Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.58
      1 /*	$NetBSD: tcp_subr.c,v 1.58 1998/09/04 22:29:54 mycroft Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
      9  * Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     73  */
     74 
     75 #include "opt_tcp_compat_42.h"
     76 #include "rnd.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/protosw.h>
     86 #include <sys/errno.h>
     87 #include <sys/kernel.h>
     88 #include <sys/pool.h>
     89 #if NRND > 0
     90 #include <sys/rnd.h>
     91 #endif
     92 
     93 #include <net/route.h>
     94 #include <net/if.h>
     95 
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/ip.h>
     99 #include <netinet/in_pcb.h>
    100 #include <netinet/ip_var.h>
    101 #include <netinet/ip_icmp.h>
    102 #include <netinet/tcp.h>
    103 #include <netinet/tcp_fsm.h>
    104 #include <netinet/tcp_seq.h>
    105 #include <netinet/tcp_timer.h>
    106 #include <netinet/tcp_var.h>
    107 #include <netinet/tcpip.h>
    108 
    109 /* patchable/settable parameters for tcp */
    110 int 	tcp_mssdflt = TCP_MSS;
    111 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    112 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    113 int	tcp_do_sack = 1;	/* selective acknowledgement */
    114 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    115 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    116 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    117 int	tcp_init_win = 1;
    118 int	tcp_mss_ifmtu = 0;
    119 #ifdef TCP_COMPAT_42
    120 int	tcp_compat_42 = 1;
    121 #else
    122 int	tcp_compat_42 = 0;
    123 #endif
    124 
    125 #ifndef TCBHASHSIZE
    126 #define	TCBHASHSIZE	128
    127 #endif
    128 int	tcbhashsize = TCBHASHSIZE;
    129 
    130 int	tcp_freeq __P((struct tcpcb *));
    131 
    132 struct pool tcpcb_pool;
    133 
    134 /*
    135  * Tcp initialization
    136  */
    137 void
    138 tcp_init()
    139 {
    140 
    141 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    142 	    0, NULL, NULL, M_PCB);
    143 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    144 	LIST_INIT(&tcp_delacks);
    145 	if (max_protohdr < sizeof(struct tcpiphdr))
    146 		max_protohdr = sizeof(struct tcpiphdr);
    147 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
    148 		panic("tcp_init");
    149 
    150 	/* Initialize the compressed state engine. */
    151 	syn_cache_init();
    152 }
    153 
    154 /*
    155  * Create template to be used to send tcp packets on a connection.
    156  * Call after host entry created, allocates an mbuf and fills
    157  * in a skeletal tcp/ip header, minimizing the amount of work
    158  * necessary when the connection is used.
    159  */
    160 struct tcpiphdr *
    161 tcp_template(tp)
    162 	struct tcpcb *tp;
    163 {
    164 	register struct inpcb *inp = tp->t_inpcb;
    165 	register struct tcpiphdr *n;
    166 
    167 	if ((n = tp->t_template) == 0) {
    168 		MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
    169 		    M_MBUF, M_NOWAIT);
    170 		if (n == NULL)
    171 			return (0);
    172 	}
    173 	bzero(n->ti_x1, sizeof n->ti_x1);
    174 	n->ti_pr = IPPROTO_TCP;
    175 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
    176 	n->ti_src = inp->inp_laddr;
    177 	n->ti_dst = inp->inp_faddr;
    178 	n->ti_sport = inp->inp_lport;
    179 	n->ti_dport = inp->inp_fport;
    180 	n->ti_seq = 0;
    181 	n->ti_ack = 0;
    182 	n->ti_x2 = 0;
    183 	n->ti_off = 5;
    184 	n->ti_flags = 0;
    185 	n->ti_win = 0;
    186 	n->ti_sum = 0;
    187 	n->ti_urp = 0;
    188 	return (n);
    189 }
    190 
    191 /*
    192  * Send a single message to the TCP at address specified by
    193  * the given TCP/IP header.  If m == 0, then we make a copy
    194  * of the tcpiphdr at ti and send directly to the addressed host.
    195  * This is used to force keep alive messages out using the TCP
    196  * template for a connection tp->t_template.  If flags are given
    197  * then we send a message back to the TCP which originated the
    198  * segment ti, and discard the mbuf containing it and any other
    199  * attached mbufs.
    200  *
    201  * In any case the ack and sequence number of the transmitted
    202  * segment are as specified by the parameters.
    203  */
    204 int
    205 tcp_respond(tp, ti, m, ack, seq, flags)
    206 	struct tcpcb *tp;
    207 	register struct tcpiphdr *ti;
    208 	register struct mbuf *m;
    209 	tcp_seq ack, seq;
    210 	int flags;
    211 {
    212 	register int tlen;
    213 	int win = 0;
    214 	struct route *ro = 0;
    215 
    216 	if (tp) {
    217 		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    218 		ro = &tp->t_inpcb->inp_route;
    219 	}
    220 	if (m == 0) {
    221 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
    222 		if (m == NULL)
    223 			return (ENOBUFS);
    224 
    225 		if (tcp_compat_42)
    226 			tlen = 1;
    227 		else
    228 			tlen = 0;
    229 
    230 		m->m_data += max_linkhdr;
    231 		*mtod(m, struct tcpiphdr *) = *ti;
    232 		ti = mtod(m, struct tcpiphdr *);
    233 		flags = TH_ACK;
    234 	} else {
    235 		m_freem(m->m_next);
    236 		m->m_next = 0;
    237 		m->m_data = (caddr_t)ti;
    238 		m->m_len = sizeof (struct tcpiphdr);
    239 		tlen = 0;
    240 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    241 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
    242 		xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
    243 #undef xchg
    244 	}
    245 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    246 	ti->ti_seq = htonl(seq);
    247 	ti->ti_ack = htonl(ack);
    248 	ti->ti_x2 = 0;
    249 	if ((flags & TH_SYN) == 0) {
    250 		if (tp)
    251 			ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
    252 		else
    253 			ti->ti_win = htons((u_int16_t)win);
    254 		ti->ti_off = sizeof (struct tcphdr) >> 2;
    255 		tlen += sizeof (struct tcphdr);
    256 	} else
    257 		tlen += ti->ti_off << 2;
    258 	ti->ti_len = htons((u_int16_t)tlen);
    259 	tlen += sizeof (struct ip);
    260 	m->m_len = tlen;
    261 	m->m_pkthdr.len = tlen;
    262 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    263 	ti->ti_flags = flags;
    264 	ti->ti_urp = 0;
    265 	ti->ti_sum = 0;
    266 	ti->ti_sum = in_cksum(m, tlen);
    267 	((struct ip *)ti)->ip_len = tlen;
    268 	((struct ip *)ti)->ip_ttl = ip_defttl;
    269 	return ip_output(m, NULL, ro, 0, NULL);
    270 }
    271 
    272 /*
    273  * Create a new TCP control block, making an
    274  * empty reassembly queue and hooking it to the argument
    275  * protocol control block.
    276  */
    277 struct tcpcb *
    278 tcp_newtcpcb(inp)
    279 	struct inpcb *inp;
    280 {
    281 	register struct tcpcb *tp;
    282 
    283 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    284 	if (tp == NULL)
    285 		return (NULL);
    286 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    287 	LIST_INIT(&tp->segq);
    288 	LIST_INIT(&tp->timeq);
    289 	tp->t_peermss = tcp_mssdflt;
    290 	tp->t_ourmss = tcp_mssdflt;
    291 	tp->t_segsz = tcp_mssdflt;
    292 
    293 	tp->t_flags = 0;
    294 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    295 		tp->t_flags |= TF_REQ_SCALE;
    296 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    297 		tp->t_flags |= TF_REQ_TSTMP;
    298 	if (tcp_do_sack == 2)
    299 		tp->t_flags |= TF_WILL_SACK;
    300 	else if (tcp_do_sack == 1)
    301 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    302 	tp->t_flags |= TF_CANT_TXSACK;
    303 	tp->t_inpcb = inp;
    304 	/*
    305 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    306 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    307 	 * reasonable initial retransmit time.
    308 	 */
    309 	tp->t_srtt = TCPTV_SRTTBASE;
    310 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    311 	tp->t_rttmin = TCPTV_MIN;
    312 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    313 	    TCPTV_MIN, TCPTV_REXMTMAX);
    314 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    315 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    316 	inp->inp_ip.ip_ttl = ip_defttl;
    317 	inp->inp_ppcb = (caddr_t)tp;
    318 	return (tp);
    319 }
    320 
    321 /*
    322  * Drop a TCP connection, reporting
    323  * the specified error.  If connection is synchronized,
    324  * then send a RST to peer.
    325  */
    326 struct tcpcb *
    327 tcp_drop(tp, errno)
    328 	register struct tcpcb *tp;
    329 	int errno;
    330 {
    331 	struct socket *so = tp->t_inpcb->inp_socket;
    332 
    333 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    334 		tp->t_state = TCPS_CLOSED;
    335 		(void) tcp_output(tp);
    336 		tcpstat.tcps_drops++;
    337 	} else
    338 		tcpstat.tcps_conndrops++;
    339 	if (errno == ETIMEDOUT && tp->t_softerror)
    340 		errno = tp->t_softerror;
    341 	so->so_error = errno;
    342 	return (tcp_close(tp));
    343 }
    344 
    345 /*
    346  * Close a TCP control block:
    347  *	discard all space held by the tcp
    348  *	discard internet protocol block
    349  *	wake up any sleepers
    350  */
    351 struct tcpcb *
    352 tcp_close(tp)
    353 	register struct tcpcb *tp;
    354 {
    355 	struct inpcb *inp = tp->t_inpcb;
    356 	struct socket *so = inp->inp_socket;
    357 #ifdef RTV_RTT
    358 	register struct rtentry *rt;
    359 
    360 	/*
    361 	 * If we sent enough data to get some meaningful characteristics,
    362 	 * save them in the routing entry.  'Enough' is arbitrarily
    363 	 * defined as the sendpipesize (default 4K) * 16.  This would
    364 	 * give us 16 rtt samples assuming we only get one sample per
    365 	 * window (the usual case on a long haul net).  16 samples is
    366 	 * enough for the srtt filter to converge to within 5% of the correct
    367 	 * value; fewer samples and we could save a very bogus rtt.
    368 	 *
    369 	 * Don't update the default route's characteristics and don't
    370 	 * update anything that the user "locked".
    371 	 */
    372 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    373 	    (rt = inp->inp_route.ro_rt) &&
    374 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    375 		register u_long i = 0;
    376 
    377 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    378 			i = tp->t_srtt *
    379 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    380 			if (rt->rt_rmx.rmx_rtt && i)
    381 				/*
    382 				 * filter this update to half the old & half
    383 				 * the new values, converting scale.
    384 				 * See route.h and tcp_var.h for a
    385 				 * description of the scaling constants.
    386 				 */
    387 				rt->rt_rmx.rmx_rtt =
    388 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    389 			else
    390 				rt->rt_rmx.rmx_rtt = i;
    391 		}
    392 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    393 			i = tp->t_rttvar *
    394 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    395 			if (rt->rt_rmx.rmx_rttvar && i)
    396 				rt->rt_rmx.rmx_rttvar =
    397 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    398 			else
    399 				rt->rt_rmx.rmx_rttvar = i;
    400 		}
    401 		/*
    402 		 * update the pipelimit (ssthresh) if it has been updated
    403 		 * already or if a pipesize was specified & the threshhold
    404 		 * got below half the pipesize.  I.e., wait for bad news
    405 		 * before we start updating, then update on both good
    406 		 * and bad news.
    407 		 */
    408 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
    409 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
    410 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
    411 			/*
    412 			 * convert the limit from user data bytes to
    413 			 * packets then to packet data bytes.
    414 			 */
    415 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
    416 			if (i < 2)
    417 				i = 2;
    418 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
    419 			if (rt->rt_rmx.rmx_ssthresh)
    420 				rt->rt_rmx.rmx_ssthresh =
    421 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
    422 			else
    423 				rt->rt_rmx.rmx_ssthresh = i;
    424 		}
    425 	}
    426 #endif /* RTV_RTT */
    427 	/* free the reassembly queue, if any */
    428 	(void) tcp_freeq(tp);
    429 	TCP_CLEAR_DELACK(tp);
    430 
    431 	if (tp->t_template)
    432 		FREE(tp->t_template, M_MBUF);
    433 	pool_put(&tcpcb_pool, tp);
    434 	inp->inp_ppcb = 0;
    435 	soisdisconnected(so);
    436 	in_pcbdetach(inp);
    437 	tcpstat.tcps_closed++;
    438 	return ((struct tcpcb *)0);
    439 }
    440 
    441 int
    442 tcp_freeq(tp)
    443 	struct tcpcb *tp;
    444 {
    445 	register struct ipqent *qe;
    446 	int rv = 0;
    447 #ifdef TCPREASS_DEBUG
    448 	int i = 0;
    449 #endif
    450 
    451 	while ((qe = tp->segq.lh_first) != NULL) {
    452 #ifdef TCPREASS_DEBUG
    453 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
    454 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
    455 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
    456 #endif
    457 		LIST_REMOVE(qe, ipqe_q);
    458 		LIST_REMOVE(qe, ipqe_timeq);
    459 		m_freem(qe->ipqe_m);
    460 		FREE(qe, M_IPQ);
    461 		rv = 1;
    462 	}
    463 	return (rv);
    464 }
    465 
    466 /*
    467  * Protocol drain routine.  Called when memory is in short supply.
    468  */
    469 void
    470 tcp_drain()
    471 {
    472 	register struct inpcb *inp;
    473 	register struct tcpcb *tp;
    474 
    475 	/*
    476 	 * Free the sequence queue of all TCP connections.
    477 	 */
    478 	inp = tcbtable.inpt_queue.cqh_first;
    479 	if (inp)						/* XXX */
    480 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
    481 	    inp = inp->inp_queue.cqe_next) {
    482 		if ((tp = intotcpcb(inp)) != NULL) {
    483 			if (tcp_freeq(tp))
    484 				tcpstat.tcps_connsdrained++;
    485 		}
    486 	}
    487 }
    488 
    489 /*
    490  * Notify a tcp user of an asynchronous error;
    491  * store error as soft error, but wake up user
    492  * (for now, won't do anything until can select for soft error).
    493  */
    494 void
    495 tcp_notify(inp, error)
    496 	struct inpcb *inp;
    497 	int error;
    498 {
    499 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
    500 	register struct socket *so = inp->inp_socket;
    501 
    502 	/*
    503 	 * Ignore some errors if we are hooked up.
    504 	 * If connection hasn't completed, has retransmitted several times,
    505 	 * and receives a second error, give up now.  This is better
    506 	 * than waiting a long time to establish a connection that
    507 	 * can never complete.
    508 	 */
    509 	if (tp->t_state == TCPS_ESTABLISHED &&
    510 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
    511 	      error == EHOSTDOWN)) {
    512 		return;
    513 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
    514 	    tp->t_rxtshift > 3 && tp->t_softerror)
    515 		so->so_error = error;
    516 	else
    517 		tp->t_softerror = error;
    518 	wakeup((caddr_t) &so->so_timeo);
    519 	sorwakeup(so);
    520 	sowwakeup(so);
    521 }
    522 
    523 void *
    524 tcp_ctlinput(cmd, sa, v)
    525 	int cmd;
    526 	struct sockaddr *sa;
    527 	register void *v;
    528 {
    529 	register struct ip *ip = v;
    530 	register struct tcphdr *th;
    531 	extern int inetctlerrmap[];
    532 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
    533 	int errno;
    534 	int nmatch;
    535 
    536 	if ((unsigned)cmd >= PRC_NCMDS)
    537 		return NULL;
    538 	errno = inetctlerrmap[cmd];
    539 	if (cmd == PRC_QUENCH)
    540 		notify = tcp_quench;
    541 	else if (PRC_IS_REDIRECT(cmd))
    542 		notify = in_rtchange, ip = 0;
    543 	else if (cmd == PRC_MSGSIZE && ip_mtudisc)
    544 		notify = tcp_mtudisc, ip = 0;
    545 	else if (cmd == PRC_HOSTDEAD)
    546 		ip = 0;
    547 	else if (errno == 0)
    548 		return NULL;
    549 	if (ip) {
    550 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
    551 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
    552 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
    553 		if (nmatch == 0 && syn_cache_count &&
    554 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
    555 		    inetctlerrmap[cmd] == ENETUNREACH ||
    556 		    inetctlerrmap[cmd] == EHOSTDOWN))
    557 			syn_cache_unreach(ip, th);
    558 	} else
    559 		(void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
    560 		    notify);
    561 	return NULL;
    562 }
    563 
    564 /*
    565  * When a source quence is received, we are being notifed of congestion.
    566  * Close the congestion window down to the Loss Window (one segment).
    567  * We will gradually open it again as we proceed.
    568  */
    569 void
    570 tcp_quench(inp, errno)
    571 	struct inpcb *inp;
    572 	int errno;
    573 {
    574 	struct tcpcb *tp = intotcpcb(inp);
    575 
    576 	if (tp)
    577 		tp->snd_cwnd = tp->t_segsz;
    578 }
    579 
    580 /*
    581  * On receipt of path MTU corrections, flush old route and replace it
    582  * with the new one.  Retransmit all unacknowledged packets, to ensure
    583  * that all packets will be received.
    584  */
    585 void
    586 tcp_mtudisc(inp, errno)
    587 	struct inpcb *inp;
    588 	int errno;
    589 {
    590 	struct tcpcb *tp = intotcpcb(inp);
    591 	struct rtentry *rt = in_pcbrtentry(inp);
    592 
    593 	if (tp != 0) {
    594 		if (rt != 0) {
    595 			/*
    596 			 * If this was not a host route, remove and realloc.
    597 			 */
    598 			if ((rt->rt_flags & RTF_HOST) == 0) {
    599 				in_rtchange(inp, errno);
    600 				if ((rt = in_pcbrtentry(inp)) == 0)
    601 					return;
    602 			}
    603 
    604 			/*
    605 			 * Slow start out of the error condition.  We
    606 			 * use the MTU because we know it's smaller
    607 			 * than the previously transmitted segment.
    608 			 *
    609 			 * Note: This is more conservative than the
    610 			 * suggestion in draft-floyd-incr-init-win-03.
    611 			 */
    612 			if (rt->rt_rmx.rmx_mtu != 0)
    613 				tp->snd_cwnd =
    614 				    TCP_INITIAL_WINDOW(tcp_init_win,
    615 				    rt->rt_rmx.rmx_mtu);
    616 		}
    617 
    618 		/*
    619 		 * Resend unacknowledged packets.
    620 		 */
    621 		tp->snd_nxt = tp->snd_una;
    622 		tcp_output(tp);
    623 	}
    624 }
    625 
    626 
    627 /*
    628  * Compute the MSS to advertise to the peer.  Called only during
    629  * the 3-way handshake.  If we are the server (peer initiated
    630  * connection), we are called with a pointer to the interface
    631  * on which the SYN packet arrived.  If we are the client (we
    632  * initiated connection), we are called with a pointer to the
    633  * interface out which this connection should go.
    634  */
    635 u_long
    636 tcp_mss_to_advertise(ifp)
    637 	const struct ifnet *ifp;
    638 {
    639 	extern u_long in_maxmtu;
    640 	u_long mss = 0;
    641 
    642 	/*
    643 	 * In order to avoid defeating path MTU discovery on the peer,
    644 	 * we advertise the max MTU of all attached networks as our MSS,
    645 	 * per RFC 1191, section 3.1.
    646 	 *
    647 	 * We provide the option to advertise just the MTU of
    648 	 * the interface on which we hope this connection will
    649 	 * be receiving.  If we are responding to a SYN, we
    650 	 * will have a pretty good idea about this, but when
    651 	 * initiating a connection there is a bit more doubt.
    652 	 *
    653 	 * We also need to ensure that loopback has a large enough
    654 	 * MSS, as the loopback MTU is never included in in_maxmtu.
    655 	 */
    656 
    657 	if (ifp != NULL)
    658 		mss = ifp->if_mtu;
    659 
    660 	if (tcp_mss_ifmtu == 0)
    661 		mss = max(in_maxmtu, mss);
    662 
    663 	if (mss > sizeof(struct tcpiphdr))
    664 		mss -= sizeof(struct tcpiphdr);
    665 
    666 	mss = max(tcp_mssdflt, mss);
    667 	return (mss);
    668 }
    669 
    670 /*
    671  * Set connection variables based on the peer's advertised MSS.
    672  * We are passed the TCPCB for the actual connection.  If we
    673  * are the server, we are called by the compressed state engine
    674  * when the 3-way handshake is complete.  If we are the client,
    675  * we are called when we recieve the SYN,ACK from the server.
    676  *
    677  * NOTE: Our advertised MSS value must be initialized in the TCPCB
    678  * before this routine is called!
    679  */
    680 void
    681 tcp_mss_from_peer(tp, offer)
    682 	struct tcpcb *tp;
    683 	int offer;
    684 {
    685 	struct inpcb *inp = tp->t_inpcb;
    686 	struct socket *so = inp->inp_socket;
    687 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
    688 	struct rtentry *rt = in_pcbrtentry(inp);
    689 #endif
    690 	u_long bufsize;
    691 	int mss;
    692 
    693 	/*
    694 	 * As per RFC1122, use the default MSS value, unless they
    695 	 * sent us an offer.  Do not accept offers less than 32 bytes.
    696 	 */
    697 	mss = tcp_mssdflt;
    698 	if (offer)
    699 		mss = offer;
    700 	mss = max(mss, 32);		/* sanity */
    701 	tp->t_peermss = mss;
    702 	mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
    703 
    704 	/*
    705 	 * If there's a pipesize, change the socket buffer to that size.
    706 	 * Make the socket buffer an integral number of MSS units.  If
    707 	 * the MSS is larger than the socket buffer, artificially decrease
    708 	 * the MSS.
    709 	 */
    710 #ifdef RTV_SPIPE
    711 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
    712 		bufsize = rt->rt_rmx.rmx_sendpipe;
    713 	else
    714 #endif
    715 		bufsize = so->so_snd.sb_hiwat;
    716 	if (bufsize < mss)
    717 		mss = bufsize;
    718 	else {
    719 		bufsize = roundup(bufsize, mss);
    720 		if (bufsize > sb_max)
    721 			bufsize = sb_max;
    722 		(void) sbreserve(&so->so_snd, bufsize);
    723 	}
    724 	tp->t_segsz = mss;
    725 
    726 #ifdef RTV_SSTHRESH
    727 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
    728 		/*
    729 		 * There's some sort of gateway or interface buffer
    730 		 * limit on the path.  Use this to set the slow
    731 		 * start threshold, but set the threshold to no less
    732 		 * than 2 * MSS.
    733 		 */
    734 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
    735 	}
    736 #endif
    737 }
    738 
    739 /*
    740  * Processing necessary when a TCP connection is established.
    741  */
    742 void
    743 tcp_established(tp)
    744 	struct tcpcb *tp;
    745 {
    746 	struct inpcb *inp = tp->t_inpcb;
    747 	struct socket *so = inp->inp_socket;
    748 #ifdef RTV_RPIPE
    749 	struct rtentry *rt = in_pcbrtentry(inp);
    750 #endif
    751 	u_long bufsize;
    752 
    753 	tp->t_state = TCPS_ESTABLISHED;
    754 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
    755 
    756 #ifdef RTV_RPIPE
    757 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
    758 		bufsize = rt->rt_rmx.rmx_recvpipe;
    759 	else
    760 #endif
    761 		bufsize = so->so_rcv.sb_hiwat;
    762 	if (bufsize > tp->t_ourmss) {
    763 		bufsize = roundup(bufsize, tp->t_ourmss);
    764 		if (bufsize > sb_max)
    765 			bufsize = sb_max;
    766 		(void) sbreserve(&so->so_rcv, bufsize);
    767 	}
    768 }
    769 
    770 /*
    771  * Check if there's an initial rtt or rttvar.  Convert from the
    772  * route-table units to scaled multiples of the slow timeout timer.
    773  * Called only during the 3-way handshake.
    774  */
    775 void
    776 tcp_rmx_rtt(tp)
    777 	struct tcpcb *tp;
    778 {
    779 #ifdef RTV_RTT
    780 	struct rtentry *rt;
    781 	int rtt;
    782 
    783 	if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
    784 		return;
    785 
    786 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
    787 		/*
    788 		 * XXX The lock bit for MTU indicates that the value
    789 		 * is also a minimum value; this is subject to time.
    790 		 */
    791 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
    792 			TCPT_RANGESET(tp->t_rttmin,
    793 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
    794 			    TCPTV_MIN, TCPTV_REXMTMAX);
    795 		tp->t_srtt = rtt /
    796 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    797 		if (rt->rt_rmx.rmx_rttvar) {
    798 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
    799 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
    800 				(TCP_RTTVAR_SHIFT + 2));
    801 		} else {
    802 			/* Default variation is +- 1 rtt */
    803 			tp->t_rttvar =
    804 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
    805 		}
    806 		TCPT_RANGESET(tp->t_rxtcur,
    807 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
    808 		    tp->t_rttmin, TCPTV_REXMTMAX);
    809 	}
    810 #endif
    811 }
    812 
    813 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
    814 
    815 /*
    816  * Get a new sequence value given a tcp control block
    817  */
    818 tcp_seq
    819 tcp_new_iss(tp, len, addin)
    820 	void            *tp;
    821 	u_long           len;
    822 	tcp_seq		 addin;
    823 {
    824 	tcp_seq          tcp_iss;
    825 
    826 	/*
    827 	 * add randomness about this connection, but do not estimate
    828 	 * entropy from the timing, since the physical device driver would
    829 	 * have done that for us.
    830 	 */
    831 #if NRND > 0
    832 	if (tp != NULL)
    833 		rnd_add_data(NULL, tp, len, 0);
    834 #endif
    835 
    836 	/*
    837 	 * randomize.
    838 	 */
    839 #if NRND > 0
    840 	rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
    841 #else
    842 	tcp_iss = random();
    843 #endif
    844 
    845 	/*
    846 	 * If we were asked to add some amount to a known value,
    847 	 * we will take a random value obtained above, mask off the upper
    848 	 * bits, and add in the known value.  We also add in a constant to
    849 	 * ensure that we are at least a certain distance from the original
    850 	 * value.
    851 	 *
    852 	 * This is used when an old connection is in timed wait
    853 	 * and we have a new one coming in, for instance.
    854 	 */
    855 	if (addin != 0) {
    856 #ifdef TCPISS_DEBUG
    857 		printf("Random %08x, ", tcp_iss);
    858 #endif
    859 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    860 		tcp_iss += addin + TCP_ISSINCR;
    861 #ifdef TCPISS_DEBUG
    862 		printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
    863 #endif
    864 	} else {
    865 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    866 		tcp_iss += tcp_iss_seq;
    867 		tcp_iss_seq += TCP_ISSINCR;
    868 #ifdef TCPISS_DEBUG
    869 		printf("ISS %08x\n", tcp_iss);
    870 #endif
    871 	}
    872 
    873 	if (tcp_compat_42) {
    874 		/*
    875 		 * Limit it to the positive range for really old TCP
    876 		 * implementations.
    877 		 */
    878 		if (tcp_iss >= 0x80000000)
    879 			tcp_iss &= 0x7fffffff;		/* XXX */
    880 	}
    881 
    882 	return tcp_iss;
    883 }
    884 
    885 
    886 /*
    887  * Determine the length of the TCP options for this connection.
    888  *
    889  * XXX:  What do we do for SACK, when we add that?  Just reserve
    890  *       all of the space?  Otherwise we can't exactly be incrementing
    891  *       cwnd by an amount that varies depending on the amount we last
    892  *       had to SACK!
    893  */
    894 
    895 u_int
    896 tcp_optlen(tp)
    897 	struct tcpcb *tp;
    898 {
    899 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
    900 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
    901 		return TCPOLEN_TSTAMP_APPA;
    902 	else
    903 		return 0;
    904 }
    905