Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.60
      1 /*	$NetBSD: tcp_subr.c,v 1.60 1998/10/06 00:20:45 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
      9  * Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     73  */
     74 
     75 #include "opt_tcp_compat_42.h"
     76 #include "rnd.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/protosw.h>
     86 #include <sys/errno.h>
     87 #include <sys/kernel.h>
     88 #include <sys/pool.h>
     89 #if NRND > 0
     90 #include <sys/rnd.h>
     91 #endif
     92 
     93 #include <net/route.h>
     94 #include <net/if.h>
     95 
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/ip.h>
     99 #include <netinet/in_pcb.h>
    100 #include <netinet/ip_var.h>
    101 #include <netinet/ip_icmp.h>
    102 #include <netinet/tcp.h>
    103 #include <netinet/tcp_fsm.h>
    104 #include <netinet/tcp_seq.h>
    105 #include <netinet/tcp_timer.h>
    106 #include <netinet/tcp_var.h>
    107 #include <netinet/tcpip.h>
    108 
    109 /* patchable/settable parameters for tcp */
    110 int 	tcp_mssdflt = TCP_MSS;
    111 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    112 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    113 int	tcp_do_sack = 1;	/* selective acknowledgement */
    114 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    115 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    116 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    117 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    118 int	tcp_init_win = 1;
    119 int	tcp_mss_ifmtu = 0;
    120 #ifdef TCP_COMPAT_42
    121 int	tcp_compat_42 = 1;
    122 #else
    123 int	tcp_compat_42 = 0;
    124 #endif
    125 
    126 #ifndef TCBHASHSIZE
    127 #define	TCBHASHSIZE	128
    128 #endif
    129 int	tcbhashsize = TCBHASHSIZE;
    130 
    131 int	tcp_freeq __P((struct tcpcb *));
    132 
    133 struct pool tcpcb_pool;
    134 
    135 /*
    136  * Tcp initialization
    137  */
    138 void
    139 tcp_init()
    140 {
    141 
    142 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    143 	    0, NULL, NULL, M_PCB);
    144 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    145 	LIST_INIT(&tcp_delacks);
    146 	if (max_protohdr < sizeof(struct tcpiphdr))
    147 		max_protohdr = sizeof(struct tcpiphdr);
    148 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
    149 		panic("tcp_init");
    150 
    151 	/* Initialize the compressed state engine. */
    152 	syn_cache_init();
    153 }
    154 
    155 /*
    156  * Create template to be used to send tcp packets on a connection.
    157  * Call after host entry created, allocates an mbuf and fills
    158  * in a skeletal tcp/ip header, minimizing the amount of work
    159  * necessary when the connection is used.
    160  */
    161 struct tcpiphdr *
    162 tcp_template(tp)
    163 	struct tcpcb *tp;
    164 {
    165 	register struct inpcb *inp = tp->t_inpcb;
    166 	register struct tcpiphdr *n;
    167 
    168 	if ((n = tp->t_template) == 0) {
    169 		MALLOC(n, struct tcpiphdr *, sizeof (struct tcpiphdr),
    170 		    M_MBUF, M_NOWAIT);
    171 		if (n == NULL)
    172 			return (0);
    173 	}
    174 	bzero(n->ti_x1, sizeof n->ti_x1);
    175 	n->ti_pr = IPPROTO_TCP;
    176 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
    177 	n->ti_src = inp->inp_laddr;
    178 	n->ti_dst = inp->inp_faddr;
    179 	n->ti_sport = inp->inp_lport;
    180 	n->ti_dport = inp->inp_fport;
    181 	n->ti_seq = 0;
    182 	n->ti_ack = 0;
    183 	n->ti_x2 = 0;
    184 	n->ti_off = 5;
    185 	n->ti_flags = 0;
    186 	n->ti_win = 0;
    187 	n->ti_sum = 0;
    188 	n->ti_urp = 0;
    189 	return (n);
    190 }
    191 
    192 /*
    193  * Send a single message to the TCP at address specified by
    194  * the given TCP/IP header.  If m == 0, then we make a copy
    195  * of the tcpiphdr at ti and send directly to the addressed host.
    196  * This is used to force keep alive messages out using the TCP
    197  * template for a connection tp->t_template.  If flags are given
    198  * then we send a message back to the TCP which originated the
    199  * segment ti, and discard the mbuf containing it and any other
    200  * attached mbufs.
    201  *
    202  * In any case the ack and sequence number of the transmitted
    203  * segment are as specified by the parameters.
    204  */
    205 int
    206 tcp_respond(tp, ti, m, ack, seq, flags)
    207 	struct tcpcb *tp;
    208 	register struct tcpiphdr *ti;
    209 	register struct mbuf *m;
    210 	tcp_seq ack, seq;
    211 	int flags;
    212 {
    213 	register int tlen;
    214 	int win = 0;
    215 	struct route *ro = 0;
    216 
    217 	if (tp) {
    218 		if ((flags & TH_RST) == 0)
    219 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    220 		ro = &tp->t_inpcb->inp_route;
    221 	}
    222 	if (m == 0) {
    223 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
    224 		if (m == NULL)
    225 			return (ENOBUFS);
    226 
    227 		if (tcp_compat_42)
    228 			tlen = 1;
    229 		else
    230 			tlen = 0;
    231 
    232 		m->m_data += max_linkhdr;
    233 		*mtod(m, struct tcpiphdr *) = *ti;
    234 		ti = mtod(m, struct tcpiphdr *);
    235 		flags = TH_ACK;
    236 	} else {
    237 		m_freem(m->m_next);
    238 		m->m_next = 0;
    239 		m->m_data = (caddr_t)ti;
    240 		m->m_len = sizeof (struct tcpiphdr);
    241 		tlen = 0;
    242 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    243 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
    244 		xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
    245 #undef xchg
    246 	}
    247 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    248 	ti->ti_seq = htonl(seq);
    249 	ti->ti_ack = htonl(ack);
    250 	ti->ti_x2 = 0;
    251 	if ((flags & TH_SYN) == 0) {
    252 		if (tp)
    253 			ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
    254 		else
    255 			ti->ti_win = htons((u_int16_t)win);
    256 		ti->ti_off = sizeof (struct tcphdr) >> 2;
    257 		tlen += sizeof (struct tcphdr);
    258 	} else
    259 		tlen += ti->ti_off << 2;
    260 	ti->ti_len = htons((u_int16_t)tlen);
    261 	tlen += sizeof (struct ip);
    262 	m->m_len = tlen;
    263 	m->m_pkthdr.len = tlen;
    264 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    265 	ti->ti_flags = flags;
    266 	ti->ti_urp = 0;
    267 	ti->ti_sum = 0;
    268 	ti->ti_sum = in_cksum(m, tlen);
    269 	((struct ip *)ti)->ip_len = tlen;
    270 	((struct ip *)ti)->ip_ttl = ip_defttl;
    271 	return ip_output(m, NULL, ro, 0, NULL);
    272 }
    273 
    274 /*
    275  * Create a new TCP control block, making an
    276  * empty reassembly queue and hooking it to the argument
    277  * protocol control block.
    278  */
    279 struct tcpcb *
    280 tcp_newtcpcb(inp)
    281 	struct inpcb *inp;
    282 {
    283 	register struct tcpcb *tp;
    284 
    285 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    286 	if (tp == NULL)
    287 		return (NULL);
    288 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    289 	LIST_INIT(&tp->segq);
    290 	LIST_INIT(&tp->timeq);
    291 	tp->t_peermss = tcp_mssdflt;
    292 	tp->t_ourmss = tcp_mssdflt;
    293 	tp->t_segsz = tcp_mssdflt;
    294 
    295 	tp->t_flags = 0;
    296 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    297 		tp->t_flags |= TF_REQ_SCALE;
    298 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    299 		tp->t_flags |= TF_REQ_TSTMP;
    300 	if (tcp_do_sack == 2)
    301 		tp->t_flags |= TF_WILL_SACK;
    302 	else if (tcp_do_sack == 1)
    303 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    304 	tp->t_flags |= TF_CANT_TXSACK;
    305 	tp->t_inpcb = inp;
    306 	/*
    307 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    308 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    309 	 * reasonable initial retransmit time.
    310 	 */
    311 	tp->t_srtt = TCPTV_SRTTBASE;
    312 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    313 	tp->t_rttmin = TCPTV_MIN;
    314 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    315 	    TCPTV_MIN, TCPTV_REXMTMAX);
    316 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    317 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    318 	inp->inp_ip.ip_ttl = ip_defttl;
    319 	inp->inp_ppcb = (caddr_t)tp;
    320 	return (tp);
    321 }
    322 
    323 /*
    324  * Drop a TCP connection, reporting
    325  * the specified error.  If connection is synchronized,
    326  * then send a RST to peer.
    327  */
    328 struct tcpcb *
    329 tcp_drop(tp, errno)
    330 	register struct tcpcb *tp;
    331 	int errno;
    332 {
    333 	struct socket *so = tp->t_inpcb->inp_socket;
    334 
    335 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    336 		tp->t_state = TCPS_CLOSED;
    337 		(void) tcp_output(tp);
    338 		tcpstat.tcps_drops++;
    339 	} else
    340 		tcpstat.tcps_conndrops++;
    341 	if (errno == ETIMEDOUT && tp->t_softerror)
    342 		errno = tp->t_softerror;
    343 	so->so_error = errno;
    344 	return (tcp_close(tp));
    345 }
    346 
    347 /*
    348  * Close a TCP control block:
    349  *	discard all space held by the tcp
    350  *	discard internet protocol block
    351  *	wake up any sleepers
    352  */
    353 struct tcpcb *
    354 tcp_close(tp)
    355 	register struct tcpcb *tp;
    356 {
    357 	struct inpcb *inp = tp->t_inpcb;
    358 	struct socket *so = inp->inp_socket;
    359 #ifdef RTV_RTT
    360 	register struct rtentry *rt;
    361 
    362 	/*
    363 	 * If we sent enough data to get some meaningful characteristics,
    364 	 * save them in the routing entry.  'Enough' is arbitrarily
    365 	 * defined as the sendpipesize (default 4K) * 16.  This would
    366 	 * give us 16 rtt samples assuming we only get one sample per
    367 	 * window (the usual case on a long haul net).  16 samples is
    368 	 * enough for the srtt filter to converge to within 5% of the correct
    369 	 * value; fewer samples and we could save a very bogus rtt.
    370 	 *
    371 	 * Don't update the default route's characteristics and don't
    372 	 * update anything that the user "locked".
    373 	 */
    374 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    375 	    (rt = inp->inp_route.ro_rt) &&
    376 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    377 		register u_long i = 0;
    378 
    379 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    380 			i = tp->t_srtt *
    381 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    382 			if (rt->rt_rmx.rmx_rtt && i)
    383 				/*
    384 				 * filter this update to half the old & half
    385 				 * the new values, converting scale.
    386 				 * See route.h and tcp_var.h for a
    387 				 * description of the scaling constants.
    388 				 */
    389 				rt->rt_rmx.rmx_rtt =
    390 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    391 			else
    392 				rt->rt_rmx.rmx_rtt = i;
    393 		}
    394 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    395 			i = tp->t_rttvar *
    396 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    397 			if (rt->rt_rmx.rmx_rttvar && i)
    398 				rt->rt_rmx.rmx_rttvar =
    399 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    400 			else
    401 				rt->rt_rmx.rmx_rttvar = i;
    402 		}
    403 		/*
    404 		 * update the pipelimit (ssthresh) if it has been updated
    405 		 * already or if a pipesize was specified & the threshhold
    406 		 * got below half the pipesize.  I.e., wait for bad news
    407 		 * before we start updating, then update on both good
    408 		 * and bad news.
    409 		 */
    410 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
    411 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
    412 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
    413 			/*
    414 			 * convert the limit from user data bytes to
    415 			 * packets then to packet data bytes.
    416 			 */
    417 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
    418 			if (i < 2)
    419 				i = 2;
    420 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
    421 			if (rt->rt_rmx.rmx_ssthresh)
    422 				rt->rt_rmx.rmx_ssthresh =
    423 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
    424 			else
    425 				rt->rt_rmx.rmx_ssthresh = i;
    426 		}
    427 	}
    428 #endif /* RTV_RTT */
    429 	/* free the reassembly queue, if any */
    430 	(void) tcp_freeq(tp);
    431 	TCP_CLEAR_DELACK(tp);
    432 
    433 	if (tp->t_template)
    434 		FREE(tp->t_template, M_MBUF);
    435 	pool_put(&tcpcb_pool, tp);
    436 	inp->inp_ppcb = 0;
    437 	soisdisconnected(so);
    438 	in_pcbdetach(inp);
    439 	tcpstat.tcps_closed++;
    440 	return ((struct tcpcb *)0);
    441 }
    442 
    443 int
    444 tcp_freeq(tp)
    445 	struct tcpcb *tp;
    446 {
    447 	register struct ipqent *qe;
    448 	int rv = 0;
    449 #ifdef TCPREASS_DEBUG
    450 	int i = 0;
    451 #endif
    452 
    453 	while ((qe = tp->segq.lh_first) != NULL) {
    454 #ifdef TCPREASS_DEBUG
    455 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
    456 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
    457 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
    458 #endif
    459 		LIST_REMOVE(qe, ipqe_q);
    460 		LIST_REMOVE(qe, ipqe_timeq);
    461 		m_freem(qe->ipqe_m);
    462 		FREE(qe, M_IPQ);
    463 		rv = 1;
    464 	}
    465 	return (rv);
    466 }
    467 
    468 /*
    469  * Protocol drain routine.  Called when memory is in short supply.
    470  */
    471 void
    472 tcp_drain()
    473 {
    474 	register struct inpcb *inp;
    475 	register struct tcpcb *tp;
    476 
    477 	/*
    478 	 * Free the sequence queue of all TCP connections.
    479 	 */
    480 	inp = tcbtable.inpt_queue.cqh_first;
    481 	if (inp)						/* XXX */
    482 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
    483 	    inp = inp->inp_queue.cqe_next) {
    484 		if ((tp = intotcpcb(inp)) != NULL) {
    485 			if (tcp_freeq(tp))
    486 				tcpstat.tcps_connsdrained++;
    487 		}
    488 	}
    489 }
    490 
    491 /*
    492  * Notify a tcp user of an asynchronous error;
    493  * store error as soft error, but wake up user
    494  * (for now, won't do anything until can select for soft error).
    495  */
    496 void
    497 tcp_notify(inp, error)
    498 	struct inpcb *inp;
    499 	int error;
    500 {
    501 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
    502 	register struct socket *so = inp->inp_socket;
    503 
    504 	/*
    505 	 * Ignore some errors if we are hooked up.
    506 	 * If connection hasn't completed, has retransmitted several times,
    507 	 * and receives a second error, give up now.  This is better
    508 	 * than waiting a long time to establish a connection that
    509 	 * can never complete.
    510 	 */
    511 	if (tp->t_state == TCPS_ESTABLISHED &&
    512 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
    513 	      error == EHOSTDOWN)) {
    514 		return;
    515 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
    516 	    tp->t_rxtshift > 3 && tp->t_softerror)
    517 		so->so_error = error;
    518 	else
    519 		tp->t_softerror = error;
    520 	wakeup((caddr_t) &so->so_timeo);
    521 	sorwakeup(so);
    522 	sowwakeup(so);
    523 }
    524 
    525 void *
    526 tcp_ctlinput(cmd, sa, v)
    527 	int cmd;
    528 	struct sockaddr *sa;
    529 	register void *v;
    530 {
    531 	register struct ip *ip = v;
    532 	register struct tcphdr *th;
    533 	extern int inetctlerrmap[];
    534 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
    535 	int errno;
    536 	int nmatch;
    537 
    538 	if ((unsigned)cmd >= PRC_NCMDS)
    539 		return NULL;
    540 	errno = inetctlerrmap[cmd];
    541 	if (cmd == PRC_QUENCH)
    542 		notify = tcp_quench;
    543 	else if (PRC_IS_REDIRECT(cmd))
    544 		notify = in_rtchange, ip = 0;
    545 	else if (cmd == PRC_MSGSIZE && ip_mtudisc)
    546 		notify = tcp_mtudisc, ip = 0;
    547 	else if (cmd == PRC_HOSTDEAD)
    548 		ip = 0;
    549 	else if (errno == 0)
    550 		return NULL;
    551 	if (ip) {
    552 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
    553 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
    554 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
    555 		if (nmatch == 0 && syn_cache_count &&
    556 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
    557 		    inetctlerrmap[cmd] == ENETUNREACH ||
    558 		    inetctlerrmap[cmd] == EHOSTDOWN))
    559 			syn_cache_unreach(ip, th);
    560 	} else
    561 		(void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
    562 		    notify);
    563 	return NULL;
    564 }
    565 
    566 /*
    567  * When a source quence is received, we are being notifed of congestion.
    568  * Close the congestion window down to the Loss Window (one segment).
    569  * We will gradually open it again as we proceed.
    570  */
    571 void
    572 tcp_quench(inp, errno)
    573 	struct inpcb *inp;
    574 	int errno;
    575 {
    576 	struct tcpcb *tp = intotcpcb(inp);
    577 
    578 	if (tp)
    579 		tp->snd_cwnd = tp->t_segsz;
    580 }
    581 
    582 /*
    583  * On receipt of path MTU corrections, flush old route and replace it
    584  * with the new one.  Retransmit all unacknowledged packets, to ensure
    585  * that all packets will be received.
    586  */
    587 void
    588 tcp_mtudisc(inp, errno)
    589 	struct inpcb *inp;
    590 	int errno;
    591 {
    592 	struct tcpcb *tp = intotcpcb(inp);
    593 	struct rtentry *rt = in_pcbrtentry(inp);
    594 
    595 	if (tp != 0) {
    596 		if (rt != 0) {
    597 			/*
    598 			 * If this was not a host route, remove and realloc.
    599 			 */
    600 			if ((rt->rt_flags & RTF_HOST) == 0) {
    601 				in_rtchange(inp, errno);
    602 				if ((rt = in_pcbrtentry(inp)) == 0)
    603 					return;
    604 			}
    605 
    606 			/*
    607 			 * Slow start out of the error condition.  We
    608 			 * use the MTU because we know it's smaller
    609 			 * than the previously transmitted segment.
    610 			 *
    611 			 * Note: This is more conservative than the
    612 			 * suggestion in draft-floyd-incr-init-win-03.
    613 			 */
    614 			if (rt->rt_rmx.rmx_mtu != 0)
    615 				tp->snd_cwnd =
    616 				    TCP_INITIAL_WINDOW(tcp_init_win,
    617 				    rt->rt_rmx.rmx_mtu);
    618 		}
    619 
    620 		/*
    621 		 * Resend unacknowledged packets.
    622 		 */
    623 		tp->snd_nxt = tp->snd_una;
    624 		tcp_output(tp);
    625 	}
    626 }
    627 
    628 
    629 /*
    630  * Compute the MSS to advertise to the peer.  Called only during
    631  * the 3-way handshake.  If we are the server (peer initiated
    632  * connection), we are called with a pointer to the interface
    633  * on which the SYN packet arrived.  If we are the client (we
    634  * initiated connection), we are called with a pointer to the
    635  * interface out which this connection should go.
    636  */
    637 u_long
    638 tcp_mss_to_advertise(ifp)
    639 	const struct ifnet *ifp;
    640 {
    641 	extern u_long in_maxmtu;
    642 	u_long mss = 0;
    643 
    644 	/*
    645 	 * In order to avoid defeating path MTU discovery on the peer,
    646 	 * we advertise the max MTU of all attached networks as our MSS,
    647 	 * per RFC 1191, section 3.1.
    648 	 *
    649 	 * We provide the option to advertise just the MTU of
    650 	 * the interface on which we hope this connection will
    651 	 * be receiving.  If we are responding to a SYN, we
    652 	 * will have a pretty good idea about this, but when
    653 	 * initiating a connection there is a bit more doubt.
    654 	 *
    655 	 * We also need to ensure that loopback has a large enough
    656 	 * MSS, as the loopback MTU is never included in in_maxmtu.
    657 	 */
    658 
    659 	if (ifp != NULL)
    660 		mss = ifp->if_mtu;
    661 
    662 	if (tcp_mss_ifmtu == 0)
    663 		mss = max(in_maxmtu, mss);
    664 
    665 	if (mss > sizeof(struct tcpiphdr))
    666 		mss -= sizeof(struct tcpiphdr);
    667 
    668 	mss = max(tcp_mssdflt, mss);
    669 	return (mss);
    670 }
    671 
    672 /*
    673  * Set connection variables based on the peer's advertised MSS.
    674  * We are passed the TCPCB for the actual connection.  If we
    675  * are the server, we are called by the compressed state engine
    676  * when the 3-way handshake is complete.  If we are the client,
    677  * we are called when we recieve the SYN,ACK from the server.
    678  *
    679  * NOTE: Our advertised MSS value must be initialized in the TCPCB
    680  * before this routine is called!
    681  */
    682 void
    683 tcp_mss_from_peer(tp, offer)
    684 	struct tcpcb *tp;
    685 	int offer;
    686 {
    687 	struct inpcb *inp = tp->t_inpcb;
    688 	struct socket *so = inp->inp_socket;
    689 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
    690 	struct rtentry *rt = in_pcbrtentry(inp);
    691 #endif
    692 	u_long bufsize;
    693 	int mss;
    694 
    695 	/*
    696 	 * As per RFC1122, use the default MSS value, unless they
    697 	 * sent us an offer.  Do not accept offers less than 32 bytes.
    698 	 */
    699 	mss = tcp_mssdflt;
    700 	if (offer)
    701 		mss = offer;
    702 	mss = max(mss, 32);		/* sanity */
    703 	tp->t_peermss = mss;
    704 	mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
    705 
    706 	/*
    707 	 * If there's a pipesize, change the socket buffer to that size.
    708 	 * Make the socket buffer an integral number of MSS units.  If
    709 	 * the MSS is larger than the socket buffer, artificially decrease
    710 	 * the MSS.
    711 	 */
    712 #ifdef RTV_SPIPE
    713 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
    714 		bufsize = rt->rt_rmx.rmx_sendpipe;
    715 	else
    716 #endif
    717 		bufsize = so->so_snd.sb_hiwat;
    718 	if (bufsize < mss)
    719 		mss = bufsize;
    720 	else {
    721 		bufsize = roundup(bufsize, mss);
    722 		if (bufsize > sb_max)
    723 			bufsize = sb_max;
    724 		(void) sbreserve(&so->so_snd, bufsize);
    725 	}
    726 	tp->t_segsz = mss;
    727 
    728 #ifdef RTV_SSTHRESH
    729 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
    730 		/*
    731 		 * There's some sort of gateway or interface buffer
    732 		 * limit on the path.  Use this to set the slow
    733 		 * start threshold, but set the threshold to no less
    734 		 * than 2 * MSS.
    735 		 */
    736 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
    737 	}
    738 #endif
    739 }
    740 
    741 /*
    742  * Processing necessary when a TCP connection is established.
    743  */
    744 void
    745 tcp_established(tp)
    746 	struct tcpcb *tp;
    747 {
    748 	struct inpcb *inp = tp->t_inpcb;
    749 	struct socket *so = inp->inp_socket;
    750 #ifdef RTV_RPIPE
    751 	struct rtentry *rt = in_pcbrtentry(inp);
    752 #endif
    753 	u_long bufsize;
    754 
    755 	tp->t_state = TCPS_ESTABLISHED;
    756 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
    757 
    758 #ifdef RTV_RPIPE
    759 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
    760 		bufsize = rt->rt_rmx.rmx_recvpipe;
    761 	else
    762 #endif
    763 		bufsize = so->so_rcv.sb_hiwat;
    764 	if (bufsize > tp->t_ourmss) {
    765 		bufsize = roundup(bufsize, tp->t_ourmss);
    766 		if (bufsize > sb_max)
    767 			bufsize = sb_max;
    768 		(void) sbreserve(&so->so_rcv, bufsize);
    769 	}
    770 }
    771 
    772 /*
    773  * Check if there's an initial rtt or rttvar.  Convert from the
    774  * route-table units to scaled multiples of the slow timeout timer.
    775  * Called only during the 3-way handshake.
    776  */
    777 void
    778 tcp_rmx_rtt(tp)
    779 	struct tcpcb *tp;
    780 {
    781 #ifdef RTV_RTT
    782 	struct rtentry *rt;
    783 	int rtt;
    784 
    785 	if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
    786 		return;
    787 
    788 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
    789 		/*
    790 		 * XXX The lock bit for MTU indicates that the value
    791 		 * is also a minimum value; this is subject to time.
    792 		 */
    793 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
    794 			TCPT_RANGESET(tp->t_rttmin,
    795 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
    796 			    TCPTV_MIN, TCPTV_REXMTMAX);
    797 		tp->t_srtt = rtt /
    798 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    799 		if (rt->rt_rmx.rmx_rttvar) {
    800 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
    801 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
    802 				(TCP_RTTVAR_SHIFT + 2));
    803 		} else {
    804 			/* Default variation is +- 1 rtt */
    805 			tp->t_rttvar =
    806 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
    807 		}
    808 		TCPT_RANGESET(tp->t_rxtcur,
    809 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
    810 		    tp->t_rttmin, TCPTV_REXMTMAX);
    811 	}
    812 #endif
    813 }
    814 
    815 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
    816 
    817 /*
    818  * Get a new sequence value given a tcp control block
    819  */
    820 tcp_seq
    821 tcp_new_iss(tp, len, addin)
    822 	void            *tp;
    823 	u_long           len;
    824 	tcp_seq		 addin;
    825 {
    826 	tcp_seq          tcp_iss;
    827 
    828 	/*
    829 	 * add randomness about this connection, but do not estimate
    830 	 * entropy from the timing, since the physical device driver would
    831 	 * have done that for us.
    832 	 */
    833 #if NRND > 0
    834 	if (tp != NULL)
    835 		rnd_add_data(NULL, tp, len, 0);
    836 #endif
    837 
    838 	/*
    839 	 * randomize.
    840 	 */
    841 #if NRND > 0
    842 	rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
    843 #else
    844 	tcp_iss = random();
    845 #endif
    846 
    847 	/*
    848 	 * If we were asked to add some amount to a known value,
    849 	 * we will take a random value obtained above, mask off the upper
    850 	 * bits, and add in the known value.  We also add in a constant to
    851 	 * ensure that we are at least a certain distance from the original
    852 	 * value.
    853 	 *
    854 	 * This is used when an old connection is in timed wait
    855 	 * and we have a new one coming in, for instance.
    856 	 */
    857 	if (addin != 0) {
    858 #ifdef TCPISS_DEBUG
    859 		printf("Random %08x, ", tcp_iss);
    860 #endif
    861 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    862 		tcp_iss += addin + TCP_ISSINCR;
    863 #ifdef TCPISS_DEBUG
    864 		printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
    865 #endif
    866 	} else {
    867 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    868 		tcp_iss += tcp_iss_seq;
    869 		tcp_iss_seq += TCP_ISSINCR;
    870 #ifdef TCPISS_DEBUG
    871 		printf("ISS %08x\n", tcp_iss);
    872 #endif
    873 	}
    874 
    875 	if (tcp_compat_42) {
    876 		/*
    877 		 * Limit it to the positive range for really old TCP
    878 		 * implementations.
    879 		 */
    880 		if (tcp_iss >= 0x80000000)
    881 			tcp_iss &= 0x7fffffff;		/* XXX */
    882 	}
    883 
    884 	return tcp_iss;
    885 }
    886 
    887 
    888 /*
    889  * Determine the length of the TCP options for this connection.
    890  *
    891  * XXX:  What do we do for SACK, when we add that?  Just reserve
    892  *       all of the space?  Otherwise we can't exactly be incrementing
    893  *       cwnd by an amount that varies depending on the amount we last
    894  *       had to SACK!
    895  */
    896 
    897 u_int
    898 tcp_optlen(tp)
    899 	struct tcpcb *tp;
    900 {
    901 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
    902 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
    903 		return TCPOLEN_TSTAMP_APPA;
    904 	else
    905 		return 0;
    906 }
    907