Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.66
      1 /*	$NetBSD: tcp_subr.c,v 1.66 1999/02/28 13:41:24 explorer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
      9  * Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     73  */
     74 
     75 #include "opt_tcp_compat_42.h"
     76 #include "rnd.h"
     77 
     78 #include <sys/param.h>
     79 #include <sys/proc.h>
     80 #include <sys/systm.h>
     81 #include <sys/malloc.h>
     82 #include <sys/mbuf.h>
     83 #include <sys/socket.h>
     84 #include <sys/socketvar.h>
     85 #include <sys/protosw.h>
     86 #include <sys/errno.h>
     87 #include <sys/kernel.h>
     88 #include <sys/pool.h>
     89 #if NRND > 0
     90 #include <sys/rnd.h>
     91 #endif
     92 
     93 #include <net/route.h>
     94 #include <net/if.h>
     95 
     96 #include <netinet/in.h>
     97 #include <netinet/in_systm.h>
     98 #include <netinet/ip.h>
     99 #include <netinet/in_pcb.h>
    100 #include <netinet/ip_var.h>
    101 #include <netinet/ip_icmp.h>
    102 #include <netinet/tcp.h>
    103 #include <netinet/tcp_fsm.h>
    104 #include <netinet/tcp_seq.h>
    105 #include <netinet/tcp_timer.h>
    106 #include <netinet/tcp_var.h>
    107 #include <netinet/tcpip.h>
    108 
    109 /* patchable/settable parameters for tcp */
    110 int 	tcp_mssdflt = TCP_MSS;
    111 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    112 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    113 int	tcp_do_sack = 1;	/* selective acknowledgement */
    114 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    115 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    116 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    117 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    118 int	tcp_init_win = 1;
    119 int	tcp_mss_ifmtu = 0;
    120 #ifdef TCP_COMPAT_42
    121 int	tcp_compat_42 = 1;
    122 #else
    123 int	tcp_compat_42 = 0;
    124 #endif
    125 
    126 #ifndef TCBHASHSIZE
    127 #define	TCBHASHSIZE	128
    128 #endif
    129 int	tcbhashsize = TCBHASHSIZE;
    130 
    131 int	tcp_freeq __P((struct tcpcb *));
    132 
    133 struct pool tcpcb_pool;
    134 struct pool tcp_template_pool;
    135 
    136 /*
    137  * Tcp initialization
    138  */
    139 void
    140 tcp_init()
    141 {
    142 
    143 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    144 	    0, NULL, NULL, M_PCB);
    145 	pool_init(&tcp_template_pool, sizeof(struct tcpiphdr), 0, 0, 0,
    146 	    "tcptmpl", 0, NULL, NULL, M_MBUF);
    147 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    148 	LIST_INIT(&tcp_delacks);
    149 	if (max_protohdr < sizeof(struct tcpiphdr))
    150 		max_protohdr = sizeof(struct tcpiphdr);
    151 	if (max_linkhdr + sizeof(struct tcpiphdr) > MHLEN)
    152 		panic("tcp_init");
    153 
    154 	/* Initialize the compressed state engine. */
    155 	syn_cache_init();
    156 }
    157 
    158 /*
    159  * Create template to be used to send tcp packets on a connection.
    160  * Call after host entry created, allocates an mbuf and fills
    161  * in a skeletal tcp/ip header, minimizing the amount of work
    162  * necessary when the connection is used.
    163  */
    164 struct tcpiphdr *
    165 tcp_template(tp)
    166 	struct tcpcb *tp;
    167 {
    168 	register struct inpcb *inp = tp->t_inpcb;
    169 	register struct tcpiphdr *n;
    170 
    171 	if ((n = tp->t_template) == 0) {
    172 		n = pool_get(&tcp_template_pool, PR_NOWAIT);
    173 		if (n == NULL)
    174 			return (NULL);
    175 	}
    176 	bzero(n->ti_x1, sizeof n->ti_x1);
    177 	n->ti_pr = IPPROTO_TCP;
    178 	n->ti_len = htons(sizeof (struct tcpiphdr) - sizeof (struct ip));
    179 	n->ti_src = inp->inp_laddr;
    180 	n->ti_dst = inp->inp_faddr;
    181 	n->ti_sport = inp->inp_lport;
    182 	n->ti_dport = inp->inp_fport;
    183 	n->ti_seq = 0;
    184 	n->ti_ack = 0;
    185 	n->ti_x2 = 0;
    186 	n->ti_off = 5;
    187 	n->ti_flags = 0;
    188 	n->ti_win = 0;
    189 	n->ti_sum = 0;
    190 	n->ti_urp = 0;
    191 	return (n);
    192 }
    193 
    194 /*
    195  * Send a single message to the TCP at address specified by
    196  * the given TCP/IP header.  If m == 0, then we make a copy
    197  * of the tcpiphdr at ti and send directly to the addressed host.
    198  * This is used to force keep alive messages out using the TCP
    199  * template for a connection tp->t_template.  If flags are given
    200  * then we send a message back to the TCP which originated the
    201  * segment ti, and discard the mbuf containing it and any other
    202  * attached mbufs.
    203  *
    204  * In any case the ack and sequence number of the transmitted
    205  * segment are as specified by the parameters.
    206  */
    207 int
    208 tcp_respond(tp, ti, m, ack, seq, flags)
    209 	struct tcpcb *tp;
    210 	register struct tcpiphdr *ti;
    211 	register struct mbuf *m;
    212 	tcp_seq ack, seq;
    213 	int flags;
    214 {
    215 	struct route iproute, *ro;
    216 	struct rtentry *rt;
    217 	struct sockaddr_in *dst;
    218 	int error, tlen, win = 0;
    219 
    220 	if (tp != NULL && (flags & TH_RST) == 0)
    221 		win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    222 
    223 	if (m == 0) {
    224 		m = m_gethdr(M_DONTWAIT, MT_HEADER);
    225 		if (m == NULL)
    226 			return (ENOBUFS);
    227 
    228 		if (tcp_compat_42)
    229 			tlen = 1;
    230 		else
    231 			tlen = 0;
    232 
    233 		m->m_data += max_linkhdr;
    234 		*mtod(m, struct tcpiphdr *) = *ti;
    235 		ti = mtod(m, struct tcpiphdr *);
    236 		flags = TH_ACK;
    237 	} else {
    238 		m_freem(m->m_next);
    239 		m->m_next = 0;
    240 		m->m_data = (caddr_t)ti;
    241 		m->m_len = sizeof (struct tcpiphdr);
    242 		tlen = 0;
    243 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    244 		xchg(ti->ti_dst.s_addr, ti->ti_src.s_addr, u_int32_t);
    245 		xchg(ti->ti_dport, ti->ti_sport, u_int16_t);
    246 #undef xchg
    247 	}
    248 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    249 	ti->ti_seq = htonl(seq);
    250 	ti->ti_ack = htonl(ack);
    251 	ti->ti_x2 = 0;
    252 	if ((flags & TH_SYN) == 0) {
    253 		if (tp)
    254 			ti->ti_win = htons((u_int16_t) (win >> tp->rcv_scale));
    255 		else
    256 			ti->ti_win = htons((u_int16_t)win);
    257 		ti->ti_off = sizeof (struct tcphdr) >> 2;
    258 		tlen += sizeof (struct tcphdr);
    259 	} else
    260 		tlen += ti->ti_off << 2;
    261 	ti->ti_len = htons((u_int16_t)tlen);
    262 	tlen += sizeof (struct ip);
    263 	m->m_len = tlen;
    264 	m->m_pkthdr.len = tlen;
    265 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    266 	ti->ti_flags = flags;
    267 	ti->ti_urp = 0;
    268 	ti->ti_sum = 0;
    269 	ti->ti_sum = in_cksum(m, tlen);
    270 	((struct ip *)ti)->ip_len = tlen;
    271 	((struct ip *)ti)->ip_ttl = ip_defttl;
    272 
    273 	/*
    274 	 * If we're doing Path MTU discovery, we need to set DF unless
    275 	 * the route's MTU is locked.  If we lack a route, we need to
    276 	 * look it up now.
    277 	 *
    278 	 * ip_output() could do this for us, but it's convenient to just
    279 	 * do it here unconditionally.
    280 	 */
    281 	if (tp != NULL) {
    282 		ro = &tp->t_inpcb->inp_route;
    283 #ifdef DIAGNOSTIC
    284 		if (!in_hosteq(ti->ti_dst, tp->t_inpcb->inp_faddr))
    285 			panic("tcp_respond: ti_dst %x != inp_faddr %x",
    286 			    ntohl(ti->ti_dst.s_addr),
    287 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    288 #endif
    289 	} else {
    290 		ro = &iproute;
    291 		bzero(ro, sizeof(*ro));
    292 	}
    293 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
    294 		if (ro->ro_rt != NULL) {
    295 			RTFREE(ro->ro_rt);
    296 			ro->ro_rt = NULL;
    297 		}
    298 		dst = satosin(&ro->ro_dst);
    299 		dst->sin_family = AF_INET;
    300 		dst->sin_len = sizeof(*dst);
    301 		dst->sin_addr = ti->ti_dst;
    302 		rtalloc(ro);
    303 		if ((rt = ro->ro_rt) == NULL) {
    304 			m_freem(m);
    305 			ipstat.ips_noroute++;
    306 			return (EHOSTUNREACH);
    307 		}
    308 	}
    309 	if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    310 		((struct ip *)ti)->ip_off |= IP_DF;
    311 
    312 	error = ip_output(m, NULL, ro, 0, NULL);
    313 
    314 	if (ro == &iproute) {
    315 		RTFREE(ro->ro_rt);
    316 		ro->ro_rt = NULL;
    317 	}
    318 
    319 	return (error);
    320 }
    321 
    322 /*
    323  * Create a new TCP control block, making an
    324  * empty reassembly queue and hooking it to the argument
    325  * protocol control block.
    326  */
    327 struct tcpcb *
    328 tcp_newtcpcb(inp)
    329 	struct inpcb *inp;
    330 {
    331 	register struct tcpcb *tp;
    332 
    333 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    334 	if (tp == NULL)
    335 		return (NULL);
    336 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    337 	LIST_INIT(&tp->segq);
    338 	LIST_INIT(&tp->timeq);
    339 	tp->t_peermss = tcp_mssdflt;
    340 	tp->t_ourmss = tcp_mssdflt;
    341 	tp->t_segsz = tcp_mssdflt;
    342 
    343 	tp->t_flags = 0;
    344 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    345 		tp->t_flags |= TF_REQ_SCALE;
    346 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    347 		tp->t_flags |= TF_REQ_TSTMP;
    348 	if (tcp_do_sack == 2)
    349 		tp->t_flags |= TF_WILL_SACK;
    350 	else if (tcp_do_sack == 1)
    351 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    352 	tp->t_flags |= TF_CANT_TXSACK;
    353 	tp->t_inpcb = inp;
    354 	/*
    355 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    356 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    357 	 * reasonable initial retransmit time.
    358 	 */
    359 	tp->t_srtt = TCPTV_SRTTBASE;
    360 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    361 	tp->t_rttmin = TCPTV_MIN;
    362 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    363 	    TCPTV_MIN, TCPTV_REXMTMAX);
    364 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    365 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    366 	inp->inp_ip.ip_ttl = ip_defttl;
    367 	inp->inp_ppcb = (caddr_t)tp;
    368 	return (tp);
    369 }
    370 
    371 /*
    372  * Drop a TCP connection, reporting
    373  * the specified error.  If connection is synchronized,
    374  * then send a RST to peer.
    375  */
    376 struct tcpcb *
    377 tcp_drop(tp, errno)
    378 	register struct tcpcb *tp;
    379 	int errno;
    380 {
    381 	struct socket *so = tp->t_inpcb->inp_socket;
    382 
    383 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    384 		tp->t_state = TCPS_CLOSED;
    385 		(void) tcp_output(tp);
    386 		tcpstat.tcps_drops++;
    387 	} else
    388 		tcpstat.tcps_conndrops++;
    389 	if (errno == ETIMEDOUT && tp->t_softerror)
    390 		errno = tp->t_softerror;
    391 	so->so_error = errno;
    392 	return (tcp_close(tp));
    393 }
    394 
    395 /*
    396  * Close a TCP control block:
    397  *	discard all space held by the tcp
    398  *	discard internet protocol block
    399  *	wake up any sleepers
    400  */
    401 struct tcpcb *
    402 tcp_close(tp)
    403 	register struct tcpcb *tp;
    404 {
    405 	struct inpcb *inp = tp->t_inpcb;
    406 	struct socket *so = inp->inp_socket;
    407 #ifdef RTV_RTT
    408 	register struct rtentry *rt;
    409 
    410 	/*
    411 	 * If we sent enough data to get some meaningful characteristics,
    412 	 * save them in the routing entry.  'Enough' is arbitrarily
    413 	 * defined as the sendpipesize (default 4K) * 16.  This would
    414 	 * give us 16 rtt samples assuming we only get one sample per
    415 	 * window (the usual case on a long haul net).  16 samples is
    416 	 * enough for the srtt filter to converge to within 5% of the correct
    417 	 * value; fewer samples and we could save a very bogus rtt.
    418 	 *
    419 	 * Don't update the default route's characteristics and don't
    420 	 * update anything that the user "locked".
    421 	 */
    422 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    423 	    (rt = inp->inp_route.ro_rt) &&
    424 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    425 		register u_long i = 0;
    426 
    427 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    428 			i = tp->t_srtt *
    429 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    430 			if (rt->rt_rmx.rmx_rtt && i)
    431 				/*
    432 				 * filter this update to half the old & half
    433 				 * the new values, converting scale.
    434 				 * See route.h and tcp_var.h for a
    435 				 * description of the scaling constants.
    436 				 */
    437 				rt->rt_rmx.rmx_rtt =
    438 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    439 			else
    440 				rt->rt_rmx.rmx_rtt = i;
    441 		}
    442 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    443 			i = tp->t_rttvar *
    444 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    445 			if (rt->rt_rmx.rmx_rttvar && i)
    446 				rt->rt_rmx.rmx_rttvar =
    447 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    448 			else
    449 				rt->rt_rmx.rmx_rttvar = i;
    450 		}
    451 		/*
    452 		 * update the pipelimit (ssthresh) if it has been updated
    453 		 * already or if a pipesize was specified & the threshhold
    454 		 * got below half the pipesize.  I.e., wait for bad news
    455 		 * before we start updating, then update on both good
    456 		 * and bad news.
    457 		 */
    458 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
    459 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
    460 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
    461 			/*
    462 			 * convert the limit from user data bytes to
    463 			 * packets then to packet data bytes.
    464 			 */
    465 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
    466 			if (i < 2)
    467 				i = 2;
    468 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
    469 			if (rt->rt_rmx.rmx_ssthresh)
    470 				rt->rt_rmx.rmx_ssthresh =
    471 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
    472 			else
    473 				rt->rt_rmx.rmx_ssthresh = i;
    474 		}
    475 	}
    476 #endif /* RTV_RTT */
    477 	/* free the reassembly queue, if any */
    478 	TCP_REASS_LOCK(tp);
    479 	(void) tcp_freeq(tp);
    480 	TCP_REASS_UNLOCK(tp);
    481 
    482 	TCP_CLEAR_DELACK(tp);
    483 
    484 	if (tp->t_template)
    485 		pool_put(&tcp_template_pool, tp->t_template);
    486 	pool_put(&tcpcb_pool, tp);
    487 	inp->inp_ppcb = 0;
    488 	soisdisconnected(so);
    489 	in_pcbdetach(inp);
    490 	tcpstat.tcps_closed++;
    491 	return ((struct tcpcb *)0);
    492 }
    493 
    494 int
    495 tcp_freeq(tp)
    496 	struct tcpcb *tp;
    497 {
    498 	register struct ipqent *qe;
    499 	int rv = 0;
    500 #ifdef TCPREASS_DEBUG
    501 	int i = 0;
    502 #endif
    503 
    504 	TCP_REASS_LOCK_CHECK(tp);
    505 
    506 	while ((qe = tp->segq.lh_first) != NULL) {
    507 #ifdef TCPREASS_DEBUG
    508 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
    509 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
    510 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
    511 #endif
    512 		LIST_REMOVE(qe, ipqe_q);
    513 		LIST_REMOVE(qe, ipqe_timeq);
    514 		m_freem(qe->ipqe_m);
    515 		pool_put(&ipqent_pool, qe);
    516 		rv = 1;
    517 	}
    518 	return (rv);
    519 }
    520 
    521 /*
    522  * Protocol drain routine.  Called when memory is in short supply.
    523  */
    524 void
    525 tcp_drain()
    526 {
    527 	register struct inpcb *inp;
    528 	register struct tcpcb *tp;
    529 
    530 	/*
    531 	 * Free the sequence queue of all TCP connections.
    532 	 */
    533 	inp = tcbtable.inpt_queue.cqh_first;
    534 	if (inp)						/* XXX */
    535 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
    536 	    inp = inp->inp_queue.cqe_next) {
    537 		if ((tp = intotcpcb(inp)) != NULL) {
    538 			/*
    539 			 * We may be called from a device's interrupt
    540 			 * context.  If the tcpcb is already busy,
    541 			 * just bail out now.
    542 			 */
    543 			if (tcp_reass_lock_try(tp) == 0)
    544 				continue;
    545 			if (tcp_freeq(tp))
    546 				tcpstat.tcps_connsdrained++;
    547 			TCP_REASS_UNLOCK(tp);
    548 		}
    549 	}
    550 }
    551 
    552 /*
    553  * Notify a tcp user of an asynchronous error;
    554  * store error as soft error, but wake up user
    555  * (for now, won't do anything until can select for soft error).
    556  */
    557 void
    558 tcp_notify(inp, error)
    559 	struct inpcb *inp;
    560 	int error;
    561 {
    562 	register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
    563 	register struct socket *so = inp->inp_socket;
    564 
    565 	/*
    566 	 * Ignore some errors if we are hooked up.
    567 	 * If connection hasn't completed, has retransmitted several times,
    568 	 * and receives a second error, give up now.  This is better
    569 	 * than waiting a long time to establish a connection that
    570 	 * can never complete.
    571 	 */
    572 	if (tp->t_state == TCPS_ESTABLISHED &&
    573 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
    574 	      error == EHOSTDOWN)) {
    575 		return;
    576 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
    577 	    tp->t_rxtshift > 3 && tp->t_softerror)
    578 		so->so_error = error;
    579 	else
    580 		tp->t_softerror = error;
    581 	wakeup((caddr_t) &so->so_timeo);
    582 	sorwakeup(so);
    583 	sowwakeup(so);
    584 }
    585 
    586 void *
    587 tcp_ctlinput(cmd, sa, v)
    588 	int cmd;
    589 	struct sockaddr *sa;
    590 	register void *v;
    591 {
    592 	register struct ip *ip = v;
    593 	register struct tcphdr *th;
    594 	extern int inetctlerrmap[];
    595 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
    596 	int errno;
    597 	int nmatch;
    598 
    599 	if ((unsigned)cmd >= PRC_NCMDS)
    600 		return NULL;
    601 	errno = inetctlerrmap[cmd];
    602 	if (cmd == PRC_QUENCH)
    603 		notify = tcp_quench;
    604 	else if (PRC_IS_REDIRECT(cmd))
    605 		notify = in_rtchange, ip = 0;
    606 	else if (cmd == PRC_MSGSIZE && ip_mtudisc)
    607 		notify = tcp_mtudisc, ip = 0;
    608 	else if (cmd == PRC_HOSTDEAD)
    609 		ip = 0;
    610 	else if (errno == 0)
    611 		return NULL;
    612 	if (ip) {
    613 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
    614 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
    615 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
    616 		if (nmatch == 0 && syn_cache_count &&
    617 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
    618 		    inetctlerrmap[cmd] == ENETUNREACH ||
    619 		    inetctlerrmap[cmd] == EHOSTDOWN))
    620 			syn_cache_unreach(ip, th);
    621 	} else
    622 		(void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
    623 		    notify);
    624 	return NULL;
    625 }
    626 
    627 /*
    628  * When a source quence is received, we are being notifed of congestion.
    629  * Close the congestion window down to the Loss Window (one segment).
    630  * We will gradually open it again as we proceed.
    631  */
    632 void
    633 tcp_quench(inp, errno)
    634 	struct inpcb *inp;
    635 	int errno;
    636 {
    637 	struct tcpcb *tp = intotcpcb(inp);
    638 
    639 	if (tp)
    640 		tp->snd_cwnd = tp->t_segsz;
    641 }
    642 
    643 /*
    644  * On receipt of path MTU corrections, flush old route and replace it
    645  * with the new one.  Retransmit all unacknowledged packets, to ensure
    646  * that all packets will be received.
    647  */
    648 void
    649 tcp_mtudisc(inp, errno)
    650 	struct inpcb *inp;
    651 	int errno;
    652 {
    653 	struct tcpcb *tp = intotcpcb(inp);
    654 	struct rtentry *rt = in_pcbrtentry(inp);
    655 
    656 	if (tp != 0) {
    657 		if (rt != 0) {
    658 			/*
    659 			 * If this was not a host route, remove and realloc.
    660 			 */
    661 			if ((rt->rt_flags & RTF_HOST) == 0) {
    662 				in_rtchange(inp, errno);
    663 				if ((rt = in_pcbrtentry(inp)) == 0)
    664 					return;
    665 			}
    666 
    667 			/*
    668 			 * Slow start out of the error condition.  We
    669 			 * use the MTU because we know it's smaller
    670 			 * than the previously transmitted segment.
    671 			 *
    672 			 * Note: This is more conservative than the
    673 			 * suggestion in draft-floyd-incr-init-win-03.
    674 			 */
    675 			if (rt->rt_rmx.rmx_mtu != 0)
    676 				tp->snd_cwnd =
    677 				    TCP_INITIAL_WINDOW(tcp_init_win,
    678 				    rt->rt_rmx.rmx_mtu);
    679 		}
    680 
    681 		/*
    682 		 * Resend unacknowledged packets.
    683 		 */
    684 		tp->snd_nxt = tp->snd_una;
    685 		tcp_output(tp);
    686 	}
    687 }
    688 
    689 
    690 /*
    691  * Compute the MSS to advertise to the peer.  Called only during
    692  * the 3-way handshake.  If we are the server (peer initiated
    693  * connection), we are called with a pointer to the interface
    694  * on which the SYN packet arrived.  If we are the client (we
    695  * initiated connection), we are called with a pointer to the
    696  * interface out which this connection should go.
    697  */
    698 u_long
    699 tcp_mss_to_advertise(ifp)
    700 	const struct ifnet *ifp;
    701 {
    702 	extern u_long in_maxmtu;
    703 	u_long mss = 0;
    704 
    705 	/*
    706 	 * In order to avoid defeating path MTU discovery on the peer,
    707 	 * we advertise the max MTU of all attached networks as our MSS,
    708 	 * per RFC 1191, section 3.1.
    709 	 *
    710 	 * We provide the option to advertise just the MTU of
    711 	 * the interface on which we hope this connection will
    712 	 * be receiving.  If we are responding to a SYN, we
    713 	 * will have a pretty good idea about this, but when
    714 	 * initiating a connection there is a bit more doubt.
    715 	 *
    716 	 * We also need to ensure that loopback has a large enough
    717 	 * MSS, as the loopback MTU is never included in in_maxmtu.
    718 	 */
    719 
    720 	if (ifp != NULL)
    721 		mss = ifp->if_mtu;
    722 
    723 	if (tcp_mss_ifmtu == 0)
    724 		mss = max(in_maxmtu, mss);
    725 
    726 	if (mss > sizeof(struct tcpiphdr))
    727 		mss -= sizeof(struct tcpiphdr);
    728 
    729 	mss = max(tcp_mssdflt, mss);
    730 	return (mss);
    731 }
    732 
    733 /*
    734  * Set connection variables based on the peer's advertised MSS.
    735  * We are passed the TCPCB for the actual connection.  If we
    736  * are the server, we are called by the compressed state engine
    737  * when the 3-way handshake is complete.  If we are the client,
    738  * we are called when we recieve the SYN,ACK from the server.
    739  *
    740  * NOTE: Our advertised MSS value must be initialized in the TCPCB
    741  * before this routine is called!
    742  */
    743 void
    744 tcp_mss_from_peer(tp, offer)
    745 	struct tcpcb *tp;
    746 	int offer;
    747 {
    748 	struct inpcb *inp = tp->t_inpcb;
    749 	struct socket *so = inp->inp_socket;
    750 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
    751 	struct rtentry *rt = in_pcbrtentry(inp);
    752 #endif
    753 	u_long bufsize;
    754 	int mss;
    755 
    756 	/*
    757 	 * As per RFC1122, use the default MSS value, unless they
    758 	 * sent us an offer.  Do not accept offers less than 32 bytes.
    759 	 */
    760 	mss = tcp_mssdflt;
    761 	if (offer)
    762 		mss = offer;
    763 	mss = max(mss, 32);		/* sanity */
    764 	tp->t_peermss = mss;
    765 	mss -= (tcp_optlen(tp) + ip_optlen(tp->t_inpcb));
    766 
    767 	/*
    768 	 * If there's a pipesize, change the socket buffer to that size.
    769 	 * Make the socket buffer an integral number of MSS units.  If
    770 	 * the MSS is larger than the socket buffer, artificially decrease
    771 	 * the MSS.
    772 	 */
    773 #ifdef RTV_SPIPE
    774 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
    775 		bufsize = rt->rt_rmx.rmx_sendpipe;
    776 	else
    777 #endif
    778 		bufsize = so->so_snd.sb_hiwat;
    779 	if (bufsize < mss)
    780 		mss = bufsize;
    781 	else {
    782 		bufsize = roundup(bufsize, mss);
    783 		if (bufsize > sb_max)
    784 			bufsize = sb_max;
    785 		(void) sbreserve(&so->so_snd, bufsize);
    786 	}
    787 	tp->t_segsz = mss;
    788 
    789 #ifdef RTV_SSTHRESH
    790 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
    791 		/*
    792 		 * There's some sort of gateway or interface buffer
    793 		 * limit on the path.  Use this to set the slow
    794 		 * start threshold, but set the threshold to no less
    795 		 * than 2 * MSS.
    796 		 */
    797 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
    798 	}
    799 #endif
    800 }
    801 
    802 /*
    803  * Processing necessary when a TCP connection is established.
    804  */
    805 void
    806 tcp_established(tp)
    807 	struct tcpcb *tp;
    808 {
    809 	struct inpcb *inp = tp->t_inpcb;
    810 	struct socket *so = inp->inp_socket;
    811 #ifdef RTV_RPIPE
    812 	struct rtentry *rt = in_pcbrtentry(inp);
    813 #endif
    814 	u_long bufsize;
    815 
    816 	tp->t_state = TCPS_ESTABLISHED;
    817 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
    818 
    819 #ifdef RTV_RPIPE
    820 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
    821 		bufsize = rt->rt_rmx.rmx_recvpipe;
    822 	else
    823 #endif
    824 		bufsize = so->so_rcv.sb_hiwat;
    825 	if (bufsize > tp->t_ourmss) {
    826 		bufsize = roundup(bufsize, tp->t_ourmss);
    827 		if (bufsize > sb_max)
    828 			bufsize = sb_max;
    829 		(void) sbreserve(&so->so_rcv, bufsize);
    830 	}
    831 }
    832 
    833 /*
    834  * Check if there's an initial rtt or rttvar.  Convert from the
    835  * route-table units to scaled multiples of the slow timeout timer.
    836  * Called only during the 3-way handshake.
    837  */
    838 void
    839 tcp_rmx_rtt(tp)
    840 	struct tcpcb *tp;
    841 {
    842 #ifdef RTV_RTT
    843 	struct rtentry *rt;
    844 	int rtt;
    845 
    846 	if ((rt = in_pcbrtentry(tp->t_inpcb)) == NULL)
    847 		return;
    848 
    849 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
    850 		/*
    851 		 * XXX The lock bit for MTU indicates that the value
    852 		 * is also a minimum value; this is subject to time.
    853 		 */
    854 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
    855 			TCPT_RANGESET(tp->t_rttmin,
    856 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
    857 			    TCPTV_MIN, TCPTV_REXMTMAX);
    858 		tp->t_srtt = rtt /
    859 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    860 		if (rt->rt_rmx.rmx_rttvar) {
    861 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
    862 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
    863 				(TCP_RTTVAR_SHIFT + 2));
    864 		} else {
    865 			/* Default variation is +- 1 rtt */
    866 			tp->t_rttvar =
    867 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
    868 		}
    869 		TCPT_RANGESET(tp->t_rxtcur,
    870 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
    871 		    tp->t_rttmin, TCPTV_REXMTMAX);
    872 	}
    873 #endif
    874 }
    875 
    876 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
    877 
    878 /*
    879  * Get a new sequence value given a tcp control block
    880  */
    881 tcp_seq
    882 tcp_new_iss(tp, len, addin)
    883 	void            *tp;
    884 	u_long           len;
    885 	tcp_seq		 addin;
    886 {
    887 	tcp_seq          tcp_iss;
    888 
    889 	/*
    890 	 * Randomize.
    891 	 */
    892 #if NRND > 0
    893 	rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
    894 #else
    895 	tcp_iss = random();
    896 #endif
    897 
    898 	/*
    899 	 * If we were asked to add some amount to a known value,
    900 	 * we will take a random value obtained above, mask off the upper
    901 	 * bits, and add in the known value.  We also add in a constant to
    902 	 * ensure that we are at least a certain distance from the original
    903 	 * value.
    904 	 *
    905 	 * This is used when an old connection is in timed wait
    906 	 * and we have a new one coming in, for instance.
    907 	 */
    908 	if (addin != 0) {
    909 #ifdef TCPISS_DEBUG
    910 		printf("Random %08x, ", tcp_iss);
    911 #endif
    912 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    913 		tcp_iss += addin + TCP_ISSINCR;
    914 #ifdef TCPISS_DEBUG
    915 		printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
    916 #endif
    917 	} else {
    918 		tcp_iss &= TCP_ISS_RANDOM_MASK;
    919 		tcp_iss += tcp_iss_seq;
    920 		tcp_iss_seq += TCP_ISSINCR;
    921 #ifdef TCPISS_DEBUG
    922 		printf("ISS %08x\n", tcp_iss);
    923 #endif
    924 	}
    925 
    926 	if (tcp_compat_42) {
    927 		/*
    928 		 * Limit it to the positive range for really old TCP
    929 		 * implementations.
    930 		 */
    931 		if (tcp_iss >= 0x80000000)
    932 			tcp_iss &= 0x7fffffff;		/* XXX */
    933 	}
    934 
    935 	return tcp_iss;
    936 }
    937 
    938 
    939 /*
    940  * Determine the length of the TCP options for this connection.
    941  *
    942  * XXX:  What do we do for SACK, when we add that?  Just reserve
    943  *       all of the space?  Otherwise we can't exactly be incrementing
    944  *       cwnd by an amount that varies depending on the amount we last
    945  *       had to SACK!
    946  */
    947 
    948 u_int
    949 tcp_optlen(tp)
    950 	struct tcpcb *tp;
    951 {
    952 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
    953 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
    954 		return TCPOLEN_TSTAMP_APPA;
    955 	else
    956 		return 0;
    957 }
    958