tcp_subr.c revision 1.79 1 /* $NetBSD: tcp_subr.c,v 1.79 1999/08/27 02:56:14 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #endif
143
144 #include <netinet/tcp.h>
145 #include <netinet/tcp_fsm.h>
146 #include <netinet/tcp_seq.h>
147 #include <netinet/tcp_timer.h>
148 #include <netinet/tcp_var.h>
149 #include <netinet/tcpip.h>
150
151 #ifdef IPSEC
152 #include <netinet6/ipsec.h>
153 #endif /*IPSEC*/
154
155 #ifdef INET6
156 struct in6pcb tcb6;
157 #endif
158
159 /* patchable/settable parameters for tcp */
160 int tcp_mssdflt = TCP_MSS;
161 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
162 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
163 int tcp_do_sack = 1; /* selective acknowledgement */
164 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
165 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
166 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
167 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
168 int tcp_init_win = 1;
169 int tcp_mss_ifmtu = 0;
170 #ifdef TCP_COMPAT_42
171 int tcp_compat_42 = 1;
172 #else
173 int tcp_compat_42 = 0;
174 #endif
175
176 #ifndef TCBHASHSIZE
177 #define TCBHASHSIZE 128
178 #endif
179 int tcbhashsize = TCBHASHSIZE;
180
181 int tcp_freeq __P((struct tcpcb *));
182
183 struct pool tcpcb_pool;
184
185 /*
186 * Tcp initialization
187 */
188 void
189 tcp_init()
190 {
191 int hlen;
192
193 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
194 0, NULL, NULL, M_PCB);
195 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
196 #ifdef INET6
197 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
198 #endif
199 LIST_INIT(&tcp_delacks);
200
201 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
202 #ifdef INET6
203 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
204 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
205 #endif
206 if (max_protohdr < hlen)
207 max_protohdr = hlen;
208 if (max_linkhdr + hlen > MHLEN)
209 panic("tcp_init");
210
211 /* Initialize the compressed state engine. */
212 syn_cache_init();
213 }
214
215 /*
216 * Create template to be used to send tcp packets on a connection.
217 * Call after host entry created, allocates an mbuf and fills
218 * in a skeletal tcp/ip header, minimizing the amount of work
219 * necessary when the connection is used.
220 */
221 struct mbuf *
222 tcp_template(tp)
223 struct tcpcb *tp;
224 {
225 register struct inpcb *inp = tp->t_inpcb;
226 #ifdef INET6
227 register struct in6pcb *in6p = tp->t_in6pcb;
228 #endif
229 register struct tcphdr *n;
230 register struct mbuf *m;
231 int hlen;
232
233 switch (tp->t_family) {
234 case AF_INET:
235 hlen = sizeof(struct ip);
236 if (inp)
237 break;
238 #ifdef INET6
239 if (in6p) {
240 /* mapped addr case */
241 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
242 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
243 break;
244 }
245 #endif
246 return NULL; /*EINVAL*/
247 #ifdef INET6
248 case AF_INET6:
249 hlen = sizeof(struct ip6_hdr);
250 if (in6p) {
251 /* more sainty check? */
252 break;
253 }
254 return NULL; /*EINVAL*/
255 #endif
256 default:
257 hlen = 0; /*pacify gcc*/
258 return NULL; /*EAFNOSUPPORT*/
259 }
260 if ((m = tp->t_template) == 0) {
261 MGETHDR(m, M_DONTWAIT, MT_HEADER);
262 if (m) {
263 MCLGET(m, M_DONTWAIT);
264 if ((m->m_flags & M_EXT) == 0) {
265 m_free(m);
266 m = NULL;
267 }
268 }
269 if (m == NULL)
270 return NULL;
271 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
272 }
273 bzero(mtod(m, caddr_t), m->m_len);
274 switch (tp->t_family) {
275 case AF_INET:
276 {
277 struct ipovly *ipov;
278 mtod(m, struct ip *)->ip_v = 4;
279 ipov = mtod(m, struct ipovly *);
280 ipov->ih_pr = IPPROTO_TCP;
281 ipov->ih_len = htons(sizeof(struct tcphdr));
282 if (inp) {
283 ipov->ih_src = inp->inp_laddr;
284 ipov->ih_dst = inp->inp_faddr;
285 }
286 #ifdef INET6
287 else if (in6p) {
288 /* mapped addr case */
289 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
290 sizeof(ipov->ih_src));
291 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
292 sizeof(ipov->ih_dst));
293 }
294 #endif
295 break;
296 }
297 #ifdef INET6
298 case AF_INET6:
299 {
300 struct ip6_hdr *ip6;
301 mtod(m, struct ip *)->ip_v = 6;
302 ip6 = mtod(m, struct ip6_hdr *);
303 ip6->ip6_nxt = IPPROTO_TCP;
304 ip6->ip6_plen = htons(sizeof(struct tcphdr));
305 ip6->ip6_src = in6p->in6p_laddr;
306 ip6->ip6_dst = in6p->in6p_faddr;
307 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
308 if (ip6_auto_flowlabel) {
309 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
310 ip6->ip6_flow |=
311 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
312 }
313 ip6->ip6_vfc = IPV6_VERSION;
314 break;
315 }
316 #endif
317 }
318 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
319 if (inp) {
320 n->th_sport = inp->inp_lport;
321 n->th_dport = inp->inp_fport;
322 }
323 #ifdef INET6
324 else if (in6p) {
325 n->th_sport = in6p->in6p_lport;
326 n->th_dport = in6p->in6p_fport;
327 }
328 #endif
329 n->th_seq = 0;
330 n->th_ack = 0;
331 n->th_x2 = 0;
332 n->th_off = 5;
333 n->th_flags = 0;
334 n->th_win = 0;
335 n->th_sum = 0;
336 n->th_urp = 0;
337 return (m);
338 }
339
340 /*
341 * Send a single message to the TCP at address specified by
342 * the given TCP/IP header. If m == 0, then we make a copy
343 * of the tcpiphdr at ti and send directly to the addressed host.
344 * This is used to force keep alive messages out using the TCP
345 * template for a connection tp->t_template. If flags are given
346 * then we send a message back to the TCP which originated the
347 * segment ti, and discard the mbuf containing it and any other
348 * attached mbufs.
349 *
350 * In any case the ack and sequence number of the transmitted
351 * segment are as specified by the parameters.
352 */
353 int
354 tcp_respond(tp, template, m, th0, ack, seq, flags)
355 struct tcpcb *tp;
356 struct mbuf *template;
357 register struct mbuf *m;
358 struct tcphdr *th0;
359 tcp_seq ack, seq;
360 int flags;
361 {
362 #ifndef INET6
363 struct route iproute;
364 #else
365 struct route_in6 iproute; /* sizeof(route_in6) > sizeof(route) */
366 #endif
367 struct route *ro;
368 struct rtentry *rt;
369 int error, tlen, win = 0;
370 int hlen;
371 struct ip *ip;
372 #ifdef INET6
373 struct ip6_hdr *ip6;
374 #endif
375 int family; /* family on packet, not inpcb/in6pcb! */
376 struct tcphdr *th;
377
378 if (tp != NULL && (flags & TH_RST) == 0) {
379 if (tp->t_inpcb)
380 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
381 #ifdef INET6
382 else if (tp->t_in6pcb)
383 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
384 #endif
385 }
386
387 ip = NULL;
388 #ifdef INET6
389 ip6 = NULL;
390 #endif
391 if (m == 0) {
392 if (!template)
393 return EINVAL;
394
395 /* get family information from template */
396 switch (mtod(template, struct ip *)->ip_v) {
397 case 4:
398 family = AF_INET;
399 hlen = sizeof(struct ip);
400 break;
401 #ifdef INET6
402 case 6:
403 family = AF_INET6;
404 hlen = sizeof(struct ip6_hdr);
405 break;
406 #endif
407 default:
408 return EAFNOSUPPORT;
409 }
410
411 MGETHDR(m, M_DONTWAIT, MT_HEADER);
412 if (m) {
413 MCLGET(m, M_DONTWAIT);
414 if ((m->m_flags & M_EXT) == 0) {
415 m_free(m);
416 m = NULL;
417 }
418 }
419 if (m == NULL)
420 return (ENOBUFS);
421
422 if (tcp_compat_42)
423 tlen = 1;
424 else
425 tlen = 0;
426
427 m->m_data += max_linkhdr;
428 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
429 template->m_len);
430 switch (family) {
431 case AF_INET:
432 ip = mtod(m, struct ip *);
433 th = (struct tcphdr *)(ip + 1);
434 break;
435 #ifdef INET6
436 case AF_INET6:
437 ip6 = mtod(m, struct ip6_hdr *);
438 th = (struct tcphdr *)(ip6 + 1);
439 break;
440 #endif
441 default: /*pacify gcc*/
442 ip = NULL;
443 #ifdef INET6
444 ip6 = NULL;
445 #endif
446 th = NULL;
447 break;
448 }
449 flags = TH_ACK;
450 } else {
451 /* get family information from m */
452 switch (mtod(m, struct ip *)->ip_v) {
453 case 4:
454 family = AF_INET;
455 hlen = sizeof(struct ip);
456 break;
457 #ifdef INET6
458 case 6:
459 family = AF_INET6;
460 hlen = sizeof(struct ip6_hdr);
461 break;
462 #endif
463 default:
464 if (m)
465 m_freem(m);
466 return EAFNOSUPPORT;
467 }
468
469 /* template pointer almost has no meaning */
470 m_freem(m->m_next);
471 m->m_next = 0;
472 m->m_len = hlen + sizeof(struct tcphdr);
473 if ((m->m_flags & M_PKTHDR) == 0) {
474 printf("non PKTHDR to tcp_respond\n");
475 m_freem(m);
476 return EINVAL;
477 }
478
479 tlen = 0;
480 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
481 switch (family) {
482 case AF_INET:
483 ip = mtod(m, struct ip *);
484 th = (struct tcphdr *)(ip + 1);
485 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
486 ip->ip_p = IPPROTO_TCP;
487 break;
488 #ifdef INET6
489 case AF_INET6:
490 ip6 = mtod(m, struct ip6_hdr *);
491 th = (struct tcphdr *)(ip6 + 1);
492 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
493 ip6->ip6_nxt = IPPROTO_TCP;
494 break;
495 #endif
496 }
497 *th = *th0;
498 xchg(th->th_dport, th->th_sport, u_int16_t);
499 #undef xchg
500 }
501 th->th_seq = htonl(seq);
502 th->th_ack = htonl(ack);
503 th->th_x2 = 0;
504 if ((flags & TH_SYN) == 0) {
505 if (tp)
506 th->th_win = htons((u_int16_t) (win >> tp->rcv_scale));
507 else
508 th->th_win = htons((u_int16_t)win);
509 th->th_off = sizeof (struct tcphdr) >> 2;
510 tlen += sizeof (struct tcphdr);
511 } else
512 tlen += th->th_off << 2;
513 m->m_len = hlen + tlen;
514 m->m_pkthdr.len = hlen + tlen;
515 m->m_pkthdr.rcvif = (struct ifnet *) 0;
516 th->th_flags = flags;
517 th->th_urp = 0;
518
519 switch (family) {
520 case AF_INET:
521 {
522 struct ipovly *ipov = (struct ipovly *)ip;
523 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
524 ipov->ih_len = htons((u_int16_t)tlen);
525
526 th->th_sum = 0;
527 th->th_sum = in_cksum(m, hlen + tlen);
528 ip->ip_len = hlen + tlen; /*will be flipped on output*/
529 ip->ip_ttl = ip_defttl;
530 break;
531 }
532 #ifdef INET6
533 case AF_INET6:
534 {
535 th->th_sum = 0;
536 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
537 tlen);
538 ip6->ip6_plen = ntohs(tlen);
539 ip6->ip6_hlim = ip6_defhlim;
540 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
541 if (ip6_auto_flowlabel) {
542 ip6->ip6_flow |=
543 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
544 }
545 break;
546 }
547 #endif
548 }
549
550 #ifdef IPSEC
551 m->m_pkthdr.rcvif = NULL;
552 #endif /*IPSEC*/
553
554 /*
555 * If we're doing Path MTU discovery, we need to set DF unless
556 * the route's MTU is locked. If we lack a route, we need to
557 * look it up now.
558 *
559 * ip_output() could do this for us, but it's convenient to just
560 * do it here unconditionally.
561 */
562 if (tp != NULL && tp->t_inpcb != NULL) {
563 ro = &tp->t_inpcb->inp_route;
564 #ifdef IPSEC
565 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket;
566 #endif
567 #ifdef DIAGNOSTIC
568 if (family != AF_INET)
569 panic("tcp_respond: address family mismatch");
570 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
571 panic("tcp_respond: ip_dst %x != inp_faddr %x",
572 ntohl(ip->ip_dst.s_addr),
573 ntohl(tp->t_inpcb->inp_faddr.s_addr));
574 }
575 #endif
576 }
577 #ifdef INET6
578 else if (tp != NULL && tp->t_in6pcb != NULL) {
579 ro = (struct route *)&tp->t_in6pcb->in6p_route;
580 #ifdef IPSEC
581 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_in6pcb->in6p_socket;
582 #endif
583 #ifdef DIAGNOSTIC
584 if (family == AF_INET) {
585 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
586 panic("tcp_respond: not mapped addr");
587 if (bcmp(&ip->ip_dst,
588 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
589 sizeof(ip->ip_dst)) != 0) {
590 panic("tcp_respond: ip_dst != in6p_faddr");
591 }
592 } else if (family == AF_INET6) {
593 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
594 panic("tcp_respond: ip6_dst != in6p_faddr");
595 } else
596 panic("tcp_respond: address family mismatch");
597 #endif
598 }
599 #endif
600 else {
601 ro = (struct route *)&iproute;
602 bzero(ro, sizeof(iproute));
603 }
604 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
605 if (ro->ro_rt != NULL) {
606 RTFREE(ro->ro_rt);
607 ro->ro_rt = NULL;
608 }
609 switch (family) {
610 case AF_INET:
611 {
612 struct sockaddr_in *dst;
613 dst = satosin(&ro->ro_dst);
614 dst->sin_family = AF_INET;
615 dst->sin_len = sizeof(*dst);
616 dst->sin_addr = ip->ip_dst;
617 break;
618 }
619 #ifdef INET6
620 case AF_INET6:
621 {
622 struct sockaddr_in6 *dst;
623 dst = satosin6(&ro->ro_dst);
624 bzero(dst, sizeof(*dst));
625 dst->sin6_family = AF_INET6;
626 dst->sin6_len = sizeof(*dst);
627 dst->sin6_addr = ip6->ip6_dst;
628 break;
629 }
630 #endif
631 }
632 rtalloc(ro);
633 if ((rt = ro->ro_rt) == NULL) {
634 m_freem(m);
635 switch (family) {
636 case AF_INET:
637 ipstat.ips_noroute++;
638 break;
639 #ifdef INET6
640 case AF_INET6:
641 ip6stat.ip6s_noroute++;
642 break;
643 #endif
644 }
645 return (EHOSTUNREACH);
646 }
647 }
648 switch (family) {
649 case AF_INET:
650 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
651 ip->ip_off |= IP_DF;
652
653 error = ip_output(m, NULL, ro, 0, NULL);
654 break;
655 #ifdef INET6
656 case AF_INET6:
657 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL);
658 break;
659 #endif
660 default:
661 error = EAFNOSUPPORT;
662 break;
663 }
664
665 if (ro == (struct route *)&iproute) {
666 RTFREE(ro->ro_rt);
667 ro->ro_rt = NULL;
668 }
669
670 return (error);
671 }
672
673 /*
674 * Create a new TCP control block, making an
675 * empty reassembly queue and hooking it to the argument
676 * protocol control block.
677 */
678 struct tcpcb *
679 tcp_newtcpcb(family, aux)
680 int family; /* selects inpcb, or in6pcb */
681 void *aux;
682 {
683 register struct tcpcb *tp;
684
685 switch (family) {
686 case PF_INET:
687 break;
688 #ifdef INET6
689 case PF_INET6:
690 break;
691 #endif
692 default:
693 return NULL;
694 }
695
696 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
697 if (tp == NULL)
698 return (NULL);
699 bzero((caddr_t)tp, sizeof(struct tcpcb));
700 LIST_INIT(&tp->segq);
701 LIST_INIT(&tp->timeq);
702 tp->t_family = family; /* may be overridden later on */
703 tp->t_peermss = tcp_mssdflt;
704 tp->t_ourmss = tcp_mssdflt;
705 tp->t_segsz = tcp_mssdflt;
706 LIST_INIT(&tp->t_sc);
707
708 tp->t_flags = 0;
709 if (tcp_do_rfc1323 && tcp_do_win_scale)
710 tp->t_flags |= TF_REQ_SCALE;
711 if (tcp_do_rfc1323 && tcp_do_timestamps)
712 tp->t_flags |= TF_REQ_TSTMP;
713 if (tcp_do_sack == 2)
714 tp->t_flags |= TF_WILL_SACK;
715 else if (tcp_do_sack == 1)
716 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
717 tp->t_flags |= TF_CANT_TXSACK;
718 switch (family) {
719 case PF_INET:
720 tp->t_inpcb = (struct inpcb *)aux;
721 break;
722 #ifdef INET6
723 case PF_INET6:
724 tp->t_in6pcb = (struct in6pcb *)aux;
725 break;
726 #endif
727 }
728 /*
729 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
730 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
731 * reasonable initial retransmit time.
732 */
733 tp->t_srtt = TCPTV_SRTTBASE;
734 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
735 tp->t_rttmin = TCPTV_MIN;
736 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
737 TCPTV_MIN, TCPTV_REXMTMAX);
738 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
739 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
740 if (family == AF_INET) {
741 struct inpcb *inp = (struct inpcb *)aux;
742 inp->inp_ip.ip_ttl = ip_defttl;
743 inp->inp_ppcb = (caddr_t)tp;
744 }
745 #ifdef INET6
746 else if (family == AF_INET6) {
747 struct in6pcb *in6p = (struct in6pcb *)aux;
748 in6p->in6p_ip6.ip6_hlim = ip6_defhlim;
749 in6p->in6p_ppcb = (caddr_t)tp;
750 }
751 #endif
752 return (tp);
753 }
754
755 /*
756 * Drop a TCP connection, reporting
757 * the specified error. If connection is synchronized,
758 * then send a RST to peer.
759 */
760 struct tcpcb *
761 tcp_drop(tp, errno)
762 register struct tcpcb *tp;
763 int errno;
764 {
765 struct socket *so;
766
767 if (tp->t_inpcb)
768 so = tp->t_inpcb->inp_socket;
769 #ifdef INET6
770 else if (tp->t_in6pcb)
771 so = tp->t_in6pcb->in6p_socket;
772 #endif
773 else
774 return NULL;
775
776 if (TCPS_HAVERCVDSYN(tp->t_state)) {
777 tp->t_state = TCPS_CLOSED;
778 (void) tcp_output(tp);
779 tcpstat.tcps_drops++;
780 } else
781 tcpstat.tcps_conndrops++;
782 if (errno == ETIMEDOUT && tp->t_softerror)
783 errno = tp->t_softerror;
784 so->so_error = errno;
785 return (tcp_close(tp));
786 }
787
788 /*
789 * Close a TCP control block:
790 * discard all space held by the tcp
791 * discard internet protocol block
792 * wake up any sleepers
793 */
794 struct tcpcb *
795 tcp_close(tp)
796 register struct tcpcb *tp;
797 {
798 struct inpcb *inp;
799 #ifdef INET6
800 struct in6pcb *in6p;
801 #endif
802 struct socket *so;
803 #ifdef RTV_RTT
804 register struct rtentry *rt;
805 #endif
806 struct route *ro;
807
808 inp = tp->t_inpcb;
809 #ifdef INET6
810 in6p = tp->t_in6pcb;
811 #endif
812 so = NULL;
813 ro = NULL;
814 if (inp) {
815 so = inp->inp_socket;
816 ro = &inp->inp_route;
817 }
818 #ifdef INET6
819 else if (in6p) {
820 so = in6p->in6p_socket;
821 ro = (struct route *)&in6p->in6p_route;
822 }
823 #endif
824
825 #ifdef RTV_RTT
826 /*
827 * If we sent enough data to get some meaningful characteristics,
828 * save them in the routing entry. 'Enough' is arbitrarily
829 * defined as the sendpipesize (default 4K) * 16. This would
830 * give us 16 rtt samples assuming we only get one sample per
831 * window (the usual case on a long haul net). 16 samples is
832 * enough for the srtt filter to converge to within 5% of the correct
833 * value; fewer samples and we could save a very bogus rtt.
834 *
835 * Don't update the default route's characteristics and don't
836 * update anything that the user "locked".
837 */
838 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
839 ro && (rt = ro->ro_rt) &&
840 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
841 register u_long i = 0;
842
843 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
844 i = tp->t_srtt *
845 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
846 if (rt->rt_rmx.rmx_rtt && i)
847 /*
848 * filter this update to half the old & half
849 * the new values, converting scale.
850 * See route.h and tcp_var.h for a
851 * description of the scaling constants.
852 */
853 rt->rt_rmx.rmx_rtt =
854 (rt->rt_rmx.rmx_rtt + i) / 2;
855 else
856 rt->rt_rmx.rmx_rtt = i;
857 }
858 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
859 i = tp->t_rttvar *
860 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
861 if (rt->rt_rmx.rmx_rttvar && i)
862 rt->rt_rmx.rmx_rttvar =
863 (rt->rt_rmx.rmx_rttvar + i) / 2;
864 else
865 rt->rt_rmx.rmx_rttvar = i;
866 }
867 /*
868 * update the pipelimit (ssthresh) if it has been updated
869 * already or if a pipesize was specified & the threshhold
870 * got below half the pipesize. I.e., wait for bad news
871 * before we start updating, then update on both good
872 * and bad news.
873 */
874 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
875 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
876 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
877 /*
878 * convert the limit from user data bytes to
879 * packets then to packet data bytes.
880 */
881 i = (i + tp->t_segsz / 2) / tp->t_segsz;
882 if (i < 2)
883 i = 2;
884 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
885 if (rt->rt_rmx.rmx_ssthresh)
886 rt->rt_rmx.rmx_ssthresh =
887 (rt->rt_rmx.rmx_ssthresh + i) / 2;
888 else
889 rt->rt_rmx.rmx_ssthresh = i;
890 }
891 }
892 #endif /* RTV_RTT */
893 /* free the reassembly queue, if any */
894 TCP_REASS_LOCK(tp);
895 (void) tcp_freeq(tp);
896 TCP_REASS_UNLOCK(tp);
897
898 TCP_CLEAR_DELACK(tp);
899 syn_cache_cleanup(tp);
900
901 if (tp->t_template) {
902 m_free(tp->t_template);
903 tp->t_template = NULL;
904 }
905 pool_put(&tcpcb_pool, tp);
906 if (inp) {
907 inp->inp_ppcb = 0;
908 soisdisconnected(so);
909 in_pcbdetach(inp);
910 }
911 #ifdef INET6
912 else if (in6p) {
913 in6p->in6p_ppcb = 0;
914 soisdisconnected(so);
915 in6_pcbdetach(in6p);
916 }
917 #endif
918 tcpstat.tcps_closed++;
919 return ((struct tcpcb *)0);
920 }
921
922 int
923 tcp_freeq(tp)
924 struct tcpcb *tp;
925 {
926 register struct ipqent *qe;
927 int rv = 0;
928 #ifdef TCPREASS_DEBUG
929 int i = 0;
930 #endif
931
932 TCP_REASS_LOCK_CHECK(tp);
933
934 while ((qe = tp->segq.lh_first) != NULL) {
935 #ifdef TCPREASS_DEBUG
936 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
937 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
938 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
939 #endif
940 LIST_REMOVE(qe, ipqe_q);
941 LIST_REMOVE(qe, ipqe_timeq);
942 m_freem(qe->ipqe_m);
943 pool_put(&ipqent_pool, qe);
944 rv = 1;
945 }
946 return (rv);
947 }
948
949 /*
950 * Protocol drain routine. Called when memory is in short supply.
951 */
952 void
953 tcp_drain()
954 {
955 register struct inpcb *inp;
956 register struct tcpcb *tp;
957
958 /*
959 * Free the sequence queue of all TCP connections.
960 */
961 inp = tcbtable.inpt_queue.cqh_first;
962 if (inp) /* XXX */
963 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
964 inp = inp->inp_queue.cqe_next) {
965 if ((tp = intotcpcb(inp)) != NULL) {
966 /*
967 * We may be called from a device's interrupt
968 * context. If the tcpcb is already busy,
969 * just bail out now.
970 */
971 if (tcp_reass_lock_try(tp) == 0)
972 continue;
973 if (tcp_freeq(tp))
974 tcpstat.tcps_connsdrained++;
975 TCP_REASS_UNLOCK(tp);
976 }
977 }
978 }
979
980 /*
981 * Notify a tcp user of an asynchronous error;
982 * store error as soft error, but wake up user
983 * (for now, won't do anything until can select for soft error).
984 */
985 void
986 tcp_notify(inp, error)
987 struct inpcb *inp;
988 int error;
989 {
990 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
991 register struct socket *so = inp->inp_socket;
992
993 /*
994 * Ignore some errors if we are hooked up.
995 * If connection hasn't completed, has retransmitted several times,
996 * and receives a second error, give up now. This is better
997 * than waiting a long time to establish a connection that
998 * can never complete.
999 */
1000 if (tp->t_state == TCPS_ESTABLISHED &&
1001 (error == EHOSTUNREACH || error == ENETUNREACH ||
1002 error == EHOSTDOWN)) {
1003 return;
1004 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1005 tp->t_rxtshift > 3 && tp->t_softerror)
1006 so->so_error = error;
1007 else
1008 tp->t_softerror = error;
1009 wakeup((caddr_t) &so->so_timeo);
1010 sorwakeup(so);
1011 sowwakeup(so);
1012 }
1013
1014 #if defined(INET6) && !defined(TCP6)
1015 void
1016 tcp6_notify(in6p, error)
1017 struct in6pcb *in6p;
1018 int error;
1019 {
1020 register struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1021 register struct socket *so = in6p->in6p_socket;
1022
1023 /*
1024 * Ignore some errors if we are hooked up.
1025 * If connection hasn't completed, has retransmitted several times,
1026 * and receives a second error, give up now. This is better
1027 * than waiting a long time to establish a connection that
1028 * can never complete.
1029 */
1030 if (tp->t_state == TCPS_ESTABLISHED &&
1031 (error == EHOSTUNREACH || error == ENETUNREACH ||
1032 error == EHOSTDOWN)) {
1033 return;
1034 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1035 tp->t_rxtshift > 3 && tp->t_softerror)
1036 so->so_error = error;
1037 else
1038 tp->t_softerror = error;
1039 wakeup((caddr_t) &so->so_timeo);
1040 sorwakeup(so);
1041 sowwakeup(so);
1042 }
1043 #endif
1044
1045 #if defined(INET6) && !defined(TCP6)
1046 void
1047 tcp6_ctlinput(cmd, sa, ip6, m, off)
1048 int cmd;
1049 struct sockaddr *sa;
1050 register struct ip6_hdr *ip6;
1051 struct mbuf *m;
1052 int off;
1053 {
1054 register struct tcphdr *thp;
1055 struct tcphdr th;
1056 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1057 int nmatch;
1058 extern struct in6_addr zeroin6_addr; /* netinet6/in6_pcb.c */
1059 struct sockaddr_in6 sa6;
1060
1061 if (sa->sa_family != AF_INET6 ||
1062 sa->sa_len != sizeof(struct sockaddr_in6))
1063 return;
1064 if (cmd == PRC_QUENCH)
1065 notify = tcp6_quench;
1066 else if (cmd == PRC_MSGSIZE)
1067 notify = tcp6_mtudisc;
1068 else if (!PRC_IS_REDIRECT(cmd) &&
1069 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1070 return;
1071
1072 /* translate addresses into internal form */
1073 sa6 = *(struct sockaddr_in6 *)sa;
1074 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr))
1075 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1076
1077 if (ip6) {
1078 /*
1079 * XXX: We assume that when ip6 is non NULL,
1080 * M and OFF are valid.
1081 */
1082 struct in6_addr s;
1083
1084 /* translate addresses into internal form */
1085 memcpy(&s, &ip6->ip6_src, sizeof(s));
1086 if (IN6_IS_ADDR_LINKLOCAL(&s))
1087 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1088
1089 if (m->m_len < off + sizeof(th)) {
1090 /*
1091 * this should be rare case,
1092 * so we compromise on this copy...
1093 */
1094 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1095 thp = &th;
1096 } else
1097 thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1098 nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
1099 thp->th_dport, &s, thp->th_sport, cmd, notify);
1100 if (nmatch == 0 && syn_cache_count &&
1101 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1102 inet6ctlerrmap[cmd] == ENETUNREACH ||
1103 inet6ctlerrmap[cmd] == EHOSTDOWN)) {
1104 struct sockaddr_in6 sin6;
1105 bzero(&sin6, sizeof(sin6));
1106 sin6.sin6_len = sizeof(sin6);
1107 sin6.sin6_family = AF_INET6;
1108 sin6.sin6_port = thp->th_sport;
1109 sin6.sin6_addr = s;
1110 syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
1111 }
1112 } else {
1113 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
1114 &zeroin6_addr, 0, cmd, notify);
1115 }
1116 }
1117 #endif
1118
1119 /* assumes that ip header and tcp header are contiguous on mbuf */
1120 void *
1121 tcp_ctlinput(cmd, sa, v)
1122 int cmd;
1123 struct sockaddr *sa;
1124 register void *v;
1125 {
1126 register struct ip *ip = v;
1127 register struct tcphdr *th;
1128 extern int inetctlerrmap[];
1129 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1130 int errno;
1131 int nmatch;
1132
1133 if (sa->sa_family != AF_INET ||
1134 sa->sa_len != sizeof(struct sockaddr_in))
1135 return NULL;
1136 if ((unsigned)cmd >= PRC_NCMDS)
1137 return NULL;
1138 errno = inetctlerrmap[cmd];
1139 if (cmd == PRC_QUENCH)
1140 notify = tcp_quench;
1141 else if (PRC_IS_REDIRECT(cmd))
1142 notify = in_rtchange, ip = 0;
1143 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1144 notify = tcp_mtudisc, ip = 0;
1145 else if (cmd == PRC_HOSTDEAD)
1146 ip = 0;
1147 else if (errno == 0)
1148 return NULL;
1149 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1150 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1151 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1152 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1153 if (nmatch == 0 && syn_cache_count &&
1154 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1155 inetctlerrmap[cmd] == ENETUNREACH ||
1156 inetctlerrmap[cmd] == EHOSTDOWN)) {
1157 struct sockaddr_in sin;
1158 bzero(&sin, sizeof(sin));
1159 sin.sin_len = sizeof(sin);
1160 sin.sin_family = AF_INET;
1161 sin.sin_port = th->th_sport;
1162 sin.sin_addr = ip->ip_src;
1163 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1164 }
1165
1166 /* XXX mapped address case */
1167 }
1168 else {
1169 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1170 notify);
1171 }
1172 return NULL;
1173 }
1174
1175 /*
1176 * When a source quence is received, we are being notifed of congestion.
1177 * Close the congestion window down to the Loss Window (one segment).
1178 * We will gradually open it again as we proceed.
1179 */
1180 void
1181 tcp_quench(inp, errno)
1182 struct inpcb *inp;
1183 int errno;
1184 {
1185 struct tcpcb *tp = intotcpcb(inp);
1186
1187 if (tp)
1188 tp->snd_cwnd = tp->t_segsz;
1189 }
1190
1191 #if defined(INET6) && !defined(TCP6)
1192 void
1193 tcp6_quench(in6p, errno)
1194 struct in6pcb *in6p;
1195 int errno;
1196 {
1197 struct tcpcb *tp = in6totcpcb(in6p);
1198
1199 if (tp)
1200 tp->snd_cwnd = tp->t_segsz;
1201 }
1202 #endif
1203
1204 /*
1205 * On receipt of path MTU corrections, flush old route and replace it
1206 * with the new one. Retransmit all unacknowledged packets, to ensure
1207 * that all packets will be received.
1208 */
1209 void
1210 tcp_mtudisc(inp, errno)
1211 struct inpcb *inp;
1212 int errno;
1213 {
1214 struct tcpcb *tp = intotcpcb(inp);
1215 struct rtentry *rt = in_pcbrtentry(inp);
1216
1217 if (tp != 0) {
1218 if (rt != 0) {
1219 /*
1220 * If this was not a host route, remove and realloc.
1221 */
1222 if ((rt->rt_flags & RTF_HOST) == 0) {
1223 in_rtchange(inp, errno);
1224 if ((rt = in_pcbrtentry(inp)) == 0)
1225 return;
1226 }
1227
1228 /*
1229 * Slow start out of the error condition. We
1230 * use the MTU because we know it's smaller
1231 * than the previously transmitted segment.
1232 *
1233 * Note: This is more conservative than the
1234 * suggestion in draft-floyd-incr-init-win-03.
1235 */
1236 if (rt->rt_rmx.rmx_mtu != 0)
1237 tp->snd_cwnd =
1238 TCP_INITIAL_WINDOW(tcp_init_win,
1239 rt->rt_rmx.rmx_mtu);
1240 }
1241
1242 /*
1243 * Resend unacknowledged packets.
1244 */
1245 tp->snd_nxt = tp->snd_una;
1246 tcp_output(tp);
1247 }
1248 }
1249
1250 #if defined(INET6) && !defined(TCP6)
1251 void
1252 tcp6_mtudisc(in6p, errno)
1253 struct in6pcb *in6p;
1254 int errno;
1255 {
1256 struct tcpcb *tp = in6totcpcb(in6p);
1257 struct rtentry *rt = in6_pcbrtentry(in6p);
1258
1259 if (tp != 0) {
1260 if (rt != 0) {
1261 /*
1262 * If this was not a host route, remove and realloc.
1263 */
1264 if ((rt->rt_flags & RTF_HOST) == 0) {
1265 in6_rtchange(in6p, errno);
1266 if ((rt = in6_pcbrtentry(in6p)) == 0)
1267 return;
1268 }
1269
1270 /*
1271 * Slow start out of the error condition. We
1272 * use the MTU because we know it's smaller
1273 * than the previously transmitted segment.
1274 *
1275 * Note: This is more conservative than the
1276 * suggestion in draft-floyd-incr-init-win-03.
1277 */
1278 if (rt->rt_rmx.rmx_mtu != 0)
1279 tp->snd_cwnd =
1280 TCP_INITIAL_WINDOW(tcp_init_win,
1281 rt->rt_rmx.rmx_mtu);
1282 }
1283
1284 /*
1285 * Resend unacknowledged packets.
1286 */
1287 tp->snd_nxt = tp->snd_una;
1288 tcp_output(tp);
1289 }
1290 }
1291 #endif
1292
1293 /*
1294 * Compute the MSS to advertise to the peer. Called only during
1295 * the 3-way handshake. If we are the server (peer initiated
1296 * connection), we are called with a pointer to the interface
1297 * on which the SYN packet arrived. If we are the client (we
1298 * initiated connection), we are called with a pointer to the
1299 * interface out which this connection should go.
1300 */
1301 u_long
1302 tcp_mss_to_advertise(ifp)
1303 const struct ifnet *ifp;
1304 {
1305 extern u_long in_maxmtu;
1306 u_long mss = 0;
1307
1308 /*
1309 * In order to avoid defeating path MTU discovery on the peer,
1310 * we advertise the max MTU of all attached networks as our MSS,
1311 * per RFC 1191, section 3.1.
1312 *
1313 * We provide the option to advertise just the MTU of
1314 * the interface on which we hope this connection will
1315 * be receiving. If we are responding to a SYN, we
1316 * will have a pretty good idea about this, but when
1317 * initiating a connection there is a bit more doubt.
1318 *
1319 * We also need to ensure that loopback has a large enough
1320 * MSS, as the loopback MTU is never included in in_maxmtu.
1321 */
1322
1323 if (ifp != NULL)
1324 mss = ifp->if_mtu;
1325
1326 if (tcp_mss_ifmtu == 0)
1327 mss = max(in_maxmtu, mss);
1328
1329 if (mss > sizeof(struct tcpiphdr))
1330 mss -= sizeof(struct tcpiphdr);
1331
1332 mss = max(tcp_mssdflt, mss);
1333 return (mss);
1334 }
1335
1336 /*
1337 * Set connection variables based on the peer's advertised MSS.
1338 * We are passed the TCPCB for the actual connection. If we
1339 * are the server, we are called by the compressed state engine
1340 * when the 3-way handshake is complete. If we are the client,
1341 * we are called when we recieve the SYN,ACK from the server.
1342 *
1343 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1344 * before this routine is called!
1345 */
1346 void
1347 tcp_mss_from_peer(tp, offer)
1348 struct tcpcb *tp;
1349 int offer;
1350 {
1351 struct socket *so;
1352 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1353 struct rtentry *rt;
1354 #endif
1355 u_long bufsize;
1356 int mss;
1357
1358 so = NULL;
1359 rt = NULL;
1360 if (tp->t_inpcb) {
1361 so = tp->t_inpcb->inp_socket;
1362 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1363 rt = in_pcbrtentry(tp->t_inpcb);
1364 #endif
1365 }
1366 #ifdef INET6
1367 else if (tp->t_in6pcb) {
1368 so = tp->t_in6pcb->in6p_socket;
1369 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1370 #ifdef TCP6
1371 rt = NULL;
1372 #else
1373 rt = in6_pcbrtentry(tp->t_in6pcb);
1374 #endif
1375 #endif
1376 }
1377 #endif
1378
1379 /*
1380 * As per RFC1122, use the default MSS value, unless they
1381 * sent us an offer. Do not accept offers less than 32 bytes.
1382 */
1383 mss = tcp_mssdflt;
1384 if (offer)
1385 mss = offer;
1386 mss = max(mss, 32); /* sanity */
1387 tp->t_peermss = mss;
1388 mss -= tcp_optlen(tp);
1389 if (tp->t_inpcb)
1390 mss -= ip_optlen(tp->t_inpcb);
1391 #ifdef INET6
1392 else if (tp->t_in6pcb)
1393 mss -= ip6_optlen(tp->t_in6pcb);
1394 #endif
1395
1396 /*
1397 * If there's a pipesize, change the socket buffer to that size.
1398 * Make the socket buffer an integral number of MSS units. If
1399 * the MSS is larger than the socket buffer, artificially decrease
1400 * the MSS.
1401 */
1402 #ifdef RTV_SPIPE
1403 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1404 bufsize = rt->rt_rmx.rmx_sendpipe;
1405 else
1406 #endif
1407 bufsize = so->so_snd.sb_hiwat;
1408 if (bufsize < mss)
1409 mss = bufsize;
1410 else {
1411 bufsize = roundup(bufsize, mss);
1412 if (bufsize > sb_max)
1413 bufsize = sb_max;
1414 (void) sbreserve(&so->so_snd, bufsize);
1415 }
1416 tp->t_segsz = mss;
1417
1418 #ifdef RTV_SSTHRESH
1419 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1420 /*
1421 * There's some sort of gateway or interface buffer
1422 * limit on the path. Use this to set the slow
1423 * start threshold, but set the threshold to no less
1424 * than 2 * MSS.
1425 */
1426 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1427 }
1428 #endif
1429 }
1430
1431 /*
1432 * Processing necessary when a TCP connection is established.
1433 */
1434 void
1435 tcp_established(tp)
1436 struct tcpcb *tp;
1437 {
1438 struct socket *so;
1439 #ifdef RTV_RPIPE
1440 struct rtentry *rt;
1441 #endif
1442 u_long bufsize;
1443
1444 so = NULL;
1445 rt = NULL;
1446 if (tp->t_inpcb) {
1447 so = tp->t_inpcb->inp_socket;
1448 #if defined(RTV_RPIPE)
1449 rt = in_pcbrtentry(tp->t_inpcb);
1450 #endif
1451 }
1452 #ifdef INET6
1453 else if (tp->t_in6pcb) {
1454 so = tp->t_in6pcb->in6p_socket;
1455 #if defined(RTV_RPIPE)
1456 #ifdef TCP6
1457 rt = NULL;
1458 #else
1459 rt = in6_pcbrtentry(tp->t_in6pcb);
1460 #endif
1461 #endif
1462 }
1463 #endif
1464
1465 tp->t_state = TCPS_ESTABLISHED;
1466 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1467
1468 #ifdef RTV_RPIPE
1469 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1470 bufsize = rt->rt_rmx.rmx_recvpipe;
1471 else
1472 #endif
1473 bufsize = so->so_rcv.sb_hiwat;
1474 if (bufsize > tp->t_ourmss) {
1475 bufsize = roundup(bufsize, tp->t_ourmss);
1476 if (bufsize > sb_max)
1477 bufsize = sb_max;
1478 (void) sbreserve(&so->so_rcv, bufsize);
1479 }
1480 }
1481
1482 /*
1483 * Check if there's an initial rtt or rttvar. Convert from the
1484 * route-table units to scaled multiples of the slow timeout timer.
1485 * Called only during the 3-way handshake.
1486 */
1487 void
1488 tcp_rmx_rtt(tp)
1489 struct tcpcb *tp;
1490 {
1491 #ifdef RTV_RTT
1492 struct rtentry *rt = NULL;
1493 int rtt;
1494
1495 if (tp->t_inpcb)
1496 rt = in_pcbrtentry(tp->t_inpcb);
1497 #ifdef INET6
1498 else if (tp->t_in6pcb) {
1499 #ifdef TCP6
1500 rt = NULL;
1501 #else
1502 rt = in6_pcbrtentry(tp->t_in6pcb);
1503 #endif
1504 }
1505 #endif
1506 if (rt == NULL)
1507 return;
1508
1509 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1510 /*
1511 * XXX The lock bit for MTU indicates that the value
1512 * is also a minimum value; this is subject to time.
1513 */
1514 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1515 TCPT_RANGESET(tp->t_rttmin,
1516 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1517 TCPTV_MIN, TCPTV_REXMTMAX);
1518 tp->t_srtt = rtt /
1519 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1520 if (rt->rt_rmx.rmx_rttvar) {
1521 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1522 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1523 (TCP_RTTVAR_SHIFT + 2));
1524 } else {
1525 /* Default variation is +- 1 rtt */
1526 tp->t_rttvar =
1527 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1528 }
1529 TCPT_RANGESET(tp->t_rxtcur,
1530 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1531 tp->t_rttmin, TCPTV_REXMTMAX);
1532 }
1533 #endif
1534 }
1535
1536 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1537
1538 /*
1539 * Get a new sequence value given a tcp control block
1540 */
1541 tcp_seq
1542 tcp_new_iss(tp, len, addin)
1543 void *tp;
1544 u_long len;
1545 tcp_seq addin;
1546 {
1547 tcp_seq tcp_iss;
1548
1549 /*
1550 * Randomize.
1551 */
1552 #if NRND > 0
1553 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1554 #else
1555 tcp_iss = random();
1556 #endif
1557
1558 /*
1559 * If we were asked to add some amount to a known value,
1560 * we will take a random value obtained above, mask off the upper
1561 * bits, and add in the known value. We also add in a constant to
1562 * ensure that we are at least a certain distance from the original
1563 * value.
1564 *
1565 * This is used when an old connection is in timed wait
1566 * and we have a new one coming in, for instance.
1567 */
1568 if (addin != 0) {
1569 #ifdef TCPISS_DEBUG
1570 printf("Random %08x, ", tcp_iss);
1571 #endif
1572 tcp_iss &= TCP_ISS_RANDOM_MASK;
1573 tcp_iss += addin + TCP_ISSINCR;
1574 #ifdef TCPISS_DEBUG
1575 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1576 #endif
1577 } else {
1578 tcp_iss &= TCP_ISS_RANDOM_MASK;
1579 tcp_iss += tcp_iss_seq;
1580 tcp_iss_seq += TCP_ISSINCR;
1581 #ifdef TCPISS_DEBUG
1582 printf("ISS %08x\n", tcp_iss);
1583 #endif
1584 }
1585
1586 if (tcp_compat_42) {
1587 /*
1588 * Limit it to the positive range for really old TCP
1589 * implementations.
1590 */
1591 if (tcp_iss >= 0x80000000)
1592 tcp_iss &= 0x7fffffff; /* XXX */
1593 }
1594
1595 return tcp_iss;
1596 }
1597
1598 #ifdef IPSEC
1599 /* compute ESP/AH header size for TCP, including outer IP header. */
1600 size_t
1601 ipsec4_hdrsiz_tcp(tp)
1602 struct tcpcb *tp;
1603 {
1604 struct inpcb *inp;
1605 size_t hdrsiz;
1606
1607 /* XXX mapped addr case (tp->t_in6pcb) */
1608 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1609 return 0;
1610 switch (tp->t_family) {
1611 case AF_INET:
1612 hdrsiz = ipsec4_hdrsiz(tp->t_template, inp);
1613 break;
1614 default:
1615 hdrsiz = 0;
1616 break;
1617 }
1618
1619 return hdrsiz;
1620 }
1621
1622 #if defined(INET6) && !defined(TCP6)
1623 size_t
1624 ipsec6_hdrsiz_tcp(tp)
1625 struct tcpcb *tp;
1626 {
1627 struct in6pcb *in6p;
1628 size_t hdrsiz;
1629
1630 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1631 return 0;
1632 switch (tp->t_family) {
1633 case AF_INET6:
1634 hdrsiz = ipsec6_hdrsiz(tp->t_template, in6p);
1635 break;
1636 case AF_INET:
1637 /* mapped address case - tricky */
1638 default:
1639 hdrsiz = 0;
1640 break;
1641 }
1642
1643 return hdrsiz;
1644 }
1645 #endif
1646 #endif /*IPSEC*/
1647
1648 /*
1649 * Determine the length of the TCP options for this connection.
1650 *
1651 * XXX: What do we do for SACK, when we add that? Just reserve
1652 * all of the space? Otherwise we can't exactly be incrementing
1653 * cwnd by an amount that varies depending on the amount we last
1654 * had to SACK!
1655 */
1656
1657 u_int
1658 tcp_optlen(tp)
1659 struct tcpcb *tp;
1660 {
1661 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1662 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1663 return TCPOLEN_TSTAMP_APPA;
1664 else
1665 return 0;
1666 }
1667