Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.61
      1 /*	$NetBSD: tcp_subr.c,v 1.61 1998/10/07 23:20:03 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
      9  * Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     73  */
     74 
     75 #include "opt_tcp_compat_42.h"
     76 #include "rnd.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/protosw.h>
     86 #include <sys/errno.h>
     87 #include <sys/kernel.h>
     88 #include <sys/pool.h>
     89 #if NRND > 0
     90 #include <sys/rnd.h>
     91 #endif
     92 
     93 #include <net/route.h>
     94 #include <net/if.h>
     95 
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/ip.h>
     99 #include <netinet/in_pcb.h>
    100 #include <netinet/ip_var.h>
    101 #include <netinet/ip_icmp.h>
    102 #include <netinet/tcp.h>
    103 #include <netinet/tcp_fsm.h>
    104 #include <netinet/tcp_seq.h>
    105 #include <netinet/tcp_timer.h>
    106 #include <netinet/tcp_var.h>
    107 #include <netinet/tcpip.h>
    108 
    109 /* patchable/settable parameters for tcp */
    110 int 	tcp_mssdflt = TCP_MSS;
    111 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    112 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    113 int	tcp_do_sack = 1;	/* selective acknowledgement */
    114 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    115 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    116 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    117 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    118 int	tcp_init_win = 1;
    119 int	tcp_mss_ifmtu = 0;
    120 #ifdef TCP_COMPAT_42
    121 int	tcp_compat_42 = 1;
    122 #else
    123 int	tcp_compat_42 = 0;
    124 #endif
    125 
    126 #ifndef TCBHASHSIZE
    127 #define	TCBHASHSIZE	128
    128 #endif
    129 int	tcbhashsize = TCBHASHSIZE;
    130 
    131 int	tcp_freeq __P((struct tcpcb *));
    132 
    133 struct pool tcpcb_pool;
    134 struct pool tcp_template_pool;
    135 
    136 /*
    137  * Tcp initialization
    138  */
    139 void
    140 tcp_init()
    141 {
    142 
    143 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    144 	    0, NULL, NULL, M_PCB);
    145 	pool_init(&tcp_template_pool, sizeof(struct tcpiphdr), 0, 0, 0,
    146 	    "tcptmpl", 0, NULL, NULL, M_MBUF);
    147 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    148 	LIST_INIT(&tcp_delacks);
    149 	if (max_protohdr < sizeof(struct tcpiphdr))
    150 		max_protohdr = sizeof(struct tcpiphdr);
    151 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
    152 		panic("tcp_init");
    153 
    154 	/* Initialize the compressed state engine. */
    155 	syn_cache_init();
    156 }
    157 
    158 /*
    159  * Create template to be used to send tcp packets on a connection.
    160  * Call after host entry created, allocates an mbuf and fills
    161  * in a skeletal tcp/ip header, minimizing the amount of work
    162  * necessary when the connection is used.
    163  */
    164 struct tcpiphdr *
    165 tcp_template(tp)
    166 	struct tcpcb *tp;
    167 {
    168 	register struct inpcb *inp = tp->t_inpcb;
    169 	register struct tcpiphdr *n;
    170 
    171 	if ((n = tp->t_template) == 0) {
    172 		n = pool_get(&tcp_template_pool, PR_NOWAIT);
    173 		if (n == NULL)
    174 			return (NULL);
    175 	}
    176 	bzero(n->ti_x1, sizeof n->ti_x1);
    177 	n->ti_pr = IPPROTO_TCP;
    178 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
    179 	n->ti_src = inp->inp_laddr;
    180 	n->ti_dst = inp->inp_faddr;
    181 	n->ti_sport = inp->inp_lport;
    182 	n->ti_dport = inp->inp_fport;
    183 	n->ti_seq = 0;
    184 	n->ti_ack = 0;
    185 	n->ti_x2 = 0;
    186 	n->ti_off = 5;
    187 	n->ti_flags = 0;
    188 	n->ti_win = 0;
    189 	n->ti_sum = 0;
    190 	n->ti_urp = 0;
    191 	return (n);
    192 }
    193 
    194 /*
    195  * Send a single message to the TCP at address specified by
    196  * the given TCP/IP header.  If m == 0, then we make a copy
    197  * of the tcpiphdr at ti and send directly to the addressed host.
    198  * This is used to force keep alive messages out using the TCP
    199  * template for a connection tp->t_template.  If flags are given
    200  * then we send a message back to the TCP which originated the
    201  * segment ti, and discard the mbuf containing it and any other
    202  * attached mbufs.
    203  *
    204  * In any case the ack and sequence number of the transmitted
    205  * segment are as specified by the parameters.
    206  */
    207 int
    208 tcp_respond(tp, ti, m, ack, seq, flags)
    209 	struct tcpcb *tp;
    210 	register struct tcpiphdr *ti;
    211 	register struct mbuf *m;
    212 	tcp_seq ack, seq;
    213 	int flags;
    214 {
    215 	register int tlen;
    216 	int win = 0;
    217 	struct route *ro = 0;
    218 
    219 	if (tp) {
    220 		if ((flags & TH_RST) == 0)
    221 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    222 		ro = &tp->t_inpcb->inp_route;
    223 	}
    224 	if (m == 0) {
    225 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
    226 		if (m == NULL)
    227 			return (ENOBUFS);
    228 
    229 		if (tcp_compat_42)
    230 			tlen = 1;
    231 		else
    232 			tlen = 0;
    233 
    234 		m->m_data += max_linkhdr;
    235 		*mtod(m, struct tcpiphdr *) = *ti;
    236 		ti = mtod(m, struct tcpiphdr *);
    237 		flags = TH_ACK;
    238 	} else {
    239 		m_freem(m->m_next);
    240 		m->m_next = 0;
    241 		m->m_data = (caddr_t)ti;
    242 		m->m_len = sizeof (struct tcpiphdr);
    243 		tlen = 0;
    244 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    245 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
    246 		xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
    247 #undef xchg
    248 	}
    249 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    250 	ti->ti_seq = htonl(seq);
    251 	ti->ti_ack = htonl(ack);
    252 	ti->ti_x2 = 0;
    253 	if ((flags & TH_SYN) == 0) {
    254 		if (tp)
    255 			ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
    256 		else
    257 			ti->ti_win = htons((u_int16_t)win);
    258 		ti->ti_off = sizeof (struct tcphdr) >> 2;
    259 		tlen += sizeof (struct tcphdr);
    260 	} else
    261 		tlen += ti->ti_off << 2;
    262 	ti->ti_len = htons((u_int16_t)tlen);
    263 	tlen += sizeof (struct ip);
    264 	m->m_len = tlen;
    265 	m->m_pkthdr.len = tlen;
    266 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    267 	ti->ti_flags = flags;
    268 	ti->ti_urp = 0;
    269 	ti->ti_sum = 0;
    270 	ti->ti_sum = in_cksum(m, tlen);
    271 	((struct ip *)ti)->ip_len = tlen;
    272 	((struct ip *)ti)->ip_ttl = ip_defttl;
    273 	return ip_output(m, NULL, ro, 0, NULL);
    274 }
    275 
    276 /*
    277  * Create a new TCP control block, making an
    278  * empty reassembly queue and hooking it to the argument
    279  * protocol control block.
    280  */
    281 struct tcpcb *
    282 tcp_newtcpcb(inp)
    283 	struct inpcb *inp;
    284 {
    285 	register struct tcpcb *tp;
    286 
    287 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    288 	if (tp == NULL)
    289 		return (NULL);
    290 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    291 	LIST_INIT(&tp->segq);
    292 	LIST_INIT(&tp->timeq);
    293 	tp->t_peermss = tcp_mssdflt;
    294 	tp->t_ourmss = tcp_mssdflt;
    295 	tp->t_segsz = tcp_mssdflt;
    296 
    297 	tp->t_flags = 0;
    298 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    299 		tp->t_flags |= TF_REQ_SCALE;
    300 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    301 		tp->t_flags |= TF_REQ_TSTMP;
    302 	if (tcp_do_sack == 2)
    303 		tp->t_flags |= TF_WILL_SACK;
    304 	else if (tcp_do_sack == 1)
    305 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    306 	tp->t_flags |= TF_CANT_TXSACK;
    307 	tp->t_inpcb = inp;
    308 	/*
    309 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    310 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    311 	 * reasonable initial retransmit time.
    312 	 */
    313 	tp->t_srtt = TCPTV_SRTTBASE;
    314 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    315 	tp->t_rttmin = TCPTV_MIN;
    316 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    317 	    TCPTV_MIN, TCPTV_REXMTMAX);
    318 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    319 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    320 	inp->inp_ip.ip_ttl = ip_defttl;
    321 	inp->inp_ppcb = (caddr_t)tp;
    322 	return (tp);
    323 }
    324 
    325 /*
    326  * Drop a TCP connection, reporting
    327  * the specified error.  If connection is synchronized,
    328  * then send a RST to peer.
    329  */
    330 struct tcpcb *
    331 tcp_drop(tp, errno)
    332 	register struct tcpcb *tp;
    333 	int errno;
    334 {
    335 	struct socket *so = tp->t_inpcb->inp_socket;
    336 
    337 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    338 		tp->t_state = TCPS_CLOSED;
    339 		(void) tcp_output(tp);
    340 		tcpstat.tcps_drops++;
    341 	} else
    342 		tcpstat.tcps_conndrops++;
    343 	if (errno == ETIMEDOUT && tp->t_softerror)
    344 		errno = tp->t_softerror;
    345 	so->so_error = errno;
    346 	return (tcp_close(tp));
    347 }
    348 
    349 /*
    350  * Close a TCP control block:
    351  *	discard all space held by the tcp
    352  *	discard internet protocol block
    353  *	wake up any sleepers
    354  */
    355 struct tcpcb *
    356 tcp_close(tp)
    357 	register struct tcpcb *tp;
    358 {
    359 	struct inpcb *inp = tp->t_inpcb;
    360 	struct socket *so = inp->inp_socket;
    361 #ifdef RTV_RTT
    362 	register struct rtentry *rt;
    363 
    364 	/*
    365 	 * If we sent enough data to get some meaningful characteristics,
    366 	 * save them in the routing entry.  'Enough' is arbitrarily
    367 	 * defined as the sendpipesize (default 4K) * 16.  This would
    368 	 * give us 16 rtt samples assuming we only get one sample per
    369 	 * window (the usual case on a long haul net).  16 samples is
    370 	 * enough for the srtt filter to converge to within 5% of the correct
    371 	 * value; fewer samples and we could save a very bogus rtt.
    372 	 *
    373 	 * Don't update the default route's characteristics and don't
    374 	 * update anything that the user "locked".
    375 	 */
    376 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    377 	    (rt = inp->inp_route.ro_rt) &&
    378 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    379 		register u_long i = 0;
    380 
    381 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    382 			i = tp->t_srtt *
    383 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    384 			if (rt->rt_rmx.rmx_rtt && i)
    385 				/*
    386 				 * filter this update to half the old & half
    387 				 * the new values, converting scale.
    388 				 * See route.h and tcp_var.h for a
    389 				 * description of the scaling constants.
    390 				 */
    391 				rt->rt_rmx.rmx_rtt =
    392 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    393 			else
    394 				rt->rt_rmx.rmx_rtt = i;
    395 		}
    396 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    397 			i = tp->t_rttvar *
    398 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    399 			if (rt->rt_rmx.rmx_rttvar && i)
    400 				rt->rt_rmx.rmx_rttvar =
    401 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    402 			else
    403 				rt->rt_rmx.rmx_rttvar = i;
    404 		}
    405 		/*
    406 		 * update the pipelimit (ssthresh) if it has been updated
    407 		 * already or if a pipesize was specified & the threshhold
    408 		 * got below half the pipesize.  I.e., wait for bad news
    409 		 * before we start updating, then update on both good
    410 		 * and bad news.
    411 		 */
    412 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
    413 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
    414 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
    415 			/*
    416 			 * convert the limit from user data bytes to
    417 			 * packets then to packet data bytes.
    418 			 */
    419 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
    420 			if (i < 2)
    421 				i = 2;
    422 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
    423 			if (rt->rt_rmx.rmx_ssthresh)
    424 				rt->rt_rmx.rmx_ssthresh =
    425 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
    426 			else
    427 				rt->rt_rmx.rmx_ssthresh = i;
    428 		}
    429 	}
    430 #endif /* RTV_RTT */
    431 	/* free the reassembly queue, if any */
    432 	(void) tcp_freeq(tp);
    433 	TCP_CLEAR_DELACK(tp);
    434 
    435 	if (tp->t_template)
    436 		pool_put(&tcp_template_pool, tp->t_template);
    437 	pool_put(&tcpcb_pool, tp);
    438 	inp->inp_ppcb = 0;
    439 	soisdisconnected(so);
    440 	in_pcbdetach(inp);
    441 	tcpstat.tcps_closed++;
    442 	return ((struct tcpcb *)0);
    443 }
    444 
    445 int
    446 tcp_freeq(tp)
    447 	struct tcpcb *tp;
    448 {
    449 	register struct ipqent *qe;
    450 	int rv = 0;
    451 #ifdef TCPREASS_DEBUG
    452 	int i = 0;
    453 #endif
    454 
    455 	while ((qe = tp->segq.lh_first) != NULL) {
    456 #ifdef TCPREASS_DEBUG
    457 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
    458 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
    459 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
    460 #endif
    461 		LIST_REMOVE(qe, ipqe_q);
    462 		LIST_REMOVE(qe, ipqe_timeq);
    463 		m_freem(qe->ipqe_m);
    464 		FREE(qe, M_IPQ);
    465 		rv = 1;
    466 	}
    467 	return (rv);
    468 }
    469 
    470 /*
    471  * Protocol drain routine.  Called when memory is in short supply.
    472  */
    473 void
    474 tcp_drain()
    475 {
    476 	register struct inpcb *inp;
    477 	register struct tcpcb *tp;
    478 
    479 	/*
    480 	 * Free the sequence queue of all TCP connections.
    481 	 */
    482 	inp = tcbtable.inpt_queue.cqh_first;
    483 	if (inp)						/* XXX */
    484 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
    485 	    inp = inp->inp_queue.cqe_next) {
    486 		if ((tp = intotcpcb(inp)) != NULL) {
    487 			if (tcp_freeq(tp))
    488 				tcpstat.tcps_connsdrained++;
    489 		}
    490 	}
    491 }
    492 
    493 /*
    494  * Notify a tcp user of an asynchronous error;
    495  * store error as soft error, but wake up user
    496  * (for now, won't do anything until can select for soft error).
    497  */
    498 void
    499 tcp_notify(inp, error)
    500 	struct inpcb *inp;
    501 	int error;
    502 {
    503 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
    504 	register struct socket *so = inp->inp_socket;
    505 
    506 	/*
    507 	 * Ignore some errors if we are hooked up.
    508 	 * If connection hasn't completed, has retransmitted several times,
    509 	 * and receives a second error, give up now.  This is better
    510 	 * than waiting a long time to establish a connection that
    511 	 * can never complete.
    512 	 */
    513 	if (tp->t_state == TCPS_ESTABLISHED &&
    514 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
    515 	      error == EHOSTDOWN)) {
    516 		return;
    517 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
    518 	    tp->t_rxtshift > 3 && tp->t_softerror)
    519 		so->so_error = error;
    520 	else
    521 		tp->t_softerror = error;
    522 	wakeup((caddr_t) &so->so_timeo);
    523 	sorwakeup(so);
    524 	sowwakeup(so);
    525 }
    526 
    527 void *
    528 tcp_ctlinput(cmd, sa, v)
    529 	int cmd;
    530 	struct sockaddr *sa;
    531 	register void *v;
    532 {
    533 	register struct ip *ip = v;
    534 	register struct tcphdr *th;
    535 	extern int inetctlerrmap[];
    536 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
    537 	int errno;
    538 	int nmatch;
    539 
    540 	if ((unsigned)cmd >= PRC_NCMDS)
    541 		return NULL;
    542 	errno = inetctlerrmap[cmd];
    543 	if (cmd == PRC_QUENCH)
    544 		notify = tcp_quench;
    545 	else if (PRC_IS_REDIRECT(cmd))
    546 		notify = in_rtchange, ip = 0;
    547 	else if (cmd == PRC_MSGSIZE && ip_mtudisc)
    548 		notify = tcp_mtudisc, ip = 0;
    549 	else if (cmd == PRC_HOSTDEAD)
    550 		ip = 0;
    551 	else if (errno == 0)
    552 		return NULL;
    553 	if (ip) {
    554 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
    555 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
    556 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
    557 		if (nmatch == 0 && syn_cache_count &&
    558 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
    559 		    inetctlerrmap[cmd] == ENETUNREACH ||
    560 		    inetctlerrmap[cmd] == EHOSTDOWN))
    561 			syn_cache_unreach(ip, th);
    562 	} else
    563 		(void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
    564 		    notify);
    565 	return NULL;
    566 }
    567 
    568 /*
    569  * When a source quence is received, we are being notifed of congestion.
    570  * Close the congestion window down to the Loss Window (one segment).
    571  * We will gradually open it again as we proceed.
    572  */
    573 void
    574 tcp_quench(inp, errno)
    575 	struct inpcb *inp;
    576 	int errno;
    577 {
    578 	struct tcpcb *tp = intotcpcb(inp);
    579 
    580 	if (tp)
    581 		tp->snd_cwnd = tp->t_segsz;
    582 }
    583 
    584 /*
    585  * On receipt of path MTU corrections, flush old route and replace it
    586  * with the new one.  Retransmit all unacknowledged packets, to ensure
    587  * that all packets will be received.
    588  */
    589 void
    590 tcp_mtudisc(inp, errno)
    591 	struct inpcb *inp;
    592 	int errno;
    593 {
    594 	struct tcpcb *tp = intotcpcb(inp);
    595 	struct rtentry *rt = in_pcbrtentry(inp);
    596 
    597 	if (tp != 0) {
    598 		if (rt != 0) {
    599 			/*
    600 			 * If this was not a host route, remove and realloc.
    601 			 */
    602 			if ((rt->rt_flags & RTF_HOST) == 0) {
    603 				in_rtchange(inp, errno);
    604 				if ((rt = in_pcbrtentry(inp)) == 0)
    605 					return;
    606 			}
    607 
    608 			/*
    609 			 * Slow start out of the error condition.  We
    610 			 * use the MTU because we know it's smaller
    611 			 * than the previously transmitted segment.
    612 			 *
    613 			 * Note: This is more conservative than the
    614 			 * suggestion in draft-floyd-incr-init-win-03.
    615 			 */
    616 			if (rt->rt_rmx.rmx_mtu != 0)
    617 				tp->snd_cwnd =
    618 				    TCP_INITIAL_WINDOW(tcp_init_win,
    619 				    rt->rt_rmx.rmx_mtu);
    620 		}
    621 
    622 		/*
    623 		 * Resend unacknowledged packets.
    624 		 */
    625 		tp->snd_nxt = tp->snd_una;
    626 		tcp_output(tp);
    627 	}
    628 }
    629 
    630 
    631 /*
    632  * Compute the MSS to advertise to the peer.  Called only during
    633  * the 3-way handshake.  If we are the server (peer initiated
    634  * connection), we are called with a pointer to the interface
    635  * on which the SYN packet arrived.  If we are the client (we
    636  * initiated connection), we are called with a pointer to the
    637  * interface out which this connection should go.
    638  */
    639 u_long
    640 tcp_mss_to_advertise(ifp)
    641 	const struct ifnet *ifp;
    642 {
    643 	extern u_long in_maxmtu;
    644 	u_long mss = 0;
    645 
    646 	/*
    647 	 * In order to avoid defeating path MTU discovery on the peer,
    648 	 * we advertise the max MTU of all attached networks as our MSS,
    649 	 * per RFC 1191, section 3.1.
    650 	 *
    651 	 * We provide the option to advertise just the MTU of
    652 	 * the interface on which we hope this connection will
    653 	 * be receiving.  If we are responding to a SYN, we
    654 	 * will have a pretty good idea about this, but when
    655 	 * initiating a connection there is a bit more doubt.
    656 	 *
    657 	 * We also need to ensure that loopback has a large enough
    658 	 * MSS, as the loopback MTU is never included in in_maxmtu.
    659 	 */
    660 
    661 	if (ifp != NULL)
    662 		mss = ifp->if_mtu;
    663 
    664 	if (tcp_mss_ifmtu == 0)
    665 		mss = max(in_maxmtu, mss);
    666 
    667 	if (mss > sizeof(struct tcpiphdr))
    668 		mss -= sizeof(struct tcpiphdr);
    669 
    670 	mss = max(tcp_mssdflt, mss);
    671 	return (mss);
    672 }
    673 
    674 /*
    675  * Set connection variables based on the peer's advertised MSS.
    676  * We are passed the TCPCB for the actual connection.  If we
    677  * are the server, we are called by the compressed state engine
    678  * when the 3-way handshake is complete.  If we are the client,
    679  * we are called when we recieve the SYN,ACK from the server.
    680  *
    681  * NOTE: Our advertised MSS value must be initialized in the TCPCB
    682  * before this routine is called!
    683  */
    684 void
    685 tcp_mss_from_peer(tp, offer)
    686 	struct tcpcb *tp;
    687 	int offer;
    688 {
    689 	struct inpcb *inp = tp->t_inpcb;
    690 	struct socket *so = inp->inp_socket;
    691 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
    692 	struct rtentry *rt = in_pcbrtentry(inp);
    693 #endif
    694 	u_long bufsize;
    695 	int mss;
    696 
    697 	/*
    698 	 * As per RFC1122, use the default MSS value, unless they
    699 	 * sent us an offer.  Do not accept offers less than 32 bytes.
    700 	 */
    701 	mss = tcp_mssdflt;
    702 	if (offer)
    703 		mss = offer;
    704 	mss = max(mss, 32);		/* sanity */
    705 	tp->t_peermss = mss;
    706 	mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
    707 
    708 	/*
    709 	 * If there's a pipesize, change the socket buffer to that size.
    710 	 * Make the socket buffer an integral number of MSS units.  If
    711 	 * the MSS is larger than the socket buffer, artificially decrease
    712 	 * the MSS.
    713 	 */
    714 #ifdef RTV_SPIPE
    715 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
    716 		bufsize = rt->rt_rmx.rmx_sendpipe;
    717 	else
    718 #endif
    719 		bufsize = so->so_snd.sb_hiwat;
    720 	if (bufsize < mss)
    721 		mss = bufsize;
    722 	else {
    723 		bufsize = roundup(bufsize, mss);
    724 		if (bufsize > sb_max)
    725 			bufsize = sb_max;
    726 		(void) sbreserve(&so->so_snd, bufsize);
    727 	}
    728 	tp->t_segsz = mss;
    729 
    730 #ifdef RTV_SSTHRESH
    731 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
    732 		/*
    733 		 * There's some sort of gateway or interface buffer
    734 		 * limit on the path.  Use this to set the slow
    735 		 * start threshold, but set the threshold to no less
    736 		 * than 2 * MSS.
    737 		 */
    738 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
    739 	}
    740 #endif
    741 }
    742 
    743 /*
    744  * Processing necessary when a TCP connection is established.
    745  */
    746 void
    747 tcp_established(tp)
    748 	struct tcpcb *tp;
    749 {
    750 	struct inpcb *inp = tp->t_inpcb;
    751 	struct socket *so = inp->inp_socket;
    752 #ifdef RTV_RPIPE
    753 	struct rtentry *rt = in_pcbrtentry(inp);
    754 #endif
    755 	u_long bufsize;
    756 
    757 	tp->t_state = TCPS_ESTABLISHED;
    758 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
    759 
    760 #ifdef RTV_RPIPE
    761 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
    762 		bufsize = rt->rt_rmx.rmx_recvpipe;
    763 	else
    764 #endif
    765 		bufsize = so->so_rcv.sb_hiwat;
    766 	if (bufsize > tp->t_ourmss) {
    767 		bufsize = roundup(bufsize, tp->t_ourmss);
    768 		if (bufsize > sb_max)
    769 			bufsize = sb_max;
    770 		(void) sbreserve(&so->so_rcv, bufsize);
    771 	}
    772 }
    773 
    774 /*
    775  * Check if there's an initial rtt or rttvar.  Convert from the
    776  * route-table units to scaled multiples of the slow timeout timer.
    777  * Called only during the 3-way handshake.
    778  */
    779 void
    780 tcp_rmx_rtt(tp)
    781 	struct tcpcb *tp;
    782 {
    783 #ifdef RTV_RTT
    784 	struct rtentry *rt;
    785 	int rtt;
    786 
    787 	if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
    788 		return;
    789 
    790 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
    791 		/*
    792 		 * XXX The lock bit for MTU indicates that the value
    793 		 * is also a minimum value; this is subject to time.
    794 		 */
    795 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
    796 			TCPT_RANGESET(tp->t_rttmin,
    797 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
    798 			    TCPTV_MIN, TCPTV_REXMTMAX);
    799 		tp->t_srtt = rtt /
    800 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    801 		if (rt->rt_rmx.rmx_rttvar) {
    802 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
    803 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
    804 				(TCP_RTTVAR_SHIFT + 2));
    805 		} else {
    806 			/* Default variation is +- 1 rtt */
    807 			tp->t_rttvar =
    808 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
    809 		}
    810 		TCPT_RANGESET(tp->t_rxtcur,
    811 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
    812 		    tp->t_rttmin, TCPTV_REXMTMAX);
    813 	}
    814 #endif
    815 }
    816 
    817 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
    818 
    819 /*
    820  * Get a new sequence value given a tcp control block
    821  */
    822 tcp_seq
    823 tcp_new_iss(tp, len, addin)
    824 	void            *tp;
    825 	u_long           len;
    826 	tcp_seq		 addin;
    827 {
    828 	tcp_seq          tcp_iss;
    829 
    830 	/*
    831 	 * add randomness about this connection, but do not estimate
    832 	 * entropy from the timing, since the physical device driver would
    833 	 * have done that for us.
    834 	 */
    835 #if NRND > 0
    836 	if (tp != NULL)
    837 		rnd_add_data(NULL, tp, len, 0);
    838 #endif
    839 
    840 	/*
    841 	 * randomize.
    842 	 */
    843 #if NRND > 0
    844 	rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
    845 #else
    846 	tcp_iss = random();
    847 #endif
    848 
    849 	/*
    850 	 * If we were asked to add some amount to a known value,
    851 	 * we will take a random value obtained above, mask off the upper
    852 	 * bits, and add in the known value.  We also add in a constant to
    853 	 * ensure that we are at least a certain distance from the original
    854 	 * value.
    855 	 *
    856 	 * This is used when an old connection is in timed wait
    857 	 * and we have a new one coming in, for instance.
    858 	 */
    859 	if (addin != 0) {
    860 #ifdef TCPISS_DEBUG
    861 		printf("Random %08x, ", tcp_iss);
    862 #endif
    863 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    864 		tcp_iss += addin + TCP_ISSINCR;
    865 #ifdef TCPISS_DEBUG
    866 		printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
    867 #endif
    868 	} else {
    869 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    870 		tcp_iss += tcp_iss_seq;
    871 		tcp_iss_seq += TCP_ISSINCR;
    872 #ifdef TCPISS_DEBUG
    873 		printf("ISS %08x\n", tcp_iss);
    874 #endif
    875 	}
    876 
    877 	if (tcp_compat_42) {
    878 		/*
    879 		 * Limit it to the positive range for really old TCP
    880 		 * implementations.
    881 		 */
    882 		if (tcp_iss >= 0x80000000)
    883 			tcp_iss &= 0x7fffffff;		/* XXX */
    884 	}
    885 
    886 	return tcp_iss;
    887 }
    888 
    889 
    890 /*
    891  * Determine the length of the TCP options for this connection.
    892  *
    893  * XXX:  What do we do for SACK, when we add that?  Just reserve
    894  *       all of the space?  Otherwise we can't exactly be incrementing
    895  *       cwnd by an amount that varies depending on the amount we last
    896  *       had to SACK!
    897  */
    898 
    899 u_int
    900 tcp_optlen(tp)
    901 	struct tcpcb *tp;
    902 {
    903 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
    904 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
    905 		return TCPOLEN_TSTAMP_APPA;
    906 	else
    907 		return 0;
    908 }
    909