tcp_subr.c revision 1.66 1 /* $NetBSD: tcp_subr.c,v 1.66 1999/02/28 13:41:24 explorer Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
73 */
74
75 #include "opt_tcp_compat_42.h"
76 #include "rnd.h"
77
78 #include <sys/param.h>
79 #include <sys/proc.h>
80 #include <sys/systm.h>
81 #include <sys/malloc.h>
82 #include <sys/mbuf.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/protosw.h>
86 #include <sys/errno.h>
87 #include <sys/kernel.h>
88 #include <sys/pool.h>
89 #if NRND > 0
90 #include <sys/rnd.h>
91 #endif
92
93 #include <net/route.h>
94 #include <net/if.h>
95
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/in_pcb.h>
100 #include <netinet/ip_var.h>
101 #include <netinet/ip_icmp.h>
102 #include <netinet/tcp.h>
103 #include <netinet/tcp_fsm.h>
104 #include <netinet/tcp_seq.h>
105 #include <netinet/tcp_timer.h>
106 #include <netinet/tcp_var.h>
107 #include <netinet/tcpip.h>
108
109 /* patchable/settable parameters for tcp */
110 int tcp_mssdflt = TCP_MSS;
111 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
112 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
113 int tcp_do_sack = 1; /* selective acknowledgement */
114 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
115 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
116 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
117 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
118 int tcp_init_win = 1;
119 int tcp_mss_ifmtu = 0;
120 #ifdef TCP_COMPAT_42
121 int tcp_compat_42 = 1;
122 #else
123 int tcp_compat_42 = 0;
124 #endif
125
126 #ifndef TCBHASHSIZE
127 #define TCBHASHSIZE 128
128 #endif
129 int tcbhashsize = TCBHASHSIZE;
130
131 int tcp_freeq __P((struct tcpcb *));
132
133 struct pool tcpcb_pool;
134 struct pool tcp_template_pool;
135
136 /*
137 * Tcp initialization
138 */
139 void
140 tcp_init()
141 {
142
143 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
144 0, NULL, NULL, M_PCB);
145 pool_init(&tcp_template_pool, sizeof(struct tcpiphdr), 0, 0, 0,
146 "tcptmpl", 0, NULL, NULL, M_MBUF);
147 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
148 LIST_INIT(&tcp_delacks);
149 if (max_protohdr < sizeof(struct tcpiphdr))
150 max_protohdr = sizeof(struct tcpiphdr);
151 if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
152 panic("tcp_init");
153
154 /* Initialize the compressed state engine. */
155 syn_cache_init();
156 }
157
158 /*
159 * Create template to be used to send tcp packets on a connection.
160 * Call after host entry created, allocates an mbuf and fills
161 * in a skeletal tcp/ip header, minimizing the amount of work
162 * necessary when the connection is used.
163 */
164 struct tcpiphdr *
165 tcp_template(tp)
166 struct tcpcb *tp;
167 {
168 register struct inpcb *inp = tp->t_inpcb;
169 register struct tcpiphdr *n;
170
171 if ((n = tp->t_template) == 0) {
172 n = pool_get(&tcp_template_pool, PR_NOWAIT);
173 if (n == NULL)
174 return (NULL);
175 }
176 bzero(n->ti_x1, sizeof n->ti_x1);
177 n->ti_pr = IPPROTO_TCP;
178 n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
179 n->ti_src = inp->inp_laddr;
180 n->ti_dst = inp->inp_faddr;
181 n->ti_sport = inp->inp_lport;
182 n->ti_dport = inp->inp_fport;
183 n->ti_seq = 0;
184 n->ti_ack = 0;
185 n->ti_x2 = 0;
186 n->ti_off = 5;
187 n->ti_flags = 0;
188 n->ti_win = 0;
189 n->ti_sum = 0;
190 n->ti_urp = 0;
191 return (n);
192 }
193
194 /*
195 * Send a single message to the TCP at address specified by
196 * the given TCP/IP header. If m == 0, then we make a copy
197 * of the tcpiphdr at ti and send directly to the addressed host.
198 * This is used to force keep alive messages out using the TCP
199 * template for a connection tp->t_template. If flags are given
200 * then we send a message back to the TCP which originated the
201 * segment ti, and discard the mbuf containing it and any other
202 * attached mbufs.
203 *
204 * In any case the ack and sequence number of the transmitted
205 * segment are as specified by the parameters.
206 */
207 int
208 tcp_respond(tp, ti, m, ack, seq, flags)
209 struct tcpcb *tp;
210 register struct tcpiphdr *ti;
211 register struct mbuf *m;
212 tcp_seq ack, seq;
213 int flags;
214 {
215 struct route iproute, *ro;
216 struct rtentry *rt;
217 struct sockaddr_in *dst;
218 int error, tlen, win = 0;
219
220 if (tp != NULL && (flags & TH_RST) == 0)
221 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
222
223 if (m == 0) {
224 m = m_gethdr(M_DONTWAIT, MT_HEADER);
225 if (m == NULL)
226 return (ENOBUFS);
227
228 if (tcp_compat_42)
229 tlen = 1;
230 else
231 tlen = 0;
232
233 m->m_data += max_linkhdr;
234 *mtod(m, struct tcpiphdr *) = *ti;
235 ti = mtod(m, struct tcpiphdr *);
236 flags = TH_ACK;
237 } else {
238 m_freem(m->m_next);
239 m->m_next = 0;
240 m->m_data = (caddr_t)ti;
241 m->m_len = sizeof (struct tcpiphdr);
242 tlen = 0;
243 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
244 xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
245 xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
246 #undef xchg
247 }
248 bzero(ti->ti_x1, sizeof ti->ti_x1);
249 ti->ti_seq = htonl(seq);
250 ti->ti_ack = htonl(ack);
251 ti->ti_x2 = 0;
252 if ((flags & TH_SYN) == 0) {
253 if (tp)
254 ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
255 else
256 ti->ti_win = htons((u_int16_t)win);
257 ti->ti_off = sizeof (struct tcphdr) >> 2;
258 tlen += sizeof (struct tcphdr);
259 } else
260 tlen += ti->ti_off << 2;
261 ti->ti_len = htons((u_int16_t)tlen);
262 tlen += sizeof (struct ip);
263 m->m_len = tlen;
264 m->m_pkthdr.len = tlen;
265 m->m_pkthdr.rcvif = (struct ifnet *) 0;
266 ti->ti_flags = flags;
267 ti->ti_urp = 0;
268 ti->ti_sum = 0;
269 ti->ti_sum = in_cksum(m, tlen);
270 ((struct ip *)ti)->ip_len = tlen;
271 ((struct ip *)ti)->ip_ttl = ip_defttl;
272
273 /*
274 * If we're doing Path MTU discovery, we need to set DF unless
275 * the route's MTU is locked. If we lack a route, we need to
276 * look it up now.
277 *
278 * ip_output() could do this for us, but it's convenient to just
279 * do it here unconditionally.
280 */
281 if (tp != NULL) {
282 ro = &tp->t_inpcb->inp_route;
283 #ifdef DIAGNOSTIC
284 if (!in_hosteq(ti->ti_dst, tp->t_inpcb->inp_faddr))
285 panic("tcp_respond: ti_dst %x != inp_faddr %x",
286 ntohl(ti->ti_dst.s_addr),
287 ntohl(tp->t_inpcb->inp_faddr.s_addr));
288 #endif
289 } else {
290 ro = &iproute;
291 bzero(ro, sizeof(*ro));
292 }
293 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
294 if (ro->ro_rt != NULL) {
295 RTFREE(ro->ro_rt);
296 ro->ro_rt = NULL;
297 }
298 dst = satosin(&ro->ro_dst);
299 dst->sin_family = AF_INET;
300 dst->sin_len = sizeof(*dst);
301 dst->sin_addr = ti->ti_dst;
302 rtalloc(ro);
303 if ((rt = ro->ro_rt) == NULL) {
304 m_freem(m);
305 ipstat.ips_noroute++;
306 return (EHOSTUNREACH);
307 }
308 }
309 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
310 ((struct ip *)ti)->ip_off |= IP_DF;
311
312 error = ip_output(m, NULL, ro, 0, NULL);
313
314 if (ro == &iproute) {
315 RTFREE(ro->ro_rt);
316 ro->ro_rt = NULL;
317 }
318
319 return (error);
320 }
321
322 /*
323 * Create a new TCP control block, making an
324 * empty reassembly queue and hooking it to the argument
325 * protocol control block.
326 */
327 struct tcpcb *
328 tcp_newtcpcb(inp)
329 struct inpcb *inp;
330 {
331 register struct tcpcb *tp;
332
333 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
334 if (tp == NULL)
335 return (NULL);
336 bzero((caddr_t)tp, sizeof(struct tcpcb));
337 LIST_INIT(&tp->segq);
338 LIST_INIT(&tp->timeq);
339 tp->t_peermss = tcp_mssdflt;
340 tp->t_ourmss = tcp_mssdflt;
341 tp->t_segsz = tcp_mssdflt;
342
343 tp->t_flags = 0;
344 if (tcp_do_rfc1323 && tcp_do_win_scale)
345 tp->t_flags |= TF_REQ_SCALE;
346 if (tcp_do_rfc1323 && tcp_do_timestamps)
347 tp->t_flags |= TF_REQ_TSTMP;
348 if (tcp_do_sack == 2)
349 tp->t_flags |= TF_WILL_SACK;
350 else if (tcp_do_sack == 1)
351 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
352 tp->t_flags |= TF_CANT_TXSACK;
353 tp->t_inpcb = inp;
354 /*
355 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
356 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
357 * reasonable initial retransmit time.
358 */
359 tp->t_srtt = TCPTV_SRTTBASE;
360 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
361 tp->t_rttmin = TCPTV_MIN;
362 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
363 TCPTV_MIN, TCPTV_REXMTMAX);
364 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
365 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
366 inp->inp_ip.ip_ttl = ip_defttl;
367 inp->inp_ppcb = (caddr_t)tp;
368 return (tp);
369 }
370
371 /*
372 * Drop a TCP connection, reporting
373 * the specified error. If connection is synchronized,
374 * then send a RST to peer.
375 */
376 struct tcpcb *
377 tcp_drop(tp, errno)
378 register struct tcpcb *tp;
379 int errno;
380 {
381 struct socket *so = tp->t_inpcb->inp_socket;
382
383 if (TCPS_HAVERCVDSYN(tp->t_state)) {
384 tp->t_state = TCPS_CLOSED;
385 (void) tcp_output(tp);
386 tcpstat.tcps_drops++;
387 } else
388 tcpstat.tcps_conndrops++;
389 if (errno == ETIMEDOUT && tp->t_softerror)
390 errno = tp->t_softerror;
391 so->so_error = errno;
392 return (tcp_close(tp));
393 }
394
395 /*
396 * Close a TCP control block:
397 * discard all space held by the tcp
398 * discard internet protocol block
399 * wake up any sleepers
400 */
401 struct tcpcb *
402 tcp_close(tp)
403 register struct tcpcb *tp;
404 {
405 struct inpcb *inp = tp->t_inpcb;
406 struct socket *so = inp->inp_socket;
407 #ifdef RTV_RTT
408 register struct rtentry *rt;
409
410 /*
411 * If we sent enough data to get some meaningful characteristics,
412 * save them in the routing entry. 'Enough' is arbitrarily
413 * defined as the sendpipesize (default 4K) * 16. This would
414 * give us 16 rtt samples assuming we only get one sample per
415 * window (the usual case on a long haul net). 16 samples is
416 * enough for the srtt filter to converge to within 5% of the correct
417 * value; fewer samples and we could save a very bogus rtt.
418 *
419 * Don't update the default route's characteristics and don't
420 * update anything that the user "locked".
421 */
422 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
423 (rt = inp->inp_route.ro_rt) &&
424 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
425 register u_long i = 0;
426
427 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
428 i = tp->t_srtt *
429 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
430 if (rt->rt_rmx.rmx_rtt && i)
431 /*
432 * filter this update to half the old & half
433 * the new values, converting scale.
434 * See route.h and tcp_var.h for a
435 * description of the scaling constants.
436 */
437 rt->rt_rmx.rmx_rtt =
438 (rt->rt_rmx.rmx_rtt + i) / 2;
439 else
440 rt->rt_rmx.rmx_rtt = i;
441 }
442 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
443 i = tp->t_rttvar *
444 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
445 if (rt->rt_rmx.rmx_rttvar && i)
446 rt->rt_rmx.rmx_rttvar =
447 (rt->rt_rmx.rmx_rttvar + i) / 2;
448 else
449 rt->rt_rmx.rmx_rttvar = i;
450 }
451 /*
452 * update the pipelimit (ssthresh) if it has been updated
453 * already or if a pipesize was specified & the threshhold
454 * got below half the pipesize. I.e., wait for bad news
455 * before we start updating, then update on both good
456 * and bad news.
457 */
458 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
459 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
460 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
461 /*
462 * convert the limit from user data bytes to
463 * packets then to packet data bytes.
464 */
465 i = (i + tp->t_segsz / 2) / tp->t_segsz;
466 if (i < 2)
467 i = 2;
468 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
469 if (rt->rt_rmx.rmx_ssthresh)
470 rt->rt_rmx.rmx_ssthresh =
471 (rt->rt_rmx.rmx_ssthresh + i) / 2;
472 else
473 rt->rt_rmx.rmx_ssthresh = i;
474 }
475 }
476 #endif /* RTV_RTT */
477 /* free the reassembly queue, if any */
478 TCP_REASS_LOCK(tp);
479 (void) tcp_freeq(tp);
480 TCP_REASS_UNLOCK(tp);
481
482 TCP_CLEAR_DELACK(tp);
483
484 if (tp->t_template)
485 pool_put(&tcp_template_pool, tp->t_template);
486 pool_put(&tcpcb_pool, tp);
487 inp->inp_ppcb = 0;
488 soisdisconnected(so);
489 in_pcbdetach(inp);
490 tcpstat.tcps_closed++;
491 return ((struct tcpcb *)0);
492 }
493
494 int
495 tcp_freeq(tp)
496 struct tcpcb *tp;
497 {
498 register struct ipqent *qe;
499 int rv = 0;
500 #ifdef TCPREASS_DEBUG
501 int i = 0;
502 #endif
503
504 TCP_REASS_LOCK_CHECK(tp);
505
506 while ((qe = tp->segq.lh_first) != NULL) {
507 #ifdef TCPREASS_DEBUG
508 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
509 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
510 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
511 #endif
512 LIST_REMOVE(qe, ipqe_q);
513 LIST_REMOVE(qe, ipqe_timeq);
514 m_freem(qe->ipqe_m);
515 pool_put(&ipqent_pool, qe);
516 rv = 1;
517 }
518 return (rv);
519 }
520
521 /*
522 * Protocol drain routine. Called when memory is in short supply.
523 */
524 void
525 tcp_drain()
526 {
527 register struct inpcb *inp;
528 register struct tcpcb *tp;
529
530 /*
531 * Free the sequence queue of all TCP connections.
532 */
533 inp = tcbtable.inpt_queue.cqh_first;
534 if (inp) /* XXX */
535 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
536 inp = inp->inp_queue.cqe_next) {
537 if ((tp = intotcpcb(inp)) != NULL) {
538 /*
539 * We may be called from a device's interrupt
540 * context. If the tcpcb is already busy,
541 * just bail out now.
542 */
543 if (tcp_reass_lock_try(tp) == 0)
544 continue;
545 if (tcp_freeq(tp))
546 tcpstat.tcps_connsdrained++;
547 TCP_REASS_UNLOCK(tp);
548 }
549 }
550 }
551
552 /*
553 * Notify a tcp user of an asynchronous error;
554 * store error as soft error, but wake up user
555 * (for now, won't do anything until can select for soft error).
556 */
557 void
558 tcp_notify(inp, error)
559 struct inpcb *inp;
560 int error;
561 {
562 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
563 register struct socket *so = inp->inp_socket;
564
565 /*
566 * Ignore some errors if we are hooked up.
567 * If connection hasn't completed, has retransmitted several times,
568 * and receives a second error, give up now. This is better
569 * than waiting a long time to establish a connection that
570 * can never complete.
571 */
572 if (tp->t_state == TCPS_ESTABLISHED &&
573 (error == EHOSTUNREACH || error == ENETUNREACH ||
574 error == EHOSTDOWN)) {
575 return;
576 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
577 tp->t_rxtshift > 3 && tp->t_softerror)
578 so->so_error = error;
579 else
580 tp->t_softerror = error;
581 wakeup((caddr_t) &so->so_timeo);
582 sorwakeup(so);
583 sowwakeup(so);
584 }
585
586 void *
587 tcp_ctlinput(cmd, sa, v)
588 int cmd;
589 struct sockaddr *sa;
590 register void *v;
591 {
592 register struct ip *ip = v;
593 register struct tcphdr *th;
594 extern int inetctlerrmap[];
595 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
596 int errno;
597 int nmatch;
598
599 if ((unsigned)cmd >= PRC_NCMDS)
600 return NULL;
601 errno = inetctlerrmap[cmd];
602 if (cmd == PRC_QUENCH)
603 notify = tcp_quench;
604 else if (PRC_IS_REDIRECT(cmd))
605 notify = in_rtchange, ip = 0;
606 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
607 notify = tcp_mtudisc, ip = 0;
608 else if (cmd == PRC_HOSTDEAD)
609 ip = 0;
610 else if (errno == 0)
611 return NULL;
612 if (ip) {
613 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
614 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
615 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
616 if (nmatch == 0 && syn_cache_count &&
617 (inetctlerrmap[cmd] == EHOSTUNREACH ||
618 inetctlerrmap[cmd] == ENETUNREACH ||
619 inetctlerrmap[cmd] == EHOSTDOWN))
620 syn_cache_unreach(ip, th);
621 } else
622 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
623 notify);
624 return NULL;
625 }
626
627 /*
628 * When a source quence is received, we are being notifed of congestion.
629 * Close the congestion window down to the Loss Window (one segment).
630 * We will gradually open it again as we proceed.
631 */
632 void
633 tcp_quench(inp, errno)
634 struct inpcb *inp;
635 int errno;
636 {
637 struct tcpcb *tp = intotcpcb(inp);
638
639 if (tp)
640 tp->snd_cwnd = tp->t_segsz;
641 }
642
643 /*
644 * On receipt of path MTU corrections, flush old route and replace it
645 * with the new one. Retransmit all unacknowledged packets, to ensure
646 * that all packets will be received.
647 */
648 void
649 tcp_mtudisc(inp, errno)
650 struct inpcb *inp;
651 int errno;
652 {
653 struct tcpcb *tp = intotcpcb(inp);
654 struct rtentry *rt = in_pcbrtentry(inp);
655
656 if (tp != 0) {
657 if (rt != 0) {
658 /*
659 * If this was not a host route, remove and realloc.
660 */
661 if ((rt->rt_flags & RTF_HOST) == 0) {
662 in_rtchange(inp, errno);
663 if ((rt = in_pcbrtentry(inp)) == 0)
664 return;
665 }
666
667 /*
668 * Slow start out of the error condition. We
669 * use the MTU because we know it's smaller
670 * than the previously transmitted segment.
671 *
672 * Note: This is more conservative than the
673 * suggestion in draft-floyd-incr-init-win-03.
674 */
675 if (rt->rt_rmx.rmx_mtu != 0)
676 tp->snd_cwnd =
677 TCP_INITIAL_WINDOW(tcp_init_win,
678 rt->rt_rmx.rmx_mtu);
679 }
680
681 /*
682 * Resend unacknowledged packets.
683 */
684 tp->snd_nxt = tp->snd_una;
685 tcp_output(tp);
686 }
687 }
688
689
690 /*
691 * Compute the MSS to advertise to the peer. Called only during
692 * the 3-way handshake. If we are the server (peer initiated
693 * connection), we are called with a pointer to the interface
694 * on which the SYN packet arrived. If we are the client (we
695 * initiated connection), we are called with a pointer to the
696 * interface out which this connection should go.
697 */
698 u_long
699 tcp_mss_to_advertise(ifp)
700 const struct ifnet *ifp;
701 {
702 extern u_long in_maxmtu;
703 u_long mss = 0;
704
705 /*
706 * In order to avoid defeating path MTU discovery on the peer,
707 * we advertise the max MTU of all attached networks as our MSS,
708 * per RFC 1191, section 3.1.
709 *
710 * We provide the option to advertise just the MTU of
711 * the interface on which we hope this connection will
712 * be receiving. If we are responding to a SYN, we
713 * will have a pretty good idea about this, but when
714 * initiating a connection there is a bit more doubt.
715 *
716 * We also need to ensure that loopback has a large enough
717 * MSS, as the loopback MTU is never included in in_maxmtu.
718 */
719
720 if (ifp != NULL)
721 mss = ifp->if_mtu;
722
723 if (tcp_mss_ifmtu == 0)
724 mss = max(in_maxmtu, mss);
725
726 if (mss > sizeof(struct tcpiphdr))
727 mss -= sizeof(struct tcpiphdr);
728
729 mss = max(tcp_mssdflt, mss);
730 return (mss);
731 }
732
733 /*
734 * Set connection variables based on the peer's advertised MSS.
735 * We are passed the TCPCB for the actual connection. If we
736 * are the server, we are called by the compressed state engine
737 * when the 3-way handshake is complete. If we are the client,
738 * we are called when we recieve the SYN,ACK from the server.
739 *
740 * NOTE: Our advertised MSS value must be initialized in the TCPCB
741 * before this routine is called!
742 */
743 void
744 tcp_mss_from_peer(tp, offer)
745 struct tcpcb *tp;
746 int offer;
747 {
748 struct inpcb *inp = tp->t_inpcb;
749 struct socket *so = inp->inp_socket;
750 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
751 struct rtentry *rt = in_pcbrtentry(inp);
752 #endif
753 u_long bufsize;
754 int mss;
755
756 /*
757 * As per RFC1122, use the default MSS value, unless they
758 * sent us an offer. Do not accept offers less than 32 bytes.
759 */
760 mss = tcp_mssdflt;
761 if (offer)
762 mss = offer;
763 mss = max(mss, 32); /* sanity */
764 tp->t_peermss = mss;
765 mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
766
767 /*
768 * If there's a pipesize, change the socket buffer to that size.
769 * Make the socket buffer an integral number of MSS units. If
770 * the MSS is larger than the socket buffer, artificially decrease
771 * the MSS.
772 */
773 #ifdef RTV_SPIPE
774 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
775 bufsize = rt->rt_rmx.rmx_sendpipe;
776 else
777 #endif
778 bufsize = so->so_snd.sb_hiwat;
779 if (bufsize < mss)
780 mss = bufsize;
781 else {
782 bufsize = roundup(bufsize, mss);
783 if (bufsize > sb_max)
784 bufsize = sb_max;
785 (void) sbreserve(&so->so_snd, bufsize);
786 }
787 tp->t_segsz = mss;
788
789 #ifdef RTV_SSTHRESH
790 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
791 /*
792 * There's some sort of gateway or interface buffer
793 * limit on the path. Use this to set the slow
794 * start threshold, but set the threshold to no less
795 * than 2 * MSS.
796 */
797 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
798 }
799 #endif
800 }
801
802 /*
803 * Processing necessary when a TCP connection is established.
804 */
805 void
806 tcp_established(tp)
807 struct tcpcb *tp;
808 {
809 struct inpcb *inp = tp->t_inpcb;
810 struct socket *so = inp->inp_socket;
811 #ifdef RTV_RPIPE
812 struct rtentry *rt = in_pcbrtentry(inp);
813 #endif
814 u_long bufsize;
815
816 tp->t_state = TCPS_ESTABLISHED;
817 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
818
819 #ifdef RTV_RPIPE
820 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
821 bufsize = rt->rt_rmx.rmx_recvpipe;
822 else
823 #endif
824 bufsize = so->so_rcv.sb_hiwat;
825 if (bufsize > tp->t_ourmss) {
826 bufsize = roundup(bufsize, tp->t_ourmss);
827 if (bufsize > sb_max)
828 bufsize = sb_max;
829 (void) sbreserve(&so->so_rcv, bufsize);
830 }
831 }
832
833 /*
834 * Check if there's an initial rtt or rttvar. Convert from the
835 * route-table units to scaled multiples of the slow timeout timer.
836 * Called only during the 3-way handshake.
837 */
838 void
839 tcp_rmx_rtt(tp)
840 struct tcpcb *tp;
841 {
842 #ifdef RTV_RTT
843 struct rtentry *rt;
844 int rtt;
845
846 if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
847 return;
848
849 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
850 /*
851 * XXX The lock bit for MTU indicates that the value
852 * is also a minimum value; this is subject to time.
853 */
854 if (rt->rt_rmx.rmx_locks & RTV_RTT)
855 TCPT_RANGESET(tp->t_rttmin,
856 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
857 TCPTV_MIN, TCPTV_REXMTMAX);
858 tp->t_srtt = rtt /
859 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
860 if (rt->rt_rmx.rmx_rttvar) {
861 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
862 ((RTM_RTTUNIT / PR_SLOWHZ) >>
863 (TCP_RTTVAR_SHIFT + 2));
864 } else {
865 /* Default variation is +- 1 rtt */
866 tp->t_rttvar =
867 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
868 }
869 TCPT_RANGESET(tp->t_rxtcur,
870 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
871 tp->t_rttmin, TCPTV_REXMTMAX);
872 }
873 #endif
874 }
875
876 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
877
878 /*
879 * Get a new sequence value given a tcp control block
880 */
881 tcp_seq
882 tcp_new_iss(tp, len, addin)
883 void *tp;
884 u_long len;
885 tcp_seq addin;
886 {
887 tcp_seq tcp_iss;
888
889 /*
890 * Randomize.
891 */
892 #if NRND > 0
893 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
894 #else
895 tcp_iss = random();
896 #endif
897
898 /*
899 * If we were asked to add some amount to a known value,
900 * we will take a random value obtained above, mask off the upper
901 * bits, and add in the known value. We also add in a constant to
902 * ensure that we are at least a certain distance from the original
903 * value.
904 *
905 * This is used when an old connection is in timed wait
906 * and we have a new one coming in, for instance.
907 */
908 if (addin != 0) {
909 #ifdef TCPISS_DEBUG
910 printf("Random %08x, ", tcp_iss);
911 #endif
912 tcp_iss &= TCP_ISS_RANDOM_MASK;
913 tcp_iss += addin + TCP_ISSINCR;
914 #ifdef TCPISS_DEBUG
915 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
916 #endif
917 } else {
918 tcp_iss &= TCP_ISS_RANDOM_MASK;
919 tcp_iss += tcp_iss_seq;
920 tcp_iss_seq += TCP_ISSINCR;
921 #ifdef TCPISS_DEBUG
922 printf("ISS %08x\n", tcp_iss);
923 #endif
924 }
925
926 if (tcp_compat_42) {
927 /*
928 * Limit it to the positive range for really old TCP
929 * implementations.
930 */
931 if (tcp_iss >= 0x80000000)
932 tcp_iss &= 0x7fffffff; /* XXX */
933 }
934
935 return tcp_iss;
936 }
937
938
939 /*
940 * Determine the length of the TCP options for this connection.
941 *
942 * XXX: What do we do for SACK, when we add that? Just reserve
943 * all of the space? Otherwise we can't exactly be incrementing
944 * cwnd by an amount that varies depending on the amount we last
945 * had to SACK!
946 */
947
948 u_int
949 tcp_optlen(tp)
950 struct tcpcb *tp;
951 {
952 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
953 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
954 return TCPOLEN_TSTAMP_APPA;
955 else
956 return 0;
957 }
958