tcp_subr.c revision 1.68 1 /* $NetBSD: tcp_subr.c,v 1.68 1999/07/02 12:45:32 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_tcp_compat_42.h"
106 #include "rnd.h"
107
108 #include <sys/param.h>
109 #include <sys/proc.h>
110 #include <sys/systm.h>
111 #include <sys/malloc.h>
112 #include <sys/mbuf.h>
113 #include <sys/socket.h>
114 #include <sys/socketvar.h>
115 #include <sys/protosw.h>
116 #include <sys/errno.h>
117 #include <sys/kernel.h>
118 #include <sys/pool.h>
119 #if NRND > 0
120 #include <sys/rnd.h>
121 #endif
122
123 #include <net/route.h>
124 #include <net/if.h>
125
126 #include <netinet/in.h>
127 #include <netinet/in_systm.h>
128 #include <netinet/ip.h>
129 #include <netinet/in_pcb.h>
130 #include <netinet/ip_var.h>
131 #include <netinet/ip_icmp.h>
132
133 #ifdef INET6
134 #ifndef INET
135 #include <netinet/in.h>
136 #endif
137 #include <netinet/ip6.h>
138 #include <netinet6/in6_pcb.h>
139 #include <netinet6/ip6_var.h>
140 #endif
141
142 #include <netinet/tcp.h>
143 #include <netinet/tcp_fsm.h>
144 #include <netinet/tcp_seq.h>
145 #include <netinet/tcp_timer.h>
146 #include <netinet/tcp_var.h>
147 #include <netinet/tcpip.h>
148
149 #ifdef IPSEC
150 #include <netinet6/ipsec.h>
151 #include <netinet6/ah.h>
152 #ifdef IPSEC_ESP
153 #include <netinet6/esp.h>
154 #endif
155 #endif /*IPSEC*/
156
157 #ifdef INET6
158 struct in6pcb tcb6;
159 #endif
160
161 /* patchable/settable parameters for tcp */
162 int tcp_mssdflt = TCP_MSS;
163 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
164 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
165 int tcp_do_sack = 1; /* selective acknowledgement */
166 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
167 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
168 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
169 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
170 int tcp_init_win = 1;
171 int tcp_mss_ifmtu = 0;
172 #ifdef TCP_COMPAT_42
173 int tcp_compat_42 = 1;
174 #else
175 int tcp_compat_42 = 0;
176 #endif
177
178 #ifndef TCBHASHSIZE
179 #define TCBHASHSIZE 128
180 #endif
181 int tcbhashsize = TCBHASHSIZE;
182
183 int tcp_freeq __P((struct tcpcb *));
184
185 struct pool tcpcb_pool;
186
187 /*
188 * Tcp initialization
189 */
190 void
191 tcp_init()
192 {
193 int hlen;
194
195 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
196 0, NULL, NULL, M_PCB);
197 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
198 #ifdef INET6
199 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
200 #endif
201 LIST_INIT(&tcp_delacks);
202
203 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
204 #ifdef INET6
205 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
206 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
207 #endif
208 if (max_protohdr < hlen)
209 max_protohdr = hlen;
210 if (max_linkhdr + hlen > MHLEN)
211 panic("tcp_init");
212
213 /* Initialize the compressed state engine. */
214 syn_cache_init();
215 }
216
217 /*
218 * Create template to be used to send tcp packets on a connection.
219 * Call after host entry created, allocates an mbuf and fills
220 * in a skeletal tcp/ip header, minimizing the amount of work
221 * necessary when the connection is used.
222 */
223 struct mbuf *
224 tcp_template(tp)
225 struct tcpcb *tp;
226 {
227 register struct inpcb *inp = tp->t_inpcb;
228 #ifdef INET6
229 register struct in6pcb *in6p = tp->t_in6pcb;
230 #endif
231 register struct tcphdr *n;
232 register struct mbuf *m;
233 int hlen;
234
235 switch (tp->t_family) {
236 case AF_INET:
237 hlen = sizeof(struct ip);
238 if (inp)
239 break;
240 #ifdef INET6
241 if (in6p) {
242 /* mapped addr case */
243 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
244 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
245 break;
246 }
247 #endif
248 return NULL; /*EINVAL*/
249 #ifdef INET6
250 case AF_INET6:
251 hlen = sizeof(struct ip6_hdr);
252 if (in6p) {
253 /* more sainty check? */
254 break;
255 }
256 return NULL; /*EINVAL*/
257 #endif
258 default:
259 hlen = 0; /*pacify gcc*/
260 return NULL; /*EAFNOSUPPORT*/
261 }
262 if ((m = tp->t_template) == 0) {
263 MGETHDR(m, M_DONTWAIT, MT_HEADER);
264 if (m) {
265 MCLGET(m, M_DONTWAIT);
266 if ((m->m_flags & M_EXT) == 0) {
267 m_free(m);
268 m = NULL;
269 }
270 }
271 if (m == NULL)
272 return NULL;
273 m->m_len = hlen + sizeof(struct tcphdr);
274 }
275 bzero(mtod(m, caddr_t), m->m_len);
276 switch (tp->t_family) {
277 case AF_INET:
278 {
279 struct ipovly *ipov;
280 mtod(m, struct ip *)->ip_v = 4;
281 ipov = mtod(m, struct ipovly *);
282 ipov->ih_pr = IPPROTO_TCP;
283 ipov->ih_len = htons(sizeof(struct tcphdr));
284 if (inp) {
285 ipov->ih_src = inp->inp_laddr;
286 ipov->ih_dst = inp->inp_faddr;
287 }
288 #ifdef INET6
289 else if (in6p) {
290 /* mapped addr case */
291 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
292 sizeof(ipov->ih_src));
293 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
294 sizeof(ipov->ih_dst));
295 }
296 #endif
297 break;
298 }
299 #ifdef INET6
300 case AF_INET6:
301 {
302 struct ip6_hdr *ip6;
303 mtod(m, struct ip *)->ip_v = 6;
304 ip6 = mtod(m, struct ip6_hdr *);
305 ip6->ip6_nxt = IPPROTO_TCP;
306 ip6->ip6_plen = htons(sizeof(struct tcphdr));
307 ip6->ip6_src = in6p->in6p_laddr;
308 ip6->ip6_dst = in6p->in6p_faddr;
309 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
310 if (ip6_auto_flowlabel) {
311 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
312 ip6->ip6_flow |=
313 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
314 }
315 ip6->ip6_vfc = IPV6_VERSION;
316 break;
317 }
318 #endif
319 }
320 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
321 if (inp) {
322 n->th_sport = inp->inp_lport;
323 n->th_dport = inp->inp_fport;
324 }
325 #ifdef INET6
326 else if (in6p) {
327 n->th_sport = in6p->in6p_lport;
328 n->th_dport = in6p->in6p_fport;
329 }
330 #endif
331 n->th_seq = 0;
332 n->th_ack = 0;
333 n->th_x2 = 0;
334 n->th_off = 5;
335 n->th_flags = 0;
336 n->th_win = 0;
337 n->th_sum = 0;
338 n->th_urp = 0;
339 return (m);
340 }
341
342 /*
343 * Send a single message to the TCP at address specified by
344 * the given TCP/IP header. If m == 0, then we make a copy
345 * of the tcpiphdr at ti and send directly to the addressed host.
346 * This is used to force keep alive messages out using the TCP
347 * template for a connection tp->t_template. If flags are given
348 * then we send a message back to the TCP which originated the
349 * segment ti, and discard the mbuf containing it and any other
350 * attached mbufs.
351 *
352 * In any case the ack and sequence number of the transmitted
353 * segment are as specified by the parameters.
354 */
355 int
356 tcp_respond(tp, template, m, ack, seq, flags)
357 struct tcpcb *tp;
358 struct mbuf *template; /* XXX should be struct mbuf? */
359 register struct mbuf *m;
360 tcp_seq ack, seq;
361 int flags;
362 {
363 #ifndef INET6
364 struct route iproute;
365 #else
366 struct route_in6 iproute; /* sizeof(route_in6) > sizeof(route) */
367 #endif
368 struct route *ro;
369 struct rtentry *rt;
370 int error, tlen, win = 0;
371 int hlen;
372 struct ip *ip;
373 #ifdef INET6
374 struct ip6_hdr *ip6;
375 #endif
376 int family; /* family on packet, not inpcb/in6pcb! */
377 struct tcphdr *th;
378
379 if (tp != NULL && (flags & TH_RST) == 0) {
380 if (tp->t_inpcb)
381 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
382 #ifdef INET6
383 else if (tp->t_in6pcb)
384 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
385 #endif
386 }
387
388 ip = NULL;
389 #ifdef INET6
390 ip6 = NULL;
391 #endif
392 if (m == 0) {
393 if (template
394 && template->m_len < hlen + sizeof(struct tcphdr)) {
395 if (m)
396 m_freem(m);
397 return EINVAL;
398 }
399
400 /* get family information from template */
401 switch (mtod(template, struct ip *)->ip_v) {
402 case 4:
403 family = AF_INET;
404 hlen = sizeof(struct ip);
405 break;
406 #ifdef INET6
407 case 6:
408 family = AF_INET6;
409 hlen = sizeof(struct ip6_hdr);
410 break;
411 #endif
412 default:
413 if (m)
414 m_freem(m);
415 return EAFNOSUPPORT;
416 }
417
418 MGETHDR(m, M_DONTWAIT, MT_HEADER);
419 if (m) {
420 MCLGET(m, M_DONTWAIT);
421 if ((m->m_flags & M_EXT)) {
422 m_free(m);
423 m = NULL;
424 }
425 }
426 if (m == NULL)
427 return (ENOBUFS);
428
429 if (tcp_compat_42)
430 tlen = 1;
431 else
432 tlen = 0;
433
434 m->m_data += max_linkhdr;
435 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
436 template->m_len);
437 switch (family) {
438 case AF_INET:
439 ip = mtod(m, struct ip *);
440 th = (struct tcphdr *)(ip + 1);
441 break;
442 #ifdef INET6
443 case AF_INET6:
444 ip6 = mtod(m, struct ip6_hdr *);
445 th = (struct tcphdr *)(ip6 + 1);
446 break;
447 #endif
448 default: /*pacify gcc*/
449 ip = NULL;
450 ip6 = NULL;
451 th = NULL;
452 break;
453 }
454 flags = TH_ACK;
455 } else {
456 /* get family information from m */
457 switch (mtod(m, struct ip *)->ip_v) {
458 case 4:
459 family = AF_INET;
460 hlen = sizeof(struct ip);
461 break;
462 #ifdef INET6
463 case 6:
464 family = AF_INET6;
465 hlen = sizeof(struct ip6_hdr);
466 break;
467 #endif
468 default:
469 if (m)
470 m_freem(m);
471 return EAFNOSUPPORT;
472 }
473
474 /* template pointer almost has no meaning */
475 m_freem(m->m_next);
476 m->m_next = 0;
477 m->m_len = hlen + sizeof(struct tcphdr);
478 if ((m->m_flags & M_PKTHDR) == 0) {
479 printf("non PKTHDR to tcp_respond\n");
480 m_freem(m);
481 return EINVAL;
482 }
483
484 tlen = 0;
485 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
486 switch (family) {
487 case AF_INET:
488 ip = mtod(m, struct ip *);
489 th = (struct tcphdr *)(ip + 1);
490 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
491 break;
492 #ifdef INET6
493 case AF_INET6:
494 ip6 = mtod(m, struct ip6_hdr *);
495 th = (struct tcphdr *)(ip6 + 1);
496 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
497 break;
498 #endif
499 }
500 xchg(th->th_dport, th->th_sport, u_int16_t);
501 #undef xchg
502 }
503 th->th_seq = htonl(seq);
504 th->th_ack = htonl(ack);
505 th->th_x2 = 0;
506 if ((flags & TH_SYN) == 0) {
507 if (tp)
508 th->th_win = htons((u_int16_t) (win >> tp->rcv_scale));
509 else
510 th->th_win = htons((u_int16_t)win);
511 th->th_off = sizeof (struct tcphdr) >> 2;
512 tlen += sizeof (struct tcphdr);
513 } else
514 tlen += th->th_off << 2;
515 m->m_len = hlen + tlen;
516 m->m_pkthdr.len = hlen + tlen;
517 m->m_pkthdr.rcvif = (struct ifnet *) 0;
518 th->th_flags = flags;
519 th->th_urp = 0;
520
521 switch (family) {
522 case AF_INET:
523 {
524 struct ipovly *ipov = (struct ipovly *)ip;
525 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
526 ipov->ih_len = htons((u_int16_t)tlen);
527
528 th->th_sum = 0;
529 th->th_sum = in_cksum(m, hlen + tlen);
530 ip->ip_len = hlen + tlen; /*will be flipped on output*/
531 ip->ip_ttl = ip_defttl;
532 break;
533 }
534 #ifdef INET6
535 case AF_INET6:
536 {
537 th->th_sum = 0;
538 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
539 tlen);
540 ip6->ip6_plen = ntohs(tlen);
541 ip6->ip6_hlim = ip6_defhlim;
542 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
543 if (ip6_auto_flowlabel) {
544 ip6->ip6_flow |=
545 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
546 }
547 break;
548 }
549 #endif
550 }
551
552 #ifdef IPSEC
553 m->m_pkthdr.rcvif = NULL;
554 #endif /*IPSEC*/
555
556 /*
557 * If we're doing Path MTU discovery, we need to set DF unless
558 * the route's MTU is locked. If we lack a route, we need to
559 * look it up now.
560 *
561 * ip_output() could do this for us, but it's convenient to just
562 * do it here unconditionally.
563 */
564 if (tp != NULL && tp->t_inpcb != NULL) {
565 ro = &tp->t_inpcb->inp_route;
566 #ifdef IPSEC
567 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket;
568 #endif
569 #ifdef DIAGNOSTIC
570 if (family != AF_INET)
571 panic("tcp_respond: address family mismatch");
572 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
573 panic("tcp_respond: ip_dst %x != inp_faddr %x",
574 ntohl(ip->ip_dst.s_addr),
575 ntohl(tp->t_inpcb->inp_faddr.s_addr));
576 }
577 #endif
578 }
579 #ifdef INET6
580 else if (tp != NULL && tp->t_in6pcb != NULL) {
581 ro = (struct route *)&tp->t_in6pcb->in6p_route;
582 #ifdef IPSEC
583 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_in6pcb->in6p_socket;
584 #endif
585 #ifdef DIAGNOSTIC
586 if (family == AF_INET) {
587 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
588 panic("tcp_respond: not mapped addr");
589 if (bcmp(&ip->ip_dst,
590 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
591 sizeof(ip->ip_dst)) != 0) {
592 panic("tcp_respond: ip_dst != in6p_faddr");
593 }
594 } else if (family == AF_INET6) {
595 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
596 panic("tcp_respond: ip6_dst != in6p_faddr");
597 } else
598 panic("tcp_respond: address family mismatch");
599 #endif
600 }
601 #endif
602 else {
603 ro = (struct route *)&iproute;
604 bzero(ro, sizeof(iproute));
605 }
606 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
607 if (ro->ro_rt != NULL) {
608 RTFREE(ro->ro_rt);
609 ro->ro_rt = NULL;
610 }
611 switch (family) {
612 case AF_INET:
613 {
614 struct sockaddr_in *dst;
615 dst = satosin(&ro->ro_dst);
616 dst->sin_family = AF_INET;
617 dst->sin_len = sizeof(*dst);
618 dst->sin_addr = ip->ip_dst;
619 break;
620 }
621 #ifdef INET6
622 case AF_INET6:
623 {
624 struct sockaddr_in6 *dst;
625 dst = satosin6(&ro->ro_dst);
626 bzero(dst, sizeof(*dst));
627 dst->sin6_family = AF_INET6;
628 dst->sin6_len = sizeof(*dst);
629 dst->sin6_addr = ip6->ip6_dst;
630 break;
631 }
632 #endif
633 }
634 rtalloc(ro);
635 if ((rt = ro->ro_rt) == NULL) {
636 m_freem(m);
637 switch (family) {
638 case AF_INET:
639 ipstat.ips_noroute++;
640 break;
641 #ifdef INET6
642 case AF_INET6:
643 ip6stat.ip6s_noroute++;
644 break;
645 #endif
646 }
647 return (EHOSTUNREACH);
648 }
649 }
650 switch (family) {
651 case AF_INET:
652 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
653 ip->ip_off |= IP_DF;
654
655 error = ip_output(m, NULL, ro, 0, NULL);
656 break;
657 #ifdef INET6
658 case AF_INET6:
659 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL);
660 break;
661 #endif
662 default:
663 error = EAFNOSUPPORT;
664 break;
665 }
666
667 if (ro == (struct route *)&iproute) {
668 RTFREE(ro->ro_rt);
669 ro->ro_rt = NULL;
670 }
671
672 return (error);
673 }
674
675 /*
676 * Create a new TCP control block, making an
677 * empty reassembly queue and hooking it to the argument
678 * protocol control block.
679 */
680 struct tcpcb *
681 tcp_newtcpcb(family, aux)
682 int family; /* selects inpcb, or in6pcb */
683 void *aux;
684 {
685 register struct tcpcb *tp;
686
687 switch (family) {
688 case PF_INET:
689 break;
690 #ifdef INET6
691 case PF_INET6:
692 break;
693 #endif
694 default:
695 return NULL;
696 }
697
698 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
699 if (tp == NULL)
700 return (NULL);
701 bzero((caddr_t)tp, sizeof(struct tcpcb));
702 LIST_INIT(&tp->segq);
703 LIST_INIT(&tp->timeq);
704 tp->t_family = family; /* may be overridden later on */
705 tp->t_peermss = tcp_mssdflt;
706 tp->t_ourmss = tcp_mssdflt;
707 tp->t_segsz = tcp_mssdflt;
708
709 tp->t_flags = 0;
710 if (tcp_do_rfc1323 && tcp_do_win_scale)
711 tp->t_flags |= TF_REQ_SCALE;
712 if (tcp_do_rfc1323 && tcp_do_timestamps)
713 tp->t_flags |= TF_REQ_TSTMP;
714 if (tcp_do_sack == 2)
715 tp->t_flags |= TF_WILL_SACK;
716 else if (tcp_do_sack == 1)
717 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
718 tp->t_flags |= TF_CANT_TXSACK;
719 switch (family) {
720 case PF_INET:
721 tp->t_inpcb = (struct inpcb *)aux;
722 break;
723 #ifdef INET6
724 case PF_INET6:
725 tp->t_in6pcb = (struct in6pcb *)aux;
726 break;
727 #endif
728 }
729 /*
730 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
731 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
732 * reasonable initial retransmit time.
733 */
734 tp->t_srtt = TCPTV_SRTTBASE;
735 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
736 tp->t_rttmin = TCPTV_MIN;
737 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
738 TCPTV_MIN, TCPTV_REXMTMAX);
739 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
741 if (family == AF_INET) {
742 struct inpcb *inp = (struct inpcb *)aux;
743 inp->inp_ip.ip_ttl = ip_defttl;
744 inp->inp_ppcb = (caddr_t)tp;
745 }
746 #ifdef INET6
747 else if (family == AF_INET6) {
748 struct in6pcb *in6p = (struct in6pcb *)aux;
749 in6p->in6p_ip6.ip6_hlim = ip6_defhlim;
750 in6p->in6p_ppcb = (caddr_t)tp;
751 }
752 #endif
753 return (tp);
754 }
755
756 /*
757 * Drop a TCP connection, reporting
758 * the specified error. If connection is synchronized,
759 * then send a RST to peer.
760 */
761 struct tcpcb *
762 tcp_drop(tp, errno)
763 register struct tcpcb *tp;
764 int errno;
765 {
766 struct socket *so;
767
768 if (tp->t_inpcb)
769 so = tp->t_inpcb->inp_socket;
770 #ifdef INET6
771 else if (tp->t_in6pcb)
772 so = tp->t_in6pcb->in6p_socket;
773 #endif
774 else
775 return NULL;
776
777 if (TCPS_HAVERCVDSYN(tp->t_state)) {
778 tp->t_state = TCPS_CLOSED;
779 (void) tcp_output(tp);
780 tcpstat.tcps_drops++;
781 } else
782 tcpstat.tcps_conndrops++;
783 if (errno == ETIMEDOUT && tp->t_softerror)
784 errno = tp->t_softerror;
785 so->so_error = errno;
786 return (tcp_close(tp));
787 }
788
789 /*
790 * Close a TCP control block:
791 * discard all space held by the tcp
792 * discard internet protocol block
793 * wake up any sleepers
794 */
795 struct tcpcb *
796 tcp_close(tp)
797 register struct tcpcb *tp;
798 {
799 struct inpcb *inp;
800 #ifdef INET6
801 struct in6pcb *in6p;
802 #endif
803 struct socket *so;
804 #ifdef RTV_RTT
805 register struct rtentry *rt;
806 #endif
807 struct route *ro;
808
809 inp = tp->t_inpcb;
810 #ifdef INET6
811 in6p = tp->t_in6pcb;
812 #endif
813 so = NULL;
814 ro = NULL;
815 if (inp) {
816 so = inp->inp_socket;
817 ro = &inp->inp_route;
818 }
819 #ifdef INET6
820 else if (in6p) {
821 so = in6p->in6p_socket;
822 ro = (struct route *)&in6p->in6p_route;
823 }
824 #endif
825
826 #ifdef RTV_RTT
827 /*
828 * If we sent enough data to get some meaningful characteristics,
829 * save them in the routing entry. 'Enough' is arbitrarily
830 * defined as the sendpipesize (default 4K) * 16. This would
831 * give us 16 rtt samples assuming we only get one sample per
832 * window (the usual case on a long haul net). 16 samples is
833 * enough for the srtt filter to converge to within 5% of the correct
834 * value; fewer samples and we could save a very bogus rtt.
835 *
836 * Don't update the default route's characteristics and don't
837 * update anything that the user "locked".
838 */
839 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
840 ro && (rt = ro->ro_rt) &&
841 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
842 register u_long i = 0;
843
844 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
845 i = tp->t_srtt *
846 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
847 if (rt->rt_rmx.rmx_rtt && i)
848 /*
849 * filter this update to half the old & half
850 * the new values, converting scale.
851 * See route.h and tcp_var.h for a
852 * description of the scaling constants.
853 */
854 rt->rt_rmx.rmx_rtt =
855 (rt->rt_rmx.rmx_rtt + i) / 2;
856 else
857 rt->rt_rmx.rmx_rtt = i;
858 }
859 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
860 i = tp->t_rttvar *
861 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
862 if (rt->rt_rmx.rmx_rttvar && i)
863 rt->rt_rmx.rmx_rttvar =
864 (rt->rt_rmx.rmx_rttvar + i) / 2;
865 else
866 rt->rt_rmx.rmx_rttvar = i;
867 }
868 /*
869 * update the pipelimit (ssthresh) if it has been updated
870 * already or if a pipesize was specified & the threshhold
871 * got below half the pipesize. I.e., wait for bad news
872 * before we start updating, then update on both good
873 * and bad news.
874 */
875 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
876 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
877 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
878 /*
879 * convert the limit from user data bytes to
880 * packets then to packet data bytes.
881 */
882 i = (i + tp->t_segsz / 2) / tp->t_segsz;
883 if (i < 2)
884 i = 2;
885 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
886 if (rt->rt_rmx.rmx_ssthresh)
887 rt->rt_rmx.rmx_ssthresh =
888 (rt->rt_rmx.rmx_ssthresh + i) / 2;
889 else
890 rt->rt_rmx.rmx_ssthresh = i;
891 }
892 }
893 #endif /* RTV_RTT */
894 /* free the reassembly queue, if any */
895 TCP_REASS_LOCK(tp);
896 (void) tcp_freeq(tp);
897 TCP_REASS_UNLOCK(tp);
898
899 TCP_CLEAR_DELACK(tp);
900
901 if (tp->t_template) {
902 m_free(tp->t_template);
903 tp->t_template = NULL;
904 }
905 pool_put(&tcpcb_pool, tp);
906 if (inp) {
907 inp->inp_ppcb = 0;
908 soisdisconnected(so);
909 in_pcbdetach(inp);
910 }
911 #ifdef INET6
912 else if (in6p) {
913 in6p->in6p_ppcb = 0;
914 soisdisconnected(so);
915 in6_pcbdetach(in6p);
916 }
917 #endif
918 tcpstat.tcps_closed++;
919 return ((struct tcpcb *)0);
920 }
921
922 int
923 tcp_freeq(tp)
924 struct tcpcb *tp;
925 {
926 register struct ipqent *qe;
927 int rv = 0;
928 #ifdef TCPREASS_DEBUG
929 int i = 0;
930 #endif
931
932 TCP_REASS_LOCK_CHECK(tp);
933
934 while ((qe = tp->segq.lh_first) != NULL) {
935 #ifdef TCPREASS_DEBUG
936 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
937 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
938 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
939 #endif
940 LIST_REMOVE(qe, ipqe_q);
941 LIST_REMOVE(qe, ipqe_timeq);
942 m_freem(qe->ipqe_m);
943 pool_put(&ipqent_pool, qe);
944 rv = 1;
945 }
946 return (rv);
947 }
948
949 /*
950 * Protocol drain routine. Called when memory is in short supply.
951 */
952 void
953 tcp_drain()
954 {
955 register struct inpcb *inp;
956 register struct tcpcb *tp;
957
958 /*
959 * Free the sequence queue of all TCP connections.
960 */
961 inp = tcbtable.inpt_queue.cqh_first;
962 if (inp) /* XXX */
963 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
964 inp = inp->inp_queue.cqe_next) {
965 if ((tp = intotcpcb(inp)) != NULL) {
966 /*
967 * We may be called from a device's interrupt
968 * context. If the tcpcb is already busy,
969 * just bail out now.
970 */
971 if (tcp_reass_lock_try(tp) == 0)
972 continue;
973 if (tcp_freeq(tp))
974 tcpstat.tcps_connsdrained++;
975 TCP_REASS_UNLOCK(tp);
976 }
977 }
978 }
979
980 /*
981 * Notify a tcp user of an asynchronous error;
982 * store error as soft error, but wake up user
983 * (for now, won't do anything until can select for soft error).
984 */
985 void
986 tcp_notify(inp, error)
987 struct inpcb *inp;
988 int error;
989 {
990 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
991 register struct socket *so = inp->inp_socket;
992
993 /*
994 * Ignore some errors if we are hooked up.
995 * If connection hasn't completed, has retransmitted several times,
996 * and receives a second error, give up now. This is better
997 * than waiting a long time to establish a connection that
998 * can never complete.
999 */
1000 if (tp->t_state == TCPS_ESTABLISHED &&
1001 (error == EHOSTUNREACH || error == ENETUNREACH ||
1002 error == EHOSTDOWN)) {
1003 return;
1004 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1005 tp->t_rxtshift > 3 && tp->t_softerror)
1006 so->so_error = error;
1007 else
1008 tp->t_softerror = error;
1009 wakeup((caddr_t) &so->so_timeo);
1010 sorwakeup(so);
1011 sowwakeup(so);
1012 }
1013
1014 #if defined(INET6) && !defined(TCP6)
1015 void
1016 tcp6_ctlinput(cmd, sa, ip6, m, off)
1017 int cmd;
1018 struct sockaddr *sa;
1019 register struct ip6_hdr *ip6;
1020 struct mbuf *m;
1021 int off;
1022 {
1023 (void)tcp_ctlinput(cmd, sa, (void *)ip6);
1024 }
1025 #endif
1026
1027 /* assumes that ip header and tcp header are contiguous on mbuf */
1028 void *
1029 tcp_ctlinput(cmd, sa, v)
1030 int cmd;
1031 struct sockaddr *sa;
1032 register void *v;
1033 {
1034 register struct ip *ip = v;
1035 register struct tcphdr *th;
1036 extern int inetctlerrmap[];
1037 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1038 int errno;
1039 int nmatch;
1040
1041 if ((unsigned)cmd >= PRC_NCMDS)
1042 return NULL;
1043 errno = inetctlerrmap[cmd];
1044 if (cmd == PRC_QUENCH)
1045 notify = tcp_quench;
1046 else if (PRC_IS_REDIRECT(cmd))
1047 notify = in_rtchange, ip = 0;
1048 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1049 notify = tcp_mtudisc, ip = 0;
1050 else if (cmd == PRC_HOSTDEAD)
1051 ip = 0;
1052 else if (errno == 0)
1053 return NULL;
1054 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1055 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1056 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1057 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1058 if (nmatch == 0 && syn_cache_count &&
1059 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1060 inetctlerrmap[cmd] == ENETUNREACH ||
1061 inetctlerrmap[cmd] == EHOSTDOWN)) {
1062 struct sockaddr_in sin;
1063 bzero(&sin, sizeof(sin));
1064 sin.sin_len = sizeof(sin);
1065 sin.sin_family = AF_INET;
1066 sin.sin_port = th->th_sport;
1067 sin.sin_addr = ip->ip_src;
1068 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1069 }
1070
1071 /* XXX mapped address case */
1072 }
1073 #ifdef INET6
1074 else if (ip && ip->ip_v == 6 && sa->sa_family == AF_INET6) {
1075 /* XXX do something for ip6 */
1076 }
1077 #endif
1078 else {
1079 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1080 notify);
1081 #ifdef INET6
1082 /* XXX do something for ip6 */
1083 #endif
1084 }
1085 return NULL;
1086 }
1087
1088 /*
1089 * When a source quence is received, we are being notifed of congestion.
1090 * Close the congestion window down to the Loss Window (one segment).
1091 * We will gradually open it again as we proceed.
1092 */
1093 void
1094 tcp_quench(inp, errno)
1095 struct inpcb *inp;
1096 int errno;
1097 {
1098 struct tcpcb *tp = intotcpcb(inp);
1099
1100 if (tp)
1101 tp->snd_cwnd = tp->t_segsz;
1102 }
1103
1104 /*
1105 * On receipt of path MTU corrections, flush old route and replace it
1106 * with the new one. Retransmit all unacknowledged packets, to ensure
1107 * that all packets will be received.
1108 */
1109 void
1110 tcp_mtudisc(inp, errno)
1111 struct inpcb *inp;
1112 int errno;
1113 {
1114 struct tcpcb *tp = intotcpcb(inp);
1115 struct rtentry *rt = in_pcbrtentry(inp);
1116
1117 if (tp != 0) {
1118 if (rt != 0) {
1119 /*
1120 * If this was not a host route, remove and realloc.
1121 */
1122 if ((rt->rt_flags & RTF_HOST) == 0) {
1123 in_rtchange(inp, errno);
1124 if ((rt = in_pcbrtentry(inp)) == 0)
1125 return;
1126 }
1127
1128 /*
1129 * Slow start out of the error condition. We
1130 * use the MTU because we know it's smaller
1131 * than the previously transmitted segment.
1132 *
1133 * Note: This is more conservative than the
1134 * suggestion in draft-floyd-incr-init-win-03.
1135 */
1136 if (rt->rt_rmx.rmx_mtu != 0)
1137 tp->snd_cwnd =
1138 TCP_INITIAL_WINDOW(tcp_init_win,
1139 rt->rt_rmx.rmx_mtu);
1140 }
1141
1142 /*
1143 * Resend unacknowledged packets.
1144 */
1145 tp->snd_nxt = tp->snd_una;
1146 tcp_output(tp);
1147 }
1148 }
1149
1150
1151 /*
1152 * Compute the MSS to advertise to the peer. Called only during
1153 * the 3-way handshake. If we are the server (peer initiated
1154 * connection), we are called with a pointer to the interface
1155 * on which the SYN packet arrived. If we are the client (we
1156 * initiated connection), we are called with a pointer to the
1157 * interface out which this connection should go.
1158 */
1159 u_long
1160 tcp_mss_to_advertise(ifp)
1161 const struct ifnet *ifp;
1162 {
1163 extern u_long in_maxmtu;
1164 u_long mss = 0;
1165
1166 /*
1167 * In order to avoid defeating path MTU discovery on the peer,
1168 * we advertise the max MTU of all attached networks as our MSS,
1169 * per RFC 1191, section 3.1.
1170 *
1171 * We provide the option to advertise just the MTU of
1172 * the interface on which we hope this connection will
1173 * be receiving. If we are responding to a SYN, we
1174 * will have a pretty good idea about this, but when
1175 * initiating a connection there is a bit more doubt.
1176 *
1177 * We also need to ensure that loopback has a large enough
1178 * MSS, as the loopback MTU is never included in in_maxmtu.
1179 */
1180
1181 if (ifp != NULL)
1182 mss = ifp->if_mtu;
1183
1184 if (tcp_mss_ifmtu == 0)
1185 mss = max(in_maxmtu, mss);
1186
1187 if (mss > sizeof(struct tcpiphdr))
1188 mss -= sizeof(struct tcpiphdr);
1189
1190 mss = max(tcp_mssdflt, mss);
1191 return (mss);
1192 }
1193
1194 /*
1195 * Set connection variables based on the peer's advertised MSS.
1196 * We are passed the TCPCB for the actual connection. If we
1197 * are the server, we are called by the compressed state engine
1198 * when the 3-way handshake is complete. If we are the client,
1199 * we are called when we recieve the SYN,ACK from the server.
1200 *
1201 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1202 * before this routine is called!
1203 */
1204 void
1205 tcp_mss_from_peer(tp, offer)
1206 struct tcpcb *tp;
1207 int offer;
1208 {
1209 struct socket *so;
1210 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1211 struct rtentry *rt;
1212 #endif
1213 u_long bufsize;
1214 int mss;
1215
1216 so = NULL;
1217 rt = NULL;
1218 if (tp->t_inpcb) {
1219 so = tp->t_inpcb->inp_socket;
1220 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1221 rt = in_pcbrtentry(tp->t_inpcb);
1222 #endif
1223 }
1224 #ifdef INET6
1225 else if (tp->t_in6pcb) {
1226 so = tp->t_in6pcb->in6p_socket;
1227 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1228 #ifdef TCP6
1229 rt = NULL;
1230 #else
1231 rt = in6_pcbrtentry(tp->t_in6pcb);
1232 #endif
1233 #endif
1234 }
1235 #endif
1236
1237 /*
1238 * As per RFC1122, use the default MSS value, unless they
1239 * sent us an offer. Do not accept offers less than 32 bytes.
1240 */
1241 mss = tcp_mssdflt;
1242 if (offer)
1243 mss = offer;
1244 mss = max(mss, 32); /* sanity */
1245 tp->t_peermss = mss;
1246 mss -= tcp_optlen(tp);
1247 if (tp->t_inpcb)
1248 mss -= ip_optlen(tp->t_inpcb);
1249 #ifdef INET6
1250 else if (tp->t_in6pcb)
1251 mss -= ip6_optlen(tp->t_in6pcb);
1252 #endif
1253
1254 /*
1255 * If there's a pipesize, change the socket buffer to that size.
1256 * Make the socket buffer an integral number of MSS units. If
1257 * the MSS is larger than the socket buffer, artificially decrease
1258 * the MSS.
1259 */
1260 #ifdef RTV_SPIPE
1261 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1262 bufsize = rt->rt_rmx.rmx_sendpipe;
1263 else
1264 #endif
1265 bufsize = so->so_snd.sb_hiwat;
1266 if (bufsize < mss)
1267 mss = bufsize;
1268 else {
1269 bufsize = roundup(bufsize, mss);
1270 if (bufsize > sb_max)
1271 bufsize = sb_max;
1272 (void) sbreserve(&so->so_snd, bufsize);
1273 }
1274 tp->t_segsz = mss;
1275
1276 #ifdef RTV_SSTHRESH
1277 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1278 /*
1279 * There's some sort of gateway or interface buffer
1280 * limit on the path. Use this to set the slow
1281 * start threshold, but set the threshold to no less
1282 * than 2 * MSS.
1283 */
1284 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1285 }
1286 #endif
1287 }
1288
1289 /*
1290 * Processing necessary when a TCP connection is established.
1291 */
1292 void
1293 tcp_established(tp)
1294 struct tcpcb *tp;
1295 {
1296 struct socket *so;
1297 #ifdef RTV_RPIPE
1298 struct rtentry *rt;
1299 #endif
1300 u_long bufsize;
1301
1302 so = NULL;
1303 rt = NULL;
1304 if (tp->t_inpcb) {
1305 so = tp->t_inpcb->inp_socket;
1306 #if defined(RTV_RPIPE)
1307 rt = in_pcbrtentry(tp->t_inpcb);
1308 #endif
1309 }
1310 #ifdef INET6
1311 else if (tp->t_in6pcb) {
1312 so = tp->t_in6pcb->in6p_socket;
1313 #if defined(RTV_RPIPE)
1314 #ifdef TCP6
1315 rt = NULL;
1316 #else
1317 rt = in6_pcbrtentry(tp->t_in6pcb);
1318 #endif
1319 #endif
1320 }
1321 #endif
1322
1323 tp->t_state = TCPS_ESTABLISHED;
1324 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1325
1326 #ifdef RTV_RPIPE
1327 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1328 bufsize = rt->rt_rmx.rmx_recvpipe;
1329 else
1330 #endif
1331 bufsize = so->so_rcv.sb_hiwat;
1332 if (bufsize > tp->t_ourmss) {
1333 bufsize = roundup(bufsize, tp->t_ourmss);
1334 if (bufsize > sb_max)
1335 bufsize = sb_max;
1336 (void) sbreserve(&so->so_rcv, bufsize);
1337 }
1338 }
1339
1340 /*
1341 * Check if there's an initial rtt or rttvar. Convert from the
1342 * route-table units to scaled multiples of the slow timeout timer.
1343 * Called only during the 3-way handshake.
1344 */
1345 void
1346 tcp_rmx_rtt(tp)
1347 struct tcpcb *tp;
1348 {
1349 #ifdef RTV_RTT
1350 struct rtentry *rt = NULL;
1351 int rtt;
1352
1353 if (tp->t_inpcb)
1354 rt = in_pcbrtentry(tp->t_inpcb);
1355 #ifdef INET6
1356 else if (tp->t_in6pcb) {
1357 #ifdef TCP6
1358 rt = NULL;
1359 #else
1360 rt = in6_pcbrtentry(tp->t_in6pcb);
1361 #endif
1362 }
1363 #endif
1364 if (rt == NULL)
1365 return;
1366
1367 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1368 /*
1369 * XXX The lock bit for MTU indicates that the value
1370 * is also a minimum value; this is subject to time.
1371 */
1372 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1373 TCPT_RANGESET(tp->t_rttmin,
1374 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1375 TCPTV_MIN, TCPTV_REXMTMAX);
1376 tp->t_srtt = rtt /
1377 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1378 if (rt->rt_rmx.rmx_rttvar) {
1379 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1380 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1381 (TCP_RTTVAR_SHIFT + 2));
1382 } else {
1383 /* Default variation is +- 1 rtt */
1384 tp->t_rttvar =
1385 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1386 }
1387 TCPT_RANGESET(tp->t_rxtcur,
1388 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1389 tp->t_rttmin, TCPTV_REXMTMAX);
1390 }
1391 #endif
1392 }
1393
1394 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1395
1396 /*
1397 * Get a new sequence value given a tcp control block
1398 */
1399 tcp_seq
1400 tcp_new_iss(tp, len, addin)
1401 void *tp;
1402 u_long len;
1403 tcp_seq addin;
1404 {
1405 tcp_seq tcp_iss;
1406
1407 /*
1408 * Randomize.
1409 */
1410 #if NRND > 0
1411 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1412 #else
1413 tcp_iss = random();
1414 #endif
1415
1416 /*
1417 * If we were asked to add some amount to a known value,
1418 * we will take a random value obtained above, mask off the upper
1419 * bits, and add in the known value. We also add in a constant to
1420 * ensure that we are at least a certain distance from the original
1421 * value.
1422 *
1423 * This is used when an old connection is in timed wait
1424 * and we have a new one coming in, for instance.
1425 */
1426 if (addin != 0) {
1427 #ifdef TCPISS_DEBUG
1428 printf("Random %08x, ", tcp_iss);
1429 #endif
1430 tcp_iss &= TCP_ISS_RANDOM_MASK;
1431 tcp_iss += addin + TCP_ISSINCR;
1432 #ifdef TCPISS_DEBUG
1433 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1434 #endif
1435 } else {
1436 tcp_iss &= TCP_ISS_RANDOM_MASK;
1437 tcp_iss += tcp_iss_seq;
1438 tcp_iss_seq += TCP_ISSINCR;
1439 #ifdef TCPISS_DEBUG
1440 printf("ISS %08x\n", tcp_iss);
1441 #endif
1442 }
1443
1444 if (tcp_compat_42) {
1445 /*
1446 * Limit it to the positive range for really old TCP
1447 * implementations.
1448 */
1449 if (tcp_iss >= 0x80000000)
1450 tcp_iss &= 0x7fffffff; /* XXX */
1451 }
1452
1453 return tcp_iss;
1454 }
1455
1456 #ifdef IPSEC
1457 /* compute ESP/AH header size for TCP, including outer IP header. */
1458 size_t
1459 ipsec4_hdrsiz_tcp(tp)
1460 struct tcpcb *tp;
1461 {
1462 struct inpcb *inp;
1463 size_t hdrsiz;
1464
1465 /* XXX mapped addr case (tp->t_in6pcb) */
1466 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1467 return 0;
1468 switch (tp->t_family) {
1469 case AF_INET:
1470 hdrsiz = ipsec4_hdrsiz(tp->t_template, inp);
1471 break;
1472 default:
1473 hdrsiz = 0;
1474 break;
1475 }
1476
1477 return hdrsiz;
1478 }
1479
1480 #if defined(INET6) && !defined(TCP6)
1481 size_t
1482 ipsec6_hdrsiz_tcp(tp)
1483 struct tcpcb *tp;
1484 {
1485 struct in6pcb *in6p;
1486 size_t hdrsiz;
1487
1488 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1489 return 0;
1490 switch (tp->t_family) {
1491 case AF_INET6:
1492 hdrsiz = ipsec6_hdrsiz(tp->t_template, in6p);
1493 break;
1494 case AF_INET:
1495 /* mapped address case - tricky */
1496 default:
1497 hdrsiz = 0;
1498 break;
1499 }
1500
1501 return hdrsiz;
1502 }
1503 #endif
1504 #endif /*IPSEC*/
1505
1506 /*
1507 * Determine the length of the TCP options for this connection.
1508 *
1509 * XXX: What do we do for SACK, when we add that? Just reserve
1510 * all of the space? Otherwise we can't exactly be incrementing
1511 * cwnd by an amount that varies depending on the amount we last
1512 * had to SACK!
1513 */
1514
1515 u_int
1516 tcp_optlen(tp)
1517 struct tcpcb *tp;
1518 {
1519 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1520 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1521 return TCPOLEN_TSTAMP_APPA;
1522 else
1523 return 0;
1524 }
1525