tcp_subr.c revision 1.87 1 /* $NetBSD: tcp_subr.c,v 1.87 2000/02/06 08:06:43 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #include <netinet6/ip6protosw.h>
143 #endif
144
145 #include <netinet/tcp.h>
146 #include <netinet/tcp_fsm.h>
147 #include <netinet/tcp_seq.h>
148 #include <netinet/tcp_timer.h>
149 #include <netinet/tcp_var.h>
150 #include <netinet/tcpip.h>
151
152 #ifdef IPSEC
153 #include <netinet6/ipsec.h>
154 #endif /*IPSEC*/
155
156 #ifdef INET6
157 struct in6pcb tcb6;
158 #endif
159
160 /* patchable/settable parameters for tcp */
161 int tcp_mssdflt = TCP_MSS;
162 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
163 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
164 int tcp_do_sack = 1; /* selective acknowledgement */
165 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
166 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
167 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
168 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
169 int tcp_init_win = 1;
170 int tcp_mss_ifmtu = 0;
171 #ifdef TCP_COMPAT_42
172 int tcp_compat_42 = 1;
173 #else
174 int tcp_compat_42 = 0;
175 #endif
176
177 #ifndef TCBHASHSIZE
178 #define TCBHASHSIZE 128
179 #endif
180 int tcbhashsize = TCBHASHSIZE;
181
182 int tcp_freeq __P((struct tcpcb *));
183
184 struct pool tcpcb_pool;
185
186 /*
187 * Tcp initialization
188 */
189 void
190 tcp_init()
191 {
192 int hlen;
193
194 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
195 0, NULL, NULL, M_PCB);
196 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
197 #ifdef INET6
198 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
199 #endif
200 LIST_INIT(&tcp_delacks);
201
202 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
203 #ifdef INET6
204 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
205 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
206 #endif
207 if (max_protohdr < hlen)
208 max_protohdr = hlen;
209 if (max_linkhdr + hlen > MHLEN)
210 panic("tcp_init");
211
212 /* Initialize the compressed state engine. */
213 syn_cache_init();
214 }
215
216 /*
217 * Create template to be used to send tcp packets on a connection.
218 * Call after host entry created, allocates an mbuf and fills
219 * in a skeletal tcp/ip header, minimizing the amount of work
220 * necessary when the connection is used.
221 */
222 struct mbuf *
223 tcp_template(tp)
224 struct tcpcb *tp;
225 {
226 register struct inpcb *inp = tp->t_inpcb;
227 #ifdef INET6
228 register struct in6pcb *in6p = tp->t_in6pcb;
229 #endif
230 register struct tcphdr *n;
231 register struct mbuf *m;
232 int hlen;
233
234 switch (tp->t_family) {
235 case AF_INET:
236 hlen = sizeof(struct ip);
237 if (inp)
238 break;
239 #ifdef INET6
240 if (in6p) {
241 /* mapped addr case */
242 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
243 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
244 break;
245 }
246 #endif
247 return NULL; /*EINVAL*/
248 #ifdef INET6
249 case AF_INET6:
250 hlen = sizeof(struct ip6_hdr);
251 if (in6p) {
252 /* more sainty check? */
253 break;
254 }
255 return NULL; /*EINVAL*/
256 #endif
257 default:
258 hlen = 0; /*pacify gcc*/
259 return NULL; /*EAFNOSUPPORT*/
260 }
261 if ((m = tp->t_template) == 0) {
262 MGETHDR(m, M_DONTWAIT, MT_HEADER);
263 if (m) {
264 MCLGET(m, M_DONTWAIT);
265 if ((m->m_flags & M_EXT) == 0) {
266 m_free(m);
267 m = NULL;
268 }
269 }
270 if (m == NULL)
271 return NULL;
272 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
273 }
274 bzero(mtod(m, caddr_t), m->m_len);
275 switch (tp->t_family) {
276 case AF_INET:
277 {
278 struct ipovly *ipov;
279 mtod(m, struct ip *)->ip_v = 4;
280 ipov = mtod(m, struct ipovly *);
281 ipov->ih_pr = IPPROTO_TCP;
282 ipov->ih_len = htons(sizeof(struct tcphdr));
283 if (inp) {
284 ipov->ih_src = inp->inp_laddr;
285 ipov->ih_dst = inp->inp_faddr;
286 }
287 #ifdef INET6
288 else if (in6p) {
289 /* mapped addr case */
290 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
291 sizeof(ipov->ih_src));
292 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
293 sizeof(ipov->ih_dst));
294 }
295 #endif
296 break;
297 }
298 #ifdef INET6
299 case AF_INET6:
300 {
301 struct ip6_hdr *ip6;
302 mtod(m, struct ip *)->ip_v = 6;
303 ip6 = mtod(m, struct ip6_hdr *);
304 ip6->ip6_nxt = IPPROTO_TCP;
305 ip6->ip6_plen = htons(sizeof(struct tcphdr));
306 ip6->ip6_src = in6p->in6p_laddr;
307 ip6->ip6_dst = in6p->in6p_faddr;
308 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
309 if (ip6_auto_flowlabel) {
310 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
311 ip6->ip6_flow |=
312 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
313 }
314 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
315 ip6->ip6_vfc |= IPV6_VERSION;
316 break;
317 }
318 #endif
319 }
320 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
321 if (inp) {
322 n->th_sport = inp->inp_lport;
323 n->th_dport = inp->inp_fport;
324 }
325 #ifdef INET6
326 else if (in6p) {
327 n->th_sport = in6p->in6p_lport;
328 n->th_dport = in6p->in6p_fport;
329 }
330 #endif
331 n->th_seq = 0;
332 n->th_ack = 0;
333 n->th_x2 = 0;
334 n->th_off = 5;
335 n->th_flags = 0;
336 n->th_win = 0;
337 n->th_sum = 0;
338 n->th_urp = 0;
339 return (m);
340 }
341
342 /*
343 * Send a single message to the TCP at address specified by
344 * the given TCP/IP header. If m == 0, then we make a copy
345 * of the tcpiphdr at ti and send directly to the addressed host.
346 * This is used to force keep alive messages out using the TCP
347 * template for a connection tp->t_template. If flags are given
348 * then we send a message back to the TCP which originated the
349 * segment ti, and discard the mbuf containing it and any other
350 * attached mbufs.
351 *
352 * In any case the ack and sequence number of the transmitted
353 * segment are as specified by the parameters.
354 */
355 int
356 tcp_respond(tp, template, m, th0, ack, seq, flags)
357 struct tcpcb *tp;
358 struct mbuf *template;
359 register struct mbuf *m;
360 struct tcphdr *th0;
361 tcp_seq ack, seq;
362 int flags;
363 {
364 #ifndef INET6
365 struct route iproute;
366 #else
367 struct route_in6 iproute; /* sizeof(route_in6) > sizeof(route) */
368 #endif
369 struct route *ro;
370 struct rtentry *rt;
371 int error, tlen, win = 0;
372 int hlen;
373 struct ip *ip;
374 #ifdef INET6
375 struct ip6_hdr *ip6;
376 #endif
377 int family; /* family on packet, not inpcb/in6pcb! */
378 struct tcphdr *th;
379
380 if (tp != NULL && (flags & TH_RST) == 0) {
381 if (tp->t_inpcb)
382 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
383 #ifdef INET6
384 else if (tp->t_in6pcb)
385 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
386 #endif
387 }
388
389 ip = NULL;
390 #ifdef INET6
391 ip6 = NULL;
392 #endif
393 if (m == 0) {
394 if (!template)
395 return EINVAL;
396
397 /* get family information from template */
398 switch (mtod(template, struct ip *)->ip_v) {
399 case 4:
400 family = AF_INET;
401 hlen = sizeof(struct ip);
402 break;
403 #ifdef INET6
404 case 6:
405 family = AF_INET6;
406 hlen = sizeof(struct ip6_hdr);
407 break;
408 #endif
409 default:
410 return EAFNOSUPPORT;
411 }
412
413 MGETHDR(m, M_DONTWAIT, MT_HEADER);
414 if (m) {
415 MCLGET(m, M_DONTWAIT);
416 if ((m->m_flags & M_EXT) == 0) {
417 m_free(m);
418 m = NULL;
419 }
420 }
421 if (m == NULL)
422 return (ENOBUFS);
423
424 if (tcp_compat_42)
425 tlen = 1;
426 else
427 tlen = 0;
428
429 m->m_data += max_linkhdr;
430 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
431 template->m_len);
432 switch (family) {
433 case AF_INET:
434 ip = mtod(m, struct ip *);
435 th = (struct tcphdr *)(ip + 1);
436 break;
437 #ifdef INET6
438 case AF_INET6:
439 ip6 = mtod(m, struct ip6_hdr *);
440 th = (struct tcphdr *)(ip6 + 1);
441 break;
442 #endif
443 #if 0
444 default:
445 /* noone will visit here */
446 m_freem(m);
447 return EAFNOSUPPORT;
448 #endif
449 }
450 flags = TH_ACK;
451 } else {
452 /* get family information from m */
453 switch (mtod(m, struct ip *)->ip_v) {
454 case 4:
455 family = AF_INET;
456 hlen = sizeof(struct ip);
457 break;
458 #ifdef INET6
459 case 6:
460 family = AF_INET6;
461 hlen = sizeof(struct ip6_hdr);
462 break;
463 #endif
464 default:
465 m_freem(m);
466 return EAFNOSUPPORT;
467 }
468
469 /* template pointer almost has no meaning */
470 m_freem(m->m_next);
471 m->m_next = 0;
472 m->m_len = hlen + sizeof(struct tcphdr);
473 if ((m->m_flags & M_PKTHDR) == 0) {
474 printf("non PKTHDR to tcp_respond\n");
475 m_freem(m);
476 return EINVAL;
477 }
478
479 tlen = 0;
480 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
481 switch (family) {
482 case AF_INET:
483 ip = mtod(m, struct ip *);
484 th = (struct tcphdr *)(ip + 1);
485 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
486 ip->ip_p = IPPROTO_TCP;
487 break;
488 #ifdef INET6
489 case AF_INET6:
490 ip6 = mtod(m, struct ip6_hdr *);
491 th = (struct tcphdr *)(ip6 + 1);
492 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
493 ip6->ip6_nxt = IPPROTO_TCP;
494 break;
495 #endif
496 }
497 *th = *th0;
498 xchg(th->th_dport, th->th_sport, u_int16_t);
499 #undef xchg
500 }
501 th->th_seq = htonl(seq);
502 th->th_ack = htonl(ack);
503 th->th_x2 = 0;
504 if ((flags & TH_SYN) == 0) {
505 if (tp)
506 th->th_win = htons((u_int16_t) (win >> tp->rcv_scale));
507 else
508 th->th_win = htons((u_int16_t)win);
509 th->th_off = sizeof (struct tcphdr) >> 2;
510 tlen += sizeof (struct tcphdr);
511 } else
512 tlen += th->th_off << 2;
513 m->m_len = hlen + tlen;
514 m->m_pkthdr.len = hlen + tlen;
515 m->m_pkthdr.rcvif = (struct ifnet *) 0;
516 th->th_flags = flags;
517 th->th_urp = 0;
518
519 switch (family) {
520 case AF_INET:
521 {
522 struct ipovly *ipov = (struct ipovly *)ip;
523 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
524 ipov->ih_len = htons((u_int16_t)tlen);
525
526 th->th_sum = 0;
527 th->th_sum = in_cksum(m, hlen + tlen);
528 ip->ip_len = hlen + tlen; /*will be flipped on output*/
529 ip->ip_ttl = ip_defttl;
530 break;
531 }
532 #ifdef INET6
533 case AF_INET6:
534 {
535 th->th_sum = 0;
536 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
537 tlen);
538 ip6->ip6_plen = ntohs(tlen);
539 if (tp && tp->t_in6pcb) {
540 struct ifnet *oifp;
541 ro = (struct route *)&tp->t_in6pcb->in6p_route;
542 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
543 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
544 } else
545 ip6->ip6_hlim = ip6_defhlim;
546 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
547 if (ip6_auto_flowlabel) {
548 ip6->ip6_flow |=
549 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
550 }
551 break;
552 }
553 #endif
554 }
555
556 #ifdef IPSEC
557 m->m_pkthdr.rcvif = NULL;
558 #endif /*IPSEC*/
559
560 /*
561 * If we're doing Path MTU discovery, we need to set DF unless
562 * the route's MTU is locked. If we lack a route, we need to
563 * look it up now.
564 *
565 * ip_output() could do this for us, but it's convenient to just
566 * do it here unconditionally.
567 */
568 if (tp != NULL && tp->t_inpcb != NULL) {
569 ro = &tp->t_inpcb->inp_route;
570 #ifdef IPSEC
571 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket;
572 #endif
573 #ifdef DIAGNOSTIC
574 if (family != AF_INET)
575 panic("tcp_respond: address family mismatch");
576 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
577 panic("tcp_respond: ip_dst %x != inp_faddr %x",
578 ntohl(ip->ip_dst.s_addr),
579 ntohl(tp->t_inpcb->inp_faddr.s_addr));
580 }
581 #endif
582 }
583 #ifdef INET6
584 else if (tp != NULL && tp->t_in6pcb != NULL) {
585 ro = (struct route *)&tp->t_in6pcb->in6p_route;
586 #ifdef IPSEC
587 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_in6pcb->in6p_socket;
588 #endif
589 #ifdef DIAGNOSTIC
590 if (family == AF_INET) {
591 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
592 panic("tcp_respond: not mapped addr");
593 if (bcmp(&ip->ip_dst,
594 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
595 sizeof(ip->ip_dst)) != 0) {
596 panic("tcp_respond: ip_dst != in6p_faddr");
597 }
598 } else if (family == AF_INET6) {
599 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
600 panic("tcp_respond: ip6_dst != in6p_faddr");
601 } else
602 panic("tcp_respond: address family mismatch");
603 #endif
604 }
605 #endif
606 else {
607 ro = (struct route *)&iproute;
608 bzero(ro, sizeof(iproute));
609 }
610 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
611 if (ro->ro_rt != NULL) {
612 RTFREE(ro->ro_rt);
613 ro->ro_rt = NULL;
614 }
615 switch (family) {
616 case AF_INET:
617 {
618 struct sockaddr_in *dst;
619 dst = satosin(&ro->ro_dst);
620 dst->sin_family = AF_INET;
621 dst->sin_len = sizeof(*dst);
622 dst->sin_addr = ip->ip_dst;
623 break;
624 }
625 #ifdef INET6
626 case AF_INET6:
627 {
628 struct sockaddr_in6 *dst;
629 dst = satosin6(&ro->ro_dst);
630 bzero(dst, sizeof(*dst));
631 dst->sin6_family = AF_INET6;
632 dst->sin6_len = sizeof(*dst);
633 dst->sin6_addr = ip6->ip6_dst;
634 break;
635 }
636 #endif
637 }
638 rtalloc(ro);
639 if ((rt = ro->ro_rt) == NULL) {
640 m_freem(m);
641 switch (family) {
642 case AF_INET:
643 ipstat.ips_noroute++;
644 break;
645 #ifdef INET6
646 case AF_INET6:
647 ip6stat.ip6s_noroute++;
648 break;
649 #endif
650 }
651 return (EHOSTUNREACH);
652 }
653 }
654 switch (family) {
655 case AF_INET:
656 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
657 ip->ip_off |= IP_DF;
658
659 error = ip_output(m, NULL, ro, 0, NULL);
660 break;
661 #ifdef INET6
662 case AF_INET6:
663 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
664 NULL);
665 break;
666 #endif
667 default:
668 error = EAFNOSUPPORT;
669 break;
670 }
671
672 if (ro == (struct route *)&iproute) {
673 RTFREE(ro->ro_rt);
674 ro->ro_rt = NULL;
675 }
676
677 return (error);
678 }
679
680 /*
681 * Create a new TCP control block, making an
682 * empty reassembly queue and hooking it to the argument
683 * protocol control block.
684 */
685 struct tcpcb *
686 tcp_newtcpcb(family, aux)
687 int family; /* selects inpcb, or in6pcb */
688 void *aux;
689 {
690 register struct tcpcb *tp;
691
692 switch (family) {
693 case PF_INET:
694 break;
695 #ifdef INET6
696 case PF_INET6:
697 break;
698 #endif
699 default:
700 return NULL;
701 }
702
703 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
704 if (tp == NULL)
705 return (NULL);
706 bzero((caddr_t)tp, sizeof(struct tcpcb));
707 LIST_INIT(&tp->segq);
708 LIST_INIT(&tp->timeq);
709 tp->t_family = family; /* may be overridden later on */
710 tp->t_peermss = tcp_mssdflt;
711 tp->t_ourmss = tcp_mssdflt;
712 tp->t_segsz = tcp_mssdflt;
713 LIST_INIT(&tp->t_sc);
714
715 tp->t_flags = 0;
716 if (tcp_do_rfc1323 && tcp_do_win_scale)
717 tp->t_flags |= TF_REQ_SCALE;
718 if (tcp_do_rfc1323 && tcp_do_timestamps)
719 tp->t_flags |= TF_REQ_TSTMP;
720 if (tcp_do_sack == 2)
721 tp->t_flags |= TF_WILL_SACK;
722 else if (tcp_do_sack == 1)
723 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
724 tp->t_flags |= TF_CANT_TXSACK;
725 switch (family) {
726 case PF_INET:
727 tp->t_inpcb = (struct inpcb *)aux;
728 break;
729 #ifdef INET6
730 case PF_INET6:
731 tp->t_in6pcb = (struct in6pcb *)aux;
732 break;
733 #endif
734 }
735 /*
736 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
737 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
738 * reasonable initial retransmit time.
739 */
740 tp->t_srtt = TCPTV_SRTTBASE;
741 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
742 tp->t_rttmin = TCPTV_MIN;
743 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
744 TCPTV_MIN, TCPTV_REXMTMAX);
745 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 if (family == AF_INET) {
748 struct inpcb *inp = (struct inpcb *)aux;
749 inp->inp_ip.ip_ttl = ip_defttl;
750 inp->inp_ppcb = (caddr_t)tp;
751 }
752 #ifdef INET6
753 else if (family == AF_INET6) {
754 struct in6pcb *in6p = (struct in6pcb *)aux;
755 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
756 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
757 : NULL);
758 in6p->in6p_ppcb = (caddr_t)tp;
759 }
760 #endif
761 return (tp);
762 }
763
764 /*
765 * Drop a TCP connection, reporting
766 * the specified error. If connection is synchronized,
767 * then send a RST to peer.
768 */
769 struct tcpcb *
770 tcp_drop(tp, errno)
771 register struct tcpcb *tp;
772 int errno;
773 {
774 struct socket *so;
775
776 if (tp->t_inpcb)
777 so = tp->t_inpcb->inp_socket;
778 #ifdef INET6
779 else if (tp->t_in6pcb)
780 so = tp->t_in6pcb->in6p_socket;
781 #endif
782 else
783 return NULL;
784
785 if (TCPS_HAVERCVDSYN(tp->t_state)) {
786 tp->t_state = TCPS_CLOSED;
787 (void) tcp_output(tp);
788 tcpstat.tcps_drops++;
789 } else
790 tcpstat.tcps_conndrops++;
791 if (errno == ETIMEDOUT && tp->t_softerror)
792 errno = tp->t_softerror;
793 so->so_error = errno;
794 return (tcp_close(tp));
795 }
796
797 /*
798 * Close a TCP control block:
799 * discard all space held by the tcp
800 * discard internet protocol block
801 * wake up any sleepers
802 */
803 struct tcpcb *
804 tcp_close(tp)
805 register struct tcpcb *tp;
806 {
807 struct inpcb *inp;
808 #ifdef INET6
809 struct in6pcb *in6p;
810 #endif
811 struct socket *so;
812 #ifdef RTV_RTT
813 register struct rtentry *rt;
814 #endif
815 struct route *ro;
816
817 inp = tp->t_inpcb;
818 #ifdef INET6
819 in6p = tp->t_in6pcb;
820 #endif
821 so = NULL;
822 ro = NULL;
823 if (inp) {
824 so = inp->inp_socket;
825 ro = &inp->inp_route;
826 }
827 #ifdef INET6
828 else if (in6p) {
829 so = in6p->in6p_socket;
830 ro = (struct route *)&in6p->in6p_route;
831 }
832 #endif
833
834 #ifdef RTV_RTT
835 /*
836 * If we sent enough data to get some meaningful characteristics,
837 * save them in the routing entry. 'Enough' is arbitrarily
838 * defined as the sendpipesize (default 4K) * 16. This would
839 * give us 16 rtt samples assuming we only get one sample per
840 * window (the usual case on a long haul net). 16 samples is
841 * enough for the srtt filter to converge to within 5% of the correct
842 * value; fewer samples and we could save a very bogus rtt.
843 *
844 * Don't update the default route's characteristics and don't
845 * update anything that the user "locked".
846 */
847 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
848 ro && (rt = ro->ro_rt) &&
849 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
850 register u_long i = 0;
851
852 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
853 i = tp->t_srtt *
854 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
855 if (rt->rt_rmx.rmx_rtt && i)
856 /*
857 * filter this update to half the old & half
858 * the new values, converting scale.
859 * See route.h and tcp_var.h for a
860 * description of the scaling constants.
861 */
862 rt->rt_rmx.rmx_rtt =
863 (rt->rt_rmx.rmx_rtt + i) / 2;
864 else
865 rt->rt_rmx.rmx_rtt = i;
866 }
867 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
868 i = tp->t_rttvar *
869 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
870 if (rt->rt_rmx.rmx_rttvar && i)
871 rt->rt_rmx.rmx_rttvar =
872 (rt->rt_rmx.rmx_rttvar + i) / 2;
873 else
874 rt->rt_rmx.rmx_rttvar = i;
875 }
876 /*
877 * update the pipelimit (ssthresh) if it has been updated
878 * already or if a pipesize was specified & the threshhold
879 * got below half the pipesize. I.e., wait for bad news
880 * before we start updating, then update on both good
881 * and bad news.
882 */
883 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
884 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
885 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
886 /*
887 * convert the limit from user data bytes to
888 * packets then to packet data bytes.
889 */
890 i = (i + tp->t_segsz / 2) / tp->t_segsz;
891 if (i < 2)
892 i = 2;
893 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
894 if (rt->rt_rmx.rmx_ssthresh)
895 rt->rt_rmx.rmx_ssthresh =
896 (rt->rt_rmx.rmx_ssthresh + i) / 2;
897 else
898 rt->rt_rmx.rmx_ssthresh = i;
899 }
900 }
901 #endif /* RTV_RTT */
902 /* free the reassembly queue, if any */
903 TCP_REASS_LOCK(tp);
904 (void) tcp_freeq(tp);
905 TCP_REASS_UNLOCK(tp);
906
907 TCP_CLEAR_DELACK(tp);
908 syn_cache_cleanup(tp);
909
910 if (tp->t_template) {
911 m_free(tp->t_template);
912 tp->t_template = NULL;
913 }
914 pool_put(&tcpcb_pool, tp);
915 if (inp) {
916 inp->inp_ppcb = 0;
917 soisdisconnected(so);
918 in_pcbdetach(inp);
919 }
920 #ifdef INET6
921 else if (in6p) {
922 in6p->in6p_ppcb = 0;
923 soisdisconnected(so);
924 in6_pcbdetach(in6p);
925 }
926 #endif
927 tcpstat.tcps_closed++;
928 return ((struct tcpcb *)0);
929 }
930
931 int
932 tcp_freeq(tp)
933 struct tcpcb *tp;
934 {
935 register struct ipqent *qe;
936 int rv = 0;
937 #ifdef TCPREASS_DEBUG
938 int i = 0;
939 #endif
940
941 TCP_REASS_LOCK_CHECK(tp);
942
943 while ((qe = tp->segq.lh_first) != NULL) {
944 #ifdef TCPREASS_DEBUG
945 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
946 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
947 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
948 #endif
949 LIST_REMOVE(qe, ipqe_q);
950 LIST_REMOVE(qe, ipqe_timeq);
951 m_freem(qe->ipqe_m);
952 pool_put(&ipqent_pool, qe);
953 rv = 1;
954 }
955 return (rv);
956 }
957
958 /*
959 * Protocol drain routine. Called when memory is in short supply.
960 */
961 void
962 tcp_drain()
963 {
964 register struct inpcb *inp;
965 register struct tcpcb *tp;
966
967 /*
968 * Free the sequence queue of all TCP connections.
969 */
970 inp = tcbtable.inpt_queue.cqh_first;
971 if (inp) /* XXX */
972 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
973 inp = inp->inp_queue.cqe_next) {
974 if ((tp = intotcpcb(inp)) != NULL) {
975 /*
976 * We may be called from a device's interrupt
977 * context. If the tcpcb is already busy,
978 * just bail out now.
979 */
980 if (tcp_reass_lock_try(tp) == 0)
981 continue;
982 if (tcp_freeq(tp))
983 tcpstat.tcps_connsdrained++;
984 TCP_REASS_UNLOCK(tp);
985 }
986 }
987 }
988
989 /*
990 * Notify a tcp user of an asynchronous error;
991 * store error as soft error, but wake up user
992 * (for now, won't do anything until can select for soft error).
993 */
994 void
995 tcp_notify(inp, error)
996 struct inpcb *inp;
997 int error;
998 {
999 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1000 register struct socket *so = inp->inp_socket;
1001
1002 /*
1003 * Ignore some errors if we are hooked up.
1004 * If connection hasn't completed, has retransmitted several times,
1005 * and receives a second error, give up now. This is better
1006 * than waiting a long time to establish a connection that
1007 * can never complete.
1008 */
1009 if (tp->t_state == TCPS_ESTABLISHED &&
1010 (error == EHOSTUNREACH || error == ENETUNREACH ||
1011 error == EHOSTDOWN)) {
1012 return;
1013 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1014 tp->t_rxtshift > 3 && tp->t_softerror)
1015 so->so_error = error;
1016 else
1017 tp->t_softerror = error;
1018 wakeup((caddr_t) &so->so_timeo);
1019 sorwakeup(so);
1020 sowwakeup(so);
1021 }
1022
1023 #if defined(INET6) && !defined(TCP6)
1024 void
1025 tcp6_notify(in6p, error)
1026 struct in6pcb *in6p;
1027 int error;
1028 {
1029 register struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1030 register struct socket *so = in6p->in6p_socket;
1031
1032 /*
1033 * Ignore some errors if we are hooked up.
1034 * If connection hasn't completed, has retransmitted several times,
1035 * and receives a second error, give up now. This is better
1036 * than waiting a long time to establish a connection that
1037 * can never complete.
1038 */
1039 if (tp->t_state == TCPS_ESTABLISHED &&
1040 (error == EHOSTUNREACH || error == ENETUNREACH ||
1041 error == EHOSTDOWN)) {
1042 return;
1043 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1044 tp->t_rxtshift > 3 && tp->t_softerror)
1045 so->so_error = error;
1046 else
1047 tp->t_softerror = error;
1048 wakeup((caddr_t) &so->so_timeo);
1049 sorwakeup(so);
1050 sowwakeup(so);
1051 }
1052 #endif
1053
1054 #if defined(INET6) && !defined(TCP6)
1055 void
1056 tcp6_ctlinput(cmd, sa, d)
1057 int cmd;
1058 struct sockaddr *sa;
1059 void *d;
1060 {
1061 register struct tcphdr *thp;
1062 struct tcphdr th;
1063 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1064 int nmatch;
1065 extern struct in6_addr zeroin6_addr; /* netinet6/in6_pcb.c */
1066 struct sockaddr_in6 sa6;
1067 register struct ip6_hdr *ip6;
1068 struct mbuf *m;
1069 int off;
1070
1071 if (sa->sa_family != AF_INET6 ||
1072 sa->sa_len != sizeof(struct sockaddr_in6))
1073 return;
1074 if ((unsigned)cmd >= PRC_NCMDS)
1075 return;
1076 else if (cmd == PRC_QUENCH) {
1077 /* XXX there's no PRC_QUENCH in IPv6 */
1078 notify = tcp6_quench;
1079 } else if (PRC_IS_REDIRECT(cmd))
1080 notify = in6_rtchange, d = NULL;
1081 else if (cmd == PRC_MSGSIZE)
1082 notify = tcp6_mtudisc, d = NULL;
1083 else if (cmd == PRC_HOSTDEAD)
1084 d = NULL;
1085 else if (inet6ctlerrmap[cmd] == 0)
1086 return;
1087
1088 /* if the parameter is from icmp6, decode it. */
1089 if (d != NULL) {
1090 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1091 m = ip6cp->ip6c_m;
1092 ip6 = ip6cp->ip6c_ip6;
1093 off = ip6cp->ip6c_off;
1094 } else {
1095 m = NULL;
1096 ip6 = NULL;
1097 }
1098
1099 /* translate addresses into internal form */
1100 sa6 = *(struct sockaddr_in6 *)sa;
1101 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) && m && m->m_pkthdr.rcvif)
1102 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1103
1104 if (ip6) {
1105 /*
1106 * XXX: We assume that when ip6 is non NULL,
1107 * M and OFF are valid.
1108 */
1109 struct in6_addr s;
1110
1111 /* translate addresses into internal form */
1112 memcpy(&s, &ip6->ip6_src, sizeof(s));
1113 if (IN6_IS_ADDR_LINKLOCAL(&s))
1114 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1115
1116 if (m->m_len < off + sizeof(th)) {
1117 /*
1118 * this should be rare case,
1119 * so we compromise on this copy...
1120 */
1121 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1122 thp = &th;
1123 } else
1124 thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1125 nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
1126 thp->th_dport, &s, thp->th_sport, cmd, notify);
1127 if (nmatch == 0 && syn_cache_count &&
1128 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1129 inet6ctlerrmap[cmd] == ENETUNREACH ||
1130 inet6ctlerrmap[cmd] == EHOSTDOWN)) {
1131 struct sockaddr_in6 sin6;
1132 bzero(&sin6, sizeof(sin6));
1133 sin6.sin6_len = sizeof(sin6);
1134 sin6.sin6_family = AF_INET6;
1135 sin6.sin6_port = thp->th_sport;
1136 sin6.sin6_addr = s;
1137 syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
1138 }
1139 } else {
1140 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
1141 &zeroin6_addr, 0, cmd, notify);
1142 }
1143 }
1144 #endif
1145
1146 /* assumes that ip header and tcp header are contiguous on mbuf */
1147 void *
1148 tcp_ctlinput(cmd, sa, v)
1149 int cmd;
1150 struct sockaddr *sa;
1151 register void *v;
1152 {
1153 register struct ip *ip = v;
1154 register struct tcphdr *th;
1155 extern int inetctlerrmap[];
1156 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1157 int errno;
1158 int nmatch;
1159
1160 if (sa->sa_family != AF_INET ||
1161 sa->sa_len != sizeof(struct sockaddr_in))
1162 return NULL;
1163 if ((unsigned)cmd >= PRC_NCMDS)
1164 return NULL;
1165 errno = inetctlerrmap[cmd];
1166 if (cmd == PRC_QUENCH)
1167 notify = tcp_quench;
1168 else if (PRC_IS_REDIRECT(cmd))
1169 notify = in_rtchange, ip = 0;
1170 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1171 notify = tcp_mtudisc, ip = 0;
1172 else if (cmd == PRC_HOSTDEAD)
1173 ip = 0;
1174 else if (errno == 0)
1175 return NULL;
1176 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1177 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1178 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1179 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1180 if (nmatch == 0 && syn_cache_count &&
1181 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1182 inetctlerrmap[cmd] == ENETUNREACH ||
1183 inetctlerrmap[cmd] == EHOSTDOWN)) {
1184 struct sockaddr_in sin;
1185 bzero(&sin, sizeof(sin));
1186 sin.sin_len = sizeof(sin);
1187 sin.sin_family = AF_INET;
1188 sin.sin_port = th->th_sport;
1189 sin.sin_addr = ip->ip_src;
1190 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1191 }
1192
1193 /* XXX mapped address case */
1194 }
1195 else {
1196 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1197 notify);
1198 }
1199 return NULL;
1200 }
1201
1202 /*
1203 * When a source quence is received, we are being notifed of congestion.
1204 * Close the congestion window down to the Loss Window (one segment).
1205 * We will gradually open it again as we proceed.
1206 */
1207 void
1208 tcp_quench(inp, errno)
1209 struct inpcb *inp;
1210 int errno;
1211 {
1212 struct tcpcb *tp = intotcpcb(inp);
1213
1214 if (tp)
1215 tp->snd_cwnd = tp->t_segsz;
1216 }
1217
1218 #if defined(INET6) && !defined(TCP6)
1219 void
1220 tcp6_quench(in6p, errno)
1221 struct in6pcb *in6p;
1222 int errno;
1223 {
1224 struct tcpcb *tp = in6totcpcb(in6p);
1225
1226 if (tp)
1227 tp->snd_cwnd = tp->t_segsz;
1228 }
1229 #endif
1230
1231 /*
1232 * On receipt of path MTU corrections, flush old route and replace it
1233 * with the new one. Retransmit all unacknowledged packets, to ensure
1234 * that all packets will be received.
1235 */
1236 void
1237 tcp_mtudisc(inp, errno)
1238 struct inpcb *inp;
1239 int errno;
1240 {
1241 struct tcpcb *tp = intotcpcb(inp);
1242 struct rtentry *rt = in_pcbrtentry(inp);
1243
1244 if (tp != 0) {
1245 if (rt != 0) {
1246 /*
1247 * If this was not a host route, remove and realloc.
1248 */
1249 if ((rt->rt_flags & RTF_HOST) == 0) {
1250 in_rtchange(inp, errno);
1251 if ((rt = in_pcbrtentry(inp)) == 0)
1252 return;
1253 }
1254
1255 /*
1256 * Slow start out of the error condition. We
1257 * use the MTU because we know it's smaller
1258 * than the previously transmitted segment.
1259 *
1260 * Note: This is more conservative than the
1261 * suggestion in draft-floyd-incr-init-win-03.
1262 */
1263 if (rt->rt_rmx.rmx_mtu != 0)
1264 tp->snd_cwnd =
1265 TCP_INITIAL_WINDOW(tcp_init_win,
1266 rt->rt_rmx.rmx_mtu);
1267 }
1268
1269 /*
1270 * Resend unacknowledged packets.
1271 */
1272 tp->snd_nxt = tp->snd_una;
1273 tcp_output(tp);
1274 }
1275 }
1276
1277 #if defined(INET6) && !defined(TCP6)
1278 void
1279 tcp6_mtudisc(in6p, errno)
1280 struct in6pcb *in6p;
1281 int errno;
1282 {
1283 struct tcpcb *tp = in6totcpcb(in6p);
1284 struct rtentry *rt = in6_pcbrtentry(in6p);
1285
1286 if (tp != 0) {
1287 if (rt != 0) {
1288 /*
1289 * If this was not a host route, remove and realloc.
1290 */
1291 if ((rt->rt_flags & RTF_HOST) == 0) {
1292 in6_rtchange(in6p, errno);
1293 if ((rt = in6_pcbrtentry(in6p)) == 0)
1294 return;
1295 }
1296
1297 /*
1298 * Slow start out of the error condition. We
1299 * use the MTU because we know it's smaller
1300 * than the previously transmitted segment.
1301 *
1302 * Note: This is more conservative than the
1303 * suggestion in draft-floyd-incr-init-win-03.
1304 */
1305 if (rt->rt_rmx.rmx_mtu != 0)
1306 tp->snd_cwnd =
1307 TCP_INITIAL_WINDOW(tcp_init_win,
1308 rt->rt_rmx.rmx_mtu);
1309 }
1310
1311 /*
1312 * Resend unacknowledged packets.
1313 */
1314 tp->snd_nxt = tp->snd_una;
1315 tcp_output(tp);
1316 }
1317 }
1318 #endif
1319
1320 /*
1321 * Compute the MSS to advertise to the peer. Called only during
1322 * the 3-way handshake. If we are the server (peer initiated
1323 * connection), we are called with a pointer to the interface
1324 * on which the SYN packet arrived. If we are the client (we
1325 * initiated connection), we are called with a pointer to the
1326 * interface out which this connection should go.
1327 *
1328 * NOTE: Do not subtract IP option/extension header size nor IPsec
1329 * header size from MSS advertisement. MSS option must hold the maximum
1330 * segment size we can accept, so it must always be:
1331 * max(if mtu) - ip header - tcp header
1332 */
1333 u_long
1334 tcp_mss_to_advertise(ifp, af)
1335 const struct ifnet *ifp;
1336 int af;
1337 {
1338 extern u_long in_maxmtu;
1339 u_long mss = 0;
1340 u_long hdrsiz;
1341
1342 /*
1343 * In order to avoid defeating path MTU discovery on the peer,
1344 * we advertise the max MTU of all attached networks as our MSS,
1345 * per RFC 1191, section 3.1.
1346 *
1347 * We provide the option to advertise just the MTU of
1348 * the interface on which we hope this connection will
1349 * be receiving. If we are responding to a SYN, we
1350 * will have a pretty good idea about this, but when
1351 * initiating a connection there is a bit more doubt.
1352 *
1353 * We also need to ensure that loopback has a large enough
1354 * MSS, as the loopback MTU is never included in in_maxmtu.
1355 */
1356
1357 if (ifp != NULL)
1358 mss = ifp->if_mtu;
1359
1360 if (tcp_mss_ifmtu == 0)
1361 mss = max(in_maxmtu, mss);
1362
1363 switch (af) {
1364 case AF_INET:
1365 hdrsiz = sizeof(struct ip);
1366 break;
1367 #ifdef INET6
1368 case AF_INET6:
1369 hdrsiz = sizeof(struct ip6_hdr);
1370 break;
1371 #endif
1372 default:
1373 hdrsiz = 0;
1374 break;
1375 }
1376 hdrsiz += sizeof(struct tcphdr);
1377 if (mss > hdrsiz)
1378 mss -= hdrsiz;
1379
1380 mss = max(tcp_mssdflt, mss);
1381 return (mss);
1382 }
1383
1384 /*
1385 * Set connection variables based on the peer's advertised MSS.
1386 * We are passed the TCPCB for the actual connection. If we
1387 * are the server, we are called by the compressed state engine
1388 * when the 3-way handshake is complete. If we are the client,
1389 * we are called when we recieve the SYN,ACK from the server.
1390 *
1391 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1392 * before this routine is called!
1393 */
1394 void
1395 tcp_mss_from_peer(tp, offer)
1396 struct tcpcb *tp;
1397 int offer;
1398 {
1399 struct socket *so;
1400 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1401 struct rtentry *rt;
1402 #endif
1403 u_long bufsize;
1404 int mss;
1405
1406 so = NULL;
1407 rt = NULL;
1408 if (tp->t_inpcb) {
1409 so = tp->t_inpcb->inp_socket;
1410 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1411 rt = in_pcbrtentry(tp->t_inpcb);
1412 #endif
1413 }
1414 #ifdef INET6
1415 else if (tp->t_in6pcb) {
1416 so = tp->t_in6pcb->in6p_socket;
1417 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1418 #ifdef TCP6
1419 rt = NULL;
1420 #else
1421 rt = in6_pcbrtentry(tp->t_in6pcb);
1422 #endif
1423 #endif
1424 }
1425 #endif
1426
1427 /*
1428 * As per RFC1122, use the default MSS value, unless they
1429 * sent us an offer. Do not accept offers less than 32 bytes.
1430 */
1431 mss = tcp_mssdflt;
1432 if (offer)
1433 mss = offer;
1434 mss = max(mss, 32); /* sanity */
1435 tp->t_peermss = mss;
1436 mss -= tcp_optlen(tp);
1437 if (tp->t_inpcb)
1438 mss -= ip_optlen(tp->t_inpcb);
1439 #ifdef INET6
1440 else if (tp->t_in6pcb)
1441 mss -= ip6_optlen(tp->t_in6pcb);
1442 #endif
1443
1444 /*
1445 * If there's a pipesize, change the socket buffer to that size.
1446 * Make the socket buffer an integral number of MSS units. If
1447 * the MSS is larger than the socket buffer, artificially decrease
1448 * the MSS.
1449 */
1450 #ifdef RTV_SPIPE
1451 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1452 bufsize = rt->rt_rmx.rmx_sendpipe;
1453 else
1454 #endif
1455 bufsize = so->so_snd.sb_hiwat;
1456 if (bufsize < mss)
1457 mss = bufsize;
1458 else {
1459 bufsize = roundup(bufsize, mss);
1460 if (bufsize > sb_max)
1461 bufsize = sb_max;
1462 (void) sbreserve(&so->so_snd, bufsize);
1463 }
1464 tp->t_segsz = mss;
1465
1466 #ifdef RTV_SSTHRESH
1467 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1468 /*
1469 * There's some sort of gateway or interface buffer
1470 * limit on the path. Use this to set the slow
1471 * start threshold, but set the threshold to no less
1472 * than 2 * MSS.
1473 */
1474 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1475 }
1476 #endif
1477 }
1478
1479 /*
1480 * Processing necessary when a TCP connection is established.
1481 */
1482 void
1483 tcp_established(tp)
1484 struct tcpcb *tp;
1485 {
1486 struct socket *so;
1487 #ifdef RTV_RPIPE
1488 struct rtentry *rt;
1489 #endif
1490 u_long bufsize;
1491
1492 so = NULL;
1493 rt = NULL;
1494 if (tp->t_inpcb) {
1495 so = tp->t_inpcb->inp_socket;
1496 #if defined(RTV_RPIPE)
1497 rt = in_pcbrtentry(tp->t_inpcb);
1498 #endif
1499 }
1500 #ifdef INET6
1501 else if (tp->t_in6pcb) {
1502 so = tp->t_in6pcb->in6p_socket;
1503 #if defined(RTV_RPIPE)
1504 #ifdef TCP6
1505 rt = NULL;
1506 #else
1507 rt = in6_pcbrtentry(tp->t_in6pcb);
1508 #endif
1509 #endif
1510 }
1511 #endif
1512
1513 tp->t_state = TCPS_ESTABLISHED;
1514 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1515
1516 #ifdef RTV_RPIPE
1517 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1518 bufsize = rt->rt_rmx.rmx_recvpipe;
1519 else
1520 #endif
1521 bufsize = so->so_rcv.sb_hiwat;
1522 if (bufsize > tp->t_ourmss) {
1523 bufsize = roundup(bufsize, tp->t_ourmss);
1524 if (bufsize > sb_max)
1525 bufsize = sb_max;
1526 (void) sbreserve(&so->so_rcv, bufsize);
1527 }
1528 }
1529
1530 /*
1531 * Check if there's an initial rtt or rttvar. Convert from the
1532 * route-table units to scaled multiples of the slow timeout timer.
1533 * Called only during the 3-way handshake.
1534 */
1535 void
1536 tcp_rmx_rtt(tp)
1537 struct tcpcb *tp;
1538 {
1539 #ifdef RTV_RTT
1540 struct rtentry *rt = NULL;
1541 int rtt;
1542
1543 if (tp->t_inpcb)
1544 rt = in_pcbrtentry(tp->t_inpcb);
1545 #ifdef INET6
1546 else if (tp->t_in6pcb) {
1547 #ifdef TCP6
1548 rt = NULL;
1549 #else
1550 rt = in6_pcbrtentry(tp->t_in6pcb);
1551 #endif
1552 }
1553 #endif
1554 if (rt == NULL)
1555 return;
1556
1557 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1558 /*
1559 * XXX The lock bit for MTU indicates that the value
1560 * is also a minimum value; this is subject to time.
1561 */
1562 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1563 TCPT_RANGESET(tp->t_rttmin,
1564 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1565 TCPTV_MIN, TCPTV_REXMTMAX);
1566 tp->t_srtt = rtt /
1567 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1568 if (rt->rt_rmx.rmx_rttvar) {
1569 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1570 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1571 (TCP_RTTVAR_SHIFT + 2));
1572 } else {
1573 /* Default variation is +- 1 rtt */
1574 tp->t_rttvar =
1575 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1576 }
1577 TCPT_RANGESET(tp->t_rxtcur,
1578 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1579 tp->t_rttmin, TCPTV_REXMTMAX);
1580 }
1581 #endif
1582 }
1583
1584 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1585
1586 /*
1587 * Get a new sequence value given a tcp control block
1588 */
1589 tcp_seq
1590 tcp_new_iss(tp, len, addin)
1591 void *tp;
1592 u_long len;
1593 tcp_seq addin;
1594 {
1595 tcp_seq tcp_iss;
1596
1597 /*
1598 * Randomize.
1599 */
1600 #if NRND > 0
1601 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1602 #else
1603 tcp_iss = random();
1604 #endif
1605
1606 /*
1607 * If we were asked to add some amount to a known value,
1608 * we will take a random value obtained above, mask off the upper
1609 * bits, and add in the known value. We also add in a constant to
1610 * ensure that we are at least a certain distance from the original
1611 * value.
1612 *
1613 * This is used when an old connection is in timed wait
1614 * and we have a new one coming in, for instance.
1615 */
1616 if (addin != 0) {
1617 #ifdef TCPISS_DEBUG
1618 printf("Random %08x, ", tcp_iss);
1619 #endif
1620 tcp_iss &= TCP_ISS_RANDOM_MASK;
1621 tcp_iss += addin + TCP_ISSINCR;
1622 #ifdef TCPISS_DEBUG
1623 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1624 #endif
1625 } else {
1626 tcp_iss &= TCP_ISS_RANDOM_MASK;
1627 tcp_iss += tcp_iss_seq;
1628 tcp_iss_seq += TCP_ISSINCR;
1629 #ifdef TCPISS_DEBUG
1630 printf("ISS %08x\n", tcp_iss);
1631 #endif
1632 }
1633
1634 if (tcp_compat_42) {
1635 /*
1636 * Limit it to the positive range for really old TCP
1637 * implementations.
1638 */
1639 if (tcp_iss >= 0x80000000)
1640 tcp_iss &= 0x7fffffff; /* XXX */
1641 }
1642
1643 return tcp_iss;
1644 }
1645
1646 #ifdef IPSEC
1647 /* compute ESP/AH header size for TCP, including outer IP header. */
1648 size_t
1649 ipsec4_hdrsiz_tcp(tp)
1650 struct tcpcb *tp;
1651 {
1652 struct inpcb *inp;
1653 size_t hdrsiz;
1654
1655 /* XXX mapped addr case (tp->t_in6pcb) */
1656 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1657 return 0;
1658 switch (tp->t_family) {
1659 case AF_INET:
1660 /* XXX: should use currect direction. */
1661 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1662 break;
1663 default:
1664 hdrsiz = 0;
1665 break;
1666 }
1667
1668 return hdrsiz;
1669 }
1670
1671 #if defined(INET6) && !defined(TCP6)
1672 size_t
1673 ipsec6_hdrsiz_tcp(tp)
1674 struct tcpcb *tp;
1675 {
1676 struct in6pcb *in6p;
1677 size_t hdrsiz;
1678
1679 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1680 return 0;
1681 switch (tp->t_family) {
1682 case AF_INET6:
1683 /* XXX: should use currect direction. */
1684 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1685 break;
1686 case AF_INET:
1687 /* mapped address case - tricky */
1688 default:
1689 hdrsiz = 0;
1690 break;
1691 }
1692
1693 return hdrsiz;
1694 }
1695 #endif
1696 #endif /*IPSEC*/
1697
1698 /*
1699 * Determine the length of the TCP options for this connection.
1700 *
1701 * XXX: What do we do for SACK, when we add that? Just reserve
1702 * all of the space? Otherwise we can't exactly be incrementing
1703 * cwnd by an amount that varies depending on the amount we last
1704 * had to SACK!
1705 */
1706
1707 u_int
1708 tcp_optlen(tp)
1709 struct tcpcb *tp;
1710 {
1711 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1712 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1713 return TCPOLEN_TSTAMP_APPA;
1714 else
1715 return 0;
1716 }
1717