tcp_subr.c revision 1.70 1 /* $NetBSD: tcp_subr.c,v 1.70 1999/07/09 22:57:22 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #endif
142
143 #include <netinet/tcp.h>
144 #include <netinet/tcp_fsm.h>
145 #include <netinet/tcp_seq.h>
146 #include <netinet/tcp_timer.h>
147 #include <netinet/tcp_var.h>
148 #include <netinet/tcpip.h>
149
150 #ifdef IPSEC
151 #include <netinet6/ipsec.h>
152 #include <netinet6/ah.h>
153 #ifdef IPSEC_ESP
154 #include <netinet6/esp.h>
155 #endif
156 #endif /*IPSEC*/
157
158 #ifdef INET6
159 struct in6pcb tcb6;
160 #endif
161
162 /* patchable/settable parameters for tcp */
163 int tcp_mssdflt = TCP_MSS;
164 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
165 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
166 int tcp_do_sack = 1; /* selective acknowledgement */
167 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
168 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
169 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
170 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
171 int tcp_init_win = 1;
172 int tcp_mss_ifmtu = 0;
173 #ifdef TCP_COMPAT_42
174 int tcp_compat_42 = 1;
175 #else
176 int tcp_compat_42 = 0;
177 #endif
178
179 #ifndef TCBHASHSIZE
180 #define TCBHASHSIZE 128
181 #endif
182 int tcbhashsize = TCBHASHSIZE;
183
184 int tcp_freeq __P((struct tcpcb *));
185
186 struct pool tcpcb_pool;
187
188 /*
189 * Tcp initialization
190 */
191 void
192 tcp_init()
193 {
194 int hlen;
195
196 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
197 0, NULL, NULL, M_PCB);
198 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
199 #ifdef INET6
200 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
201 #endif
202 LIST_INIT(&tcp_delacks);
203
204 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
205 #ifdef INET6
206 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
207 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
208 #endif
209 if (max_protohdr < hlen)
210 max_protohdr = hlen;
211 if (max_linkhdr + hlen > MHLEN)
212 panic("tcp_init");
213
214 /* Initialize the compressed state engine. */
215 syn_cache_init();
216 }
217
218 /*
219 * Create template to be used to send tcp packets on a connection.
220 * Call after host entry created, allocates an mbuf and fills
221 * in a skeletal tcp/ip header, minimizing the amount of work
222 * necessary when the connection is used.
223 */
224 struct mbuf *
225 tcp_template(tp)
226 struct tcpcb *tp;
227 {
228 register struct inpcb *inp = tp->t_inpcb;
229 #ifdef INET6
230 register struct in6pcb *in6p = tp->t_in6pcb;
231 #endif
232 register struct tcphdr *n;
233 register struct mbuf *m;
234 int hlen;
235
236 switch (tp->t_family) {
237 case AF_INET:
238 hlen = sizeof(struct ip);
239 if (inp)
240 break;
241 #ifdef INET6
242 if (in6p) {
243 /* mapped addr case */
244 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
245 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
246 break;
247 }
248 #endif
249 return NULL; /*EINVAL*/
250 #ifdef INET6
251 case AF_INET6:
252 hlen = sizeof(struct ip6_hdr);
253 if (in6p) {
254 /* more sainty check? */
255 break;
256 }
257 return NULL; /*EINVAL*/
258 #endif
259 default:
260 hlen = 0; /*pacify gcc*/
261 return NULL; /*EAFNOSUPPORT*/
262 }
263 if ((m = tp->t_template) == 0) {
264 MGETHDR(m, M_DONTWAIT, MT_HEADER);
265 if (m) {
266 MCLGET(m, M_DONTWAIT);
267 if ((m->m_flags & M_EXT) == 0) {
268 m_free(m);
269 m = NULL;
270 }
271 }
272 if (m == NULL)
273 return NULL;
274 m->m_len = hlen + sizeof(struct tcphdr);
275 }
276 bzero(mtod(m, caddr_t), m->m_len);
277 switch (tp->t_family) {
278 case AF_INET:
279 {
280 struct ipovly *ipov;
281 mtod(m, struct ip *)->ip_v = 4;
282 ipov = mtod(m, struct ipovly *);
283 ipov->ih_pr = IPPROTO_TCP;
284 ipov->ih_len = htons(sizeof(struct tcphdr));
285 if (inp) {
286 ipov->ih_src = inp->inp_laddr;
287 ipov->ih_dst = inp->inp_faddr;
288 }
289 #ifdef INET6
290 else if (in6p) {
291 /* mapped addr case */
292 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
293 sizeof(ipov->ih_src));
294 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
295 sizeof(ipov->ih_dst));
296 }
297 #endif
298 break;
299 }
300 #ifdef INET6
301 case AF_INET6:
302 {
303 struct ip6_hdr *ip6;
304 mtod(m, struct ip *)->ip_v = 6;
305 ip6 = mtod(m, struct ip6_hdr *);
306 ip6->ip6_nxt = IPPROTO_TCP;
307 ip6->ip6_plen = htons(sizeof(struct tcphdr));
308 ip6->ip6_src = in6p->in6p_laddr;
309 ip6->ip6_dst = in6p->in6p_faddr;
310 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
311 if (ip6_auto_flowlabel) {
312 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
313 ip6->ip6_flow |=
314 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
315 }
316 ip6->ip6_vfc = IPV6_VERSION;
317 break;
318 }
319 #endif
320 }
321 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
322 if (inp) {
323 n->th_sport = inp->inp_lport;
324 n->th_dport = inp->inp_fport;
325 }
326 #ifdef INET6
327 else if (in6p) {
328 n->th_sport = in6p->in6p_lport;
329 n->th_dport = in6p->in6p_fport;
330 }
331 #endif
332 n->th_seq = 0;
333 n->th_ack = 0;
334 n->th_x2 = 0;
335 n->th_off = 5;
336 n->th_flags = 0;
337 n->th_win = 0;
338 n->th_sum = 0;
339 n->th_urp = 0;
340 return (m);
341 }
342
343 /*
344 * Send a single message to the TCP at address specified by
345 * the given TCP/IP header. If m == 0, then we make a copy
346 * of the tcpiphdr at ti and send directly to the addressed host.
347 * This is used to force keep alive messages out using the TCP
348 * template for a connection tp->t_template. If flags are given
349 * then we send a message back to the TCP which originated the
350 * segment ti, and discard the mbuf containing it and any other
351 * attached mbufs.
352 *
353 * In any case the ack and sequence number of the transmitted
354 * segment are as specified by the parameters.
355 */
356 int
357 tcp_respond(tp, template, m, ack, seq, flags)
358 struct tcpcb *tp;
359 struct mbuf *template; /* XXX should be struct mbuf? */
360 register struct mbuf *m;
361 tcp_seq ack, seq;
362 int flags;
363 {
364 #ifndef INET6
365 struct route iproute;
366 #else
367 struct route_in6 iproute; /* sizeof(route_in6) > sizeof(route) */
368 #endif
369 struct route *ro;
370 struct rtentry *rt;
371 int error, tlen, win = 0;
372 int hlen;
373 struct ip *ip;
374 #ifdef INET6
375 struct ip6_hdr *ip6;
376 #endif
377 int family; /* family on packet, not inpcb/in6pcb! */
378 struct tcphdr *th;
379
380 if (tp != NULL && (flags & TH_RST) == 0) {
381 if (tp->t_inpcb)
382 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
383 #ifdef INET6
384 else if (tp->t_in6pcb)
385 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
386 #endif
387 }
388
389 ip = NULL;
390 #ifdef INET6
391 ip6 = NULL;
392 #endif
393 if (m == 0) {
394 if (template
395 && template->m_len < hlen + sizeof(struct tcphdr)) {
396 if (m)
397 m_freem(m);
398 return EINVAL;
399 }
400
401 /* get family information from template */
402 switch (mtod(template, struct ip *)->ip_v) {
403 case 4:
404 family = AF_INET;
405 hlen = sizeof(struct ip);
406 break;
407 #ifdef INET6
408 case 6:
409 family = AF_INET6;
410 hlen = sizeof(struct ip6_hdr);
411 break;
412 #endif
413 default:
414 if (m)
415 m_freem(m);
416 return EAFNOSUPPORT;
417 }
418
419 MGETHDR(m, M_DONTWAIT, MT_HEADER);
420 if (m) {
421 MCLGET(m, M_DONTWAIT);
422 if ((m->m_flags & M_EXT)) {
423 m_free(m);
424 m = NULL;
425 }
426 }
427 if (m == NULL)
428 return (ENOBUFS);
429
430 if (tcp_compat_42)
431 tlen = 1;
432 else
433 tlen = 0;
434
435 m->m_data += max_linkhdr;
436 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
437 template->m_len);
438 switch (family) {
439 case AF_INET:
440 ip = mtod(m, struct ip *);
441 th = (struct tcphdr *)(ip + 1);
442 break;
443 #ifdef INET6
444 case AF_INET6:
445 ip6 = mtod(m, struct ip6_hdr *);
446 th = (struct tcphdr *)(ip6 + 1);
447 break;
448 #endif
449 default: /*pacify gcc*/
450 ip = NULL;
451 #ifdef INET6
452 ip6 = NULL;
453 #endif
454 th = NULL;
455 break;
456 }
457 flags = TH_ACK;
458 } else {
459 /* get family information from m */
460 switch (mtod(m, struct ip *)->ip_v) {
461 case 4:
462 family = AF_INET;
463 hlen = sizeof(struct ip);
464 break;
465 #ifdef INET6
466 case 6:
467 family = AF_INET6;
468 hlen = sizeof(struct ip6_hdr);
469 break;
470 #endif
471 default:
472 if (m)
473 m_freem(m);
474 return EAFNOSUPPORT;
475 }
476
477 /* template pointer almost has no meaning */
478 m_freem(m->m_next);
479 m->m_next = 0;
480 m->m_len = hlen + sizeof(struct tcphdr);
481 if ((m->m_flags & M_PKTHDR) == 0) {
482 printf("non PKTHDR to tcp_respond\n");
483 m_freem(m);
484 return EINVAL;
485 }
486
487 tlen = 0;
488 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
489 switch (family) {
490 case AF_INET:
491 ip = mtod(m, struct ip *);
492 th = (struct tcphdr *)(ip + 1);
493 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
494 break;
495 #ifdef INET6
496 case AF_INET6:
497 ip6 = mtod(m, struct ip6_hdr *);
498 th = (struct tcphdr *)(ip6 + 1);
499 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
500 break;
501 #endif
502 }
503 xchg(th->th_dport, th->th_sport, u_int16_t);
504 #undef xchg
505 }
506 th->th_seq = htonl(seq);
507 th->th_ack = htonl(ack);
508 th->th_x2 = 0;
509 if ((flags & TH_SYN) == 0) {
510 if (tp)
511 th->th_win = htons((u_int16_t) (win >> tp->rcv_scale));
512 else
513 th->th_win = htons((u_int16_t)win);
514 th->th_off = sizeof (struct tcphdr) >> 2;
515 tlen += sizeof (struct tcphdr);
516 } else
517 tlen += th->th_off << 2;
518 m->m_len = hlen + tlen;
519 m->m_pkthdr.len = hlen + tlen;
520 m->m_pkthdr.rcvif = (struct ifnet *) 0;
521 th->th_flags = flags;
522 th->th_urp = 0;
523
524 switch (family) {
525 case AF_INET:
526 {
527 struct ipovly *ipov = (struct ipovly *)ip;
528 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
529 ipov->ih_len = htons((u_int16_t)tlen);
530
531 th->th_sum = 0;
532 th->th_sum = in_cksum(m, hlen + tlen);
533 ip->ip_len = hlen + tlen; /*will be flipped on output*/
534 ip->ip_ttl = ip_defttl;
535 break;
536 }
537 #ifdef INET6
538 case AF_INET6:
539 {
540 th->th_sum = 0;
541 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
542 tlen);
543 ip6->ip6_plen = ntohs(tlen);
544 ip6->ip6_hlim = ip6_defhlim;
545 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
546 if (ip6_auto_flowlabel) {
547 ip6->ip6_flow |=
548 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
549 }
550 break;
551 }
552 #endif
553 }
554
555 #ifdef IPSEC
556 m->m_pkthdr.rcvif = NULL;
557 #endif /*IPSEC*/
558
559 /*
560 * If we're doing Path MTU discovery, we need to set DF unless
561 * the route's MTU is locked. If we lack a route, we need to
562 * look it up now.
563 *
564 * ip_output() could do this for us, but it's convenient to just
565 * do it here unconditionally.
566 */
567 if (tp != NULL && tp->t_inpcb != NULL) {
568 ro = &tp->t_inpcb->inp_route;
569 #ifdef IPSEC
570 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket;
571 #endif
572 #ifdef DIAGNOSTIC
573 if (family != AF_INET)
574 panic("tcp_respond: address family mismatch");
575 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
576 panic("tcp_respond: ip_dst %x != inp_faddr %x",
577 ntohl(ip->ip_dst.s_addr),
578 ntohl(tp->t_inpcb->inp_faddr.s_addr));
579 }
580 #endif
581 }
582 #ifdef INET6
583 else if (tp != NULL && tp->t_in6pcb != NULL) {
584 ro = (struct route *)&tp->t_in6pcb->in6p_route;
585 #ifdef IPSEC
586 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_in6pcb->in6p_socket;
587 #endif
588 #ifdef DIAGNOSTIC
589 if (family == AF_INET) {
590 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
591 panic("tcp_respond: not mapped addr");
592 if (bcmp(&ip->ip_dst,
593 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
594 sizeof(ip->ip_dst)) != 0) {
595 panic("tcp_respond: ip_dst != in6p_faddr");
596 }
597 } else if (family == AF_INET6) {
598 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
599 panic("tcp_respond: ip6_dst != in6p_faddr");
600 } else
601 panic("tcp_respond: address family mismatch");
602 #endif
603 }
604 #endif
605 else {
606 ro = (struct route *)&iproute;
607 bzero(ro, sizeof(iproute));
608 }
609 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
610 if (ro->ro_rt != NULL) {
611 RTFREE(ro->ro_rt);
612 ro->ro_rt = NULL;
613 }
614 switch (family) {
615 case AF_INET:
616 {
617 struct sockaddr_in *dst;
618 dst = satosin(&ro->ro_dst);
619 dst->sin_family = AF_INET;
620 dst->sin_len = sizeof(*dst);
621 dst->sin_addr = ip->ip_dst;
622 break;
623 }
624 #ifdef INET6
625 case AF_INET6:
626 {
627 struct sockaddr_in6 *dst;
628 dst = satosin6(&ro->ro_dst);
629 bzero(dst, sizeof(*dst));
630 dst->sin6_family = AF_INET6;
631 dst->sin6_len = sizeof(*dst);
632 dst->sin6_addr = ip6->ip6_dst;
633 break;
634 }
635 #endif
636 }
637 rtalloc(ro);
638 if ((rt = ro->ro_rt) == NULL) {
639 m_freem(m);
640 switch (family) {
641 case AF_INET:
642 ipstat.ips_noroute++;
643 break;
644 #ifdef INET6
645 case AF_INET6:
646 ip6stat.ip6s_noroute++;
647 break;
648 #endif
649 }
650 return (EHOSTUNREACH);
651 }
652 }
653 switch (family) {
654 case AF_INET:
655 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
656 ip->ip_off |= IP_DF;
657
658 error = ip_output(m, NULL, ro, 0, NULL);
659 break;
660 #ifdef INET6
661 case AF_INET6:
662 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL);
663 break;
664 #endif
665 default:
666 error = EAFNOSUPPORT;
667 break;
668 }
669
670 if (ro == (struct route *)&iproute) {
671 RTFREE(ro->ro_rt);
672 ro->ro_rt = NULL;
673 }
674
675 return (error);
676 }
677
678 /*
679 * Create a new TCP control block, making an
680 * empty reassembly queue and hooking it to the argument
681 * protocol control block.
682 */
683 struct tcpcb *
684 tcp_newtcpcb(family, aux)
685 int family; /* selects inpcb, or in6pcb */
686 void *aux;
687 {
688 register struct tcpcb *tp;
689
690 switch (family) {
691 case PF_INET:
692 break;
693 #ifdef INET6
694 case PF_INET6:
695 break;
696 #endif
697 default:
698 return NULL;
699 }
700
701 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
702 if (tp == NULL)
703 return (NULL);
704 bzero((caddr_t)tp, sizeof(struct tcpcb));
705 LIST_INIT(&tp->segq);
706 LIST_INIT(&tp->timeq);
707 tp->t_family = family; /* may be overridden later on */
708 tp->t_peermss = tcp_mssdflt;
709 tp->t_ourmss = tcp_mssdflt;
710 tp->t_segsz = tcp_mssdflt;
711
712 tp->t_flags = 0;
713 if (tcp_do_rfc1323 && tcp_do_win_scale)
714 tp->t_flags |= TF_REQ_SCALE;
715 if (tcp_do_rfc1323 && tcp_do_timestamps)
716 tp->t_flags |= TF_REQ_TSTMP;
717 if (tcp_do_sack == 2)
718 tp->t_flags |= TF_WILL_SACK;
719 else if (tcp_do_sack == 1)
720 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
721 tp->t_flags |= TF_CANT_TXSACK;
722 switch (family) {
723 case PF_INET:
724 tp->t_inpcb = (struct inpcb *)aux;
725 break;
726 #ifdef INET6
727 case PF_INET6:
728 tp->t_in6pcb = (struct in6pcb *)aux;
729 break;
730 #endif
731 }
732 /*
733 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
734 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
735 * reasonable initial retransmit time.
736 */
737 tp->t_srtt = TCPTV_SRTTBASE;
738 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
739 tp->t_rttmin = TCPTV_MIN;
740 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
741 TCPTV_MIN, TCPTV_REXMTMAX);
742 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
743 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
744 if (family == AF_INET) {
745 struct inpcb *inp = (struct inpcb *)aux;
746 inp->inp_ip.ip_ttl = ip_defttl;
747 inp->inp_ppcb = (caddr_t)tp;
748 }
749 #ifdef INET6
750 else if (family == AF_INET6) {
751 struct in6pcb *in6p = (struct in6pcb *)aux;
752 in6p->in6p_ip6.ip6_hlim = ip6_defhlim;
753 in6p->in6p_ppcb = (caddr_t)tp;
754 }
755 #endif
756 return (tp);
757 }
758
759 /*
760 * Drop a TCP connection, reporting
761 * the specified error. If connection is synchronized,
762 * then send a RST to peer.
763 */
764 struct tcpcb *
765 tcp_drop(tp, errno)
766 register struct tcpcb *tp;
767 int errno;
768 {
769 struct socket *so;
770
771 if (tp->t_inpcb)
772 so = tp->t_inpcb->inp_socket;
773 #ifdef INET6
774 else if (tp->t_in6pcb)
775 so = tp->t_in6pcb->in6p_socket;
776 #endif
777 else
778 return NULL;
779
780 if (TCPS_HAVERCVDSYN(tp->t_state)) {
781 tp->t_state = TCPS_CLOSED;
782 (void) tcp_output(tp);
783 tcpstat.tcps_drops++;
784 } else
785 tcpstat.tcps_conndrops++;
786 if (errno == ETIMEDOUT && tp->t_softerror)
787 errno = tp->t_softerror;
788 so->so_error = errno;
789 return (tcp_close(tp));
790 }
791
792 /*
793 * Close a TCP control block:
794 * discard all space held by the tcp
795 * discard internet protocol block
796 * wake up any sleepers
797 */
798 struct tcpcb *
799 tcp_close(tp)
800 register struct tcpcb *tp;
801 {
802 struct inpcb *inp;
803 #ifdef INET6
804 struct in6pcb *in6p;
805 #endif
806 struct socket *so;
807 #ifdef RTV_RTT
808 register struct rtentry *rt;
809 #endif
810 struct route *ro;
811
812 inp = tp->t_inpcb;
813 #ifdef INET6
814 in6p = tp->t_in6pcb;
815 #endif
816 so = NULL;
817 ro = NULL;
818 if (inp) {
819 so = inp->inp_socket;
820 ro = &inp->inp_route;
821 }
822 #ifdef INET6
823 else if (in6p) {
824 so = in6p->in6p_socket;
825 ro = (struct route *)&in6p->in6p_route;
826 }
827 #endif
828
829 #ifdef RTV_RTT
830 /*
831 * If we sent enough data to get some meaningful characteristics,
832 * save them in the routing entry. 'Enough' is arbitrarily
833 * defined as the sendpipesize (default 4K) * 16. This would
834 * give us 16 rtt samples assuming we only get one sample per
835 * window (the usual case on a long haul net). 16 samples is
836 * enough for the srtt filter to converge to within 5% of the correct
837 * value; fewer samples and we could save a very bogus rtt.
838 *
839 * Don't update the default route's characteristics and don't
840 * update anything that the user "locked".
841 */
842 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
843 ro && (rt = ro->ro_rt) &&
844 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
845 register u_long i = 0;
846
847 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
848 i = tp->t_srtt *
849 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
850 if (rt->rt_rmx.rmx_rtt && i)
851 /*
852 * filter this update to half the old & half
853 * the new values, converting scale.
854 * See route.h and tcp_var.h for a
855 * description of the scaling constants.
856 */
857 rt->rt_rmx.rmx_rtt =
858 (rt->rt_rmx.rmx_rtt + i) / 2;
859 else
860 rt->rt_rmx.rmx_rtt = i;
861 }
862 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
863 i = tp->t_rttvar *
864 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
865 if (rt->rt_rmx.rmx_rttvar && i)
866 rt->rt_rmx.rmx_rttvar =
867 (rt->rt_rmx.rmx_rttvar + i) / 2;
868 else
869 rt->rt_rmx.rmx_rttvar = i;
870 }
871 /*
872 * update the pipelimit (ssthresh) if it has been updated
873 * already or if a pipesize was specified & the threshhold
874 * got below half the pipesize. I.e., wait for bad news
875 * before we start updating, then update on both good
876 * and bad news.
877 */
878 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
879 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
880 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
881 /*
882 * convert the limit from user data bytes to
883 * packets then to packet data bytes.
884 */
885 i = (i + tp->t_segsz / 2) / tp->t_segsz;
886 if (i < 2)
887 i = 2;
888 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
889 if (rt->rt_rmx.rmx_ssthresh)
890 rt->rt_rmx.rmx_ssthresh =
891 (rt->rt_rmx.rmx_ssthresh + i) / 2;
892 else
893 rt->rt_rmx.rmx_ssthresh = i;
894 }
895 }
896 #endif /* RTV_RTT */
897 /* free the reassembly queue, if any */
898 TCP_REASS_LOCK(tp);
899 (void) tcp_freeq(tp);
900 TCP_REASS_UNLOCK(tp);
901
902 TCP_CLEAR_DELACK(tp);
903
904 if (tp->t_template) {
905 m_free(tp->t_template);
906 tp->t_template = NULL;
907 }
908 pool_put(&tcpcb_pool, tp);
909 if (inp) {
910 inp->inp_ppcb = 0;
911 soisdisconnected(so);
912 in_pcbdetach(inp);
913 }
914 #ifdef INET6
915 else if (in6p) {
916 in6p->in6p_ppcb = 0;
917 soisdisconnected(so);
918 in6_pcbdetach(in6p);
919 }
920 #endif
921 tcpstat.tcps_closed++;
922 return ((struct tcpcb *)0);
923 }
924
925 int
926 tcp_freeq(tp)
927 struct tcpcb *tp;
928 {
929 register struct ipqent *qe;
930 int rv = 0;
931 #ifdef TCPREASS_DEBUG
932 int i = 0;
933 #endif
934
935 TCP_REASS_LOCK_CHECK(tp);
936
937 while ((qe = tp->segq.lh_first) != NULL) {
938 #ifdef TCPREASS_DEBUG
939 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
940 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
941 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
942 #endif
943 LIST_REMOVE(qe, ipqe_q);
944 LIST_REMOVE(qe, ipqe_timeq);
945 m_freem(qe->ipqe_m);
946 pool_put(&ipqent_pool, qe);
947 rv = 1;
948 }
949 return (rv);
950 }
951
952 /*
953 * Protocol drain routine. Called when memory is in short supply.
954 */
955 void
956 tcp_drain()
957 {
958 register struct inpcb *inp;
959 register struct tcpcb *tp;
960
961 /*
962 * Free the sequence queue of all TCP connections.
963 */
964 inp = tcbtable.inpt_queue.cqh_first;
965 if (inp) /* XXX */
966 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
967 inp = inp->inp_queue.cqe_next) {
968 if ((tp = intotcpcb(inp)) != NULL) {
969 /*
970 * We may be called from a device's interrupt
971 * context. If the tcpcb is already busy,
972 * just bail out now.
973 */
974 if (tcp_reass_lock_try(tp) == 0)
975 continue;
976 if (tcp_freeq(tp))
977 tcpstat.tcps_connsdrained++;
978 TCP_REASS_UNLOCK(tp);
979 }
980 }
981 }
982
983 /*
984 * Notify a tcp user of an asynchronous error;
985 * store error as soft error, but wake up user
986 * (for now, won't do anything until can select for soft error).
987 */
988 void
989 tcp_notify(inp, error)
990 struct inpcb *inp;
991 int error;
992 {
993 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
994 register struct socket *so = inp->inp_socket;
995
996 /*
997 * Ignore some errors if we are hooked up.
998 * If connection hasn't completed, has retransmitted several times,
999 * and receives a second error, give up now. This is better
1000 * than waiting a long time to establish a connection that
1001 * can never complete.
1002 */
1003 if (tp->t_state == TCPS_ESTABLISHED &&
1004 (error == EHOSTUNREACH || error == ENETUNREACH ||
1005 error == EHOSTDOWN)) {
1006 return;
1007 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1008 tp->t_rxtshift > 3 && tp->t_softerror)
1009 so->so_error = error;
1010 else
1011 tp->t_softerror = error;
1012 wakeup((caddr_t) &so->so_timeo);
1013 sorwakeup(so);
1014 sowwakeup(so);
1015 }
1016
1017 #if defined(INET6) && !defined(TCP6)
1018 void
1019 tcp6_ctlinput(cmd, sa, ip6, m, off)
1020 int cmd;
1021 struct sockaddr *sa;
1022 register struct ip6_hdr *ip6;
1023 struct mbuf *m;
1024 int off;
1025 {
1026 (void)tcp_ctlinput(cmd, sa, (void *)ip6);
1027 }
1028 #endif
1029
1030 /* assumes that ip header and tcp header are contiguous on mbuf */
1031 void *
1032 tcp_ctlinput(cmd, sa, v)
1033 int cmd;
1034 struct sockaddr *sa;
1035 register void *v;
1036 {
1037 register struct ip *ip = v;
1038 register struct tcphdr *th;
1039 extern int inetctlerrmap[];
1040 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1041 int errno;
1042 int nmatch;
1043
1044 if ((unsigned)cmd >= PRC_NCMDS)
1045 return NULL;
1046 errno = inetctlerrmap[cmd];
1047 if (cmd == PRC_QUENCH)
1048 notify = tcp_quench;
1049 else if (PRC_IS_REDIRECT(cmd))
1050 notify = in_rtchange, ip = 0;
1051 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1052 notify = tcp_mtudisc, ip = 0;
1053 else if (cmd == PRC_HOSTDEAD)
1054 ip = 0;
1055 else if (errno == 0)
1056 return NULL;
1057 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1058 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1059 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1060 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1061 if (nmatch == 0 && syn_cache_count &&
1062 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1063 inetctlerrmap[cmd] == ENETUNREACH ||
1064 inetctlerrmap[cmd] == EHOSTDOWN)) {
1065 struct sockaddr_in sin;
1066 bzero(&sin, sizeof(sin));
1067 sin.sin_len = sizeof(sin);
1068 sin.sin_family = AF_INET;
1069 sin.sin_port = th->th_sport;
1070 sin.sin_addr = ip->ip_src;
1071 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1072 }
1073
1074 /* XXX mapped address case */
1075 }
1076 #ifdef INET6
1077 else if (ip && ip->ip_v == 6 && sa->sa_family == AF_INET6) {
1078 /* XXX do something for ip6 */
1079 }
1080 #endif
1081 else {
1082 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1083 notify);
1084 #ifdef INET6
1085 /* XXX do something for ip6 */
1086 #endif
1087 }
1088 return NULL;
1089 }
1090
1091 /*
1092 * When a source quence is received, we are being notifed of congestion.
1093 * Close the congestion window down to the Loss Window (one segment).
1094 * We will gradually open it again as we proceed.
1095 */
1096 void
1097 tcp_quench(inp, errno)
1098 struct inpcb *inp;
1099 int errno;
1100 {
1101 struct tcpcb *tp = intotcpcb(inp);
1102
1103 if (tp)
1104 tp->snd_cwnd = tp->t_segsz;
1105 }
1106
1107 /*
1108 * On receipt of path MTU corrections, flush old route and replace it
1109 * with the new one. Retransmit all unacknowledged packets, to ensure
1110 * that all packets will be received.
1111 */
1112 void
1113 tcp_mtudisc(inp, errno)
1114 struct inpcb *inp;
1115 int errno;
1116 {
1117 struct tcpcb *tp = intotcpcb(inp);
1118 struct rtentry *rt = in_pcbrtentry(inp);
1119
1120 if (tp != 0) {
1121 if (rt != 0) {
1122 /*
1123 * If this was not a host route, remove and realloc.
1124 */
1125 if ((rt->rt_flags & RTF_HOST) == 0) {
1126 in_rtchange(inp, errno);
1127 if ((rt = in_pcbrtentry(inp)) == 0)
1128 return;
1129 }
1130
1131 /*
1132 * Slow start out of the error condition. We
1133 * use the MTU because we know it's smaller
1134 * than the previously transmitted segment.
1135 *
1136 * Note: This is more conservative than the
1137 * suggestion in draft-floyd-incr-init-win-03.
1138 */
1139 if (rt->rt_rmx.rmx_mtu != 0)
1140 tp->snd_cwnd =
1141 TCP_INITIAL_WINDOW(tcp_init_win,
1142 rt->rt_rmx.rmx_mtu);
1143 }
1144
1145 /*
1146 * Resend unacknowledged packets.
1147 */
1148 tp->snd_nxt = tp->snd_una;
1149 tcp_output(tp);
1150 }
1151 }
1152
1153
1154 /*
1155 * Compute the MSS to advertise to the peer. Called only during
1156 * the 3-way handshake. If we are the server (peer initiated
1157 * connection), we are called with a pointer to the interface
1158 * on which the SYN packet arrived. If we are the client (we
1159 * initiated connection), we are called with a pointer to the
1160 * interface out which this connection should go.
1161 */
1162 u_long
1163 tcp_mss_to_advertise(ifp)
1164 const struct ifnet *ifp;
1165 {
1166 extern u_long in_maxmtu;
1167 u_long mss = 0;
1168
1169 /*
1170 * In order to avoid defeating path MTU discovery on the peer,
1171 * we advertise the max MTU of all attached networks as our MSS,
1172 * per RFC 1191, section 3.1.
1173 *
1174 * We provide the option to advertise just the MTU of
1175 * the interface on which we hope this connection will
1176 * be receiving. If we are responding to a SYN, we
1177 * will have a pretty good idea about this, but when
1178 * initiating a connection there is a bit more doubt.
1179 *
1180 * We also need to ensure that loopback has a large enough
1181 * MSS, as the loopback MTU is never included in in_maxmtu.
1182 */
1183
1184 if (ifp != NULL)
1185 mss = ifp->if_mtu;
1186
1187 if (tcp_mss_ifmtu == 0)
1188 mss = max(in_maxmtu, mss);
1189
1190 if (mss > sizeof(struct tcpiphdr))
1191 mss -= sizeof(struct tcpiphdr);
1192
1193 mss = max(tcp_mssdflt, mss);
1194 return (mss);
1195 }
1196
1197 /*
1198 * Set connection variables based on the peer's advertised MSS.
1199 * We are passed the TCPCB for the actual connection. If we
1200 * are the server, we are called by the compressed state engine
1201 * when the 3-way handshake is complete. If we are the client,
1202 * we are called when we recieve the SYN,ACK from the server.
1203 *
1204 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1205 * before this routine is called!
1206 */
1207 void
1208 tcp_mss_from_peer(tp, offer)
1209 struct tcpcb *tp;
1210 int offer;
1211 {
1212 struct socket *so;
1213 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1214 struct rtentry *rt;
1215 #endif
1216 u_long bufsize;
1217 int mss;
1218
1219 so = NULL;
1220 rt = NULL;
1221 if (tp->t_inpcb) {
1222 so = tp->t_inpcb->inp_socket;
1223 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1224 rt = in_pcbrtentry(tp->t_inpcb);
1225 #endif
1226 }
1227 #ifdef INET6
1228 else if (tp->t_in6pcb) {
1229 so = tp->t_in6pcb->in6p_socket;
1230 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1231 #ifdef TCP6
1232 rt = NULL;
1233 #else
1234 rt = in6_pcbrtentry(tp->t_in6pcb);
1235 #endif
1236 #endif
1237 }
1238 #endif
1239
1240 /*
1241 * As per RFC1122, use the default MSS value, unless they
1242 * sent us an offer. Do not accept offers less than 32 bytes.
1243 */
1244 mss = tcp_mssdflt;
1245 if (offer)
1246 mss = offer;
1247 mss = max(mss, 32); /* sanity */
1248 tp->t_peermss = mss;
1249 mss -= tcp_optlen(tp);
1250 if (tp->t_inpcb)
1251 mss -= ip_optlen(tp->t_inpcb);
1252 #ifdef INET6
1253 else if (tp->t_in6pcb)
1254 mss -= ip6_optlen(tp->t_in6pcb);
1255 #endif
1256
1257 /*
1258 * If there's a pipesize, change the socket buffer to that size.
1259 * Make the socket buffer an integral number of MSS units. If
1260 * the MSS is larger than the socket buffer, artificially decrease
1261 * the MSS.
1262 */
1263 #ifdef RTV_SPIPE
1264 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1265 bufsize = rt->rt_rmx.rmx_sendpipe;
1266 else
1267 #endif
1268 bufsize = so->so_snd.sb_hiwat;
1269 if (bufsize < mss)
1270 mss = bufsize;
1271 else {
1272 bufsize = roundup(bufsize, mss);
1273 if (bufsize > sb_max)
1274 bufsize = sb_max;
1275 (void) sbreserve(&so->so_snd, bufsize);
1276 }
1277 tp->t_segsz = mss;
1278
1279 #ifdef RTV_SSTHRESH
1280 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1281 /*
1282 * There's some sort of gateway or interface buffer
1283 * limit on the path. Use this to set the slow
1284 * start threshold, but set the threshold to no less
1285 * than 2 * MSS.
1286 */
1287 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1288 }
1289 #endif
1290 }
1291
1292 /*
1293 * Processing necessary when a TCP connection is established.
1294 */
1295 void
1296 tcp_established(tp)
1297 struct tcpcb *tp;
1298 {
1299 struct socket *so;
1300 #ifdef RTV_RPIPE
1301 struct rtentry *rt;
1302 #endif
1303 u_long bufsize;
1304
1305 so = NULL;
1306 rt = NULL;
1307 if (tp->t_inpcb) {
1308 so = tp->t_inpcb->inp_socket;
1309 #if defined(RTV_RPIPE)
1310 rt = in_pcbrtentry(tp->t_inpcb);
1311 #endif
1312 }
1313 #ifdef INET6
1314 else if (tp->t_in6pcb) {
1315 so = tp->t_in6pcb->in6p_socket;
1316 #if defined(RTV_RPIPE)
1317 #ifdef TCP6
1318 rt = NULL;
1319 #else
1320 rt = in6_pcbrtentry(tp->t_in6pcb);
1321 #endif
1322 #endif
1323 }
1324 #endif
1325
1326 tp->t_state = TCPS_ESTABLISHED;
1327 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1328
1329 #ifdef RTV_RPIPE
1330 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1331 bufsize = rt->rt_rmx.rmx_recvpipe;
1332 else
1333 #endif
1334 bufsize = so->so_rcv.sb_hiwat;
1335 if (bufsize > tp->t_ourmss) {
1336 bufsize = roundup(bufsize, tp->t_ourmss);
1337 if (bufsize > sb_max)
1338 bufsize = sb_max;
1339 (void) sbreserve(&so->so_rcv, bufsize);
1340 }
1341 }
1342
1343 /*
1344 * Check if there's an initial rtt or rttvar. Convert from the
1345 * route-table units to scaled multiples of the slow timeout timer.
1346 * Called only during the 3-way handshake.
1347 */
1348 void
1349 tcp_rmx_rtt(tp)
1350 struct tcpcb *tp;
1351 {
1352 #ifdef RTV_RTT
1353 struct rtentry *rt = NULL;
1354 int rtt;
1355
1356 if (tp->t_inpcb)
1357 rt = in_pcbrtentry(tp->t_inpcb);
1358 #ifdef INET6
1359 else if (tp->t_in6pcb) {
1360 #ifdef TCP6
1361 rt = NULL;
1362 #else
1363 rt = in6_pcbrtentry(tp->t_in6pcb);
1364 #endif
1365 }
1366 #endif
1367 if (rt == NULL)
1368 return;
1369
1370 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1371 /*
1372 * XXX The lock bit for MTU indicates that the value
1373 * is also a minimum value; this is subject to time.
1374 */
1375 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1376 TCPT_RANGESET(tp->t_rttmin,
1377 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1378 TCPTV_MIN, TCPTV_REXMTMAX);
1379 tp->t_srtt = rtt /
1380 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1381 if (rt->rt_rmx.rmx_rttvar) {
1382 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1383 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1384 (TCP_RTTVAR_SHIFT + 2));
1385 } else {
1386 /* Default variation is +- 1 rtt */
1387 tp->t_rttvar =
1388 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1389 }
1390 TCPT_RANGESET(tp->t_rxtcur,
1391 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1392 tp->t_rttmin, TCPTV_REXMTMAX);
1393 }
1394 #endif
1395 }
1396
1397 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1398
1399 /*
1400 * Get a new sequence value given a tcp control block
1401 */
1402 tcp_seq
1403 tcp_new_iss(tp, len, addin)
1404 void *tp;
1405 u_long len;
1406 tcp_seq addin;
1407 {
1408 tcp_seq tcp_iss;
1409
1410 /*
1411 * Randomize.
1412 */
1413 #if NRND > 0
1414 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1415 #else
1416 tcp_iss = random();
1417 #endif
1418
1419 /*
1420 * If we were asked to add some amount to a known value,
1421 * we will take a random value obtained above, mask off the upper
1422 * bits, and add in the known value. We also add in a constant to
1423 * ensure that we are at least a certain distance from the original
1424 * value.
1425 *
1426 * This is used when an old connection is in timed wait
1427 * and we have a new one coming in, for instance.
1428 */
1429 if (addin != 0) {
1430 #ifdef TCPISS_DEBUG
1431 printf("Random %08x, ", tcp_iss);
1432 #endif
1433 tcp_iss &= TCP_ISS_RANDOM_MASK;
1434 tcp_iss += addin + TCP_ISSINCR;
1435 #ifdef TCPISS_DEBUG
1436 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1437 #endif
1438 } else {
1439 tcp_iss &= TCP_ISS_RANDOM_MASK;
1440 tcp_iss += tcp_iss_seq;
1441 tcp_iss_seq += TCP_ISSINCR;
1442 #ifdef TCPISS_DEBUG
1443 printf("ISS %08x\n", tcp_iss);
1444 #endif
1445 }
1446
1447 if (tcp_compat_42) {
1448 /*
1449 * Limit it to the positive range for really old TCP
1450 * implementations.
1451 */
1452 if (tcp_iss >= 0x80000000)
1453 tcp_iss &= 0x7fffffff; /* XXX */
1454 }
1455
1456 return tcp_iss;
1457 }
1458
1459 #ifdef IPSEC
1460 /* compute ESP/AH header size for TCP, including outer IP header. */
1461 size_t
1462 ipsec4_hdrsiz_tcp(tp)
1463 struct tcpcb *tp;
1464 {
1465 struct inpcb *inp;
1466 size_t hdrsiz;
1467
1468 /* XXX mapped addr case (tp->t_in6pcb) */
1469 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1470 return 0;
1471 switch (tp->t_family) {
1472 case AF_INET:
1473 hdrsiz = ipsec4_hdrsiz(tp->t_template, inp);
1474 break;
1475 default:
1476 hdrsiz = 0;
1477 break;
1478 }
1479
1480 return hdrsiz;
1481 }
1482
1483 #if defined(INET6) && !defined(TCP6)
1484 size_t
1485 ipsec6_hdrsiz_tcp(tp)
1486 struct tcpcb *tp;
1487 {
1488 struct in6pcb *in6p;
1489 size_t hdrsiz;
1490
1491 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1492 return 0;
1493 switch (tp->t_family) {
1494 case AF_INET6:
1495 hdrsiz = ipsec6_hdrsiz(tp->t_template, in6p);
1496 break;
1497 case AF_INET:
1498 /* mapped address case - tricky */
1499 default:
1500 hdrsiz = 0;
1501 break;
1502 }
1503
1504 return hdrsiz;
1505 }
1506 #endif
1507 #endif /*IPSEC*/
1508
1509 /*
1510 * Determine the length of the TCP options for this connection.
1511 *
1512 * XXX: What do we do for SACK, when we add that? Just reserve
1513 * all of the space? Otherwise we can't exactly be incrementing
1514 * cwnd by an amount that varies depending on the amount we last
1515 * had to SACK!
1516 */
1517
1518 u_int
1519 tcp_optlen(tp)
1520 struct tcpcb *tp;
1521 {
1522 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1523 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1524 return TCPOLEN_TSTAMP_APPA;
1525 else
1526 return 0;
1527 }
1528