tcp_subr.c revision 1.61 1 /* $NetBSD: tcp_subr.c,v 1.61 1998/10/07 23:20:03 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #include <sys/pool.h>
89 #if NRND > 0
90 #include <sys/rnd.h>
91 #endif
92
93 #include <net/route.h>
94 #include <net/if.h>
95
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/ip_icmp.h>
102 #include <netinet/tcp.h>
103 #include <netinet/tcp_fsm.h>
104 #include <netinet/tcp_seq.h>
105 #include <netinet/tcp_timer.h>
106 #include <netinet/tcp_var.h>
107 #include <netinet/tcpip.h>
108
109 /* patchable/settable parameters for tcp */
110 int tcp_mssdflt = TCP_MSS;
111 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
112 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
113 int tcp_do_sack = 1; /* selective acknowledgement */
114 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
115 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
116 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
117 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
118 int tcp_init_win = 1;
119 int tcp_mss_ifmtu = 0;
120 #ifdef TCP_COMPAT_42
121 int tcp_compat_42 = 1;
122 #else
123 int tcp_compat_42 = 0;
124 #endif
125
126 #ifndef TCBHASHSIZE
127 #define TCBHASHSIZE 128
128 #endif
129 int tcbhashsize = TCBHASHSIZE;
130
131 int tcp_freeq __P((struct tcpcb *));
132
133 struct pool tcpcb_pool;
134 struct pool tcp_template_pool;
135
136 /*
137 * Tcp initialization
138 */
139 void
140 tcp_init()
141 {
142
143 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
144 0, NULL, NULL, M_PCB);
145 pool_init(&tcp_template_pool, sizeof(struct tcpiphdr), 0, 0, 0,
146 "tcptmpl", 0, NULL, NULL, M_MBUF);
147 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
148 LIST_INIT(&tcp_delacks);
149 if (max_protohdr < sizeof(struct tcpiphdr))
150 max_protohdr = sizeof(struct tcpiphdr);
151 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
152 panic("tcp_init");
153
154 /* Initialize the compressed state engine. */
155 syn_cache_init();
156 }
157
158 /*
159 * Create template to be used to send tcp packets on a connection.
160 * Call after host entry created, allocates an mbuf and fills
161 * in a skeletal tcp/ip header, minimizing the amount of work
162 * necessary when the connection is used.
163 */
164 struct tcpiphdr *
165 tcp_template(tp)
166 struct tcpcb *tp;
167 {
168 register struct inpcb *inp = tp->t_inpcb;
169 register struct tcpiphdr *n;
170
171 if ((n = tp->t_template) == 0) {
172 n = pool_get(&tcp_template_pool, PR_NOWAIT);
173 if (n == NULL)
174 return (NULL);
175 }
176 bzero(n->ti_x1, sizeof n->ti_x1);
177 n->ti_pr = IPPROTO_TCP;
178 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
179 n->ti_src = inp->inp_laddr;
180 n->ti_dst = inp->inp_faddr;
181 n->ti_sport = inp->inp_lport;
182 n->ti_dport = inp->inp_fport;
183 n->ti_seq = 0;
184 n->ti_ack = 0;
185 n->ti_x2 = 0;
186 n->ti_off = 5;
187 n->ti_flags = 0;
188 n->ti_win = 0;
189 n->ti_sum = 0;
190 n->ti_urp = 0;
191 return (n);
192 }
193
194 /*
195 * Send a single message to the TCP at address specified by
196 * the given TCP/IP header. If m == 0, then we make a copy
197 * of the tcpiphdr at ti and send directly to the addressed host.
198 * This is used to force keep alive messages out using the TCP
199 * template for a connection tp->t_template. If flags are given
200 * then we send a message back to the TCP which originated the
201 * segment ti, and discard the mbuf containing it and any other
202 * attached mbufs.
203 *
204 * In any case the ack and sequence number of the transmitted
205 * segment are as specified by the parameters.
206 */
207 int
208 tcp_respond(tp, ti, m, ack, seq, flags)
209 struct tcpcb *tp;
210 register struct tcpiphdr *ti;
211 register struct mbuf *m;
212 tcp_seq ack, seq;
213 int flags;
214 {
215 register int tlen;
216 int win = 0;
217 struct route *ro = 0;
218
219 if (tp) {
220 if ((flags & TH_RST) == 0)
221 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
222 ro = &tp->t_inpcb->inp_route;
223 }
224 if (m == 0) {
225 m = m_gethdr(M_DONTWAIT, MT_HEADER);
226 if (m == NULL)
227 return (ENOBUFS);
228
229 if (tcp_compat_42)
230 tlen = 1;
231 else
232 tlen = 0;
233
234 m->m_data += max_linkhdr;
235 *mtod(m, struct tcpiphdr *) = *ti;
236 ti = mtod(m, struct tcpiphdr *);
237 flags = TH_ACK;
238 } else {
239 m_freem(m->m_next);
240 m->m_next = 0;
241 m->m_data = (caddr_t)ti;
242 m->m_len = sizeof (struct tcpiphdr);
243 tlen = 0;
244 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
245 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
246 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
247 #undef xchg
248 }
249 bzero(ti->ti_x1, sizeof ti->ti_x1);
250 ti->ti_seq = htonl(seq);
251 ti->ti_ack = htonl(ack);
252 ti->ti_x2 = 0;
253 if ((flags & TH_SYN) == 0) {
254 if (tp)
255 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
256 else
257 ti->ti_win = htons((u_int16_t)win);
258 ti->ti_off = sizeof (struct tcphdr) >> 2;
259 tlen += sizeof (struct tcphdr);
260 } else
261 tlen += ti->ti_off << 2;
262 ti->ti_len = htons((u_int16_t)tlen);
263 tlen += sizeof (struct ip);
264 m->m_len = tlen;
265 m->m_pkthdr.len = tlen;
266 m->m_pkthdr.rcvif = (struct ifnet *) 0;
267 ti->ti_flags = flags;
268 ti->ti_urp = 0;
269 ti->ti_sum = 0;
270 ti->ti_sum = in_cksum(m, tlen);
271 ((struct ip *)ti)->ip_len = tlen;
272 ((struct ip *)ti)->ip_ttl = ip_defttl;
273 return ip_output(m, NULL, ro, 0, NULL);
274 }
275
276 /*
277 * Create a new TCP control block, making an
278 * empty reassembly queue and hooking it to the argument
279 * protocol control block.
280 */
281 struct tcpcb *
282 tcp_newtcpcb(inp)
283 struct inpcb *inp;
284 {
285 register struct tcpcb *tp;
286
287 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
288 if (tp == NULL)
289 return (NULL);
290 bzero((caddr_t)tp, sizeof(struct tcpcb));
291 LIST_INIT(&tp->segq);
292 LIST_INIT(&tp->timeq);
293 tp->t_peermss = tcp_mssdflt;
294 tp->t_ourmss = tcp_mssdflt;
295 tp->t_segsz = tcp_mssdflt;
296
297 tp->t_flags = 0;
298 if (tcp_do_rfc1323 && tcp_do_win_scale)
299 tp->t_flags |= TF_REQ_SCALE;
300 if (tcp_do_rfc1323 && tcp_do_timestamps)
301 tp->t_flags |= TF_REQ_TSTMP;
302 if (tcp_do_sack == 2)
303 tp->t_flags |= TF_WILL_SACK;
304 else if (tcp_do_sack == 1)
305 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
306 tp->t_flags |= TF_CANT_TXSACK;
307 tp->t_inpcb = inp;
308 /*
309 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
310 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
311 * reasonable initial retransmit time.
312 */
313 tp->t_srtt = TCPTV_SRTTBASE;
314 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
315 tp->t_rttmin = TCPTV_MIN;
316 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
317 TCPTV_MIN, TCPTV_REXMTMAX);
318 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
319 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
320 inp->inp_ip.ip_ttl = ip_defttl;
321 inp->inp_ppcb = (caddr_t)tp;
322 return (tp);
323 }
324
325 /*
326 * Drop a TCP connection, reporting
327 * the specified error. If connection is synchronized,
328 * then send a RST to peer.
329 */
330 struct tcpcb *
331 tcp_drop(tp, errno)
332 register struct tcpcb *tp;
333 int errno;
334 {
335 struct socket *so = tp->t_inpcb->inp_socket;
336
337 if (TCPS_HAVERCVDSYN(tp->t_state)) {
338 tp->t_state = TCPS_CLOSED;
339 (void) tcp_output(tp);
340 tcpstat.tcps_drops++;
341 } else
342 tcpstat.tcps_conndrops++;
343 if (errno == ETIMEDOUT && tp->t_softerror)
344 errno = tp->t_softerror;
345 so->so_error = errno;
346 return (tcp_close(tp));
347 }
348
349 /*
350 * Close a TCP control block:
351 * discard all space held by the tcp
352 * discard internet protocol block
353 * wake up any sleepers
354 */
355 struct tcpcb *
356 tcp_close(tp)
357 register struct tcpcb *tp;
358 {
359 struct inpcb *inp = tp->t_inpcb;
360 struct socket *so = inp->inp_socket;
361 #ifdef RTV_RTT
362 register struct rtentry *rt;
363
364 /*
365 * If we sent enough data to get some meaningful characteristics,
366 * save them in the routing entry. 'Enough' is arbitrarily
367 * defined as the sendpipesize (default 4K) * 16. This would
368 * give us 16 rtt samples assuming we only get one sample per
369 * window (the usual case on a long haul net). 16 samples is
370 * enough for the srtt filter to converge to within 5% of the correct
371 * value; fewer samples and we could save a very bogus rtt.
372 *
373 * Don't update the default route's characteristics and don't
374 * update anything that the user "locked".
375 */
376 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
377 (rt = inp->inp_route.ro_rt) &&
378 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
379 register u_long i = 0;
380
381 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
382 i = tp->t_srtt *
383 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
384 if (rt->rt_rmx.rmx_rtt && i)
385 /*
386 * filter this update to half the old & half
387 * the new values, converting scale.
388 * See route.h and tcp_var.h for a
389 * description of the scaling constants.
390 */
391 rt->rt_rmx.rmx_rtt =
392 (rt->rt_rmx.rmx_rtt + i) / 2;
393 else
394 rt->rt_rmx.rmx_rtt = i;
395 }
396 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
397 i = tp->t_rttvar *
398 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
399 if (rt->rt_rmx.rmx_rttvar && i)
400 rt->rt_rmx.rmx_rttvar =
401 (rt->rt_rmx.rmx_rttvar + i) / 2;
402 else
403 rt->rt_rmx.rmx_rttvar = i;
404 }
405 /*
406 * update the pipelimit (ssthresh) if it has been updated
407 * already or if a pipesize was specified & the threshhold
408 * got below half the pipesize. I.e., wait for bad news
409 * before we start updating, then update on both good
410 * and bad news.
411 */
412 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
413 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
414 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
415 /*
416 * convert the limit from user data bytes to
417 * packets then to packet data bytes.
418 */
419 i = (i + tp->t_segsz / 2) / tp->t_segsz;
420 if (i < 2)
421 i = 2;
422 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
423 if (rt->rt_rmx.rmx_ssthresh)
424 rt->rt_rmx.rmx_ssthresh =
425 (rt->rt_rmx.rmx_ssthresh + i) / 2;
426 else
427 rt->rt_rmx.rmx_ssthresh = i;
428 }
429 }
430 #endif /* RTV_RTT */
431 /* free the reassembly queue, if any */
432 (void) tcp_freeq(tp);
433 TCP_CLEAR_DELACK(tp);
434
435 if (tp->t_template)
436 pool_put(&tcp_template_pool, tp->t_template);
437 pool_put(&tcpcb_pool, tp);
438 inp->inp_ppcb = 0;
439 soisdisconnected(so);
440 in_pcbdetach(inp);
441 tcpstat.tcps_closed++;
442 return ((struct tcpcb *)0);
443 }
444
445 int
446 tcp_freeq(tp)
447 struct tcpcb *tp;
448 {
449 register struct ipqent *qe;
450 int rv = 0;
451 #ifdef TCPREASS_DEBUG
452 int i = 0;
453 #endif
454
455 while ((qe = tp->segq.lh_first) != NULL) {
456 #ifdef TCPREASS_DEBUG
457 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
458 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
459 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
460 #endif
461 LIST_REMOVE(qe, ipqe_q);
462 LIST_REMOVE(qe, ipqe_timeq);
463 m_freem(qe->ipqe_m);
464 FREE(qe, M_IPQ);
465 rv = 1;
466 }
467 return (rv);
468 }
469
470 /*
471 * Protocol drain routine. Called when memory is in short supply.
472 */
473 void
474 tcp_drain()
475 {
476 register struct inpcb *inp;
477 register struct tcpcb *tp;
478
479 /*
480 * Free the sequence queue of all TCP connections.
481 */
482 inp = tcbtable.inpt_queue.cqh_first;
483 if (inp) /* XXX */
484 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
485 inp = inp->inp_queue.cqe_next) {
486 if ((tp = intotcpcb(inp)) != NULL) {
487 if (tcp_freeq(tp))
488 tcpstat.tcps_connsdrained++;
489 }
490 }
491 }
492
493 /*
494 * Notify a tcp user of an asynchronous error;
495 * store error as soft error, but wake up user
496 * (for now, won't do anything until can select for soft error).
497 */
498 void
499 tcp_notify(inp, error)
500 struct inpcb *inp;
501 int error;
502 {
503 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
504 register struct socket *so = inp->inp_socket;
505
506 /*
507 * Ignore some errors if we are hooked up.
508 * If connection hasn't completed, has retransmitted several times,
509 * and receives a second error, give up now. This is better
510 * than waiting a long time to establish a connection that
511 * can never complete.
512 */
513 if (tp->t_state == TCPS_ESTABLISHED &&
514 (error == EHOSTUNREACH || error == ENETUNREACH ||
515 error == EHOSTDOWN)) {
516 return;
517 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
518 tp->t_rxtshift > 3 && tp->t_softerror)
519 so->so_error = error;
520 else
521 tp->t_softerror = error;
522 wakeup((caddr_t) &so->so_timeo);
523 sorwakeup(so);
524 sowwakeup(so);
525 }
526
527 void *
528 tcp_ctlinput(cmd, sa, v)
529 int cmd;
530 struct sockaddr *sa;
531 register void *v;
532 {
533 register struct ip *ip = v;
534 register struct tcphdr *th;
535 extern int inetctlerrmap[];
536 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
537 int errno;
538 int nmatch;
539
540 if ((unsigned)cmd >= PRC_NCMDS)
541 return NULL;
542 errno = inetctlerrmap[cmd];
543 if (cmd == PRC_QUENCH)
544 notify = tcp_quench;
545 else if (PRC_IS_REDIRECT(cmd))
546 notify = in_rtchange, ip = 0;
547 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
548 notify = tcp_mtudisc, ip = 0;
549 else if (cmd == PRC_HOSTDEAD)
550 ip = 0;
551 else if (errno == 0)
552 return NULL;
553 if (ip) {
554 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
555 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
556 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
557 if (nmatch == 0 && syn_cache_count &&
558 (inetctlerrmap[cmd] == EHOSTUNREACH ||
559 inetctlerrmap[cmd] == ENETUNREACH ||
560 inetctlerrmap[cmd] == EHOSTDOWN))
561 syn_cache_unreach(ip, th);
562 } else
563 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
564 notify);
565 return NULL;
566 }
567
568 /*
569 * When a source quence is received, we are being notifed of congestion.
570 * Close the congestion window down to the Loss Window (one segment).
571 * We will gradually open it again as we proceed.
572 */
573 void
574 tcp_quench(inp, errno)
575 struct inpcb *inp;
576 int errno;
577 {
578 struct tcpcb *tp = intotcpcb(inp);
579
580 if (tp)
581 tp->snd_cwnd = tp->t_segsz;
582 }
583
584 /*
585 * On receipt of path MTU corrections, flush old route and replace it
586 * with the new one. Retransmit all unacknowledged packets, to ensure
587 * that all packets will be received.
588 */
589 void
590 tcp_mtudisc(inp, errno)
591 struct inpcb *inp;
592 int errno;
593 {
594 struct tcpcb *tp = intotcpcb(inp);
595 struct rtentry *rt = in_pcbrtentry(inp);
596
597 if (tp != 0) {
598 if (rt != 0) {
599 /*
600 * If this was not a host route, remove and realloc.
601 */
602 if ((rt->rt_flags & RTF_HOST) == 0) {
603 in_rtchange(inp, errno);
604 if ((rt = in_pcbrtentry(inp)) == 0)
605 return;
606 }
607
608 /*
609 * Slow start out of the error condition. We
610 * use the MTU because we know it's smaller
611 * than the previously transmitted segment.
612 *
613 * Note: This is more conservative than the
614 * suggestion in draft-floyd-incr-init-win-03.
615 */
616 if (rt->rt_rmx.rmx_mtu != 0)
617 tp->snd_cwnd =
618 TCP_INITIAL_WINDOW(tcp_init_win,
619 rt->rt_rmx.rmx_mtu);
620 }
621
622 /*
623 * Resend unacknowledged packets.
624 */
625 tp->snd_nxt = tp->snd_una;
626 tcp_output(tp);
627 }
628 }
629
630
631 /*
632 * Compute the MSS to advertise to the peer. Called only during
633 * the 3-way handshake. If we are the server (peer initiated
634 * connection), we are called with a pointer to the interface
635 * on which the SYN packet arrived. If we are the client (we
636 * initiated connection), we are called with a pointer to the
637 * interface out which this connection should go.
638 */
639 u_long
640 tcp_mss_to_advertise(ifp)
641 const struct ifnet *ifp;
642 {
643 extern u_long in_maxmtu;
644 u_long mss = 0;
645
646 /*
647 * In order to avoid defeating path MTU discovery on the peer,
648 * we advertise the max MTU of all attached networks as our MSS,
649 * per RFC 1191, section 3.1.
650 *
651 * We provide the option to advertise just the MTU of
652 * the interface on which we hope this connection will
653 * be receiving. If we are responding to a SYN, we
654 * will have a pretty good idea about this, but when
655 * initiating a connection there is a bit more doubt.
656 *
657 * We also need to ensure that loopback has a large enough
658 * MSS, as the loopback MTU is never included in in_maxmtu.
659 */
660
661 if (ifp != NULL)
662 mss = ifp->if_mtu;
663
664 if (tcp_mss_ifmtu == 0)
665 mss = max(in_maxmtu, mss);
666
667 if (mss > sizeof(struct tcpiphdr))
668 mss -= sizeof(struct tcpiphdr);
669
670 mss = max(tcp_mssdflt, mss);
671 return (mss);
672 }
673
674 /*
675 * Set connection variables based on the peer's advertised MSS.
676 * We are passed the TCPCB for the actual connection. If we
677 * are the server, we are called by the compressed state engine
678 * when the 3-way handshake is complete. If we are the client,
679 * we are called when we recieve the SYN,ACK from the server.
680 *
681 * NOTE: Our advertised MSS value must be initialized in the TCPCB
682 * before this routine is called!
683 */
684 void
685 tcp_mss_from_peer(tp, offer)
686 struct tcpcb *tp;
687 int offer;
688 {
689 struct inpcb *inp = tp->t_inpcb;
690 struct socket *so = inp->inp_socket;
691 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
692 struct rtentry *rt = in_pcbrtentry(inp);
693 #endif
694 u_long bufsize;
695 int mss;
696
697 /*
698 * As per RFC1122, use the default MSS value, unless they
699 * sent us an offer. Do not accept offers less than 32 bytes.
700 */
701 mss = tcp_mssdflt;
702 if (offer)
703 mss = offer;
704 mss = max(mss, 32); /* sanity */
705 tp->t_peermss = mss;
706 mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
707
708 /*
709 * If there's a pipesize, change the socket buffer to that size.
710 * Make the socket buffer an integral number of MSS units. If
711 * the MSS is larger than the socket buffer, artificially decrease
712 * the MSS.
713 */
714 #ifdef RTV_SPIPE
715 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
716 bufsize = rt->rt_rmx.rmx_sendpipe;
717 else
718 #endif
719 bufsize = so->so_snd.sb_hiwat;
720 if (bufsize < mss)
721 mss = bufsize;
722 else {
723 bufsize = roundup(bufsize, mss);
724 if (bufsize > sb_max)
725 bufsize = sb_max;
726 (void) sbreserve(&so->so_snd, bufsize);
727 }
728 tp->t_segsz = mss;
729
730 #ifdef RTV_SSTHRESH
731 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
732 /*
733 * There's some sort of gateway or interface buffer
734 * limit on the path. Use this to set the slow
735 * start threshold, but set the threshold to no less
736 * than 2 * MSS.
737 */
738 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
739 }
740 #endif
741 }
742
743 /*
744 * Processing necessary when a TCP connection is established.
745 */
746 void
747 tcp_established(tp)
748 struct tcpcb *tp;
749 {
750 struct inpcb *inp = tp->t_inpcb;
751 struct socket *so = inp->inp_socket;
752 #ifdef RTV_RPIPE
753 struct rtentry *rt = in_pcbrtentry(inp);
754 #endif
755 u_long bufsize;
756
757 tp->t_state = TCPS_ESTABLISHED;
758 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
759
760 #ifdef RTV_RPIPE
761 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
762 bufsize = rt->rt_rmx.rmx_recvpipe;
763 else
764 #endif
765 bufsize = so->so_rcv.sb_hiwat;
766 if (bufsize > tp->t_ourmss) {
767 bufsize = roundup(bufsize, tp->t_ourmss);
768 if (bufsize > sb_max)
769 bufsize = sb_max;
770 (void) sbreserve(&so->so_rcv, bufsize);
771 }
772 }
773
774 /*
775 * Check if there's an initial rtt or rttvar. Convert from the
776 * route-table units to scaled multiples of the slow timeout timer.
777 * Called only during the 3-way handshake.
778 */
779 void
780 tcp_rmx_rtt(tp)
781 struct tcpcb *tp;
782 {
783 #ifdef RTV_RTT
784 struct rtentry *rt;
785 int rtt;
786
787 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
788 return;
789
790 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
791 /*
792 * XXX The lock bit for MTU indicates that the value
793 * is also a minimum value; this is subject to time.
794 */
795 if (rt->rt_rmx.rmx_locks & RTV_RTT)
796 TCPT_RANGESET(tp->t_rttmin,
797 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
798 TCPTV_MIN, TCPTV_REXMTMAX);
799 tp->t_srtt = rtt /
800 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
801 if (rt->rt_rmx.rmx_rttvar) {
802 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
803 ((RTM_RTTUNIT / PR_SLOWHZ) >>
804 (TCP_RTTVAR_SHIFT + 2));
805 } else {
806 /* Default variation is +- 1 rtt */
807 tp->t_rttvar =
808 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
809 }
810 TCPT_RANGESET(tp->t_rxtcur,
811 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
812 tp->t_rttmin, TCPTV_REXMTMAX);
813 }
814 #endif
815 }
816
817 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
818
819 /*
820 * Get a new sequence value given a tcp control block
821 */
822 tcp_seq
823 tcp_new_iss(tp, len, addin)
824 void *tp;
825 u_long len;
826 tcp_seq addin;
827 {
828 tcp_seq tcp_iss;
829
830 /*
831 * add randomness about this connection, but do not estimate
832 * entropy from the timing, since the physical device driver would
833 * have done that for us.
834 */
835 #if NRND > 0
836 if (tp != NULL)
837 rnd_add_data(NULL, tp, len, 0);
838 #endif
839
840 /*
841 * randomize.
842 */
843 #if NRND > 0
844 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
845 #else
846 tcp_iss = random();
847 #endif
848
849 /*
850 * If we were asked to add some amount to a known value,
851 * we will take a random value obtained above, mask off the upper
852 * bits, and add in the known value. We also add in a constant to
853 * ensure that we are at least a certain distance from the original
854 * value.
855 *
856 * This is used when an old connection is in timed wait
857 * and we have a new one coming in, for instance.
858 */
859 if (addin != 0) {
860 #ifdef TCPISS_DEBUG
861 printf("Random %08x, ", tcp_iss);
862 #endif
863 tcp_iss &= TCP_ISS_RANDOM_MASK;
864 tcp_iss += addin + TCP_ISSINCR;
865 #ifdef TCPISS_DEBUG
866 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
867 #endif
868 } else {
869 tcp_iss &= TCP_ISS_RANDOM_MASK;
870 tcp_iss += tcp_iss_seq;
871 tcp_iss_seq += TCP_ISSINCR;
872 #ifdef TCPISS_DEBUG
873 printf("ISS %08x\n", tcp_iss);
874 #endif
875 }
876
877 if (tcp_compat_42) {
878 /*
879 * Limit it to the positive range for really old TCP
880 * implementations.
881 */
882 if (tcp_iss >= 0x80000000)
883 tcp_iss &= 0x7fffffff; /* XXX */
884 }
885
886 return tcp_iss;
887 }
888
889
890 /*
891 * Determine the length of the TCP options for this connection.
892 *
893 * XXX: What do we do for SACK, when we add that? Just reserve
894 * all of the space? Otherwise we can't exactly be incrementing
895 * cwnd by an amount that varies depending on the amount we last
896 * had to SACK!
897 */
898
899 u_int
900 tcp_optlen(tp)
901 struct tcpcb *tp;
902 {
903 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
904 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
905 return TCPOLEN_TSTAMP_APPA;
906 else
907 return 0;
908 }
909