tcp_subr.c revision 1.54 1 /* $NetBSD: tcp_subr.c,v 1.54 1998/05/12 21:45:51 kml Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #if NRND > 0
89 #include <sys/rnd.h>
90 #endif
91
92 #include <net/route.h>
93 #include <net/if.h>
94
95 #include <netinet/in.h>
96 #include <netinet/in_systm.h>
97 #include <netinet/ip.h>
98 #include <netinet/in_pcb.h>
99 #include <netinet/ip_var.h>
100 #include <netinet/ip_icmp.h>
101 #include <netinet/tcp.h>
102 #include <netinet/tcp_fsm.h>
103 #include <netinet/tcp_seq.h>
104 #include <netinet/tcp_timer.h>
105 #include <netinet/tcp_var.h>
106 #include <netinet/tcpip.h>
107
108 /* patchable/settable parameters for tcp */
109 int tcp_mssdflt = TCP_MSS;
110 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
111 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
112 int tcp_do_sack = 1; /* selective acknowledgement */
113 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
114 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
115 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
116 int tcp_init_win = 1;
117 int tcp_mss_ifmtu = 0;
118 #ifdef TCP_COMPAT_42
119 int tcp_compat_42 = 1;
120 #else
121 int tcp_compat_42 = 0;
122 #endif
123
124 #ifndef TCBHASHSIZE
125 #define TCBHASHSIZE 128
126 #endif
127 int tcbhashsize = TCBHASHSIZE;
128
129 int tcp_freeq __P((struct tcpcb *));
130
131 /*
132 * Tcp initialization
133 */
134 void
135 tcp_init()
136 {
137
138 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
139 LIST_INIT(&tcp_delacks);
140 if (max_protohdr < sizeof(struct tcpiphdr))
141 max_protohdr = sizeof(struct tcpiphdr);
142 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
143 panic("tcp_init");
144
145 /* Initialize the compressed state engine. */
146 syn_cache_init();
147 }
148
149 /*
150 * Create template to be used to send tcp packets on a connection.
151 * Call after host entry created, allocates an mbuf and fills
152 * in a skeletal tcp/ip header, minimizing the amount of work
153 * necessary when the connection is used.
154 */
155 struct tcpiphdr *
156 tcp_template(tp)
157 struct tcpcb *tp;
158 {
159 register struct inpcb *inp = tp->t_inpcb;
160 register struct tcpiphdr *n;
161
162 if ((n = tp->t_template) == 0) {
163 MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
164 M_MBUF, M_NOWAIT);
165 if (n == NULL)
166 return (0);
167 }
168 bzero(n->ti_x1, sizeof n->ti_x1);
169 n->ti_pr = IPPROTO_TCP;
170 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
171 n->ti_src = inp->inp_laddr;
172 n->ti_dst = inp->inp_faddr;
173 n->ti_sport = inp->inp_lport;
174 n->ti_dport = inp->inp_fport;
175 n->ti_seq = 0;
176 n->ti_ack = 0;
177 n->ti_x2 = 0;
178 n->ti_off = 5;
179 n->ti_flags = 0;
180 n->ti_win = 0;
181 n->ti_sum = 0;
182 n->ti_urp = 0;
183 return (n);
184 }
185
186 /*
187 * Send a single message to the TCP at address specified by
188 * the given TCP/IP header. If m == 0, then we make a copy
189 * of the tcpiphdr at ti and send directly to the addressed host.
190 * This is used to force keep alive messages out using the TCP
191 * template for a connection tp->t_template. If flags are given
192 * then we send a message back to the TCP which originated the
193 * segment ti, and discard the mbuf containing it and any other
194 * attached mbufs.
195 *
196 * In any case the ack and sequence number of the transmitted
197 * segment are as specified by the parameters.
198 */
199 int
200 tcp_respond(tp, ti, m, ack, seq, flags)
201 struct tcpcb *tp;
202 register struct tcpiphdr *ti;
203 register struct mbuf *m;
204 tcp_seq ack, seq;
205 int flags;
206 {
207 register int tlen;
208 int win = 0;
209 struct route *ro = 0;
210
211 if (tp) {
212 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
213 ro = &tp->t_inpcb->inp_route;
214 }
215 if (m == 0) {
216 m = m_gethdr(M_DONTWAIT, MT_HEADER);
217 if (m == NULL)
218 return (ENOBUFS);
219
220 if (tcp_compat_42)
221 tlen = 1;
222 else
223 tlen = 0;
224
225 m->m_data += max_linkhdr;
226 *mtod(m, struct tcpiphdr *) = *ti;
227 ti = mtod(m, struct tcpiphdr *);
228 flags = TH_ACK;
229 } else {
230 m_freem(m->m_next);
231 m->m_next = 0;
232 m->m_data = (caddr_t)ti;
233 m->m_len = sizeof (struct tcpiphdr);
234 tlen = 0;
235 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
236 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
237 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
238 #undef xchg
239 }
240 bzero(ti->ti_x1, sizeof ti->ti_x1);
241 ti->ti_seq = htonl(seq);
242 ti->ti_ack = htonl(ack);
243 ti->ti_x2 = 0;
244 if ((flags & TH_SYN) == 0) {
245 if (tp)
246 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
247 else
248 ti->ti_win = htons((u_int16_t)win);
249 ti->ti_off = sizeof (struct tcphdr) >> 2;
250 tlen += sizeof (struct tcphdr);
251 } else
252 tlen += ti->ti_off << 2;
253 ti->ti_len = htons((u_int16_t)tlen);
254 tlen += sizeof (struct ip);
255 m->m_len = tlen;
256 m->m_pkthdr.len = tlen;
257 m->m_pkthdr.rcvif = (struct ifnet *) 0;
258 ti->ti_flags = flags;
259 ti->ti_urp = 0;
260 ti->ti_sum = 0;
261 ti->ti_sum = in_cksum(m, tlen);
262 ((struct ip *)ti)->ip_len = tlen;
263 ((struct ip *)ti)->ip_ttl = ip_defttl;
264 return ip_output(m, NULL, ro, 0, NULL);
265 }
266
267 /*
268 * Create a new TCP control block, making an
269 * empty reassembly queue and hooking it to the argument
270 * protocol control block.
271 */
272 struct tcpcb *
273 tcp_newtcpcb(inp)
274 struct inpcb *inp;
275 {
276 register struct tcpcb *tp;
277
278 tp = malloc(sizeof(*tp), M_PCB, M_NOWAIT);
279 if (tp == NULL)
280 return ((struct tcpcb *)0);
281 bzero((caddr_t)tp, sizeof(struct tcpcb));
282 LIST_INIT(&tp->segq);
283 LIST_INIT(&tp->timeq);
284 tp->t_peermss = tcp_mssdflt;
285 tp->t_ourmss = tcp_mssdflt;
286 tp->t_segsz = tcp_mssdflt;
287
288 tp->t_flags = 0;
289 if (tcp_do_rfc1323 && tcp_do_win_scale)
290 tp->t_flags |= TF_REQ_SCALE;
291 if (tcp_do_rfc1323 && tcp_do_timestamps)
292 tp->t_flags |= TF_REQ_TSTMP;
293 if (tcp_do_sack == 2)
294 tp->t_flags |= TF_WILL_SACK;
295 else if (tcp_do_sack == 1)
296 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
297 tp->t_flags |= TF_CANT_TXSACK;
298 tp->t_inpcb = inp;
299 /*
300 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
301 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
302 * reasonable initial retransmit time.
303 */
304 tp->t_srtt = TCPTV_SRTTBASE;
305 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
306 tp->t_rttmin = TCPTV_MIN;
307 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
308 TCPTV_MIN, TCPTV_REXMTMAX);
309 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
310 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
311 inp->inp_ip.ip_ttl = ip_defttl;
312 inp->inp_ppcb = (caddr_t)tp;
313 return (tp);
314 }
315
316 /*
317 * Drop a TCP connection, reporting
318 * the specified error. If connection is synchronized,
319 * then send a RST to peer.
320 */
321 struct tcpcb *
322 tcp_drop(tp, errno)
323 register struct tcpcb *tp;
324 int errno;
325 {
326 struct socket *so = tp->t_inpcb->inp_socket;
327
328 if (TCPS_HAVERCVDSYN(tp->t_state)) {
329 tp->t_state = TCPS_CLOSED;
330 (void) tcp_output(tp);
331 tcpstat.tcps_drops++;
332 } else
333 tcpstat.tcps_conndrops++;
334 if (errno == ETIMEDOUT && tp->t_softerror)
335 errno = tp->t_softerror;
336 so->so_error = errno;
337 return (tcp_close(tp));
338 }
339
340 /*
341 * Close a TCP control block:
342 * discard all space held by the tcp
343 * discard internet protocol block
344 * wake up any sleepers
345 */
346 struct tcpcb *
347 tcp_close(tp)
348 register struct tcpcb *tp;
349 {
350 struct inpcb *inp = tp->t_inpcb;
351 struct socket *so = inp->inp_socket;
352 #ifdef RTV_RTT
353 register struct rtentry *rt;
354
355 /*
356 * If we sent enough data to get some meaningful characteristics,
357 * save them in the routing entry. 'Enough' is arbitrarily
358 * defined as the sendpipesize (default 4K) * 16. This would
359 * give us 16 rtt samples assuming we only get one sample per
360 * window (the usual case on a long haul net). 16 samples is
361 * enough for the srtt filter to converge to within 5% of the correct
362 * value; fewer samples and we could save a very bogus rtt.
363 *
364 * Don't update the default route's characteristics and don't
365 * update anything that the user "locked".
366 */
367 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
368 (rt = inp->inp_route.ro_rt) &&
369 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
370 register u_long i = 0;
371
372 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
373 i = tp->t_srtt *
374 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
375 if (rt->rt_rmx.rmx_rtt && i)
376 /*
377 * filter this update to half the old & half
378 * the new values, converting scale.
379 * See route.h and tcp_var.h for a
380 * description of the scaling constants.
381 */
382 rt->rt_rmx.rmx_rtt =
383 (rt->rt_rmx.rmx_rtt + i) / 2;
384 else
385 rt->rt_rmx.rmx_rtt = i;
386 }
387 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
388 i = tp->t_rttvar *
389 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
390 if (rt->rt_rmx.rmx_rttvar && i)
391 rt->rt_rmx.rmx_rttvar =
392 (rt->rt_rmx.rmx_rttvar + i) / 2;
393 else
394 rt->rt_rmx.rmx_rttvar = i;
395 }
396 /*
397 * update the pipelimit (ssthresh) if it has been updated
398 * already or if a pipesize was specified & the threshhold
399 * got below half the pipesize. I.e., wait for bad news
400 * before we start updating, then update on both good
401 * and bad news.
402 */
403 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
404 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
405 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
406 /*
407 * convert the limit from user data bytes to
408 * packets then to packet data bytes.
409 */
410 i = (i + tp->t_segsz / 2) / tp->t_segsz;
411 if (i < 2)
412 i = 2;
413 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
414 if (rt->rt_rmx.rmx_ssthresh)
415 rt->rt_rmx.rmx_ssthresh =
416 (rt->rt_rmx.rmx_ssthresh + i) / 2;
417 else
418 rt->rt_rmx.rmx_ssthresh = i;
419 }
420 }
421 #endif /* RTV_RTT */
422 /* free the reassembly queue, if any */
423 (void) tcp_freeq(tp);
424 TCP_CLEAR_DELACK(tp);
425
426 if (tp->t_template)
427 FREE(tp->t_template, M_MBUF);
428 free(tp, M_PCB);
429 inp->inp_ppcb = 0;
430 soisdisconnected(so);
431 in_pcbdetach(inp);
432 tcpstat.tcps_closed++;
433 return ((struct tcpcb *)0);
434 }
435
436 int
437 tcp_freeq(tp)
438 struct tcpcb *tp;
439 {
440 register struct ipqent *qe;
441 int rv = 0;
442 #ifdef TCPREASS_DEBUG
443 int i = 0;
444 #endif
445
446 while ((qe = tp->segq.lh_first) != NULL) {
447 #ifdef TCPREASS_DEBUG
448 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
449 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
450 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
451 #endif
452 LIST_REMOVE(qe, ipqe_q);
453 LIST_REMOVE(qe, ipqe_timeq);
454 m_freem(qe->ipqe_m);
455 FREE(qe, M_IPQ);
456 rv = 1;
457 }
458 return (rv);
459 }
460
461 /*
462 * Protocol drain routine. Called when memory is in short supply.
463 */
464 void
465 tcp_drain()
466 {
467 register struct inpcb *inp;
468 register struct tcpcb *tp;
469
470 /*
471 * Free the sequence queue of all TCP connections.
472 */
473 inp = tcbtable.inpt_queue.cqh_first;
474 if (inp) /* XXX */
475 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
476 inp = inp->inp_queue.cqe_next) {
477 if ((tp = intotcpcb(inp)) != NULL) {
478 if (tcp_freeq(tp))
479 tcpstat.tcps_connsdrained++;
480 }
481 }
482 }
483
484 /*
485 * Notify a tcp user of an asynchronous error;
486 * store error as soft error, but wake up user
487 * (for now, won't do anything until can select for soft error).
488 */
489 void
490 tcp_notify(inp, error)
491 struct inpcb *inp;
492 int error;
493 {
494 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
495 register struct socket *so = inp->inp_socket;
496
497 /*
498 * Ignore some errors if we are hooked up.
499 * If connection hasn't completed, has retransmitted several times,
500 * and receives a second error, give up now. This is better
501 * than waiting a long time to establish a connection that
502 * can never complete.
503 */
504 if (tp->t_state == TCPS_ESTABLISHED &&
505 (error == EHOSTUNREACH || error == ENETUNREACH ||
506 error == EHOSTDOWN)) {
507 return;
508 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
509 tp->t_rxtshift > 3 && tp->t_softerror)
510 so->so_error = error;
511 else
512 tp->t_softerror = error;
513 wakeup((caddr_t) &so->so_timeo);
514 sorwakeup(so);
515 sowwakeup(so);
516 }
517
518 void *
519 tcp_ctlinput(cmd, sa, v)
520 int cmd;
521 struct sockaddr *sa;
522 register void *v;
523 {
524 register struct ip *ip = v;
525 register struct tcphdr *th;
526 extern int inetctlerrmap[];
527 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
528 int errno;
529 int nmatch;
530
531 if ((unsigned)cmd >= PRC_NCMDS)
532 return NULL;
533 errno = inetctlerrmap[cmd];
534 if (cmd == PRC_QUENCH)
535 notify = tcp_quench;
536 else if (PRC_IS_REDIRECT(cmd))
537 notify = in_rtchange, ip = 0;
538 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
539 notify = tcp_mtudisc, ip = 0;
540 else if (cmd == PRC_HOSTDEAD)
541 ip = 0;
542 else if (errno == 0)
543 return NULL;
544 if (ip) {
545 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
546 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
547 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
548 if (nmatch == 0 && syn_cache_count &&
549 (inetctlerrmap[cmd] == EHOSTUNREACH ||
550 inetctlerrmap[cmd] == ENETUNREACH ||
551 inetctlerrmap[cmd] == EHOSTDOWN))
552 syn_cache_unreach(ip, th);
553 } else
554 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
555 notify);
556 return NULL;
557 }
558
559 /*
560 * When a source quench is received, close congestion window
561 * to one segment. We will gradually open it again as we proceed.
562 */
563 void
564 tcp_quench(inp, errno)
565 struct inpcb *inp;
566 int errno;
567 {
568 struct tcpcb *tp = intotcpcb(inp);
569
570 if (tp)
571 tp->snd_cwnd = TCP_INITIAL_WINDOW(1, tp->t_segsz);
572 }
573
574 /*
575 * On receipt of path MTU corrections, flush old route and replace it
576 * with the new one. Retransmit all unacknowledged packets, to ensure
577 * that all packets will be received.
578 */
579 void
580 tcp_mtudisc(inp, errno)
581 struct inpcb *inp;
582 int errno;
583 {
584 struct tcpcb *tp = intotcpcb(inp);
585 struct rtentry *rt = in_pcbrtentry(inp);
586
587 if (tp != 0) {
588 if (rt != 0) {
589 /*
590 * If this was not a host route, remove and realloc.
591 */
592 if ((rt->rt_flags & RTF_HOST) == 0) {
593 in_rtchange(inp, errno);
594 if ((rt = in_pcbrtentry(inp)) == 0)
595 return;
596 }
597
598 /*
599 * Slow start out of the error condition. We
600 * use the MTU because we know it's smaller
601 * than the previously transmitted segment.
602 */
603 if (rt->rt_rmx.rmx_mtu != 0)
604 tp->snd_cwnd =
605 TCP_INITIAL_WINDOW(tcp_init_win,
606 rt->rt_rmx.rmx_mtu);
607 }
608
609 /*
610 * Resend unacknowledged packets.
611 */
612 tp->snd_nxt = tp->snd_una;
613 tcp_output(tp);
614 }
615 }
616
617
618 /*
619 * Compute the MSS to advertise to the peer. Called only during
620 * the 3-way handshake. If we are the server (peer initiated
621 * connection), we are called with a pointer to the interface
622 * on which the SYN packet arrived. If we are the client (we
623 * initiated connection), we are called with a pointer to the
624 * interface out which this connection should go.
625 */
626 u_long
627 tcp_mss_to_advertise(ifp)
628 const struct ifnet *ifp;
629 {
630 extern u_long in_maxmtu;
631 u_long mss = 0;
632
633 /*
634 * In order to avoid defeating path MTU discovery on the peer,
635 * we advertise the max MTU of all attached networks as our MSS,
636 * per RFC 1191, section 3.1.
637 *
638 * We provide the option to advertise just the MTU of
639 * the interface on which we hope this connection will
640 * be receiving. If we are responding to a SYN, we
641 * will have a pretty good idea about this, but when
642 * initiating a connection there is a bit more doubt.
643 *
644 * We also need to ensure that loopback has a large enough
645 * MSS, as the loopback MTU is never included in in_maxmtu.
646 */
647
648 if (ifp != NULL)
649 mss = ifp->if_mtu;
650
651 if (tcp_mss_ifmtu == 0)
652 mss = max(in_maxmtu, mss);
653
654 if (mss > sizeof(struct tcpiphdr))
655 mss -= sizeof(struct tcpiphdr);
656
657 mss = max(tcp_mssdflt, mss);
658 return (mss);
659 }
660
661 /*
662 * Set connection variables based on the peer's advertised MSS.
663 * We are passed the TCPCB for the actual connection. If we
664 * are the server, we are called by the compressed state engine
665 * when the 3-way handshake is complete. If we are the client,
666 * we are called when we recieve the SYN,ACK from the server.
667 *
668 * NOTE: Our advertised MSS value must be initialized in the TCPCB
669 * before this routine is called!
670 */
671 void
672 tcp_mss_from_peer(tp, offer)
673 struct tcpcb *tp;
674 int offer;
675 {
676 struct inpcb *inp = tp->t_inpcb;
677 struct socket *so = inp->inp_socket;
678 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
679 struct rtentry *rt = in_pcbrtentry(inp);
680 #endif
681 u_long bufsize;
682 int mss;
683
684 /*
685 * As per RFC1122, use the default MSS value, unless they
686 * sent us an offer. Do not accept offers less than 32 bytes.
687 */
688 mss = tcp_mssdflt;
689 if (offer)
690 mss = offer;
691 mss = max(mss, 32); /* sanity */
692 tp->t_peermss = mss;
693 mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
694
695 /*
696 * If there's a pipesize, change the socket buffer to that size.
697 * Make the socket buffer an integral number of MSS units. If
698 * the MSS is larger than the socket buffer, artificially decrease
699 * the MSS.
700 */
701 #ifdef RTV_SPIPE
702 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
703 bufsize = rt->rt_rmx.rmx_sendpipe;
704 else
705 #endif
706 bufsize = so->so_snd.sb_hiwat;
707 if (bufsize < mss)
708 mss = bufsize;
709 else {
710 bufsize = roundup(bufsize, mss);
711 if (bufsize > sb_max)
712 bufsize = sb_max;
713 (void) sbreserve(&so->so_snd, bufsize);
714 }
715 tp->t_segsz = mss;
716
717 #ifdef RTV_SSTHRESH
718 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
719 /*
720 * There's some sort of gateway or interface buffer
721 * limit on the path. Use this to set the slow
722 * start threshold, but set the threshold to no less
723 * than 2 * MSS.
724 */
725 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
726 }
727 #endif
728 }
729
730 /*
731 * Processing necessary when a TCP connection is established.
732 */
733 void
734 tcp_established(tp)
735 struct tcpcb *tp;
736 {
737 struct inpcb *inp = tp->t_inpcb;
738 struct socket *so = inp->inp_socket;
739 #ifdef RTV_RPIPE
740 struct rtentry *rt = in_pcbrtentry(inp);
741 #endif
742 u_long bufsize;
743
744 tp->t_state = TCPS_ESTABLISHED;
745 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
746
747 #ifdef RTV_RPIPE
748 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
749 bufsize = rt->rt_rmx.rmx_recvpipe;
750 else
751 #endif
752 bufsize = so->so_rcv.sb_hiwat;
753 if (bufsize > tp->t_ourmss) {
754 bufsize = roundup(bufsize, tp->t_ourmss);
755 if (bufsize > sb_max)
756 bufsize = sb_max;
757 (void) sbreserve(&so->so_rcv, bufsize);
758 }
759 }
760
761 /*
762 * Check if there's an initial rtt or rttvar. Convert from the
763 * route-table units to scaled multiples of the slow timeout timer.
764 * Called only during the 3-way handshake.
765 */
766 void
767 tcp_rmx_rtt(tp)
768 struct tcpcb *tp;
769 {
770 #ifdef RTV_RTT
771 struct rtentry *rt;
772 int rtt;
773
774 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
775 return;
776
777 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
778 /*
779 * XXX The lock bit for MTU indicates that the value
780 * is also a minimum value; this is subject to time.
781 */
782 if (rt->rt_rmx.rmx_locks & RTV_RTT)
783 TCPT_RANGESET(tp->t_rttmin,
784 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
785 TCPTV_MIN, TCPTV_REXMTMAX);
786 tp->t_srtt = rtt /
787 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
788 if (rt->rt_rmx.rmx_rttvar) {
789 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
790 ((RTM_RTTUNIT / PR_SLOWHZ) >>
791 (TCP_RTTVAR_SHIFT + 2));
792 } else {
793 /* Default variation is +- 1 rtt */
794 tp->t_rttvar =
795 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
796 }
797 TCPT_RANGESET(tp->t_rxtcur,
798 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
799 tp->t_rttmin, TCPTV_REXMTMAX);
800 }
801 #endif
802 }
803
804 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
805
806 /*
807 * Get a new sequence value given a tcp control block
808 */
809 tcp_seq
810 tcp_new_iss(tp, len, addin)
811 void *tp;
812 u_long len;
813 tcp_seq addin;
814 {
815 tcp_seq tcp_iss;
816
817 /*
818 * add randomness about this connection, but do not estimate
819 * entropy from the timing, since the physical device driver would
820 * have done that for us.
821 */
822 #if NRND > 0
823 if (tp != NULL)
824 rnd_add_data(NULL, tp, len, 0);
825 #endif
826
827 /*
828 * randomize.
829 */
830 #if NRND > 0
831 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
832 #else
833 tcp_iss = random();
834 #endif
835
836 /*
837 * If we were asked to add some amount to a known value,
838 * we will take a random value obtained above, mask off the upper
839 * bits, and add in the known value. We also add in a constant to
840 * ensure that we are at least a certain distance from the original
841 * value.
842 *
843 * This is used when an old connection is in timed wait
844 * and we have a new one coming in, for instance.
845 */
846 if (addin != 0) {
847 #ifdef TCPISS_DEBUG
848 printf("Random %08x, ", tcp_iss);
849 #endif
850 tcp_iss &= TCP_ISS_RANDOM_MASK;
851 tcp_iss = tcp_iss + addin + TCP_ISSINCR;
852 tcp_iss_seq += TCP_ISSINCR;
853 tcp_iss += tcp_iss_seq;
854 #ifdef TCPISS_DEBUG
855 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
856 #endif
857 } else {
858 tcp_iss &= TCP_ISS_RANDOM_MASK;
859 tcp_iss_seq += TCP_ISSINCR;
860 tcp_iss += tcp_iss_seq;
861 #ifdef TCPISS_DEBUG
862 printf("ISS %08x\n", tcp_iss);
863 #endif
864 }
865
866 if (tcp_compat_42) {
867 /*
868 * Limit it to the positive range for really old TCP
869 * implementations.
870 */
871 if ((int)tcp_iss < 0)
872 tcp_iss &= 0x7fffffff; /* XXX */
873 }
874
875 return tcp_iss;
876 }
877
878
879 /*
880 * Determine the length of the TCP options for this connection.
881 *
882 * XXX: What do we do for SACK, when we add that? Just reserve
883 * all of the space? Otherwise we can't exactly be incrementing
884 * cwnd by an amount that varies depending on the amount we last
885 * had to SACK!
886 */
887
888 u_int
889 tcp_optlen(tp)
890 struct tcpcb *tp;
891 {
892 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
893 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
894 return TCPOLEN_TSTAMP_APPA;
895 else
896 return 0;
897 }
898