tcp_subr.c revision 1.63 1 /* $NetBSD: tcp_subr.c,v 1.63 1998/12/18 21:38:03 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #include <sys/pool.h>
89 #if NRND > 0
90 #include <sys/rnd.h>
91 #endif
92
93 #include <net/route.h>
94 #include <net/if.h>
95
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/ip_icmp.h>
102 #include <netinet/tcp.h>
103 #include <netinet/tcp_fsm.h>
104 #include <netinet/tcp_seq.h>
105 #include <netinet/tcp_timer.h>
106 #include <netinet/tcp_var.h>
107 #include <netinet/tcpip.h>
108
109 /* patchable/settable parameters for tcp */
110 int tcp_mssdflt = TCP_MSS;
111 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
112 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
113 int tcp_do_sack = 1; /* selective acknowledgement */
114 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
115 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
116 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
117 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
118 int tcp_init_win = 1;
119 int tcp_mss_ifmtu = 0;
120 #ifdef TCP_COMPAT_42
121 int tcp_compat_42 = 1;
122 #else
123 int tcp_compat_42 = 0;
124 #endif
125
126 #ifndef TCBHASHSIZE
127 #define TCBHASHSIZE 128
128 #endif
129 int tcbhashsize = TCBHASHSIZE;
130
131 int tcp_freeq __P((struct tcpcb *));
132
133 struct pool tcpcb_pool;
134 struct pool tcp_template_pool;
135
136 /*
137 * Tcp initialization
138 */
139 void
140 tcp_init()
141 {
142
143 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
144 0, NULL, NULL, M_PCB);
145 pool_init(&tcp_template_pool, sizeof(struct tcpiphdr), 0, 0, 0,
146 "tcptmpl", 0, NULL, NULL, M_MBUF);
147 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
148 LIST_INIT(&tcp_delacks);
149 if (max_protohdr < sizeof(struct tcpiphdr))
150 max_protohdr = sizeof(struct tcpiphdr);
151 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
152 panic("tcp_init");
153
154 /* Initialize the compressed state engine. */
155 syn_cache_init();
156 }
157
158 /*
159 * Create template to be used to send tcp packets on a connection.
160 * Call after host entry created, allocates an mbuf and fills
161 * in a skeletal tcp/ip header, minimizing the amount of work
162 * necessary when the connection is used.
163 */
164 struct tcpiphdr *
165 tcp_template(tp)
166 struct tcpcb *tp;
167 {
168 register struct inpcb *inp = tp->t_inpcb;
169 register struct tcpiphdr *n;
170
171 if ((n = tp->t_template) == 0) {
172 n = pool_get(&tcp_template_pool, PR_NOWAIT);
173 if (n == NULL)
174 return (NULL);
175 }
176 bzero(n->ti_x1, sizeof n->ti_x1);
177 n->ti_pr = IPPROTO_TCP;
178 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
179 n->ti_src = inp->inp_laddr;
180 n->ti_dst = inp->inp_faddr;
181 n->ti_sport = inp->inp_lport;
182 n->ti_dport = inp->inp_fport;
183 n->ti_seq = 0;
184 n->ti_ack = 0;
185 n->ti_x2 = 0;
186 n->ti_off = 5;
187 n->ti_flags = 0;
188 n->ti_win = 0;
189 n->ti_sum = 0;
190 n->ti_urp = 0;
191 return (n);
192 }
193
194 /*
195 * Send a single message to the TCP at address specified by
196 * the given TCP/IP header. If m == 0, then we make a copy
197 * of the tcpiphdr at ti and send directly to the addressed host.
198 * This is used to force keep alive messages out using the TCP
199 * template for a connection tp->t_template. If flags are given
200 * then we send a message back to the TCP which originated the
201 * segment ti, and discard the mbuf containing it and any other
202 * attached mbufs.
203 *
204 * In any case the ack and sequence number of the transmitted
205 * segment are as specified by the parameters.
206 */
207 int
208 tcp_respond(tp, ti, m, ack, seq, flags)
209 struct tcpcb *tp;
210 register struct tcpiphdr *ti;
211 register struct mbuf *m;
212 tcp_seq ack, seq;
213 int flags;
214 {
215 register int tlen;
216 int win = 0;
217 struct route *ro = 0;
218
219 if (tp) {
220 if ((flags & TH_RST) == 0)
221 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
222 ro = &tp->t_inpcb->inp_route;
223 }
224 if (m == 0) {
225 m = m_gethdr(M_DONTWAIT, MT_HEADER);
226 if (m == NULL)
227 return (ENOBUFS);
228
229 if (tcp_compat_42)
230 tlen = 1;
231 else
232 tlen = 0;
233
234 m->m_data += max_linkhdr;
235 *mtod(m, struct tcpiphdr *) = *ti;
236 ti = mtod(m, struct tcpiphdr *);
237 flags = TH_ACK;
238 } else {
239 m_freem(m->m_next);
240 m->m_next = 0;
241 m->m_data = (caddr_t)ti;
242 m->m_len = sizeof (struct tcpiphdr);
243 tlen = 0;
244 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
245 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
246 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
247 #undef xchg
248 }
249 bzero(ti->ti_x1, sizeof ti->ti_x1);
250 ti->ti_seq = htonl(seq);
251 ti->ti_ack = htonl(ack);
252 ti->ti_x2 = 0;
253 if ((flags & TH_SYN) == 0) {
254 if (tp)
255 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
256 else
257 ti->ti_win = htons((u_int16_t)win);
258 ti->ti_off = sizeof (struct tcphdr) >> 2;
259 tlen += sizeof (struct tcphdr);
260 } else
261 tlen += ti->ti_off << 2;
262 ti->ti_len = htons((u_int16_t)tlen);
263 tlen += sizeof (struct ip);
264 m->m_len = tlen;
265 m->m_pkthdr.len = tlen;
266 m->m_pkthdr.rcvif = (struct ifnet *) 0;
267 ti->ti_flags = flags;
268 ti->ti_urp = 0;
269 ti->ti_sum = 0;
270 ti->ti_sum = in_cksum(m, tlen);
271 ((struct ip *)ti)->ip_len = tlen;
272 ((struct ip *)ti)->ip_ttl = ip_defttl;
273 return ip_output(m, NULL, ro, 0, NULL);
274 }
275
276 /*
277 * Create a new TCP control block, making an
278 * empty reassembly queue and hooking it to the argument
279 * protocol control block.
280 */
281 struct tcpcb *
282 tcp_newtcpcb(inp)
283 struct inpcb *inp;
284 {
285 register struct tcpcb *tp;
286
287 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
288 if (tp == NULL)
289 return (NULL);
290 bzero((caddr_t)tp, sizeof(struct tcpcb));
291 LIST_INIT(&tp->segq);
292 LIST_INIT(&tp->timeq);
293 tp->t_peermss = tcp_mssdflt;
294 tp->t_ourmss = tcp_mssdflt;
295 tp->t_segsz = tcp_mssdflt;
296
297 tp->t_flags = 0;
298 if (tcp_do_rfc1323 && tcp_do_win_scale)
299 tp->t_flags |= TF_REQ_SCALE;
300 if (tcp_do_rfc1323 && tcp_do_timestamps)
301 tp->t_flags |= TF_REQ_TSTMP;
302 if (tcp_do_sack == 2)
303 tp->t_flags |= TF_WILL_SACK;
304 else if (tcp_do_sack == 1)
305 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
306 tp->t_flags |= TF_CANT_TXSACK;
307 tp->t_inpcb = inp;
308 /*
309 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
310 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
311 * reasonable initial retransmit time.
312 */
313 tp->t_srtt = TCPTV_SRTTBASE;
314 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
315 tp->t_rttmin = TCPTV_MIN;
316 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
317 TCPTV_MIN, TCPTV_REXMTMAX);
318 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
319 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
320 inp->inp_ip.ip_ttl = ip_defttl;
321 inp->inp_ppcb = (caddr_t)tp;
322 return (tp);
323 }
324
325 /*
326 * Drop a TCP connection, reporting
327 * the specified error. If connection is synchronized,
328 * then send a RST to peer.
329 */
330 struct tcpcb *
331 tcp_drop(tp, errno)
332 register struct tcpcb *tp;
333 int errno;
334 {
335 struct socket *so = tp->t_inpcb->inp_socket;
336
337 if (TCPS_HAVERCVDSYN(tp->t_state)) {
338 tp->t_state = TCPS_CLOSED;
339 (void) tcp_output(tp);
340 tcpstat.tcps_drops++;
341 } else
342 tcpstat.tcps_conndrops++;
343 if (errno == ETIMEDOUT && tp->t_softerror)
344 errno = tp->t_softerror;
345 so->so_error = errno;
346 return (tcp_close(tp));
347 }
348
349 /*
350 * Close a TCP control block:
351 * discard all space held by the tcp
352 * discard internet protocol block
353 * wake up any sleepers
354 */
355 struct tcpcb *
356 tcp_close(tp)
357 register struct tcpcb *tp;
358 {
359 struct inpcb *inp = tp->t_inpcb;
360 struct socket *so = inp->inp_socket;
361 #ifdef RTV_RTT
362 register struct rtentry *rt;
363
364 /*
365 * If we sent enough data to get some meaningful characteristics,
366 * save them in the routing entry. 'Enough' is arbitrarily
367 * defined as the sendpipesize (default 4K) * 16. This would
368 * give us 16 rtt samples assuming we only get one sample per
369 * window (the usual case on a long haul net). 16 samples is
370 * enough for the srtt filter to converge to within 5% of the correct
371 * value; fewer samples and we could save a very bogus rtt.
372 *
373 * Don't update the default route's characteristics and don't
374 * update anything that the user "locked".
375 */
376 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
377 (rt = inp->inp_route.ro_rt) &&
378 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
379 register u_long i = 0;
380
381 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
382 i = tp->t_srtt *
383 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
384 if (rt->rt_rmx.rmx_rtt && i)
385 /*
386 * filter this update to half the old & half
387 * the new values, converting scale.
388 * See route.h and tcp_var.h for a
389 * description of the scaling constants.
390 */
391 rt->rt_rmx.rmx_rtt =
392 (rt->rt_rmx.rmx_rtt + i) / 2;
393 else
394 rt->rt_rmx.rmx_rtt = i;
395 }
396 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
397 i = tp->t_rttvar *
398 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
399 if (rt->rt_rmx.rmx_rttvar && i)
400 rt->rt_rmx.rmx_rttvar =
401 (rt->rt_rmx.rmx_rttvar + i) / 2;
402 else
403 rt->rt_rmx.rmx_rttvar = i;
404 }
405 /*
406 * update the pipelimit (ssthresh) if it has been updated
407 * already or if a pipesize was specified & the threshhold
408 * got below half the pipesize. I.e., wait for bad news
409 * before we start updating, then update on both good
410 * and bad news.
411 */
412 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
413 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
414 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
415 /*
416 * convert the limit from user data bytes to
417 * packets then to packet data bytes.
418 */
419 i = (i + tp->t_segsz / 2) / tp->t_segsz;
420 if (i < 2)
421 i = 2;
422 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
423 if (rt->rt_rmx.rmx_ssthresh)
424 rt->rt_rmx.rmx_ssthresh =
425 (rt->rt_rmx.rmx_ssthresh + i) / 2;
426 else
427 rt->rt_rmx.rmx_ssthresh = i;
428 }
429 }
430 #endif /* RTV_RTT */
431 /* free the reassembly queue, if any */
432 TCP_REASS_LOCK(tp);
433 (void) tcp_freeq(tp);
434 TCP_REASS_UNLOCK(tp);
435
436 TCP_CLEAR_DELACK(tp);
437
438 if (tp->t_template)
439 pool_put(&tcp_template_pool, tp->t_template);
440 pool_put(&tcpcb_pool, tp);
441 inp->inp_ppcb = 0;
442 soisdisconnected(so);
443 in_pcbdetach(inp);
444 tcpstat.tcps_closed++;
445 return ((struct tcpcb *)0);
446 }
447
448 int
449 tcp_freeq(tp)
450 struct tcpcb *tp;
451 {
452 register struct ipqent *qe;
453 int rv = 0;
454 #ifdef TCPREASS_DEBUG
455 int i = 0;
456 #endif
457
458 TCP_REASS_LOCK_CHECK(tp);
459
460 while ((qe = tp->segq.lh_first) != NULL) {
461 #ifdef TCPREASS_DEBUG
462 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
463 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
464 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
465 #endif
466 LIST_REMOVE(qe, ipqe_q);
467 LIST_REMOVE(qe, ipqe_timeq);
468 m_freem(qe->ipqe_m);
469 pool_put(&ipqent_pool, qe);
470 rv = 1;
471 }
472 return (rv);
473 }
474
475 /*
476 * Protocol drain routine. Called when memory is in short supply.
477 */
478 void
479 tcp_drain()
480 {
481 register struct inpcb *inp;
482 register struct tcpcb *tp;
483
484 /*
485 * Free the sequence queue of all TCP connections.
486 */
487 inp = tcbtable.inpt_queue.cqh_first;
488 if (inp) /* XXX */
489 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
490 inp = inp->inp_queue.cqe_next) {
491 if ((tp = intotcpcb(inp)) != NULL) {
492 /*
493 * We may be called from a device's interrupt
494 * context. If the tcpcb is already busy,
495 * just bail out now.
496 */
497 if (tcp_reass_lock_try(tp) == 0)
498 continue;
499 if (tcp_freeq(tp))
500 tcpstat.tcps_connsdrained++;
501 TCP_REASS_UNLOCK(tp);
502 }
503 }
504 }
505
506 /*
507 * Notify a tcp user of an asynchronous error;
508 * store error as soft error, but wake up user
509 * (for now, won't do anything until can select for soft error).
510 */
511 void
512 tcp_notify(inp, error)
513 struct inpcb *inp;
514 int error;
515 {
516 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
517 register struct socket *so = inp->inp_socket;
518
519 /*
520 * Ignore some errors if we are hooked up.
521 * If connection hasn't completed, has retransmitted several times,
522 * and receives a second error, give up now. This is better
523 * than waiting a long time to establish a connection that
524 * can never complete.
525 */
526 if (tp->t_state == TCPS_ESTABLISHED &&
527 (error == EHOSTUNREACH || error == ENETUNREACH ||
528 error == EHOSTDOWN)) {
529 return;
530 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
531 tp->t_rxtshift > 3 && tp->t_softerror)
532 so->so_error = error;
533 else
534 tp->t_softerror = error;
535 wakeup((caddr_t) &so->so_timeo);
536 sorwakeup(so);
537 sowwakeup(so);
538 }
539
540 void *
541 tcp_ctlinput(cmd, sa, v)
542 int cmd;
543 struct sockaddr *sa;
544 register void *v;
545 {
546 register struct ip *ip = v;
547 register struct tcphdr *th;
548 extern int inetctlerrmap[];
549 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
550 int errno;
551 int nmatch;
552
553 if ((unsigned)cmd >= PRC_NCMDS)
554 return NULL;
555 errno = inetctlerrmap[cmd];
556 if (cmd == PRC_QUENCH)
557 notify = tcp_quench;
558 else if (PRC_IS_REDIRECT(cmd))
559 notify = in_rtchange, ip = 0;
560 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
561 notify = tcp_mtudisc, ip = 0;
562 else if (cmd == PRC_HOSTDEAD)
563 ip = 0;
564 else if (errno == 0)
565 return NULL;
566 if (ip) {
567 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
568 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
569 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
570 if (nmatch == 0 && syn_cache_count &&
571 (inetctlerrmap[cmd] == EHOSTUNREACH ||
572 inetctlerrmap[cmd] == ENETUNREACH ||
573 inetctlerrmap[cmd] == EHOSTDOWN))
574 syn_cache_unreach(ip, th);
575 } else
576 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
577 notify);
578 return NULL;
579 }
580
581 /*
582 * When a source quence is received, we are being notifed of congestion.
583 * Close the congestion window down to the Loss Window (one segment).
584 * We will gradually open it again as we proceed.
585 */
586 void
587 tcp_quench(inp, errno)
588 struct inpcb *inp;
589 int errno;
590 {
591 struct tcpcb *tp = intotcpcb(inp);
592
593 if (tp)
594 tp->snd_cwnd = tp->t_segsz;
595 }
596
597 /*
598 * On receipt of path MTU corrections, flush old route and replace it
599 * with the new one. Retransmit all unacknowledged packets, to ensure
600 * that all packets will be received.
601 */
602 void
603 tcp_mtudisc(inp, errno)
604 struct inpcb *inp;
605 int errno;
606 {
607 struct tcpcb *tp = intotcpcb(inp);
608 struct rtentry *rt = in_pcbrtentry(inp);
609
610 if (tp != 0) {
611 if (rt != 0) {
612 /*
613 * If this was not a host route, remove and realloc.
614 */
615 if ((rt->rt_flags & RTF_HOST) == 0) {
616 in_rtchange(inp, errno);
617 if ((rt = in_pcbrtentry(inp)) == 0)
618 return;
619 }
620
621 /*
622 * Slow start out of the error condition. We
623 * use the MTU because we know it's smaller
624 * than the previously transmitted segment.
625 *
626 * Note: This is more conservative than the
627 * suggestion in draft-floyd-incr-init-win-03.
628 */
629 if (rt->rt_rmx.rmx_mtu != 0)
630 tp->snd_cwnd =
631 TCP_INITIAL_WINDOW(tcp_init_win,
632 rt->rt_rmx.rmx_mtu);
633 }
634
635 /*
636 * Resend unacknowledged packets.
637 */
638 tp->snd_nxt = tp->snd_una;
639 tcp_output(tp);
640 }
641 }
642
643
644 /*
645 * Compute the MSS to advertise to the peer. Called only during
646 * the 3-way handshake. If we are the server (peer initiated
647 * connection), we are called with a pointer to the interface
648 * on which the SYN packet arrived. If we are the client (we
649 * initiated connection), we are called with a pointer to the
650 * interface out which this connection should go.
651 */
652 u_long
653 tcp_mss_to_advertise(ifp)
654 const struct ifnet *ifp;
655 {
656 extern u_long in_maxmtu;
657 u_long mss = 0;
658
659 /*
660 * In order to avoid defeating path MTU discovery on the peer,
661 * we advertise the max MTU of all attached networks as our MSS,
662 * per RFC 1191, section 3.1.
663 *
664 * We provide the option to advertise just the MTU of
665 * the interface on which we hope this connection will
666 * be receiving. If we are responding to a SYN, we
667 * will have a pretty good idea about this, but when
668 * initiating a connection there is a bit more doubt.
669 *
670 * We also need to ensure that loopback has a large enough
671 * MSS, as the loopback MTU is never included in in_maxmtu.
672 */
673
674 if (ifp != NULL)
675 mss = ifp->if_mtu;
676
677 if (tcp_mss_ifmtu == 0)
678 mss = max(in_maxmtu, mss);
679
680 if (mss > sizeof(struct tcpiphdr))
681 mss -= sizeof(struct tcpiphdr);
682
683 mss = max(tcp_mssdflt, mss);
684 return (mss);
685 }
686
687 /*
688 * Set connection variables based on the peer's advertised MSS.
689 * We are passed the TCPCB for the actual connection. If we
690 * are the server, we are called by the compressed state engine
691 * when the 3-way handshake is complete. If we are the client,
692 * we are called when we recieve the SYN,ACK from the server.
693 *
694 * NOTE: Our advertised MSS value must be initialized in the TCPCB
695 * before this routine is called!
696 */
697 void
698 tcp_mss_from_peer(tp, offer)
699 struct tcpcb *tp;
700 int offer;
701 {
702 struct inpcb *inp = tp->t_inpcb;
703 struct socket *so = inp->inp_socket;
704 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
705 struct rtentry *rt = in_pcbrtentry(inp);
706 #endif
707 u_long bufsize;
708 int mss;
709
710 /*
711 * As per RFC1122, use the default MSS value, unless they
712 * sent us an offer. Do not accept offers less than 32 bytes.
713 */
714 mss = tcp_mssdflt;
715 if (offer)
716 mss = offer;
717 mss = max(mss, 32); /* sanity */
718 tp->t_peermss = mss;
719 mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
720
721 /*
722 * If there's a pipesize, change the socket buffer to that size.
723 * Make the socket buffer an integral number of MSS units. If
724 * the MSS is larger than the socket buffer, artificially decrease
725 * the MSS.
726 */
727 #ifdef RTV_SPIPE
728 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
729 bufsize = rt->rt_rmx.rmx_sendpipe;
730 else
731 #endif
732 bufsize = so->so_snd.sb_hiwat;
733 if (bufsize < mss)
734 mss = bufsize;
735 else {
736 bufsize = roundup(bufsize, mss);
737 if (bufsize > sb_max)
738 bufsize = sb_max;
739 (void) sbreserve(&so->so_snd, bufsize);
740 }
741 tp->t_segsz = mss;
742
743 #ifdef RTV_SSTHRESH
744 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
745 /*
746 * There's some sort of gateway or interface buffer
747 * limit on the path. Use this to set the slow
748 * start threshold, but set the threshold to no less
749 * than 2 * MSS.
750 */
751 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
752 }
753 #endif
754 }
755
756 /*
757 * Processing necessary when a TCP connection is established.
758 */
759 void
760 tcp_established(tp)
761 struct tcpcb *tp;
762 {
763 struct inpcb *inp = tp->t_inpcb;
764 struct socket *so = inp->inp_socket;
765 #ifdef RTV_RPIPE
766 struct rtentry *rt = in_pcbrtentry(inp);
767 #endif
768 u_long bufsize;
769
770 tp->t_state = TCPS_ESTABLISHED;
771 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
772
773 #ifdef RTV_RPIPE
774 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
775 bufsize = rt->rt_rmx.rmx_recvpipe;
776 else
777 #endif
778 bufsize = so->so_rcv.sb_hiwat;
779 if (bufsize > tp->t_ourmss) {
780 bufsize = roundup(bufsize, tp->t_ourmss);
781 if (bufsize > sb_max)
782 bufsize = sb_max;
783 (void) sbreserve(&so->so_rcv, bufsize);
784 }
785 }
786
787 /*
788 * Check if there's an initial rtt or rttvar. Convert from the
789 * route-table units to scaled multiples of the slow timeout timer.
790 * Called only during the 3-way handshake.
791 */
792 void
793 tcp_rmx_rtt(tp)
794 struct tcpcb *tp;
795 {
796 #ifdef RTV_RTT
797 struct rtentry *rt;
798 int rtt;
799
800 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
801 return;
802
803 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
804 /*
805 * XXX The lock bit for MTU indicates that the value
806 * is also a minimum value; this is subject to time.
807 */
808 if (rt->rt_rmx.rmx_locks & RTV_RTT)
809 TCPT_RANGESET(tp->t_rttmin,
810 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
811 TCPTV_MIN, TCPTV_REXMTMAX);
812 tp->t_srtt = rtt /
813 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
814 if (rt->rt_rmx.rmx_rttvar) {
815 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
816 ((RTM_RTTUNIT / PR_SLOWHZ) >>
817 (TCP_RTTVAR_SHIFT + 2));
818 } else {
819 /* Default variation is +- 1 rtt */
820 tp->t_rttvar =
821 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
822 }
823 TCPT_RANGESET(tp->t_rxtcur,
824 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
825 tp->t_rttmin, TCPTV_REXMTMAX);
826 }
827 #endif
828 }
829
830 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
831
832 /*
833 * Get a new sequence value given a tcp control block
834 */
835 tcp_seq
836 tcp_new_iss(tp, len, addin)
837 void *tp;
838 u_long len;
839 tcp_seq addin;
840 {
841 tcp_seq tcp_iss;
842
843 /*
844 * add randomness about this connection, but do not estimate
845 * entropy from the timing, since the physical device driver would
846 * have done that for us.
847 */
848 #if NRND > 0
849 if (tp != NULL)
850 rnd_add_data(NULL, tp, len, 0);
851 #endif
852
853 /*
854 * randomize.
855 */
856 #if NRND > 0
857 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
858 #else
859 tcp_iss = random();
860 #endif
861
862 /*
863 * If we were asked to add some amount to a known value,
864 * we will take a random value obtained above, mask off the upper
865 * bits, and add in the known value. We also add in a constant to
866 * ensure that we are at least a certain distance from the original
867 * value.
868 *
869 * This is used when an old connection is in timed wait
870 * and we have a new one coming in, for instance.
871 */
872 if (addin != 0) {
873 #ifdef TCPISS_DEBUG
874 printf("Random %08x, ", tcp_iss);
875 #endif
876 tcp_iss &= TCP_ISS_RANDOM_MASK;
877 tcp_iss += addin + TCP_ISSINCR;
878 #ifdef TCPISS_DEBUG
879 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
880 #endif
881 } else {
882 tcp_iss &= TCP_ISS_RANDOM_MASK;
883 tcp_iss += tcp_iss_seq;
884 tcp_iss_seq += TCP_ISSINCR;
885 #ifdef TCPISS_DEBUG
886 printf("ISS %08x\n", tcp_iss);
887 #endif
888 }
889
890 if (tcp_compat_42) {
891 /*
892 * Limit it to the positive range for really old TCP
893 * implementations.
894 */
895 if (tcp_iss >= 0x80000000)
896 tcp_iss &= 0x7fffffff; /* XXX */
897 }
898
899 return tcp_iss;
900 }
901
902
903 /*
904 * Determine the length of the TCP options for this connection.
905 *
906 * XXX: What do we do for SACK, when we add that? Just reserve
907 * all of the space? Otherwise we can't exactly be incrementing
908 * cwnd by an amount that varies depending on the amount we last
909 * had to SACK!
910 */
911
912 u_int
913 tcp_optlen(tp)
914 struct tcpcb *tp;
915 {
916 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
917 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
918 return TCPOLEN_TSTAMP_APPA;
919 else
920 return 0;
921 }
922