tcp_subr.c revision 1.64 1 /* $NetBSD: tcp_subr.c,v 1.64 1999/01/20 03:39:54 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #include <sys/pool.h>
89 #if NRND > 0
90 #include <sys/rnd.h>
91 #endif
92
93 #include <net/route.h>
94 #include <net/if.h>
95
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/ip_icmp.h>
102 #include <netinet/tcp.h>
103 #include <netinet/tcp_fsm.h>
104 #include <netinet/tcp_seq.h>
105 #include <netinet/tcp_timer.h>
106 #include <netinet/tcp_var.h>
107 #include <netinet/tcpip.h>
108
109 /* patchable/settable parameters for tcp */
110 int tcp_mssdflt = TCP_MSS;
111 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
112 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
113 int tcp_do_sack = 1; /* selective acknowledgement */
114 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
115 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
116 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
117 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
118 int tcp_init_win = 1;
119 int tcp_mss_ifmtu = 0;
120 #ifdef TCP_COMPAT_42
121 int tcp_compat_42 = 1;
122 #else
123 int tcp_compat_42 = 0;
124 #endif
125
126 #ifndef TCBHASHSIZE
127 #define TCBHASHSIZE 128
128 #endif
129 int tcbhashsize = TCBHASHSIZE;
130
131 int tcp_freeq __P((struct tcpcb *));
132
133 struct pool tcpcb_pool;
134 struct pool tcp_template_pool;
135
136 /*
137 * Tcp initialization
138 */
139 void
140 tcp_init()
141 {
142
143 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
144 0, NULL, NULL, M_PCB);
145 pool_init(&tcp_template_pool, sizeof(struct tcpiphdr), 0, 0, 0,
146 "tcptmpl", 0, NULL, NULL, M_MBUF);
147 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
148 LIST_INIT(&tcp_delacks);
149 if (max_protohdr < sizeof(struct tcpiphdr))
150 max_protohdr = sizeof(struct tcpiphdr);
151 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
152 panic("tcp_init");
153
154 /* Initialize the compressed state engine. */
155 syn_cache_init();
156 }
157
158 /*
159 * Create template to be used to send tcp packets on a connection.
160 * Call after host entry created, allocates an mbuf and fills
161 * in a skeletal tcp/ip header, minimizing the amount of work
162 * necessary when the connection is used.
163 */
164 struct tcpiphdr *
165 tcp_template(tp)
166 struct tcpcb *tp;
167 {
168 register struct inpcb *inp = tp->t_inpcb;
169 register struct tcpiphdr *n;
170
171 if ((n = tp->t_template) == 0) {
172 n = pool_get(&tcp_template_pool, PR_NOWAIT);
173 if (n == NULL)
174 return (NULL);
175 }
176 bzero(n->ti_x1, sizeof n->ti_x1);
177 n->ti_pr = IPPROTO_TCP;
178 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
179 n->ti_src = inp->inp_laddr;
180 n->ti_dst = inp->inp_faddr;
181 n->ti_sport = inp->inp_lport;
182 n->ti_dport = inp->inp_fport;
183 n->ti_seq = 0;
184 n->ti_ack = 0;
185 n->ti_x2 = 0;
186 n->ti_off = 5;
187 n->ti_flags = 0;
188 n->ti_win = 0;
189 n->ti_sum = 0;
190 n->ti_urp = 0;
191 return (n);
192 }
193
194 /*
195 * Send a single message to the TCP at address specified by
196 * the given TCP/IP header. If m == 0, then we make a copy
197 * of the tcpiphdr at ti and send directly to the addressed host.
198 * This is used to force keep alive messages out using the TCP
199 * template for a connection tp->t_template. If flags are given
200 * then we send a message back to the TCP which originated the
201 * segment ti, and discard the mbuf containing it and any other
202 * attached mbufs.
203 *
204 * In any case the ack and sequence number of the transmitted
205 * segment are as specified by the parameters.
206 */
207 int
208 tcp_respond(tp, ti, m, ack, seq, flags)
209 struct tcpcb *tp;
210 register struct tcpiphdr *ti;
211 register struct mbuf *m;
212 tcp_seq ack, seq;
213 int flags;
214 {
215 struct route iproute, *ro;
216 struct rtentry *rt;
217 struct sockaddr_in *dst;
218 int error, tlen, win = 0;
219
220 if (tp != NULL) {
221 if ((flags & TH_RST) == 0)
222 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
223 ro = &tp->t_inpcb->inp_route;
224 #ifdef DIAGNOSTIC
225 if (!in_hosteq(ti->ti_dst, tp->t_inpcb->inp_faddr))
226 panic("tcp_respond: ti_dst != inp_faddr");
227 #endif
228 } else {
229 ro = &iproute;
230 bzero(ro, sizeof(*ro));
231 }
232 if (m == 0) {
233 m = m_gethdr(M_DONTWAIT, MT_HEADER);
234 if (m == NULL)
235 return (ENOBUFS);
236
237 if (tcp_compat_42)
238 tlen = 1;
239 else
240 tlen = 0;
241
242 m->m_data += max_linkhdr;
243 *mtod(m, struct tcpiphdr *) = *ti;
244 ti = mtod(m, struct tcpiphdr *);
245 flags = TH_ACK;
246 } else {
247 m_freem(m->m_next);
248 m->m_next = 0;
249 m->m_data = (caddr_t)ti;
250 m->m_len = sizeof (struct tcpiphdr);
251 tlen = 0;
252 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
253 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
254 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
255 #undef xchg
256 }
257 bzero(ti->ti_x1, sizeof ti->ti_x1);
258 ti->ti_seq = htonl(seq);
259 ti->ti_ack = htonl(ack);
260 ti->ti_x2 = 0;
261 if ((flags & TH_SYN) == 0) {
262 if (tp)
263 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
264 else
265 ti->ti_win = htons((u_int16_t)win);
266 ti->ti_off = sizeof (struct tcphdr) >> 2;
267 tlen += sizeof (struct tcphdr);
268 } else
269 tlen += ti->ti_off << 2;
270 ti->ti_len = htons((u_int16_t)tlen);
271 tlen += sizeof (struct ip);
272 m->m_len = tlen;
273 m->m_pkthdr.len = tlen;
274 m->m_pkthdr.rcvif = (struct ifnet *) 0;
275 ti->ti_flags = flags;
276 ti->ti_urp = 0;
277 ti->ti_sum = 0;
278 ti->ti_sum = in_cksum(m, tlen);
279 ((struct ip *)ti)->ip_len = tlen;
280 ((struct ip *)ti)->ip_ttl = ip_defttl;
281
282 /*
283 * If we're doing Path MTU discovery, we need to set DF unless
284 * the route's MTU is locked. If we lack a route, we need to
285 * look it up now.
286 *
287 * ip_output() could do this for us, but it's convenient to just
288 * do it here unconditionally.
289 */
290 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
291 if (ro->ro_rt != NULL) {
292 RTFREE(ro->ro_rt);
293 ro->ro_rt = NULL;
294 }
295 dst = satosin(&ro->ro_dst);
296 dst->sin_family = AF_INET;
297 dst->sin_len = sizeof(*dst);
298 dst->sin_addr = ti->ti_dst;
299 rtalloc(ro);
300 if ((rt = ro->ro_rt) == NULL) {
301 m_freem(m);
302 ipstat.ips_noroute++;
303 return (EHOSTUNREACH);
304 }
305 }
306 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
307 ((struct ip *)ti)->ip_off |= IP_DF;
308
309 error = ip_output(m, NULL, ro, 0, NULL);
310
311 if (ro == &iproute) {
312 RTFREE(ro->ro_rt);
313 ro->ro_rt = NULL;
314 }
315
316 return (error);
317 }
318
319 /*
320 * Create a new TCP control block, making an
321 * empty reassembly queue and hooking it to the argument
322 * protocol control block.
323 */
324 struct tcpcb *
325 tcp_newtcpcb(inp)
326 struct inpcb *inp;
327 {
328 register struct tcpcb *tp;
329
330 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
331 if (tp == NULL)
332 return (NULL);
333 bzero((caddr_t)tp, sizeof(struct tcpcb));
334 LIST_INIT(&tp->segq);
335 LIST_INIT(&tp->timeq);
336 tp->t_peermss = tcp_mssdflt;
337 tp->t_ourmss = tcp_mssdflt;
338 tp->t_segsz = tcp_mssdflt;
339
340 tp->t_flags = 0;
341 if (tcp_do_rfc1323 && tcp_do_win_scale)
342 tp->t_flags |= TF_REQ_SCALE;
343 if (tcp_do_rfc1323 && tcp_do_timestamps)
344 tp->t_flags |= TF_REQ_TSTMP;
345 if (tcp_do_sack == 2)
346 tp->t_flags |= TF_WILL_SACK;
347 else if (tcp_do_sack == 1)
348 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
349 tp->t_flags |= TF_CANT_TXSACK;
350 tp->t_inpcb = inp;
351 /*
352 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
353 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
354 * reasonable initial retransmit time.
355 */
356 tp->t_srtt = TCPTV_SRTTBASE;
357 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
358 tp->t_rttmin = TCPTV_MIN;
359 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
360 TCPTV_MIN, TCPTV_REXMTMAX);
361 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
362 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
363 inp->inp_ip.ip_ttl = ip_defttl;
364 inp->inp_ppcb = (caddr_t)tp;
365 return (tp);
366 }
367
368 /*
369 * Drop a TCP connection, reporting
370 * the specified error. If connection is synchronized,
371 * then send a RST to peer.
372 */
373 struct tcpcb *
374 tcp_drop(tp, errno)
375 register struct tcpcb *tp;
376 int errno;
377 {
378 struct socket *so = tp->t_inpcb->inp_socket;
379
380 if (TCPS_HAVERCVDSYN(tp->t_state)) {
381 tp->t_state = TCPS_CLOSED;
382 (void) tcp_output(tp);
383 tcpstat.tcps_drops++;
384 } else
385 tcpstat.tcps_conndrops++;
386 if (errno == ETIMEDOUT && tp->t_softerror)
387 errno = tp->t_softerror;
388 so->so_error = errno;
389 return (tcp_close(tp));
390 }
391
392 /*
393 * Close a TCP control block:
394 * discard all space held by the tcp
395 * discard internet protocol block
396 * wake up any sleepers
397 */
398 struct tcpcb *
399 tcp_close(tp)
400 register struct tcpcb *tp;
401 {
402 struct inpcb *inp = tp->t_inpcb;
403 struct socket *so = inp->inp_socket;
404 #ifdef RTV_RTT
405 register struct rtentry *rt;
406
407 /*
408 * If we sent enough data to get some meaningful characteristics,
409 * save them in the routing entry. 'Enough' is arbitrarily
410 * defined as the sendpipesize (default 4K) * 16. This would
411 * give us 16 rtt samples assuming we only get one sample per
412 * window (the usual case on a long haul net). 16 samples is
413 * enough for the srtt filter to converge to within 5% of the correct
414 * value; fewer samples and we could save a very bogus rtt.
415 *
416 * Don't update the default route's characteristics and don't
417 * update anything that the user "locked".
418 */
419 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
420 (rt = inp->inp_route.ro_rt) &&
421 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
422 register u_long i = 0;
423
424 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
425 i = tp->t_srtt *
426 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
427 if (rt->rt_rmx.rmx_rtt && i)
428 /*
429 * filter this update to half the old & half
430 * the new values, converting scale.
431 * See route.h and tcp_var.h for a
432 * description of the scaling constants.
433 */
434 rt->rt_rmx.rmx_rtt =
435 (rt->rt_rmx.rmx_rtt + i) / 2;
436 else
437 rt->rt_rmx.rmx_rtt = i;
438 }
439 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
440 i = tp->t_rttvar *
441 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
442 if (rt->rt_rmx.rmx_rttvar && i)
443 rt->rt_rmx.rmx_rttvar =
444 (rt->rt_rmx.rmx_rttvar + i) / 2;
445 else
446 rt->rt_rmx.rmx_rttvar = i;
447 }
448 /*
449 * update the pipelimit (ssthresh) if it has been updated
450 * already or if a pipesize was specified & the threshhold
451 * got below half the pipesize. I.e., wait for bad news
452 * before we start updating, then update on both good
453 * and bad news.
454 */
455 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
456 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
457 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
458 /*
459 * convert the limit from user data bytes to
460 * packets then to packet data bytes.
461 */
462 i = (i + tp->t_segsz / 2) / tp->t_segsz;
463 if (i < 2)
464 i = 2;
465 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
466 if (rt->rt_rmx.rmx_ssthresh)
467 rt->rt_rmx.rmx_ssthresh =
468 (rt->rt_rmx.rmx_ssthresh + i) / 2;
469 else
470 rt->rt_rmx.rmx_ssthresh = i;
471 }
472 }
473 #endif /* RTV_RTT */
474 /* free the reassembly queue, if any */
475 TCP_REASS_LOCK(tp);
476 (void) tcp_freeq(tp);
477 TCP_REASS_UNLOCK(tp);
478
479 TCP_CLEAR_DELACK(tp);
480
481 if (tp->t_template)
482 pool_put(&tcp_template_pool, tp->t_template);
483 pool_put(&tcpcb_pool, tp);
484 inp->inp_ppcb = 0;
485 soisdisconnected(so);
486 in_pcbdetach(inp);
487 tcpstat.tcps_closed++;
488 return ((struct tcpcb *)0);
489 }
490
491 int
492 tcp_freeq(tp)
493 struct tcpcb *tp;
494 {
495 register struct ipqent *qe;
496 int rv = 0;
497 #ifdef TCPREASS_DEBUG
498 int i = 0;
499 #endif
500
501 TCP_REASS_LOCK_CHECK(tp);
502
503 while ((qe = tp->segq.lh_first) != NULL) {
504 #ifdef TCPREASS_DEBUG
505 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
506 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
507 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
508 #endif
509 LIST_REMOVE(qe, ipqe_q);
510 LIST_REMOVE(qe, ipqe_timeq);
511 m_freem(qe->ipqe_m);
512 pool_put(&ipqent_pool, qe);
513 rv = 1;
514 }
515 return (rv);
516 }
517
518 /*
519 * Protocol drain routine. Called when memory is in short supply.
520 */
521 void
522 tcp_drain()
523 {
524 register struct inpcb *inp;
525 register struct tcpcb *tp;
526
527 /*
528 * Free the sequence queue of all TCP connections.
529 */
530 inp = tcbtable.inpt_queue.cqh_first;
531 if (inp) /* XXX */
532 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
533 inp = inp->inp_queue.cqe_next) {
534 if ((tp = intotcpcb(inp)) != NULL) {
535 /*
536 * We may be called from a device's interrupt
537 * context. If the tcpcb is already busy,
538 * just bail out now.
539 */
540 if (tcp_reass_lock_try(tp) == 0)
541 continue;
542 if (tcp_freeq(tp))
543 tcpstat.tcps_connsdrained++;
544 TCP_REASS_UNLOCK(tp);
545 }
546 }
547 }
548
549 /*
550 * Notify a tcp user of an asynchronous error;
551 * store error as soft error, but wake up user
552 * (for now, won't do anything until can select for soft error).
553 */
554 void
555 tcp_notify(inp, error)
556 struct inpcb *inp;
557 int error;
558 {
559 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
560 register struct socket *so = inp->inp_socket;
561
562 /*
563 * Ignore some errors if we are hooked up.
564 * If connection hasn't completed, has retransmitted several times,
565 * and receives a second error, give up now. This is better
566 * than waiting a long time to establish a connection that
567 * can never complete.
568 */
569 if (tp->t_state == TCPS_ESTABLISHED &&
570 (error == EHOSTUNREACH || error == ENETUNREACH ||
571 error == EHOSTDOWN)) {
572 return;
573 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
574 tp->t_rxtshift > 3 && tp->t_softerror)
575 so->so_error = error;
576 else
577 tp->t_softerror = error;
578 wakeup((caddr_t) &so->so_timeo);
579 sorwakeup(so);
580 sowwakeup(so);
581 }
582
583 void *
584 tcp_ctlinput(cmd, sa, v)
585 int cmd;
586 struct sockaddr *sa;
587 register void *v;
588 {
589 register struct ip *ip = v;
590 register struct tcphdr *th;
591 extern int inetctlerrmap[];
592 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
593 int errno;
594 int nmatch;
595
596 if ((unsigned)cmd >= PRC_NCMDS)
597 return NULL;
598 errno = inetctlerrmap[cmd];
599 if (cmd == PRC_QUENCH)
600 notify = tcp_quench;
601 else if (PRC_IS_REDIRECT(cmd))
602 notify = in_rtchange, ip = 0;
603 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
604 notify = tcp_mtudisc, ip = 0;
605 else if (cmd == PRC_HOSTDEAD)
606 ip = 0;
607 else if (errno == 0)
608 return NULL;
609 if (ip) {
610 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
611 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
612 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
613 if (nmatch == 0 && syn_cache_count &&
614 (inetctlerrmap[cmd] == EHOSTUNREACH ||
615 inetctlerrmap[cmd] == ENETUNREACH ||
616 inetctlerrmap[cmd] == EHOSTDOWN))
617 syn_cache_unreach(ip, th);
618 } else
619 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
620 notify);
621 return NULL;
622 }
623
624 /*
625 * When a source quence is received, we are being notifed of congestion.
626 * Close the congestion window down to the Loss Window (one segment).
627 * We will gradually open it again as we proceed.
628 */
629 void
630 tcp_quench(inp, errno)
631 struct inpcb *inp;
632 int errno;
633 {
634 struct tcpcb *tp = intotcpcb(inp);
635
636 if (tp)
637 tp->snd_cwnd = tp->t_segsz;
638 }
639
640 /*
641 * On receipt of path MTU corrections, flush old route and replace it
642 * with the new one. Retransmit all unacknowledged packets, to ensure
643 * that all packets will be received.
644 */
645 void
646 tcp_mtudisc(inp, errno)
647 struct inpcb *inp;
648 int errno;
649 {
650 struct tcpcb *tp = intotcpcb(inp);
651 struct rtentry *rt = in_pcbrtentry(inp);
652
653 if (tp != 0) {
654 if (rt != 0) {
655 /*
656 * If this was not a host route, remove and realloc.
657 */
658 if ((rt->rt_flags & RTF_HOST) == 0) {
659 in_rtchange(inp, errno);
660 if ((rt = in_pcbrtentry(inp)) == 0)
661 return;
662 }
663
664 /*
665 * Slow start out of the error condition. We
666 * use the MTU because we know it's smaller
667 * than the previously transmitted segment.
668 *
669 * Note: This is more conservative than the
670 * suggestion in draft-floyd-incr-init-win-03.
671 */
672 if (rt->rt_rmx.rmx_mtu != 0)
673 tp->snd_cwnd =
674 TCP_INITIAL_WINDOW(tcp_init_win,
675 rt->rt_rmx.rmx_mtu);
676 }
677
678 /*
679 * Resend unacknowledged packets.
680 */
681 tp->snd_nxt = tp->snd_una;
682 tcp_output(tp);
683 }
684 }
685
686
687 /*
688 * Compute the MSS to advertise to the peer. Called only during
689 * the 3-way handshake. If we are the server (peer initiated
690 * connection), we are called with a pointer to the interface
691 * on which the SYN packet arrived. If we are the client (we
692 * initiated connection), we are called with a pointer to the
693 * interface out which this connection should go.
694 */
695 u_long
696 tcp_mss_to_advertise(ifp)
697 const struct ifnet *ifp;
698 {
699 extern u_long in_maxmtu;
700 u_long mss = 0;
701
702 /*
703 * In order to avoid defeating path MTU discovery on the peer,
704 * we advertise the max MTU of all attached networks as our MSS,
705 * per RFC 1191, section 3.1.
706 *
707 * We provide the option to advertise just the MTU of
708 * the interface on which we hope this connection will
709 * be receiving. If we are responding to a SYN, we
710 * will have a pretty good idea about this, but when
711 * initiating a connection there is a bit more doubt.
712 *
713 * We also need to ensure that loopback has a large enough
714 * MSS, as the loopback MTU is never included in in_maxmtu.
715 */
716
717 if (ifp != NULL)
718 mss = ifp->if_mtu;
719
720 if (tcp_mss_ifmtu == 0)
721 mss = max(in_maxmtu, mss);
722
723 if (mss > sizeof(struct tcpiphdr))
724 mss -= sizeof(struct tcpiphdr);
725
726 mss = max(tcp_mssdflt, mss);
727 return (mss);
728 }
729
730 /*
731 * Set connection variables based on the peer's advertised MSS.
732 * We are passed the TCPCB for the actual connection. If we
733 * are the server, we are called by the compressed state engine
734 * when the 3-way handshake is complete. If we are the client,
735 * we are called when we recieve the SYN,ACK from the server.
736 *
737 * NOTE: Our advertised MSS value must be initialized in the TCPCB
738 * before this routine is called!
739 */
740 void
741 tcp_mss_from_peer(tp, offer)
742 struct tcpcb *tp;
743 int offer;
744 {
745 struct inpcb *inp = tp->t_inpcb;
746 struct socket *so = inp->inp_socket;
747 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
748 struct rtentry *rt = in_pcbrtentry(inp);
749 #endif
750 u_long bufsize;
751 int mss;
752
753 /*
754 * As per RFC1122, use the default MSS value, unless they
755 * sent us an offer. Do not accept offers less than 32 bytes.
756 */
757 mss = tcp_mssdflt;
758 if (offer)
759 mss = offer;
760 mss = max(mss, 32); /* sanity */
761 tp->t_peermss = mss;
762 mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
763
764 /*
765 * If there's a pipesize, change the socket buffer to that size.
766 * Make the socket buffer an integral number of MSS units. If
767 * the MSS is larger than the socket buffer, artificially decrease
768 * the MSS.
769 */
770 #ifdef RTV_SPIPE
771 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
772 bufsize = rt->rt_rmx.rmx_sendpipe;
773 else
774 #endif
775 bufsize = so->so_snd.sb_hiwat;
776 if (bufsize < mss)
777 mss = bufsize;
778 else {
779 bufsize = roundup(bufsize, mss);
780 if (bufsize > sb_max)
781 bufsize = sb_max;
782 (void) sbreserve(&so->so_snd, bufsize);
783 }
784 tp->t_segsz = mss;
785
786 #ifdef RTV_SSTHRESH
787 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
788 /*
789 * There's some sort of gateway or interface buffer
790 * limit on the path. Use this to set the slow
791 * start threshold, but set the threshold to no less
792 * than 2 * MSS.
793 */
794 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
795 }
796 #endif
797 }
798
799 /*
800 * Processing necessary when a TCP connection is established.
801 */
802 void
803 tcp_established(tp)
804 struct tcpcb *tp;
805 {
806 struct inpcb *inp = tp->t_inpcb;
807 struct socket *so = inp->inp_socket;
808 #ifdef RTV_RPIPE
809 struct rtentry *rt = in_pcbrtentry(inp);
810 #endif
811 u_long bufsize;
812
813 tp->t_state = TCPS_ESTABLISHED;
814 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
815
816 #ifdef RTV_RPIPE
817 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
818 bufsize = rt->rt_rmx.rmx_recvpipe;
819 else
820 #endif
821 bufsize = so->so_rcv.sb_hiwat;
822 if (bufsize > tp->t_ourmss) {
823 bufsize = roundup(bufsize, tp->t_ourmss);
824 if (bufsize > sb_max)
825 bufsize = sb_max;
826 (void) sbreserve(&so->so_rcv, bufsize);
827 }
828 }
829
830 /*
831 * Check if there's an initial rtt or rttvar. Convert from the
832 * route-table units to scaled multiples of the slow timeout timer.
833 * Called only during the 3-way handshake.
834 */
835 void
836 tcp_rmx_rtt(tp)
837 struct tcpcb *tp;
838 {
839 #ifdef RTV_RTT
840 struct rtentry *rt;
841 int rtt;
842
843 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
844 return;
845
846 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
847 /*
848 * XXX The lock bit for MTU indicates that the value
849 * is also a minimum value; this is subject to time.
850 */
851 if (rt->rt_rmx.rmx_locks & RTV_RTT)
852 TCPT_RANGESET(tp->t_rttmin,
853 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
854 TCPTV_MIN, TCPTV_REXMTMAX);
855 tp->t_srtt = rtt /
856 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
857 if (rt->rt_rmx.rmx_rttvar) {
858 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
859 ((RTM_RTTUNIT / PR_SLOWHZ) >>
860 (TCP_RTTVAR_SHIFT + 2));
861 } else {
862 /* Default variation is +- 1 rtt */
863 tp->t_rttvar =
864 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
865 }
866 TCPT_RANGESET(tp->t_rxtcur,
867 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
868 tp->t_rttmin, TCPTV_REXMTMAX);
869 }
870 #endif
871 }
872
873 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
874
875 /*
876 * Get a new sequence value given a tcp control block
877 */
878 tcp_seq
879 tcp_new_iss(tp, len, addin)
880 void *tp;
881 u_long len;
882 tcp_seq addin;
883 {
884 tcp_seq tcp_iss;
885
886 /*
887 * add randomness about this connection, but do not estimate
888 * entropy from the timing, since the physical device driver would
889 * have done that for us.
890 */
891 #if NRND > 0
892 if (tp != NULL)
893 rnd_add_data(NULL, tp, len, 0);
894 #endif
895
896 /*
897 * randomize.
898 */
899 #if NRND > 0
900 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
901 #else
902 tcp_iss = random();
903 #endif
904
905 /*
906 * If we were asked to add some amount to a known value,
907 * we will take a random value obtained above, mask off the upper
908 * bits, and add in the known value. We also add in a constant to
909 * ensure that we are at least a certain distance from the original
910 * value.
911 *
912 * This is used when an old connection is in timed wait
913 * and we have a new one coming in, for instance.
914 */
915 if (addin != 0) {
916 #ifdef TCPISS_DEBUG
917 printf("Random %08x, ", tcp_iss);
918 #endif
919 tcp_iss &= TCP_ISS_RANDOM_MASK;
920 tcp_iss += addin + TCP_ISSINCR;
921 #ifdef TCPISS_DEBUG
922 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
923 #endif
924 } else {
925 tcp_iss &= TCP_ISS_RANDOM_MASK;
926 tcp_iss += tcp_iss_seq;
927 tcp_iss_seq += TCP_ISSINCR;
928 #ifdef TCPISS_DEBUG
929 printf("ISS %08x\n", tcp_iss);
930 #endif
931 }
932
933 if (tcp_compat_42) {
934 /*
935 * Limit it to the positive range for really old TCP
936 * implementations.
937 */
938 if (tcp_iss >= 0x80000000)
939 tcp_iss &= 0x7fffffff; /* XXX */
940 }
941
942 return tcp_iss;
943 }
944
945
946 /*
947 * Determine the length of the TCP options for this connection.
948 *
949 * XXX: What do we do for SACK, when we add that? Just reserve
950 * all of the space? Otherwise we can't exactly be incrementing
951 * cwnd by an amount that varies depending on the amount we last
952 * had to SACK!
953 */
954
955 u_int
956 tcp_optlen(tp)
957 struct tcpcb *tp;
958 {
959 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
960 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
961 return TCPOLEN_TSTAMP_APPA;
962 else
963 return 0;
964 }
965