tcp_subr.c revision 1.71 1 /* $NetBSD: tcp_subr.c,v 1.71 1999/07/14 22:08:52 drochner Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #endif
142
143 #include <netinet/tcp.h>
144 #include <netinet/tcp_fsm.h>
145 #include <netinet/tcp_seq.h>
146 #include <netinet/tcp_timer.h>
147 #include <netinet/tcp_var.h>
148 #include <netinet/tcpip.h>
149
150 #ifdef IPSEC
151 #include <netinet6/ipsec.h>
152 #include <netinet6/ah.h>
153 #ifdef IPSEC_ESP
154 #include <netinet6/esp.h>
155 #endif
156 #endif /*IPSEC*/
157
158 #ifdef INET6
159 struct in6pcb tcb6;
160 #endif
161
162 /* patchable/settable parameters for tcp */
163 int tcp_mssdflt = TCP_MSS;
164 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
165 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
166 int tcp_do_sack = 1; /* selective acknowledgement */
167 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
168 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
169 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
170 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
171 int tcp_init_win = 1;
172 int tcp_mss_ifmtu = 0;
173 #ifdef TCP_COMPAT_42
174 int tcp_compat_42 = 1;
175 #else
176 int tcp_compat_42 = 0;
177 #endif
178
179 #ifndef TCBHASHSIZE
180 #define TCBHASHSIZE 128
181 #endif
182 int tcbhashsize = TCBHASHSIZE;
183
184 int tcp_freeq __P((struct tcpcb *));
185
186 struct pool tcpcb_pool;
187
188 /*
189 * Tcp initialization
190 */
191 void
192 tcp_init()
193 {
194 int hlen;
195
196 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
197 0, NULL, NULL, M_PCB);
198 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
199 #ifdef INET6
200 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
201 #endif
202 LIST_INIT(&tcp_delacks);
203
204 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
205 #ifdef INET6
206 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
207 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
208 #endif
209 if (max_protohdr < hlen)
210 max_protohdr = hlen;
211 if (max_linkhdr + hlen > MHLEN)
212 panic("tcp_init");
213
214 /* Initialize the compressed state engine. */
215 syn_cache_init();
216 }
217
218 /*
219 * Create template to be used to send tcp packets on a connection.
220 * Call after host entry created, allocates an mbuf and fills
221 * in a skeletal tcp/ip header, minimizing the amount of work
222 * necessary when the connection is used.
223 */
224 struct mbuf *
225 tcp_template(tp)
226 struct tcpcb *tp;
227 {
228 register struct inpcb *inp = tp->t_inpcb;
229 #ifdef INET6
230 register struct in6pcb *in6p = tp->t_in6pcb;
231 #endif
232 register struct tcphdr *n;
233 register struct mbuf *m;
234 int hlen;
235
236 switch (tp->t_family) {
237 case AF_INET:
238 hlen = sizeof(struct ip);
239 if (inp)
240 break;
241 #ifdef INET6
242 if (in6p) {
243 /* mapped addr case */
244 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
245 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
246 break;
247 }
248 #endif
249 return NULL; /*EINVAL*/
250 #ifdef INET6
251 case AF_INET6:
252 hlen = sizeof(struct ip6_hdr);
253 if (in6p) {
254 /* more sainty check? */
255 break;
256 }
257 return NULL; /*EINVAL*/
258 #endif
259 default:
260 hlen = 0; /*pacify gcc*/
261 return NULL; /*EAFNOSUPPORT*/
262 }
263 if ((m = tp->t_template) == 0) {
264 MGETHDR(m, M_DONTWAIT, MT_HEADER);
265 if (m) {
266 MCLGET(m, M_DONTWAIT);
267 if ((m->m_flags & M_EXT) == 0) {
268 m_free(m);
269 m = NULL;
270 }
271 }
272 if (m == NULL)
273 return NULL;
274 m->m_len = hlen + sizeof(struct tcphdr);
275 }
276 bzero(mtod(m, caddr_t), m->m_len);
277 switch (tp->t_family) {
278 case AF_INET:
279 {
280 struct ipovly *ipov;
281 mtod(m, struct ip *)->ip_v = 4;
282 ipov = mtod(m, struct ipovly *);
283 ipov->ih_pr = IPPROTO_TCP;
284 ipov->ih_len = htons(sizeof(struct tcphdr));
285 if (inp) {
286 ipov->ih_src = inp->inp_laddr;
287 ipov->ih_dst = inp->inp_faddr;
288 }
289 #ifdef INET6
290 else if (in6p) {
291 /* mapped addr case */
292 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
293 sizeof(ipov->ih_src));
294 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
295 sizeof(ipov->ih_dst));
296 }
297 #endif
298 break;
299 }
300 #ifdef INET6
301 case AF_INET6:
302 {
303 struct ip6_hdr *ip6;
304 mtod(m, struct ip *)->ip_v = 6;
305 ip6 = mtod(m, struct ip6_hdr *);
306 ip6->ip6_nxt = IPPROTO_TCP;
307 ip6->ip6_plen = htons(sizeof(struct tcphdr));
308 ip6->ip6_src = in6p->in6p_laddr;
309 ip6->ip6_dst = in6p->in6p_faddr;
310 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
311 if (ip6_auto_flowlabel) {
312 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
313 ip6->ip6_flow |=
314 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
315 }
316 ip6->ip6_vfc = IPV6_VERSION;
317 break;
318 }
319 #endif
320 }
321 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
322 if (inp) {
323 n->th_sport = inp->inp_lport;
324 n->th_dport = inp->inp_fport;
325 }
326 #ifdef INET6
327 else if (in6p) {
328 n->th_sport = in6p->in6p_lport;
329 n->th_dport = in6p->in6p_fport;
330 }
331 #endif
332 n->th_seq = 0;
333 n->th_ack = 0;
334 n->th_x2 = 0;
335 n->th_off = 5;
336 n->th_flags = 0;
337 n->th_win = 0;
338 n->th_sum = 0;
339 n->th_urp = 0;
340 return (m);
341 }
342
343 /*
344 * Send a single message to the TCP at address specified by
345 * the given TCP/IP header. If m == 0, then we make a copy
346 * of the tcpiphdr at ti and send directly to the addressed host.
347 * This is used to force keep alive messages out using the TCP
348 * template for a connection tp->t_template. If flags are given
349 * then we send a message back to the TCP which originated the
350 * segment ti, and discard the mbuf containing it and any other
351 * attached mbufs.
352 *
353 * In any case the ack and sequence number of the transmitted
354 * segment are as specified by the parameters.
355 */
356 int
357 tcp_respond(tp, template, m, ack, seq, flags)
358 struct tcpcb *tp;
359 struct mbuf *template; /* XXX should be struct mbuf? */
360 register struct mbuf *m;
361 tcp_seq ack, seq;
362 int flags;
363 {
364 #ifndef INET6
365 struct route iproute;
366 #else
367 struct route_in6 iproute; /* sizeof(route_in6) > sizeof(route) */
368 #endif
369 struct route *ro;
370 struct rtentry *rt;
371 int error, tlen, win = 0;
372 int hlen;
373 struct ip *ip;
374 #ifdef INET6
375 struct ip6_hdr *ip6;
376 #endif
377 int family; /* family on packet, not inpcb/in6pcb! */
378 struct tcphdr *th;
379
380 if (tp != NULL && (flags & TH_RST) == 0) {
381 if (tp->t_inpcb)
382 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
383 #ifdef INET6
384 else if (tp->t_in6pcb)
385 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
386 #endif
387 }
388
389 ip = NULL;
390 #ifdef INET6
391 ip6 = NULL;
392 #endif
393 if (m == 0) {
394 /* get family information from template */
395 switch (mtod(template, struct ip *)->ip_v) {
396 case 4:
397 family = AF_INET;
398 hlen = sizeof(struct ip);
399 break;
400 #ifdef INET6
401 case 6:
402 family = AF_INET6;
403 hlen = sizeof(struct ip6_hdr);
404 break;
405 #endif
406 default:
407 return EAFNOSUPPORT;
408 }
409
410 MGETHDR(m, M_DONTWAIT, MT_HEADER);
411 if (m) {
412 MCLGET(m, M_DONTWAIT);
413 if (!(m->m_flags & M_EXT)) {
414 m_free(m);
415 m = NULL;
416 }
417 }
418 if (m == NULL)
419 return (ENOBUFS);
420
421 if (tcp_compat_42)
422 tlen = 1;
423 else
424 tlen = 0;
425
426 m->m_data += max_linkhdr;
427 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
428 template->m_len);
429 switch (family) {
430 case AF_INET:
431 ip = mtod(m, struct ip *);
432 th = (struct tcphdr *)(ip + 1);
433 break;
434 #ifdef INET6
435 case AF_INET6:
436 ip6 = mtod(m, struct ip6_hdr *);
437 th = (struct tcphdr *)(ip6 + 1);
438 break;
439 #endif
440 default: /*pacify gcc*/
441 ip = NULL;
442 #ifdef INET6
443 ip6 = NULL;
444 #endif
445 th = NULL;
446 break;
447 }
448 flags = TH_ACK;
449 } else {
450 /* get family information from m */
451 switch (mtod(m, struct ip *)->ip_v) {
452 case 4:
453 family = AF_INET;
454 hlen = sizeof(struct ip);
455 break;
456 #ifdef INET6
457 case 6:
458 family = AF_INET6;
459 hlen = sizeof(struct ip6_hdr);
460 break;
461 #endif
462 default:
463 if (m)
464 m_freem(m);
465 return EAFNOSUPPORT;
466 }
467
468 /* template pointer almost has no meaning */
469 m_freem(m->m_next);
470 m->m_next = 0;
471 m->m_len = hlen + sizeof(struct tcphdr);
472 if ((m->m_flags & M_PKTHDR) == 0) {
473 printf("non PKTHDR to tcp_respond\n");
474 m_freem(m);
475 return EINVAL;
476 }
477
478 tlen = 0;
479 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
480 switch (family) {
481 case AF_INET:
482 ip = mtod(m, struct ip *);
483 th = (struct tcphdr *)(ip + 1);
484 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
485 break;
486 #ifdef INET6
487 case AF_INET6:
488 ip6 = mtod(m, struct ip6_hdr *);
489 th = (struct tcphdr *)(ip6 + 1);
490 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
491 break;
492 #endif
493 }
494 xchg(th->th_dport, th->th_sport, u_int16_t);
495 #undef xchg
496 }
497 th->th_seq = htonl(seq);
498 th->th_ack = htonl(ack);
499 th->th_x2 = 0;
500 if ((flags & TH_SYN) == 0) {
501 if (tp)
502 th->th_win = htons((u_int16_t) (win >> tp->rcv_scale));
503 else
504 th->th_win = htons((u_int16_t)win);
505 th->th_off = sizeof (struct tcphdr) >> 2;
506 tlen += sizeof (struct tcphdr);
507 } else
508 tlen += th->th_off << 2;
509 m->m_len = hlen + tlen;
510 m->m_pkthdr.len = hlen + tlen;
511 m->m_pkthdr.rcvif = (struct ifnet *) 0;
512 th->th_flags = flags;
513 th->th_urp = 0;
514
515 switch (family) {
516 case AF_INET:
517 {
518 struct ipovly *ipov = (struct ipovly *)ip;
519 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
520 ipov->ih_len = htons((u_int16_t)tlen);
521
522 th->th_sum = 0;
523 th->th_sum = in_cksum(m, hlen + tlen);
524 ip->ip_len = hlen + tlen; /*will be flipped on output*/
525 ip->ip_ttl = ip_defttl;
526 break;
527 }
528 #ifdef INET6
529 case AF_INET6:
530 {
531 th->th_sum = 0;
532 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
533 tlen);
534 ip6->ip6_plen = ntohs(tlen);
535 ip6->ip6_hlim = ip6_defhlim;
536 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
537 if (ip6_auto_flowlabel) {
538 ip6->ip6_flow |=
539 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
540 }
541 break;
542 }
543 #endif
544 }
545
546 #ifdef IPSEC
547 m->m_pkthdr.rcvif = NULL;
548 #endif /*IPSEC*/
549
550 /*
551 * If we're doing Path MTU discovery, we need to set DF unless
552 * the route's MTU is locked. If we lack a route, we need to
553 * look it up now.
554 *
555 * ip_output() could do this for us, but it's convenient to just
556 * do it here unconditionally.
557 */
558 if (tp != NULL && tp->t_inpcb != NULL) {
559 ro = &tp->t_inpcb->inp_route;
560 #ifdef IPSEC
561 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket;
562 #endif
563 #ifdef DIAGNOSTIC
564 if (family != AF_INET)
565 panic("tcp_respond: address family mismatch");
566 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
567 panic("tcp_respond: ip_dst %x != inp_faddr %x",
568 ntohl(ip->ip_dst.s_addr),
569 ntohl(tp->t_inpcb->inp_faddr.s_addr));
570 }
571 #endif
572 }
573 #ifdef INET6
574 else if (tp != NULL && tp->t_in6pcb != NULL) {
575 ro = (struct route *)&tp->t_in6pcb->in6p_route;
576 #ifdef IPSEC
577 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_in6pcb->in6p_socket;
578 #endif
579 #ifdef DIAGNOSTIC
580 if (family == AF_INET) {
581 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
582 panic("tcp_respond: not mapped addr");
583 if (bcmp(&ip->ip_dst,
584 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
585 sizeof(ip->ip_dst)) != 0) {
586 panic("tcp_respond: ip_dst != in6p_faddr");
587 }
588 } else if (family == AF_INET6) {
589 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
590 panic("tcp_respond: ip6_dst != in6p_faddr");
591 } else
592 panic("tcp_respond: address family mismatch");
593 #endif
594 }
595 #endif
596 else {
597 ro = (struct route *)&iproute;
598 bzero(ro, sizeof(iproute));
599 }
600 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
601 if (ro->ro_rt != NULL) {
602 RTFREE(ro->ro_rt);
603 ro->ro_rt = NULL;
604 }
605 switch (family) {
606 case AF_INET:
607 {
608 struct sockaddr_in *dst;
609 dst = satosin(&ro->ro_dst);
610 dst->sin_family = AF_INET;
611 dst->sin_len = sizeof(*dst);
612 dst->sin_addr = ip->ip_dst;
613 break;
614 }
615 #ifdef INET6
616 case AF_INET6:
617 {
618 struct sockaddr_in6 *dst;
619 dst = satosin6(&ro->ro_dst);
620 bzero(dst, sizeof(*dst));
621 dst->sin6_family = AF_INET6;
622 dst->sin6_len = sizeof(*dst);
623 dst->sin6_addr = ip6->ip6_dst;
624 break;
625 }
626 #endif
627 }
628 rtalloc(ro);
629 if ((rt = ro->ro_rt) == NULL) {
630 m_freem(m);
631 switch (family) {
632 case AF_INET:
633 ipstat.ips_noroute++;
634 break;
635 #ifdef INET6
636 case AF_INET6:
637 ip6stat.ip6s_noroute++;
638 break;
639 #endif
640 }
641 return (EHOSTUNREACH);
642 }
643 }
644 switch (family) {
645 case AF_INET:
646 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
647 ip->ip_off |= IP_DF;
648
649 error = ip_output(m, NULL, ro, 0, NULL);
650 break;
651 #ifdef INET6
652 case AF_INET6:
653 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL);
654 break;
655 #endif
656 default:
657 error = EAFNOSUPPORT;
658 break;
659 }
660
661 if (ro == (struct route *)&iproute) {
662 RTFREE(ro->ro_rt);
663 ro->ro_rt = NULL;
664 }
665
666 return (error);
667 }
668
669 /*
670 * Create a new TCP control block, making an
671 * empty reassembly queue and hooking it to the argument
672 * protocol control block.
673 */
674 struct tcpcb *
675 tcp_newtcpcb(family, aux)
676 int family; /* selects inpcb, or in6pcb */
677 void *aux;
678 {
679 register struct tcpcb *tp;
680
681 switch (family) {
682 case PF_INET:
683 break;
684 #ifdef INET6
685 case PF_INET6:
686 break;
687 #endif
688 default:
689 return NULL;
690 }
691
692 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
693 if (tp == NULL)
694 return (NULL);
695 bzero((caddr_t)tp, sizeof(struct tcpcb));
696 LIST_INIT(&tp->segq);
697 LIST_INIT(&tp->timeq);
698 tp->t_family = family; /* may be overridden later on */
699 tp->t_peermss = tcp_mssdflt;
700 tp->t_ourmss = tcp_mssdflt;
701 tp->t_segsz = tcp_mssdflt;
702
703 tp->t_flags = 0;
704 if (tcp_do_rfc1323 && tcp_do_win_scale)
705 tp->t_flags |= TF_REQ_SCALE;
706 if (tcp_do_rfc1323 && tcp_do_timestamps)
707 tp->t_flags |= TF_REQ_TSTMP;
708 if (tcp_do_sack == 2)
709 tp->t_flags |= TF_WILL_SACK;
710 else if (tcp_do_sack == 1)
711 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
712 tp->t_flags |= TF_CANT_TXSACK;
713 switch (family) {
714 case PF_INET:
715 tp->t_inpcb = (struct inpcb *)aux;
716 break;
717 #ifdef INET6
718 case PF_INET6:
719 tp->t_in6pcb = (struct in6pcb *)aux;
720 break;
721 #endif
722 }
723 /*
724 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
725 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
726 * reasonable initial retransmit time.
727 */
728 tp->t_srtt = TCPTV_SRTTBASE;
729 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
730 tp->t_rttmin = TCPTV_MIN;
731 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
732 TCPTV_MIN, TCPTV_REXMTMAX);
733 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
734 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
735 if (family == AF_INET) {
736 struct inpcb *inp = (struct inpcb *)aux;
737 inp->inp_ip.ip_ttl = ip_defttl;
738 inp->inp_ppcb = (caddr_t)tp;
739 }
740 #ifdef INET6
741 else if (family == AF_INET6) {
742 struct in6pcb *in6p = (struct in6pcb *)aux;
743 in6p->in6p_ip6.ip6_hlim = ip6_defhlim;
744 in6p->in6p_ppcb = (caddr_t)tp;
745 }
746 #endif
747 return (tp);
748 }
749
750 /*
751 * Drop a TCP connection, reporting
752 * the specified error. If connection is synchronized,
753 * then send a RST to peer.
754 */
755 struct tcpcb *
756 tcp_drop(tp, errno)
757 register struct tcpcb *tp;
758 int errno;
759 {
760 struct socket *so;
761
762 if (tp->t_inpcb)
763 so = tp->t_inpcb->inp_socket;
764 #ifdef INET6
765 else if (tp->t_in6pcb)
766 so = tp->t_in6pcb->in6p_socket;
767 #endif
768 else
769 return NULL;
770
771 if (TCPS_HAVERCVDSYN(tp->t_state)) {
772 tp->t_state = TCPS_CLOSED;
773 (void) tcp_output(tp);
774 tcpstat.tcps_drops++;
775 } else
776 tcpstat.tcps_conndrops++;
777 if (errno == ETIMEDOUT && tp->t_softerror)
778 errno = tp->t_softerror;
779 so->so_error = errno;
780 return (tcp_close(tp));
781 }
782
783 /*
784 * Close a TCP control block:
785 * discard all space held by the tcp
786 * discard internet protocol block
787 * wake up any sleepers
788 */
789 struct tcpcb *
790 tcp_close(tp)
791 register struct tcpcb *tp;
792 {
793 struct inpcb *inp;
794 #ifdef INET6
795 struct in6pcb *in6p;
796 #endif
797 struct socket *so;
798 #ifdef RTV_RTT
799 register struct rtentry *rt;
800 #endif
801 struct route *ro;
802
803 inp = tp->t_inpcb;
804 #ifdef INET6
805 in6p = tp->t_in6pcb;
806 #endif
807 so = NULL;
808 ro = NULL;
809 if (inp) {
810 so = inp->inp_socket;
811 ro = &inp->inp_route;
812 }
813 #ifdef INET6
814 else if (in6p) {
815 so = in6p->in6p_socket;
816 ro = (struct route *)&in6p->in6p_route;
817 }
818 #endif
819
820 #ifdef RTV_RTT
821 /*
822 * If we sent enough data to get some meaningful characteristics,
823 * save them in the routing entry. 'Enough' is arbitrarily
824 * defined as the sendpipesize (default 4K) * 16. This would
825 * give us 16 rtt samples assuming we only get one sample per
826 * window (the usual case on a long haul net). 16 samples is
827 * enough for the srtt filter to converge to within 5% of the correct
828 * value; fewer samples and we could save a very bogus rtt.
829 *
830 * Don't update the default route's characteristics and don't
831 * update anything that the user "locked".
832 */
833 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
834 ro && (rt = ro->ro_rt) &&
835 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
836 register u_long i = 0;
837
838 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
839 i = tp->t_srtt *
840 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
841 if (rt->rt_rmx.rmx_rtt && i)
842 /*
843 * filter this update to half the old & half
844 * the new values, converting scale.
845 * See route.h and tcp_var.h for a
846 * description of the scaling constants.
847 */
848 rt->rt_rmx.rmx_rtt =
849 (rt->rt_rmx.rmx_rtt + i) / 2;
850 else
851 rt->rt_rmx.rmx_rtt = i;
852 }
853 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
854 i = tp->t_rttvar *
855 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
856 if (rt->rt_rmx.rmx_rttvar && i)
857 rt->rt_rmx.rmx_rttvar =
858 (rt->rt_rmx.rmx_rttvar + i) / 2;
859 else
860 rt->rt_rmx.rmx_rttvar = i;
861 }
862 /*
863 * update the pipelimit (ssthresh) if it has been updated
864 * already or if a pipesize was specified & the threshhold
865 * got below half the pipesize. I.e., wait for bad news
866 * before we start updating, then update on both good
867 * and bad news.
868 */
869 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
870 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
871 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
872 /*
873 * convert the limit from user data bytes to
874 * packets then to packet data bytes.
875 */
876 i = (i + tp->t_segsz / 2) / tp->t_segsz;
877 if (i < 2)
878 i = 2;
879 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
880 if (rt->rt_rmx.rmx_ssthresh)
881 rt->rt_rmx.rmx_ssthresh =
882 (rt->rt_rmx.rmx_ssthresh + i) / 2;
883 else
884 rt->rt_rmx.rmx_ssthresh = i;
885 }
886 }
887 #endif /* RTV_RTT */
888 /* free the reassembly queue, if any */
889 TCP_REASS_LOCK(tp);
890 (void) tcp_freeq(tp);
891 TCP_REASS_UNLOCK(tp);
892
893 TCP_CLEAR_DELACK(tp);
894
895 if (tp->t_template) {
896 m_free(tp->t_template);
897 tp->t_template = NULL;
898 }
899 pool_put(&tcpcb_pool, tp);
900 if (inp) {
901 inp->inp_ppcb = 0;
902 soisdisconnected(so);
903 in_pcbdetach(inp);
904 }
905 #ifdef INET6
906 else if (in6p) {
907 in6p->in6p_ppcb = 0;
908 soisdisconnected(so);
909 in6_pcbdetach(in6p);
910 }
911 #endif
912 tcpstat.tcps_closed++;
913 return ((struct tcpcb *)0);
914 }
915
916 int
917 tcp_freeq(tp)
918 struct tcpcb *tp;
919 {
920 register struct ipqent *qe;
921 int rv = 0;
922 #ifdef TCPREASS_DEBUG
923 int i = 0;
924 #endif
925
926 TCP_REASS_LOCK_CHECK(tp);
927
928 while ((qe = tp->segq.lh_first) != NULL) {
929 #ifdef TCPREASS_DEBUG
930 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
931 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
932 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
933 #endif
934 LIST_REMOVE(qe, ipqe_q);
935 LIST_REMOVE(qe, ipqe_timeq);
936 m_freem(qe->ipqe_m);
937 pool_put(&ipqent_pool, qe);
938 rv = 1;
939 }
940 return (rv);
941 }
942
943 /*
944 * Protocol drain routine. Called when memory is in short supply.
945 */
946 void
947 tcp_drain()
948 {
949 register struct inpcb *inp;
950 register struct tcpcb *tp;
951
952 /*
953 * Free the sequence queue of all TCP connections.
954 */
955 inp = tcbtable.inpt_queue.cqh_first;
956 if (inp) /* XXX */
957 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
958 inp = inp->inp_queue.cqe_next) {
959 if ((tp = intotcpcb(inp)) != NULL) {
960 /*
961 * We may be called from a device's interrupt
962 * context. If the tcpcb is already busy,
963 * just bail out now.
964 */
965 if (tcp_reass_lock_try(tp) == 0)
966 continue;
967 if (tcp_freeq(tp))
968 tcpstat.tcps_connsdrained++;
969 TCP_REASS_UNLOCK(tp);
970 }
971 }
972 }
973
974 /*
975 * Notify a tcp user of an asynchronous error;
976 * store error as soft error, but wake up user
977 * (for now, won't do anything until can select for soft error).
978 */
979 void
980 tcp_notify(inp, error)
981 struct inpcb *inp;
982 int error;
983 {
984 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
985 register struct socket *so = inp->inp_socket;
986
987 /*
988 * Ignore some errors if we are hooked up.
989 * If connection hasn't completed, has retransmitted several times,
990 * and receives a second error, give up now. This is better
991 * than waiting a long time to establish a connection that
992 * can never complete.
993 */
994 if (tp->t_state == TCPS_ESTABLISHED &&
995 (error == EHOSTUNREACH || error == ENETUNREACH ||
996 error == EHOSTDOWN)) {
997 return;
998 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
999 tp->t_rxtshift > 3 && tp->t_softerror)
1000 so->so_error = error;
1001 else
1002 tp->t_softerror = error;
1003 wakeup((caddr_t) &so->so_timeo);
1004 sorwakeup(so);
1005 sowwakeup(so);
1006 }
1007
1008 #if defined(INET6) && !defined(TCP6)
1009 void
1010 tcp6_ctlinput(cmd, sa, ip6, m, off)
1011 int cmd;
1012 struct sockaddr *sa;
1013 register struct ip6_hdr *ip6;
1014 struct mbuf *m;
1015 int off;
1016 {
1017 (void)tcp_ctlinput(cmd, sa, (void *)ip6);
1018 }
1019 #endif
1020
1021 /* assumes that ip header and tcp header are contiguous on mbuf */
1022 void *
1023 tcp_ctlinput(cmd, sa, v)
1024 int cmd;
1025 struct sockaddr *sa;
1026 register void *v;
1027 {
1028 register struct ip *ip = v;
1029 register struct tcphdr *th;
1030 extern int inetctlerrmap[];
1031 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1032 int errno;
1033 int nmatch;
1034
1035 if ((unsigned)cmd >= PRC_NCMDS)
1036 return NULL;
1037 errno = inetctlerrmap[cmd];
1038 if (cmd == PRC_QUENCH)
1039 notify = tcp_quench;
1040 else if (PRC_IS_REDIRECT(cmd))
1041 notify = in_rtchange, ip = 0;
1042 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1043 notify = tcp_mtudisc, ip = 0;
1044 else if (cmd == PRC_HOSTDEAD)
1045 ip = 0;
1046 else if (errno == 0)
1047 return NULL;
1048 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1049 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1050 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1051 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1052 if (nmatch == 0 && syn_cache_count &&
1053 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1054 inetctlerrmap[cmd] == ENETUNREACH ||
1055 inetctlerrmap[cmd] == EHOSTDOWN)) {
1056 struct sockaddr_in sin;
1057 bzero(&sin, sizeof(sin));
1058 sin.sin_len = sizeof(sin);
1059 sin.sin_family = AF_INET;
1060 sin.sin_port = th->th_sport;
1061 sin.sin_addr = ip->ip_src;
1062 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1063 }
1064
1065 /* XXX mapped address case */
1066 }
1067 #ifdef INET6
1068 else if (ip && ip->ip_v == 6 && sa->sa_family == AF_INET6) {
1069 /* XXX do something for ip6 */
1070 }
1071 #endif
1072 else {
1073 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1074 notify);
1075 #ifdef INET6
1076 /* XXX do something for ip6 */
1077 #endif
1078 }
1079 return NULL;
1080 }
1081
1082 /*
1083 * When a source quence is received, we are being notifed of congestion.
1084 * Close the congestion window down to the Loss Window (one segment).
1085 * We will gradually open it again as we proceed.
1086 */
1087 void
1088 tcp_quench(inp, errno)
1089 struct inpcb *inp;
1090 int errno;
1091 {
1092 struct tcpcb *tp = intotcpcb(inp);
1093
1094 if (tp)
1095 tp->snd_cwnd = tp->t_segsz;
1096 }
1097
1098 /*
1099 * On receipt of path MTU corrections, flush old route and replace it
1100 * with the new one. Retransmit all unacknowledged packets, to ensure
1101 * that all packets will be received.
1102 */
1103 void
1104 tcp_mtudisc(inp, errno)
1105 struct inpcb *inp;
1106 int errno;
1107 {
1108 struct tcpcb *tp = intotcpcb(inp);
1109 struct rtentry *rt = in_pcbrtentry(inp);
1110
1111 if (tp != 0) {
1112 if (rt != 0) {
1113 /*
1114 * If this was not a host route, remove and realloc.
1115 */
1116 if ((rt->rt_flags & RTF_HOST) == 0) {
1117 in_rtchange(inp, errno);
1118 if ((rt = in_pcbrtentry(inp)) == 0)
1119 return;
1120 }
1121
1122 /*
1123 * Slow start out of the error condition. We
1124 * use the MTU because we know it's smaller
1125 * than the previously transmitted segment.
1126 *
1127 * Note: This is more conservative than the
1128 * suggestion in draft-floyd-incr-init-win-03.
1129 */
1130 if (rt->rt_rmx.rmx_mtu != 0)
1131 tp->snd_cwnd =
1132 TCP_INITIAL_WINDOW(tcp_init_win,
1133 rt->rt_rmx.rmx_mtu);
1134 }
1135
1136 /*
1137 * Resend unacknowledged packets.
1138 */
1139 tp->snd_nxt = tp->snd_una;
1140 tcp_output(tp);
1141 }
1142 }
1143
1144
1145 /*
1146 * Compute the MSS to advertise to the peer. Called only during
1147 * the 3-way handshake. If we are the server (peer initiated
1148 * connection), we are called with a pointer to the interface
1149 * on which the SYN packet arrived. If we are the client (we
1150 * initiated connection), we are called with a pointer to the
1151 * interface out which this connection should go.
1152 */
1153 u_long
1154 tcp_mss_to_advertise(ifp)
1155 const struct ifnet *ifp;
1156 {
1157 extern u_long in_maxmtu;
1158 u_long mss = 0;
1159
1160 /*
1161 * In order to avoid defeating path MTU discovery on the peer,
1162 * we advertise the max MTU of all attached networks as our MSS,
1163 * per RFC 1191, section 3.1.
1164 *
1165 * We provide the option to advertise just the MTU of
1166 * the interface on which we hope this connection will
1167 * be receiving. If we are responding to a SYN, we
1168 * will have a pretty good idea about this, but when
1169 * initiating a connection there is a bit more doubt.
1170 *
1171 * We also need to ensure that loopback has a large enough
1172 * MSS, as the loopback MTU is never included in in_maxmtu.
1173 */
1174
1175 if (ifp != NULL)
1176 mss = ifp->if_mtu;
1177
1178 if (tcp_mss_ifmtu == 0)
1179 mss = max(in_maxmtu, mss);
1180
1181 if (mss > sizeof(struct tcpiphdr))
1182 mss -= sizeof(struct tcpiphdr);
1183
1184 mss = max(tcp_mssdflt, mss);
1185 return (mss);
1186 }
1187
1188 /*
1189 * Set connection variables based on the peer's advertised MSS.
1190 * We are passed the TCPCB for the actual connection. If we
1191 * are the server, we are called by the compressed state engine
1192 * when the 3-way handshake is complete. If we are the client,
1193 * we are called when we recieve the SYN,ACK from the server.
1194 *
1195 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1196 * before this routine is called!
1197 */
1198 void
1199 tcp_mss_from_peer(tp, offer)
1200 struct tcpcb *tp;
1201 int offer;
1202 {
1203 struct socket *so;
1204 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1205 struct rtentry *rt;
1206 #endif
1207 u_long bufsize;
1208 int mss;
1209
1210 so = NULL;
1211 rt = NULL;
1212 if (tp->t_inpcb) {
1213 so = tp->t_inpcb->inp_socket;
1214 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1215 rt = in_pcbrtentry(tp->t_inpcb);
1216 #endif
1217 }
1218 #ifdef INET6
1219 else if (tp->t_in6pcb) {
1220 so = tp->t_in6pcb->in6p_socket;
1221 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1222 #ifdef TCP6
1223 rt = NULL;
1224 #else
1225 rt = in6_pcbrtentry(tp->t_in6pcb);
1226 #endif
1227 #endif
1228 }
1229 #endif
1230
1231 /*
1232 * As per RFC1122, use the default MSS value, unless they
1233 * sent us an offer. Do not accept offers less than 32 bytes.
1234 */
1235 mss = tcp_mssdflt;
1236 if (offer)
1237 mss = offer;
1238 mss = max(mss, 32); /* sanity */
1239 tp->t_peermss = mss;
1240 mss -= tcp_optlen(tp);
1241 if (tp->t_inpcb)
1242 mss -= ip_optlen(tp->t_inpcb);
1243 #ifdef INET6
1244 else if (tp->t_in6pcb)
1245 mss -= ip6_optlen(tp->t_in6pcb);
1246 #endif
1247
1248 /*
1249 * If there's a pipesize, change the socket buffer to that size.
1250 * Make the socket buffer an integral number of MSS units. If
1251 * the MSS is larger than the socket buffer, artificially decrease
1252 * the MSS.
1253 */
1254 #ifdef RTV_SPIPE
1255 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1256 bufsize = rt->rt_rmx.rmx_sendpipe;
1257 else
1258 #endif
1259 bufsize = so->so_snd.sb_hiwat;
1260 if (bufsize < mss)
1261 mss = bufsize;
1262 else {
1263 bufsize = roundup(bufsize, mss);
1264 if (bufsize > sb_max)
1265 bufsize = sb_max;
1266 (void) sbreserve(&so->so_snd, bufsize);
1267 }
1268 tp->t_segsz = mss;
1269
1270 #ifdef RTV_SSTHRESH
1271 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1272 /*
1273 * There's some sort of gateway or interface buffer
1274 * limit on the path. Use this to set the slow
1275 * start threshold, but set the threshold to no less
1276 * than 2 * MSS.
1277 */
1278 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1279 }
1280 #endif
1281 }
1282
1283 /*
1284 * Processing necessary when a TCP connection is established.
1285 */
1286 void
1287 tcp_established(tp)
1288 struct tcpcb *tp;
1289 {
1290 struct socket *so;
1291 #ifdef RTV_RPIPE
1292 struct rtentry *rt;
1293 #endif
1294 u_long bufsize;
1295
1296 so = NULL;
1297 rt = NULL;
1298 if (tp->t_inpcb) {
1299 so = tp->t_inpcb->inp_socket;
1300 #if defined(RTV_RPIPE)
1301 rt = in_pcbrtentry(tp->t_inpcb);
1302 #endif
1303 }
1304 #ifdef INET6
1305 else if (tp->t_in6pcb) {
1306 so = tp->t_in6pcb->in6p_socket;
1307 #if defined(RTV_RPIPE)
1308 #ifdef TCP6
1309 rt = NULL;
1310 #else
1311 rt = in6_pcbrtentry(tp->t_in6pcb);
1312 #endif
1313 #endif
1314 }
1315 #endif
1316
1317 tp->t_state = TCPS_ESTABLISHED;
1318 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1319
1320 #ifdef RTV_RPIPE
1321 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1322 bufsize = rt->rt_rmx.rmx_recvpipe;
1323 else
1324 #endif
1325 bufsize = so->so_rcv.sb_hiwat;
1326 if (bufsize > tp->t_ourmss) {
1327 bufsize = roundup(bufsize, tp->t_ourmss);
1328 if (bufsize > sb_max)
1329 bufsize = sb_max;
1330 (void) sbreserve(&so->so_rcv, bufsize);
1331 }
1332 }
1333
1334 /*
1335 * Check if there's an initial rtt or rttvar. Convert from the
1336 * route-table units to scaled multiples of the slow timeout timer.
1337 * Called only during the 3-way handshake.
1338 */
1339 void
1340 tcp_rmx_rtt(tp)
1341 struct tcpcb *tp;
1342 {
1343 #ifdef RTV_RTT
1344 struct rtentry *rt = NULL;
1345 int rtt;
1346
1347 if (tp->t_inpcb)
1348 rt = in_pcbrtentry(tp->t_inpcb);
1349 #ifdef INET6
1350 else if (tp->t_in6pcb) {
1351 #ifdef TCP6
1352 rt = NULL;
1353 #else
1354 rt = in6_pcbrtentry(tp->t_in6pcb);
1355 #endif
1356 }
1357 #endif
1358 if (rt == NULL)
1359 return;
1360
1361 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1362 /*
1363 * XXX The lock bit for MTU indicates that the value
1364 * is also a minimum value; this is subject to time.
1365 */
1366 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1367 TCPT_RANGESET(tp->t_rttmin,
1368 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1369 TCPTV_MIN, TCPTV_REXMTMAX);
1370 tp->t_srtt = rtt /
1371 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1372 if (rt->rt_rmx.rmx_rttvar) {
1373 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1374 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1375 (TCP_RTTVAR_SHIFT + 2));
1376 } else {
1377 /* Default variation is +- 1 rtt */
1378 tp->t_rttvar =
1379 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1380 }
1381 TCPT_RANGESET(tp->t_rxtcur,
1382 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1383 tp->t_rttmin, TCPTV_REXMTMAX);
1384 }
1385 #endif
1386 }
1387
1388 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1389
1390 /*
1391 * Get a new sequence value given a tcp control block
1392 */
1393 tcp_seq
1394 tcp_new_iss(tp, len, addin)
1395 void *tp;
1396 u_long len;
1397 tcp_seq addin;
1398 {
1399 tcp_seq tcp_iss;
1400
1401 /*
1402 * Randomize.
1403 */
1404 #if NRND > 0
1405 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1406 #else
1407 tcp_iss = random();
1408 #endif
1409
1410 /*
1411 * If we were asked to add some amount to a known value,
1412 * we will take a random value obtained above, mask off the upper
1413 * bits, and add in the known value. We also add in a constant to
1414 * ensure that we are at least a certain distance from the original
1415 * value.
1416 *
1417 * This is used when an old connection is in timed wait
1418 * and we have a new one coming in, for instance.
1419 */
1420 if (addin != 0) {
1421 #ifdef TCPISS_DEBUG
1422 printf("Random %08x, ", tcp_iss);
1423 #endif
1424 tcp_iss &= TCP_ISS_RANDOM_MASK;
1425 tcp_iss += addin + TCP_ISSINCR;
1426 #ifdef TCPISS_DEBUG
1427 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1428 #endif
1429 } else {
1430 tcp_iss &= TCP_ISS_RANDOM_MASK;
1431 tcp_iss += tcp_iss_seq;
1432 tcp_iss_seq += TCP_ISSINCR;
1433 #ifdef TCPISS_DEBUG
1434 printf("ISS %08x\n", tcp_iss);
1435 #endif
1436 }
1437
1438 if (tcp_compat_42) {
1439 /*
1440 * Limit it to the positive range for really old TCP
1441 * implementations.
1442 */
1443 if (tcp_iss >= 0x80000000)
1444 tcp_iss &= 0x7fffffff; /* XXX */
1445 }
1446
1447 return tcp_iss;
1448 }
1449
1450 #ifdef IPSEC
1451 /* compute ESP/AH header size for TCP, including outer IP header. */
1452 size_t
1453 ipsec4_hdrsiz_tcp(tp)
1454 struct tcpcb *tp;
1455 {
1456 struct inpcb *inp;
1457 size_t hdrsiz;
1458
1459 /* XXX mapped addr case (tp->t_in6pcb) */
1460 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1461 return 0;
1462 switch (tp->t_family) {
1463 case AF_INET:
1464 hdrsiz = ipsec4_hdrsiz(tp->t_template, inp);
1465 break;
1466 default:
1467 hdrsiz = 0;
1468 break;
1469 }
1470
1471 return hdrsiz;
1472 }
1473
1474 #if defined(INET6) && !defined(TCP6)
1475 size_t
1476 ipsec6_hdrsiz_tcp(tp)
1477 struct tcpcb *tp;
1478 {
1479 struct in6pcb *in6p;
1480 size_t hdrsiz;
1481
1482 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1483 return 0;
1484 switch (tp->t_family) {
1485 case AF_INET6:
1486 hdrsiz = ipsec6_hdrsiz(tp->t_template, in6p);
1487 break;
1488 case AF_INET:
1489 /* mapped address case - tricky */
1490 default:
1491 hdrsiz = 0;
1492 break;
1493 }
1494
1495 return hdrsiz;
1496 }
1497 #endif
1498 #endif /*IPSEC*/
1499
1500 /*
1501 * Determine the length of the TCP options for this connection.
1502 *
1503 * XXX: What do we do for SACK, when we add that? Just reserve
1504 * all of the space? Otherwise we can't exactly be incrementing
1505 * cwnd by an amount that varies depending on the amount we last
1506 * had to SACK!
1507 */
1508
1509 u_int
1510 tcp_optlen(tp)
1511 struct tcpcb *tp;
1512 {
1513 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1514 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1515 return TCPOLEN_TSTAMP_APPA;
1516 else
1517 return 0;
1518 }
1519