373 				/*
    374 				 * filter this update to half the old & half
    375 				 * the new values, converting scale.
    376 				 * See route.h and tcp_var.h for a
    377 				 * description of the scaling constants.
    378 				 */
    379 				rt->rt_rmx.rmx_rtt =
    380 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    381 			else
    382 				rt->rt_rmx.rmx_rtt = i;
    383 		}
    384 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    385 			i = tp->t_rttvar *
    386 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    387 			if (rt->rt_rmx.rmx_rttvar && i)
    388 				rt->rt_rmx.rmx_rttvar =
    389 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    390 			else
    391 				rt->rt_rmx.rmx_rttvar = i;
    392 		}
    393 		/*
    394 		 * update the pipelimit (ssthresh) if it has been updated
    395 		 * already or if a pipesize was specified & the threshhold
    396 		 * got below half the pipesize.  I.e., wait for bad news
    397 		 * before we start updating, then update on both good
    398 		 * and bad news.
    399 		 */
    400 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
    401 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
    402 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
    403 			/*
    404 			 * convert the limit from user data bytes to
    405 			 * packets then to packet data bytes.
    406 			 */
    407 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
    408 			if (i < 2)
    409 				i = 2;
    410 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
    411 			if (rt->rt_rmx.rmx_ssthresh)
    412 				rt->rt_rmx.rmx_ssthresh =
    413 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
    414 			else
    415 				rt->rt_rmx.rmx_ssthresh = i;
    416 		}
    417 	}
    418 #endif /* RTV_RTT */
    419 	/* free the reassembly queue, if any */
    420 	(void) tcp_freeq(tp);
    421 	TCP_CLEAR_DELACK(tp);
    422 
    423 	if (tp->t_template)
    424 		FREE(tp->t_template, M_MBUF);
    425 	free(tp, M_PCB);
    426 	inp->inp_ppcb = 0;
    427 	soisdisconnected(so);
    428 	in_pcbdetach(inp);
    429 	tcpstat.tcps_closed++;
    430 	return ((struct tcpcb *)0);
    431 }
    432 
    433 int
    434 tcp_freeq(tp)
    435 	struct tcpcb *tp;
    436 {
    437 	register struct ipqent *qe;
    438 	int rv = 0;
    439 #ifdef TCPREASS_DEBUG
    440 	int i = 0;
    441 #endif
    442 
    443 	while ((qe = tp->segq.lh_first) != NULL) {
    444 #ifdef TCPREASS_DEBUG
    445 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
    446 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
    447 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
    448 #endif
    449 		LIST_REMOVE(qe, ipqe_q);
    450 		LIST_REMOVE(qe, ipqe_timeq);
    451 		m_freem(qe->ipqe_m);
    452 		FREE(qe, M_IPQ);
    453 		rv = 1;
    454 	}
    455 	return (rv);
    456 }
    457 
    458 /*
    459  * Protocol drain routine.  Called when memory is in short supply.
    460  */
    461 void
    462 tcp_drain()
    463 {
    464 	register struct inpcb *inp;
    465 	register struct tcpcb *tp;
    466 
    467 	/*
    468 	 * Free the sequence queue of all TCP connections.
    469 	 */
    470 	inp = tcbtable.inpt_queue.cqh_first;
    471 	if (inp)						/* XXX */
    472 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
    473 	    inp = inp->inp_queue.cqe_next) {
    474 		if ((tp = intotcpcb(inp)) != NULL) {
    475 			if (tcp_freeq(tp))
    476 				tcpstat.tcps_connsdrained++;
    477 		}
    478 	}
    479 }
    480 
    481 /*
    482  * Notify a tcp user of an asynchronous error;
    483  * store error as soft error, but wake up user
    484  * (for now, won't do anything until can select for soft error).
    485  */
    486 void
    487 tcp_notify(inp, error)
    488 	struct inpcb *inp;
    489 	int error;
    490 {
    491 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
    492 	register struct socket *so = inp->inp_socket;
    493 
    494 	/*
    495 	 * Ignore some errors if we are hooked up.
    496 	 * If connection hasn't completed, has retransmitted several times,
    497 	 * and receives a second error, give up now.  This is better
    498 	 * than waiting a long time to establish a connection that
    499 	 * can never complete.
    500 	 */
    501 	if (tp->t_state == TCPS_ESTABLISHED &&
    502 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
    503 	      error == EHOSTDOWN)) {
    504 		return;
    505 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
    506 	    tp->t_rxtshift > 3 && tp->t_softerror)
    507 		so->so_error = error;
    508 	else
    509 		tp->t_softerror = error;
    510 	wakeup((caddr_t) &so->so_timeo);
    511 	sorwakeup(so);
    512 	sowwakeup(so);
    513 }
    514 
    515 void *
    516 tcp_ctlinput(cmd, sa, v)
    517 	int cmd;
    518 	struct sockaddr *sa;
    519 	register void *v;
    520 {
    521 	register struct ip *ip = v;
    522 	register struct tcphdr *th;
    523 	extern int inetctlerrmap[];
    524 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
    525 	int errno;
    526 	int nmatch;
    527 
    528 	if ((unsigned)cmd >= PRC_NCMDS)
    529 		return NULL;
    530 	errno = inetctlerrmap[cmd];
    531 	if (cmd == PRC_QUENCH)
    532 		notify = tcp_quench;
    533 	else if (PRC_IS_REDIRECT(cmd))
    534 		notify = in_rtchange, ip = 0;
    535 	else if (cmd == PRC_MSGSIZE && ip_mtudisc)
    536 		notify = tcp_mtudisc, ip = 0;
    537 	else if (cmd == PRC_HOSTDEAD)
    538 		ip = 0;
    539 	else if (errno == 0)
    540 		return NULL;
    541 	if (ip) {
    542 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
    543 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
    544 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
    545 		if (nmatch == 0 && syn_cache_count &&
    546 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
    547 		    inetctlerrmap[cmd] == ENETUNREACH ||
    548 		    inetctlerrmap[cmd] == EHOSTDOWN))
    549 			syn_cache_unreach(ip, th);
    550 	} else
    551 		(void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
    552 		    notify);
    553 	return NULL;
    554 }
    555 
    556 /*
    557  * When a source quench is received, close congestion window
    558  * to one segment.  We will gradually open it again as we proceed.
    559  */
    560 void
    561 tcp_quench(inp, errno)
    562 	struct inpcb *inp;
    563 	int errno;
    564 {
    565 	struct tcpcb *tp = intotcpcb(inp);
    566 
    567 	if (tp)
    568 		tp->snd_cwnd = TCP_INITIAL_WINDOW(1, tp->t_segsz);
    569 }
    570 
    571 /*
    572  * On receipt of path MTU corrections, flush old route and replace it
    573  * with the new one.  Retransmit all unacknowledged packets, to ensure
    574  * that all packets will be received.
    575  */
    576 void
    577 tcp_mtudisc(inp, errno)
    578 	struct inpcb *inp;
    579 	int errno;
    580 {
    581 	struct tcpcb *tp = intotcpcb(inp);
    582 	struct rtentry *rt = in_pcbrtentry(inp);
    583 
    584 	if (tp != 0) {
    585 		if (rt != 0) {
    586 			/*
    587 			 * If this was not a host route, remove and realloc.
    588 			 */
    589 			if ((rt->rt_flags & RTF_HOST) == 0) {
    590 				in_rtchange(inp, errno);
    591 				if ((rt = in_pcbrtentry(inp)) == 0)
    592 					return;
    593 			}
    594 
    595 			/*
    596 			 * Slow start out of the error condition.  We
    597 			 * use the MTU because we know it's smaller
    598 			 * than the previously transmitted segment.
    599 			 */
    600 			if (rt->rt_rmx.rmx_mtu != 0)
    601 				tp->snd_cwnd =
    602 				    TCP_INITIAL_WINDOW(tcp_init_win,
    603 				    rt->rt_rmx.rmx_mtu);
    604 		}
    605 
    606 		/*
    607 		 * Resend unacknowledged packets.
    608 		 */
    609 		tp->snd_nxt = tp->snd_una;
    610 		tcp_output(tp);
    611 	}
    612 }
    613 
    614 
    615 /*
    616  * Compute the MSS to advertise to the peer.  Called only during
    617  * the 3-way handshake.  If we are the server (peer initiated
    618  * connection), we are called with the TCPCB for the listen
    619  * socket.  If we are the client (we initiated connection), we
    620  * are called witht he TCPCB for the actual connection.
    621  */
    622 u_long
    623 tcp_mss_to_advertise(ifp)
    624 	const struct ifnet *ifp;
    625 {
    626 	extern u_long in_maxmtu;
    627 	u_long mss = 0;
    628 
    629 	/*
    630 	 * In order to avoid defeating path MTU discovery on the peer,
    631 	 * we advertise the max MTU of all attached networks as our MSS,
    632 	 * per RFC 1191, section 3.1.
    633 	 *
    634 	 * We provide the option to advertise just the MTU of
    635 	 * the interface on which we hope this connection will
    636 	 * be receiving.  If we are responding to a SYN, we
    637 	 * will have a pretty good idea about this, but when
    638 	 * initiating a connection there is a bit more doubt.
    639 	 *
    640 	 * We also need to ensure that loopback has a large enough
    641 	 * MSS, as the loopback MTU is never included in in_maxmtu.
    642 	 */
    643 
    644 	if (ifp != NULL)
    645 		mss = ifp->if_mtu;
    646 
    647 	if (tcp_mss_ifmtu == 0)
    648 		mss = max(in_maxmtu, mss);
    649 
    650 	if (mss > sizeof(struct tcpiphdr))
    651 		mss -= sizeof(struct tcpiphdr);
    652 
    653 	mss = max(tcp_mssdflt, mss);
    654 	return (mss);
    655 }
    656 
    657 /*
    658  * Set connection variables based on the peer's advertised MSS.
    659  * We are passed the TCPCB for the actual connection.  If we
    660  * are the server, we are called by the compressed state engine
    661  * when the 3-way handshake is complete.  If we are the client,
    662  * we are called when we recieve the SYN,ACK from the server.
    663  *
    664  * NOTE: Our advertised MSS value must be initialized in the TCPCB
    665  * before this routine is called!
    666  */
    667 void
    668 tcp_mss_from_peer(tp, offer)
    669 	struct tcpcb *tp;
    670 	int offer;
    671 {
    672 	struct inpcb *inp = tp->t_inpcb;
    673 	struct socket *so = inp->inp_socket;
    674 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
    675 	struct rtentry *rt = in_pcbrtentry(inp);
    676 #endif
    677 	u_long bufsize;
    678 	int mss;
    679 
    680 	/*
    681 	 * As per RFC1122, use the default MSS value, unless they
    682 	 * sent us an offer.  Do not accept offers less than 32 bytes.
    683 	 */
    684 	mss = tcp_mssdflt;
    685 	if (offer)
    686 		mss = offer;
    687 	mss = max(mss, 32);		/* sanity */
    688 	mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
    689 
    690 	/*
    691 	 * If there's a pipesize, change the socket buffer to that size.
    692 	 * Make the socket buffer an integral number of MSS units.  If
    693 	 * the MSS is larger than the socket buffer, artificially decrease
    694 	 * the MSS.
    695 	 */
    696 #ifdef RTV_SPIPE
    697 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
    698 		bufsize = rt->rt_rmx.rmx_sendpipe;
    699 	else
    700 #endif
    701 		bufsize = so->so_snd.sb_hiwat;
    702 	if (bufsize < mss)
    703 		mss = bufsize;
    704 	else {
    705 		bufsize = roundup(bufsize, mss);
    706 		if (bufsize > sb_max)
    707 			bufsize = sb_max;
    708 		(void) sbreserve(&so->so_snd, bufsize);
    709 	}
    710 	tp->t_peermss = mss;
    711 	tp->t_segsz = mss;
    712 
    713 #ifdef RTV_SSTHRESH
    714 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
    715 		/*
    716 		 * There's some sort of gateway or interface buffer
    717 		 * limit on the path.  Use this to set the slow
    718 		 * start threshold, but set the threshold to no less
    719 		 * than 2 * MSS.
    720 		 */
    721 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
    722 	}
    723 #endif
    724 }
    725 
    726 /*
    727  * Processing necessary when a TCP connection is established.
    728  */
    729 void
    730 tcp_established(tp)
    731 	struct tcpcb *tp;
    732 {
    733 	struct inpcb *inp = tp->t_inpcb;
    734 	struct socket *so = inp->inp_socket;
    735 #ifdef RTV_RPIPE
    736 	struct rtentry *rt = in_pcbrtentry(inp);
    737 #endif
    738 	u_long bufsize;
    739 
    740 	tp->t_state = TCPS_ESTABLISHED;
    741 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
    742 
    743 #ifdef RTV_RPIPE
    744 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
    745 		bufsize = rt->rt_rmx.rmx_recvpipe;
    746 	else
    747 #endif
    748 		bufsize = so->so_rcv.sb_hiwat;
    749 	if (bufsize > tp->t_ourmss) {
    750 		bufsize = roundup(bufsize, tp->t_ourmss);
    751 		if (bufsize > sb_max)
    752 			bufsize = sb_max;
    753 		(void) sbreserve(&so->so_rcv, bufsize);
    754 	}
    755 }
    756 
    757 /*
    758  * Check if there's an initial rtt or rttvar.  Convert from the
    759  * route-table units to scaled multiples of the slow timeout timer.
    760  * Called only during the 3-way handshake.
    761  */
    762 void
    763 tcp_rmx_rtt(tp)
    764 	struct tcpcb *tp;
    765 {
    766 #ifdef RTV_RTT
    767 	struct rtentry *rt;
    768 	int rtt;
    769 
    770 	if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
    771 		return;
    772 
    773 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
    774 		/*
    775 		 * XXX The lock bit for MTU indicates that the value
    776 		 * is also a minimum value; this is subject to time.
    777 		 */
    778 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
    779 			TCPT_RANGESET(tp->t_rttmin,
    780 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
    781 			    TCPTV_MIN, TCPTV_REXMTMAX);
    782 		tp->t_srtt = rtt /
    783 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    784 		if (rt->rt_rmx.rmx_rttvar) {
    785 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
    786 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
    787 				(TCP_RTTVAR_SHIFT + 2));
    788 		} else {
    789 			/* Default variation is +- 1 rtt */
    790 			tp->t_rttvar =
    791 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
    792 		}
    793 		TCPT_RANGESET(tp->t_rxtcur,
    794 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
    795 		    tp->t_rttmin, TCPTV_REXMTMAX);
    796 	}
    797 #endif
    798 }
    799 
    800 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
    801 
    802 /*
    803  * Get a new sequence value given a tcp control block
    804  */
    805 tcp_seq
    806 tcp_new_iss(tp, len, addin)
    807 	void            *tp;
    808 	u_long           len;
    809 	tcp_seq		 addin;
    810 {
    811 	tcp_seq          tcp_iss;
    812 
    813 	/*
    814 	 * add randomness about this connection, but do not estimate
    815 	 * entropy from the timing, since the physical device driver would
    816 	 * have done that for us.
    817 	 */
    818 #if NRND > 0
    819 	if (tp != NULL)
    820 		rnd_add_data(NULL, tp, len, 0);
    821 #endif
    822 
    823 	/*
    824 	 * randomize.
    825 	 */
    826 #if NRND > 0
    827 	rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
    828 #else
    829 	tcp_iss = random();
    830 #endif
    831 
    832 	/*
    833 	 * If we were asked to add some amount to a known value,
    834 	 * we will take a random value obtained above, mask off the upper
    835 	 * bits, and add in the known value.  We also add in a constant to
    836 	 * ensure that we are at least a certain distance from the original
    837 	 * value.
    838 	 *
    839 	 * This is used when an old connection is in timed wait
    840 	 * and we have a new one coming in, for instance.
    841 	 */
    842 	if (addin != 0) {
    843 #ifdef TCPISS_DEBUG
    844 		printf("Random %08x, ", tcp_iss);
    845 #endif
    846 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    847 		tcp_iss = tcp_iss + addin + TCP_ISSINCR;
    848 		tcp_iss_seq += TCP_ISSINCR;
    849 		tcp_iss += tcp_iss_seq;
    850 #ifdef TCPISS_DEBUG
    851 		printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
    852 #endif
    853 	} else {
    854 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    855 		tcp_iss_seq += TCP_ISSINCR;
    856 		tcp_iss += tcp_iss_seq;
    857 #ifdef TCPISS_DEBUG
    858 		printf("ISS %08x\n", tcp_iss);
    859 #endif
    860 	}
    861 
    862 	if (tcp_compat_42) {
    863 		/*
    864 		 * Limit it to the positive range for really old TCP
    865 		 * implementations.
    866 		 */
    867 		if ((int)tcp_iss < 0)
    868 			tcp_iss &= 0x7fffffff;		/* XXX */
    869 	}
    870 
    871 	return tcp_iss;
    872 }
    873 
    874 
    875 /*
    876  * Determine the length of the TCP options for this connection.
    877  *
    878  * XXX:  What do we do for SACK, when we add that?  Just reserve
    879  *       all of the space?  Otherwise we can't exactly be incrementing
    880  *       cwnd by an amount that varies depending on the amount we last
    881  *       had to SACK!
    882  */
    883 
    884 u_int
    885 tcp_optlen(tp)
    886 	struct tcpcb *tp;
    887 {
    888 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
    889 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
    890 		return TCPOLEN_TSTAMP_APPA;
    891 	else
    892 		return 0;
    893 }
    894