Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.64
      1 /*	$NetBSD: tcp_subr.c,v 1.64 1999/01/20 03:39:54 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
      9  * Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     73  */
     74 
     75 #include "opt_tcp_compat_42.h"
     76 #include "rnd.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/protosw.h>
     86 #include <sys/errno.h>
     87 #include <sys/kernel.h>
     88 #include <sys/pool.h>
     89 #if NRND > 0
     90 #include <sys/rnd.h>
     91 #endif
     92 
     93 #include <net/route.h>
     94 #include <net/if.h>
     95 
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/ip.h>
     99 #include <netinet/in_pcb.h>
    100 #include <netinet/ip_var.h>
    101 #include <netinet/ip_icmp.h>
    102 #include <netinet/tcp.h>
    103 #include <netinet/tcp_fsm.h>
    104 #include <netinet/tcp_seq.h>
    105 #include <netinet/tcp_timer.h>
    106 #include <netinet/tcp_var.h>
    107 #include <netinet/tcpip.h>
    108 
    109 /* patchable/settable parameters for tcp */
    110 int 	tcp_mssdflt = TCP_MSS;
    111 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    112 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    113 int	tcp_do_sack = 1;	/* selective acknowledgement */
    114 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    115 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    116 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    117 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    118 int	tcp_init_win = 1;
    119 int	tcp_mss_ifmtu = 0;
    120 #ifdef TCP_COMPAT_42
    121 int	tcp_compat_42 = 1;
    122 #else
    123 int	tcp_compat_42 = 0;
    124 #endif
    125 
    126 #ifndef TCBHASHSIZE
    127 #define	TCBHASHSIZE	128
    128 #endif
    129 int	tcbhashsize = TCBHASHSIZE;
    130 
    131 int	tcp_freeq __P((struct tcpcb *));
    132 
    133 struct pool tcpcb_pool;
    134 struct pool tcp_template_pool;
    135 
    136 /*
    137  * Tcp initialization
    138  */
    139 void
    140 tcp_init()
    141 {
    142 
    143 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    144 	    0, NULL, NULL, M_PCB);
    145 	pool_init(&tcp_template_pool, sizeof(struct tcpiphdr), 0, 0, 0,
    146 	    "tcptmpl", 0, NULL, NULL, M_MBUF);
    147 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    148 	LIST_INIT(&tcp_delacks);
    149 	if (max_protohdr < sizeof(struct tcpiphdr))
    150 		max_protohdr = sizeof(struct tcpiphdr);
    151 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
    152 		panic("tcp_init");
    153 
    154 	/* Initialize the compressed state engine. */
    155 	syn_cache_init();
    156 }
    157 
    158 /*
    159  * Create template to be used to send tcp packets on a connection.
    160  * Call after host entry created, allocates an mbuf and fills
    161  * in a skeletal tcp/ip header, minimizing the amount of work
    162  * necessary when the connection is used.
    163  */
    164 struct tcpiphdr *
    165 tcp_template(tp)
    166 	struct tcpcb *tp;
    167 {
    168 	register struct inpcb *inp = tp->t_inpcb;
    169 	register struct tcpiphdr *n;
    170 
    171 	if ((n = tp->t_template) == 0) {
    172 		n = pool_get(&tcp_template_pool, PR_NOWAIT);
    173 		if (n == NULL)
    174 			return (NULL);
    175 	}
    176 	bzero(n->ti_x1, sizeof n->ti_x1);
    177 	n->ti_pr = IPPROTO_TCP;
    178 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
    179 	n->ti_src = inp->inp_laddr;
    180 	n->ti_dst = inp->inp_faddr;
    181 	n->ti_sport = inp->inp_lport;
    182 	n->ti_dport = inp->inp_fport;
    183 	n->ti_seq = 0;
    184 	n->ti_ack = 0;
    185 	n->ti_x2 = 0;
    186 	n->ti_off = 5;
    187 	n->ti_flags = 0;
    188 	n->ti_win = 0;
    189 	n->ti_sum = 0;
    190 	n->ti_urp = 0;
    191 	return (n);
    192 }
    193 
    194 /*
    195  * Send a single message to the TCP at address specified by
    196  * the given TCP/IP header.  If m == 0, then we make a copy
    197  * of the tcpiphdr at ti and send directly to the addressed host.
    198  * This is used to force keep alive messages out using the TCP
    199  * template for a connection tp->t_template.  If flags are given
    200  * then we send a message back to the TCP which originated the
    201  * segment ti, and discard the mbuf containing it and any other
    202  * attached mbufs.
    203  *
    204  * In any case the ack and sequence number of the transmitted
    205  * segment are as specified by the parameters.
    206  */
    207 int
    208 tcp_respond(tp, ti, m, ack, seq, flags)
    209 	struct tcpcb *tp;
    210 	register struct tcpiphdr *ti;
    211 	register struct mbuf *m;
    212 	tcp_seq ack, seq;
    213 	int flags;
    214 {
    215 	struct route iproute, *ro;
    216 	struct rtentry *rt;
    217 	struct sockaddr_in *dst;
    218 	int error, tlen, win = 0;
    219 
    220 	if (tp != NULL) {
    221 		if ((flags & TH_RST) == 0)
    222 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    223 		ro = &tp->t_inpcb->inp_route;
    224 #ifdef DIAGNOSTIC
    225 		if (!in_hosteq(ti->ti_dst, tp->t_inpcb->inp_faddr))
    226 			panic("tcp_respond: ti_dst != inp_faddr");
    227 #endif
    228 	} else {
    229 		ro = &iproute;
    230 		bzero(ro, sizeof(*ro));
    231 	}
    232 	if (m == 0) {
    233 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
    234 		if (m == NULL)
    235 			return (ENOBUFS);
    236 
    237 		if (tcp_compat_42)
    238 			tlen = 1;
    239 		else
    240 			tlen = 0;
    241 
    242 		m->m_data += max_linkhdr;
    243 		*mtod(m, struct tcpiphdr *) = *ti;
    244 		ti = mtod(m, struct tcpiphdr *);
    245 		flags = TH_ACK;
    246 	} else {
    247 		m_freem(m->m_next);
    248 		m->m_next = 0;
    249 		m->m_data = (caddr_t)ti;
    250 		m->m_len = sizeof (struct tcpiphdr);
    251 		tlen = 0;
    252 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    253 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
    254 		xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
    255 #undef xchg
    256 	}
    257 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    258 	ti->ti_seq = htonl(seq);
    259 	ti->ti_ack = htonl(ack);
    260 	ti->ti_x2 = 0;
    261 	if ((flags & TH_SYN) == 0) {
    262 		if (tp)
    263 			ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
    264 		else
    265 			ti->ti_win = htons((u_int16_t)win);
    266 		ti->ti_off = sizeof (struct tcphdr) >> 2;
    267 		tlen += sizeof (struct tcphdr);
    268 	} else
    269 		tlen += ti->ti_off << 2;
    270 	ti->ti_len = htons((u_int16_t)tlen);
    271 	tlen += sizeof (struct ip);
    272 	m->m_len = tlen;
    273 	m->m_pkthdr.len = tlen;
    274 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    275 	ti->ti_flags = flags;
    276 	ti->ti_urp = 0;
    277 	ti->ti_sum = 0;
    278 	ti->ti_sum = in_cksum(m, tlen);
    279 	((struct ip *)ti)->ip_len = tlen;
    280 	((struct ip *)ti)->ip_ttl = ip_defttl;
    281 
    282 	/*
    283 	 * If we're doing Path MTU discovery, we need to set DF unless
    284 	 * the route's MTU is locked.  If we lack a route, we need to
    285 	 * look it up now.
    286 	 *
    287 	 * ip_output() could do this for us, but it's convenient to just
    288 	 * do it here unconditionally.
    289 	 */
    290 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
    291 		if (ro->ro_rt != NULL) {
    292 			RTFREE(ro->ro_rt);
    293 			ro->ro_rt = NULL;
    294 		}
    295 		dst = satosin(&ro->ro_dst);
    296 		dst->sin_family = AF_INET;
    297 		dst->sin_len = sizeof(*dst);
    298 		dst->sin_addr = ti->ti_dst;
    299 		rtalloc(ro);
    300 		if ((rt = ro->ro_rt) == NULL) {
    301 			m_freem(m);
    302 			ipstat.ips_noroute++;
    303 			return (EHOSTUNREACH);
    304 		}
    305 	}
    306 	if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    307 		((struct ip *)ti)->ip_off |= IP_DF;
    308 
    309 	error = ip_output(m, NULL, ro, 0, NULL);
    310 
    311 	if (ro == &iproute) {
    312 		RTFREE(ro->ro_rt);
    313 		ro->ro_rt = NULL;
    314 	}
    315 
    316 	return (error);
    317 }
    318 
    319 /*
    320  * Create a new TCP control block, making an
    321  * empty reassembly queue and hooking it to the argument
    322  * protocol control block.
    323  */
    324 struct tcpcb *
    325 tcp_newtcpcb(inp)
    326 	struct inpcb *inp;
    327 {
    328 	register struct tcpcb *tp;
    329 
    330 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    331 	if (tp == NULL)
    332 		return (NULL);
    333 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    334 	LIST_INIT(&tp->segq);
    335 	LIST_INIT(&tp->timeq);
    336 	tp->t_peermss = tcp_mssdflt;
    337 	tp->t_ourmss = tcp_mssdflt;
    338 	tp->t_segsz = tcp_mssdflt;
    339 
    340 	tp->t_flags = 0;
    341 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    342 		tp->t_flags |= TF_REQ_SCALE;
    343 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    344 		tp->t_flags |= TF_REQ_TSTMP;
    345 	if (tcp_do_sack == 2)
    346 		tp->t_flags |= TF_WILL_SACK;
    347 	else if (tcp_do_sack == 1)
    348 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    349 	tp->t_flags |= TF_CANT_TXSACK;
    350 	tp->t_inpcb = inp;
    351 	/*
    352 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    353 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    354 	 * reasonable initial retransmit time.
    355 	 */
    356 	tp->t_srtt = TCPTV_SRTTBASE;
    357 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    358 	tp->t_rttmin = TCPTV_MIN;
    359 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    360 	    TCPTV_MIN, TCPTV_REXMTMAX);
    361 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    362 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    363 	inp->inp_ip.ip_ttl = ip_defttl;
    364 	inp->inp_ppcb = (caddr_t)tp;
    365 	return (tp);
    366 }
    367 
    368 /*
    369  * Drop a TCP connection, reporting
    370  * the specified error.  If connection is synchronized,
    371  * then send a RST to peer.
    372  */
    373 struct tcpcb *
    374 tcp_drop(tp, errno)
    375 	register struct tcpcb *tp;
    376 	int errno;
    377 {
    378 	struct socket *so = tp->t_inpcb->inp_socket;
    379 
    380 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    381 		tp->t_state = TCPS_CLOSED;
    382 		(void) tcp_output(tp);
    383 		tcpstat.tcps_drops++;
    384 	} else
    385 		tcpstat.tcps_conndrops++;
    386 	if (errno == ETIMEDOUT && tp->t_softerror)
    387 		errno = tp->t_softerror;
    388 	so->so_error = errno;
    389 	return (tcp_close(tp));
    390 }
    391 
    392 /*
    393  * Close a TCP control block:
    394  *	discard all space held by the tcp
    395  *	discard internet protocol block
    396  *	wake up any sleepers
    397  */
    398 struct tcpcb *
    399 tcp_close(tp)
    400 	register struct tcpcb *tp;
    401 {
    402 	struct inpcb *inp = tp->t_inpcb;
    403 	struct socket *so = inp->inp_socket;
    404 #ifdef RTV_RTT
    405 	register struct rtentry *rt;
    406 
    407 	/*
    408 	 * If we sent enough data to get some meaningful characteristics,
    409 	 * save them in the routing entry.  'Enough' is arbitrarily
    410 	 * defined as the sendpipesize (default 4K) * 16.  This would
    411 	 * give us 16 rtt samples assuming we only get one sample per
    412 	 * window (the usual case on a long haul net).  16 samples is
    413 	 * enough for the srtt filter to converge to within 5% of the correct
    414 	 * value; fewer samples and we could save a very bogus rtt.
    415 	 *
    416 	 * Don't update the default route's characteristics and don't
    417 	 * update anything that the user "locked".
    418 	 */
    419 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    420 	    (rt = inp->inp_route.ro_rt) &&
    421 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    422 		register u_long i = 0;
    423 
    424 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    425 			i = tp->t_srtt *
    426 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    427 			if (rt->rt_rmx.rmx_rtt && i)
    428 				/*
    429 				 * filter this update to half the old & half
    430 				 * the new values, converting scale.
    431 				 * See route.h and tcp_var.h for a
    432 				 * description of the scaling constants.
    433 				 */
    434 				rt->rt_rmx.rmx_rtt =
    435 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    436 			else
    437 				rt->rt_rmx.rmx_rtt = i;
    438 		}
    439 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    440 			i = tp->t_rttvar *
    441 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    442 			if (rt->rt_rmx.rmx_rttvar && i)
    443 				rt->rt_rmx.rmx_rttvar =
    444 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    445 			else
    446 				rt->rt_rmx.rmx_rttvar = i;
    447 		}
    448 		/*
    449 		 * update the pipelimit (ssthresh) if it has been updated
    450 		 * already or if a pipesize was specified & the threshhold
    451 		 * got below half the pipesize.  I.e., wait for bad news
    452 		 * before we start updating, then update on both good
    453 		 * and bad news.
    454 		 */
    455 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
    456 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
    457 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
    458 			/*
    459 			 * convert the limit from user data bytes to
    460 			 * packets then to packet data bytes.
    461 			 */
    462 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
    463 			if (i < 2)
    464 				i = 2;
    465 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
    466 			if (rt->rt_rmx.rmx_ssthresh)
    467 				rt->rt_rmx.rmx_ssthresh =
    468 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
    469 			else
    470 				rt->rt_rmx.rmx_ssthresh = i;
    471 		}
    472 	}
    473 #endif /* RTV_RTT */
    474 	/* free the reassembly queue, if any */
    475 	TCP_REASS_LOCK(tp);
    476 	(void) tcp_freeq(tp);
    477 	TCP_REASS_UNLOCK(tp);
    478 
    479 	TCP_CLEAR_DELACK(tp);
    480 
    481 	if (tp->t_template)
    482 		pool_put(&tcp_template_pool, tp->t_template);
    483 	pool_put(&tcpcb_pool, tp);
    484 	inp->inp_ppcb = 0;
    485 	soisdisconnected(so);
    486 	in_pcbdetach(inp);
    487 	tcpstat.tcps_closed++;
    488 	return ((struct tcpcb *)0);
    489 }
    490 
    491 int
    492 tcp_freeq(tp)
    493 	struct tcpcb *tp;
    494 {
    495 	register struct ipqent *qe;
    496 	int rv = 0;
    497 #ifdef TCPREASS_DEBUG
    498 	int i = 0;
    499 #endif
    500 
    501 	TCP_REASS_LOCK_CHECK(tp);
    502 
    503 	while ((qe = tp->segq.lh_first) != NULL) {
    504 #ifdef TCPREASS_DEBUG
    505 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
    506 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
    507 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
    508 #endif
    509 		LIST_REMOVE(qe, ipqe_q);
    510 		LIST_REMOVE(qe, ipqe_timeq);
    511 		m_freem(qe->ipqe_m);
    512 		pool_put(&ipqent_pool, qe);
    513 		rv = 1;
    514 	}
    515 	return (rv);
    516 }
    517 
    518 /*
    519  * Protocol drain routine.  Called when memory is in short supply.
    520  */
    521 void
    522 tcp_drain()
    523 {
    524 	register struct inpcb *inp;
    525 	register struct tcpcb *tp;
    526 
    527 	/*
    528 	 * Free the sequence queue of all TCP connections.
    529 	 */
    530 	inp = tcbtable.inpt_queue.cqh_first;
    531 	if (inp)						/* XXX */
    532 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
    533 	    inp = inp->inp_queue.cqe_next) {
    534 		if ((tp = intotcpcb(inp)) != NULL) {
    535 			/*
    536 			 * We may be called from a device's interrupt
    537 			 * context.  If the tcpcb is already busy,
    538 			 * just bail out now.
    539 			 */
    540 			if (tcp_reass_lock_try(tp) == 0)
    541 				continue;
    542 			if (tcp_freeq(tp))
    543 				tcpstat.tcps_connsdrained++;
    544 			TCP_REASS_UNLOCK(tp);
    545 		}
    546 	}
    547 }
    548 
    549 /*
    550  * Notify a tcp user of an asynchronous error;
    551  * store error as soft error, but wake up user
    552  * (for now, won't do anything until can select for soft error).
    553  */
    554 void
    555 tcp_notify(inp, error)
    556 	struct inpcb *inp;
    557 	int error;
    558 {
    559 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
    560 	register struct socket *so = inp->inp_socket;
    561 
    562 	/*
    563 	 * Ignore some errors if we are hooked up.
    564 	 * If connection hasn't completed, has retransmitted several times,
    565 	 * and receives a second error, give up now.  This is better
    566 	 * than waiting a long time to establish a connection that
    567 	 * can never complete.
    568 	 */
    569 	if (tp->t_state == TCPS_ESTABLISHED &&
    570 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
    571 	      error == EHOSTDOWN)) {
    572 		return;
    573 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
    574 	    tp->t_rxtshift > 3 && tp->t_softerror)
    575 		so->so_error = error;
    576 	else
    577 		tp->t_softerror = error;
    578 	wakeup((caddr_t) &so->so_timeo);
    579 	sorwakeup(so);
    580 	sowwakeup(so);
    581 }
    582 
    583 void *
    584 tcp_ctlinput(cmd, sa, v)
    585 	int cmd;
    586 	struct sockaddr *sa;
    587 	register void *v;
    588 {
    589 	register struct ip *ip = v;
    590 	register struct tcphdr *th;
    591 	extern int inetctlerrmap[];
    592 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
    593 	int errno;
    594 	int nmatch;
    595 
    596 	if ((unsigned)cmd >= PRC_NCMDS)
    597 		return NULL;
    598 	errno = inetctlerrmap[cmd];
    599 	if (cmd == PRC_QUENCH)
    600 		notify = tcp_quench;
    601 	else if (PRC_IS_REDIRECT(cmd))
    602 		notify = in_rtchange, ip = 0;
    603 	else if (cmd == PRC_MSGSIZE && ip_mtudisc)
    604 		notify = tcp_mtudisc, ip = 0;
    605 	else if (cmd == PRC_HOSTDEAD)
    606 		ip = 0;
    607 	else if (errno == 0)
    608 		return NULL;
    609 	if (ip) {
    610 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
    611 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
    612 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
    613 		if (nmatch == 0 && syn_cache_count &&
    614 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
    615 		    inetctlerrmap[cmd] == ENETUNREACH ||
    616 		    inetctlerrmap[cmd] == EHOSTDOWN))
    617 			syn_cache_unreach(ip, th);
    618 	} else
    619 		(void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
    620 		    notify);
    621 	return NULL;
    622 }
    623 
    624 /*
    625  * When a source quence is received, we are being notifed of congestion.
    626  * Close the congestion window down to the Loss Window (one segment).
    627  * We will gradually open it again as we proceed.
    628  */
    629 void
    630 tcp_quench(inp, errno)
    631 	struct inpcb *inp;
    632 	int errno;
    633 {
    634 	struct tcpcb *tp = intotcpcb(inp);
    635 
    636 	if (tp)
    637 		tp->snd_cwnd = tp->t_segsz;
    638 }
    639 
    640 /*
    641  * On receipt of path MTU corrections, flush old route and replace it
    642  * with the new one.  Retransmit all unacknowledged packets, to ensure
    643  * that all packets will be received.
    644  */
    645 void
    646 tcp_mtudisc(inp, errno)
    647 	struct inpcb *inp;
    648 	int errno;
    649 {
    650 	struct tcpcb *tp = intotcpcb(inp);
    651 	struct rtentry *rt = in_pcbrtentry(inp);
    652 
    653 	if (tp != 0) {
    654 		if (rt != 0) {
    655 			/*
    656 			 * If this was not a host route, remove and realloc.
    657 			 */
    658 			if ((rt->rt_flags & RTF_HOST) == 0) {
    659 				in_rtchange(inp, errno);
    660 				if ((rt = in_pcbrtentry(inp)) == 0)
    661 					return;
    662 			}
    663 
    664 			/*
    665 			 * Slow start out of the error condition.  We
    666 			 * use the MTU because we know it's smaller
    667 			 * than the previously transmitted segment.
    668 			 *
    669 			 * Note: This is more conservative than the
    670 			 * suggestion in draft-floyd-incr-init-win-03.
    671 			 */
    672 			if (rt->rt_rmx.rmx_mtu != 0)
    673 				tp->snd_cwnd =
    674 				    TCP_INITIAL_WINDOW(tcp_init_win,
    675 				    rt->rt_rmx.rmx_mtu);
    676 		}
    677 
    678 		/*
    679 		 * Resend unacknowledged packets.
    680 		 */
    681 		tp->snd_nxt = tp->snd_una;
    682 		tcp_output(tp);
    683 	}
    684 }
    685 
    686 
    687 /*
    688  * Compute the MSS to advertise to the peer.  Called only during
    689  * the 3-way handshake.  If we are the server (peer initiated
    690  * connection), we are called with a pointer to the interface
    691  * on which the SYN packet arrived.  If we are the client (we
    692  * initiated connection), we are called with a pointer to the
    693  * interface out which this connection should go.
    694  */
    695 u_long
    696 tcp_mss_to_advertise(ifp)
    697 	const struct ifnet *ifp;
    698 {
    699 	extern u_long in_maxmtu;
    700 	u_long mss = 0;
    701 
    702 	/*
    703 	 * In order to avoid defeating path MTU discovery on the peer,
    704 	 * we advertise the max MTU of all attached networks as our MSS,
    705 	 * per RFC 1191, section 3.1.
    706 	 *
    707 	 * We provide the option to advertise just the MTU of
    708 	 * the interface on which we hope this connection will
    709 	 * be receiving.  If we are responding to a SYN, we
    710 	 * will have a pretty good idea about this, but when
    711 	 * initiating a connection there is a bit more doubt.
    712 	 *
    713 	 * We also need to ensure that loopback has a large enough
    714 	 * MSS, as the loopback MTU is never included in in_maxmtu.
    715 	 */
    716 
    717 	if (ifp != NULL)
    718 		mss = ifp->if_mtu;
    719 
    720 	if (tcp_mss_ifmtu == 0)
    721 		mss = max(in_maxmtu, mss);
    722 
    723 	if (mss > sizeof(struct tcpiphdr))
    724 		mss -= sizeof(struct tcpiphdr);
    725 
    726 	mss = max(tcp_mssdflt, mss);
    727 	return (mss);
    728 }
    729 
    730 /*
    731  * Set connection variables based on the peer's advertised MSS.
    732  * We are passed the TCPCB for the actual connection.  If we
    733  * are the server, we are called by the compressed state engine
    734  * when the 3-way handshake is complete.  If we are the client,
    735  * we are called when we recieve the SYN,ACK from the server.
    736  *
    737  * NOTE: Our advertised MSS value must be initialized in the TCPCB
    738  * before this routine is called!
    739  */
    740 void
    741 tcp_mss_from_peer(tp, offer)
    742 	struct tcpcb *tp;
    743 	int offer;
    744 {
    745 	struct inpcb *inp = tp->t_inpcb;
    746 	struct socket *so = inp->inp_socket;
    747 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
    748 	struct rtentry *rt = in_pcbrtentry(inp);
    749 #endif
    750 	u_long bufsize;
    751 	int mss;
    752 
    753 	/*
    754 	 * As per RFC1122, use the default MSS value, unless they
    755 	 * sent us an offer.  Do not accept offers less than 32 bytes.
    756 	 */
    757 	mss = tcp_mssdflt;
    758 	if (offer)
    759 		mss = offer;
    760 	mss = max(mss, 32);		/* sanity */
    761 	tp->t_peermss = mss;
    762 	mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
    763 
    764 	/*
    765 	 * If there's a pipesize, change the socket buffer to that size.
    766 	 * Make the socket buffer an integral number of MSS units.  If
    767 	 * the MSS is larger than the socket buffer, artificially decrease
    768 	 * the MSS.
    769 	 */
    770 #ifdef RTV_SPIPE
    771 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
    772 		bufsize = rt->rt_rmx.rmx_sendpipe;
    773 	else
    774 #endif
    775 		bufsize = so->so_snd.sb_hiwat;
    776 	if (bufsize < mss)
    777 		mss = bufsize;
    778 	else {
    779 		bufsize = roundup(bufsize, mss);
    780 		if (bufsize > sb_max)
    781 			bufsize = sb_max;
    782 		(void) sbreserve(&so->so_snd, bufsize);
    783 	}
    784 	tp->t_segsz = mss;
    785 
    786 #ifdef RTV_SSTHRESH
    787 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
    788 		/*
    789 		 * There's some sort of gateway or interface buffer
    790 		 * limit on the path.  Use this to set the slow
    791 		 * start threshold, but set the threshold to no less
    792 		 * than 2 * MSS.
    793 		 */
    794 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
    795 	}
    796 #endif
    797 }
    798 
    799 /*
    800  * Processing necessary when a TCP connection is established.
    801  */
    802 void
    803 tcp_established(tp)
    804 	struct tcpcb *tp;
    805 {
    806 	struct inpcb *inp = tp->t_inpcb;
    807 	struct socket *so = inp->inp_socket;
    808 #ifdef RTV_RPIPE
    809 	struct rtentry *rt = in_pcbrtentry(inp);
    810 #endif
    811 	u_long bufsize;
    812 
    813 	tp->t_state = TCPS_ESTABLISHED;
    814 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
    815 
    816 #ifdef RTV_RPIPE
    817 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
    818 		bufsize = rt->rt_rmx.rmx_recvpipe;
    819 	else
    820 #endif
    821 		bufsize = so->so_rcv.sb_hiwat;
    822 	if (bufsize > tp->t_ourmss) {
    823 		bufsize = roundup(bufsize, tp->t_ourmss);
    824 		if (bufsize > sb_max)
    825 			bufsize = sb_max;
    826 		(void) sbreserve(&so->so_rcv, bufsize);
    827 	}
    828 }
    829 
    830 /*
    831  * Check if there's an initial rtt or rttvar.  Convert from the
    832  * route-table units to scaled multiples of the slow timeout timer.
    833  * Called only during the 3-way handshake.
    834  */
    835 void
    836 tcp_rmx_rtt(tp)
    837 	struct tcpcb *tp;
    838 {
    839 #ifdef RTV_RTT
    840 	struct rtentry *rt;
    841 	int rtt;
    842 
    843 	if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
    844 		return;
    845 
    846 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
    847 		/*
    848 		 * XXX The lock bit for MTU indicates that the value
    849 		 * is also a minimum value; this is subject to time.
    850 		 */
    851 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
    852 			TCPT_RANGESET(tp->t_rttmin,
    853 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
    854 			    TCPTV_MIN, TCPTV_REXMTMAX);
    855 		tp->t_srtt = rtt /
    856 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    857 		if (rt->rt_rmx.rmx_rttvar) {
    858 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
    859 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
    860 				(TCP_RTTVAR_SHIFT + 2));
    861 		} else {
    862 			/* Default variation is +- 1 rtt */
    863 			tp->t_rttvar =
    864 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
    865 		}
    866 		TCPT_RANGESET(tp->t_rxtcur,
    867 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
    868 		    tp->t_rttmin, TCPTV_REXMTMAX);
    869 	}
    870 #endif
    871 }
    872 
    873 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
    874 
    875 /*
    876  * Get a new sequence value given a tcp control block
    877  */
    878 tcp_seq
    879 tcp_new_iss(tp, len, addin)
    880 	void            *tp;
    881 	u_long           len;
    882 	tcp_seq		 addin;
    883 {
    884 	tcp_seq          tcp_iss;
    885 
    886 	/*
    887 	 * add randomness about this connection, but do not estimate
    888 	 * entropy from the timing, since the physical device driver would
    889 	 * have done that for us.
    890 	 */
    891 #if NRND > 0
    892 	if (tp != NULL)
    893 		rnd_add_data(NULL, tp, len, 0);
    894 #endif
    895 
    896 	/*
    897 	 * randomize.
    898 	 */
    899 #if NRND > 0
    900 	rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
    901 #else
    902 	tcp_iss = random();
    903 #endif
    904 
    905 	/*
    906 	 * If we were asked to add some amount to a known value,
    907 	 * we will take a random value obtained above, mask off the upper
    908 	 * bits, and add in the known value.  We also add in a constant to
    909 	 * ensure that we are at least a certain distance from the original
    910 	 * value.
    911 	 *
    912 	 * This is used when an old connection is in timed wait
    913 	 * and we have a new one coming in, for instance.
    914 	 */
    915 	if (addin != 0) {
    916 #ifdef TCPISS_DEBUG
    917 		printf("Random %08x, ", tcp_iss);
    918 #endif
    919 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    920 		tcp_iss += addin + TCP_ISSINCR;
    921 #ifdef TCPISS_DEBUG
    922 		printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
    923 #endif
    924 	} else {
    925 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    926 		tcp_iss += tcp_iss_seq;
    927 		tcp_iss_seq += TCP_ISSINCR;
    928 #ifdef TCPISS_DEBUG
    929 		printf("ISS %08x\n", tcp_iss);
    930 #endif
    931 	}
    932 
    933 	if (tcp_compat_42) {
    934 		/*
    935 		 * Limit it to the positive range for really old TCP
    936 		 * implementations.
    937 		 */
    938 		if (tcp_iss >= 0x80000000)
    939 			tcp_iss &= 0x7fffffff;		/* XXX */
    940 	}
    941 
    942 	return tcp_iss;
    943 }
    944 
    945 
    946 /*
    947  * Determine the length of the TCP options for this connection.
    948  *
    949  * XXX:  What do we do for SACK, when we add that?  Just reserve
    950  *       all of the space?  Otherwise we can't exactly be incrementing
    951  *       cwnd by an amount that varies depending on the amount we last
    952  *       had to SACK!
    953  */
    954 
    955 u_int
    956 tcp_optlen(tp)
    957 	struct tcpcb *tp;
    958 {
    959 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
    960 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
    961 		return TCPOLEN_TSTAMP_APPA;
    962 	else
    963 		return 0;
    964 }
    965