tcp_subr.c revision 1.88 1 /* $NetBSD: tcp_subr.c,v 1.88 2000/02/29 05:25:49 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #include <netinet6/ip6protosw.h>
143 #endif
144
145 #include <netinet/tcp.h>
146 #include <netinet/tcp_fsm.h>
147 #include <netinet/tcp_seq.h>
148 #include <netinet/tcp_timer.h>
149 #include <netinet/tcp_var.h>
150 #include <netinet/tcpip.h>
151
152 #ifdef IPSEC
153 #include <netinet6/ipsec.h>
154 #endif /*IPSEC*/
155
156 #ifdef INET6
157 struct in6pcb tcb6;
158 #endif
159
160 /* patchable/settable parameters for tcp */
161 int tcp_mssdflt = TCP_MSS;
162 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
163 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
164 int tcp_do_sack = 1; /* selective acknowledgement */
165 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
166 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
167 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
168 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
169 int tcp_init_win = 1;
170 int tcp_mss_ifmtu = 0;
171 #ifdef TCP_COMPAT_42
172 int tcp_compat_42 = 1;
173 #else
174 int tcp_compat_42 = 0;
175 #endif
176
177 #ifndef TCBHASHSIZE
178 #define TCBHASHSIZE 128
179 #endif
180 int tcbhashsize = TCBHASHSIZE;
181
182 int tcp_freeq __P((struct tcpcb *));
183
184 struct pool tcpcb_pool;
185
186 /*
187 * Tcp initialization
188 */
189 void
190 tcp_init()
191 {
192 int hlen;
193
194 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
195 0, NULL, NULL, M_PCB);
196 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
197 #ifdef INET6
198 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
199 #endif
200 LIST_INIT(&tcp_delacks);
201
202 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
203 #ifdef INET6
204 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
205 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
206 #endif
207 if (max_protohdr < hlen)
208 max_protohdr = hlen;
209 if (max_linkhdr + hlen > MHLEN)
210 panic("tcp_init");
211
212 /* Initialize the compressed state engine. */
213 syn_cache_init();
214 }
215
216 /*
217 * Create template to be used to send tcp packets on a connection.
218 * Call after host entry created, allocates an mbuf and fills
219 * in a skeletal tcp/ip header, minimizing the amount of work
220 * necessary when the connection is used.
221 */
222 struct mbuf *
223 tcp_template(tp)
224 struct tcpcb *tp;
225 {
226 register struct inpcb *inp = tp->t_inpcb;
227 #ifdef INET6
228 register struct in6pcb *in6p = tp->t_in6pcb;
229 #endif
230 register struct tcphdr *n;
231 register struct mbuf *m;
232 int hlen;
233
234 switch (tp->t_family) {
235 case AF_INET:
236 hlen = sizeof(struct ip);
237 if (inp)
238 break;
239 #ifdef INET6
240 if (in6p) {
241 /* mapped addr case */
242 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
243 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
244 break;
245 }
246 #endif
247 return NULL; /*EINVAL*/
248 #ifdef INET6
249 case AF_INET6:
250 hlen = sizeof(struct ip6_hdr);
251 if (in6p) {
252 /* more sainty check? */
253 break;
254 }
255 return NULL; /*EINVAL*/
256 #endif
257 default:
258 hlen = 0; /*pacify gcc*/
259 return NULL; /*EAFNOSUPPORT*/
260 }
261 if ((m = tp->t_template) == 0) {
262 MGETHDR(m, M_DONTWAIT, MT_HEADER);
263 if (m) {
264 MCLGET(m, M_DONTWAIT);
265 if ((m->m_flags & M_EXT) == 0) {
266 m_free(m);
267 m = NULL;
268 }
269 }
270 if (m == NULL)
271 return NULL;
272 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
273 }
274 bzero(mtod(m, caddr_t), m->m_len);
275 switch (tp->t_family) {
276 case AF_INET:
277 {
278 struct ipovly *ipov;
279 mtod(m, struct ip *)->ip_v = 4;
280 ipov = mtod(m, struct ipovly *);
281 ipov->ih_pr = IPPROTO_TCP;
282 ipov->ih_len = htons(sizeof(struct tcphdr));
283 if (inp) {
284 ipov->ih_src = inp->inp_laddr;
285 ipov->ih_dst = inp->inp_faddr;
286 }
287 #ifdef INET6
288 else if (in6p) {
289 /* mapped addr case */
290 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
291 sizeof(ipov->ih_src));
292 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
293 sizeof(ipov->ih_dst));
294 }
295 #endif
296 break;
297 }
298 #ifdef INET6
299 case AF_INET6:
300 {
301 struct ip6_hdr *ip6;
302 mtod(m, struct ip *)->ip_v = 6;
303 ip6 = mtod(m, struct ip6_hdr *);
304 ip6->ip6_nxt = IPPROTO_TCP;
305 ip6->ip6_plen = htons(sizeof(struct tcphdr));
306 ip6->ip6_src = in6p->in6p_laddr;
307 ip6->ip6_dst = in6p->in6p_faddr;
308 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
309 if (ip6_auto_flowlabel) {
310 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
311 ip6->ip6_flow |=
312 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
313 }
314 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
315 ip6->ip6_vfc |= IPV6_VERSION;
316 break;
317 }
318 #endif
319 }
320 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
321 if (inp) {
322 n->th_sport = inp->inp_lport;
323 n->th_dport = inp->inp_fport;
324 }
325 #ifdef INET6
326 else if (in6p) {
327 n->th_sport = in6p->in6p_lport;
328 n->th_dport = in6p->in6p_fport;
329 }
330 #endif
331 n->th_seq = 0;
332 n->th_ack = 0;
333 n->th_x2 = 0;
334 n->th_off = 5;
335 n->th_flags = 0;
336 n->th_win = 0;
337 n->th_sum = 0;
338 n->th_urp = 0;
339 return (m);
340 }
341
342 /*
343 * Send a single message to the TCP at address specified by
344 * the given TCP/IP header. If m == 0, then we make a copy
345 * of the tcpiphdr at ti and send directly to the addressed host.
346 * This is used to force keep alive messages out using the TCP
347 * template for a connection tp->t_template. If flags are given
348 * then we send a message back to the TCP which originated the
349 * segment ti, and discard the mbuf containing it and any other
350 * attached mbufs.
351 *
352 * In any case the ack and sequence number of the transmitted
353 * segment are as specified by the parameters.
354 */
355 int
356 tcp_respond(tp, template, m, th0, ack, seq, flags)
357 struct tcpcb *tp;
358 struct mbuf *template;
359 register struct mbuf *m;
360 struct tcphdr *th0;
361 tcp_seq ack, seq;
362 int flags;
363 {
364 #ifndef INET6
365 struct route iproute;
366 #else
367 struct route_in6 iproute; /* sizeof(route_in6) > sizeof(route) */
368 #endif
369 struct route *ro;
370 struct rtentry *rt;
371 int error, tlen, win = 0;
372 int hlen;
373 struct ip *ip;
374 #ifdef INET6
375 struct ip6_hdr *ip6;
376 #endif
377 int family; /* family on packet, not inpcb/in6pcb! */
378 struct tcphdr *th;
379
380 if (tp != NULL && (flags & TH_RST) == 0) {
381 if (tp->t_inpcb)
382 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
383 #ifdef INET6
384 else if (tp->t_in6pcb)
385 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
386 #endif
387 }
388
389 ip = NULL;
390 #ifdef INET6
391 ip6 = NULL;
392 #endif
393 if (m == 0) {
394 if (!template)
395 return EINVAL;
396
397 /* get family information from template */
398 switch (mtod(template, struct ip *)->ip_v) {
399 case 4:
400 family = AF_INET;
401 hlen = sizeof(struct ip);
402 break;
403 #ifdef INET6
404 case 6:
405 family = AF_INET6;
406 hlen = sizeof(struct ip6_hdr);
407 break;
408 #endif
409 default:
410 return EAFNOSUPPORT;
411 }
412
413 MGETHDR(m, M_DONTWAIT, MT_HEADER);
414 if (m) {
415 MCLGET(m, M_DONTWAIT);
416 if ((m->m_flags & M_EXT) == 0) {
417 m_free(m);
418 m = NULL;
419 }
420 }
421 if (m == NULL)
422 return (ENOBUFS);
423
424 if (tcp_compat_42)
425 tlen = 1;
426 else
427 tlen = 0;
428
429 m->m_data += max_linkhdr;
430 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
431 template->m_len);
432 switch (family) {
433 case AF_INET:
434 ip = mtod(m, struct ip *);
435 th = (struct tcphdr *)(ip + 1);
436 break;
437 #ifdef INET6
438 case AF_INET6:
439 ip6 = mtod(m, struct ip6_hdr *);
440 th = (struct tcphdr *)(ip6 + 1);
441 break;
442 #endif
443 #if 0
444 default:
445 /* noone will visit here */
446 m_freem(m);
447 return EAFNOSUPPORT;
448 #endif
449 }
450 flags = TH_ACK;
451 } else {
452 /* get family information from m */
453 switch (mtod(m, struct ip *)->ip_v) {
454 case 4:
455 family = AF_INET;
456 hlen = sizeof(struct ip);
457 break;
458 #ifdef INET6
459 case 6:
460 family = AF_INET6;
461 hlen = sizeof(struct ip6_hdr);
462 break;
463 #endif
464 default:
465 m_freem(m);
466 return EAFNOSUPPORT;
467 }
468
469 /* template pointer almost has no meaning */
470 m_freem(m->m_next);
471 m->m_next = 0;
472 m->m_len = hlen + sizeof(struct tcphdr);
473 if ((m->m_flags & M_PKTHDR) == 0) {
474 printf("non PKTHDR to tcp_respond\n");
475 m_freem(m);
476 return EINVAL;
477 }
478
479 tlen = 0;
480 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
481 switch (family) {
482 case AF_INET:
483 ip = mtod(m, struct ip *);
484 th = (struct tcphdr *)(ip + 1);
485 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
486 ip->ip_p = IPPROTO_TCP;
487 break;
488 #ifdef INET6
489 case AF_INET6:
490 ip6 = mtod(m, struct ip6_hdr *);
491 th = (struct tcphdr *)(ip6 + 1);
492 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
493 ip6->ip6_nxt = IPPROTO_TCP;
494 break;
495 #endif
496 }
497 *th = *th0;
498 xchg(th->th_dport, th->th_sport, u_int16_t);
499 #undef xchg
500 }
501 th->th_seq = htonl(seq);
502 th->th_ack = htonl(ack);
503 th->th_x2 = 0;
504 if ((flags & TH_SYN) == 0) {
505 if (tp)
506 win >>= tp->rcv_scale;
507 if (win > TCP_MAXWIN)
508 win = TCP_MAXWIN;
509 th->th_win = htons((u_int16_t)win);
510 th->th_off = sizeof (struct tcphdr) >> 2;
511 tlen += sizeof (struct tcphdr);
512 } else
513 tlen += th->th_off << 2;
514 m->m_len = hlen + tlen;
515 m->m_pkthdr.len = hlen + tlen;
516 m->m_pkthdr.rcvif = (struct ifnet *) 0;
517 th->th_flags = flags;
518 th->th_urp = 0;
519
520 switch (family) {
521 case AF_INET:
522 {
523 struct ipovly *ipov = (struct ipovly *)ip;
524 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
525 ipov->ih_len = htons((u_int16_t)tlen);
526
527 th->th_sum = 0;
528 th->th_sum = in_cksum(m, hlen + tlen);
529 ip->ip_len = hlen + tlen; /*will be flipped on output*/
530 ip->ip_ttl = ip_defttl;
531 break;
532 }
533 #ifdef INET6
534 case AF_INET6:
535 {
536 th->th_sum = 0;
537 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
538 tlen);
539 ip6->ip6_plen = ntohs(tlen);
540 if (tp && tp->t_in6pcb) {
541 struct ifnet *oifp;
542 ro = (struct route *)&tp->t_in6pcb->in6p_route;
543 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
544 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
545 } else
546 ip6->ip6_hlim = ip6_defhlim;
547 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
548 if (ip6_auto_flowlabel) {
549 ip6->ip6_flow |=
550 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
551 }
552 break;
553 }
554 #endif
555 }
556
557 #ifdef IPSEC
558 m->m_pkthdr.rcvif = NULL;
559 #endif /*IPSEC*/
560
561 /*
562 * If we're doing Path MTU discovery, we need to set DF unless
563 * the route's MTU is locked. If we lack a route, we need to
564 * look it up now.
565 *
566 * ip_output() could do this for us, but it's convenient to just
567 * do it here unconditionally.
568 */
569 if (tp != NULL && tp->t_inpcb != NULL) {
570 ro = &tp->t_inpcb->inp_route;
571 #ifdef IPSEC
572 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_inpcb->inp_socket;
573 #endif
574 #ifdef DIAGNOSTIC
575 if (family != AF_INET)
576 panic("tcp_respond: address family mismatch");
577 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
578 panic("tcp_respond: ip_dst %x != inp_faddr %x",
579 ntohl(ip->ip_dst.s_addr),
580 ntohl(tp->t_inpcb->inp_faddr.s_addr));
581 }
582 #endif
583 }
584 #ifdef INET6
585 else if (tp != NULL && tp->t_in6pcb != NULL) {
586 ro = (struct route *)&tp->t_in6pcb->in6p_route;
587 #ifdef IPSEC
588 m->m_pkthdr.rcvif = (struct ifnet *)tp->t_in6pcb->in6p_socket;
589 #endif
590 #ifdef DIAGNOSTIC
591 if (family == AF_INET) {
592 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
593 panic("tcp_respond: not mapped addr");
594 if (bcmp(&ip->ip_dst,
595 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
596 sizeof(ip->ip_dst)) != 0) {
597 panic("tcp_respond: ip_dst != in6p_faddr");
598 }
599 } else if (family == AF_INET6) {
600 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
601 panic("tcp_respond: ip6_dst != in6p_faddr");
602 } else
603 panic("tcp_respond: address family mismatch");
604 #endif
605 }
606 #endif
607 else {
608 ro = (struct route *)&iproute;
609 bzero(ro, sizeof(iproute));
610 }
611 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
612 if (ro->ro_rt != NULL) {
613 RTFREE(ro->ro_rt);
614 ro->ro_rt = NULL;
615 }
616 switch (family) {
617 case AF_INET:
618 {
619 struct sockaddr_in *dst;
620 dst = satosin(&ro->ro_dst);
621 dst->sin_family = AF_INET;
622 dst->sin_len = sizeof(*dst);
623 dst->sin_addr = ip->ip_dst;
624 break;
625 }
626 #ifdef INET6
627 case AF_INET6:
628 {
629 struct sockaddr_in6 *dst;
630 dst = satosin6(&ro->ro_dst);
631 bzero(dst, sizeof(*dst));
632 dst->sin6_family = AF_INET6;
633 dst->sin6_len = sizeof(*dst);
634 dst->sin6_addr = ip6->ip6_dst;
635 break;
636 }
637 #endif
638 }
639 rtalloc(ro);
640 if ((rt = ro->ro_rt) == NULL) {
641 m_freem(m);
642 switch (family) {
643 case AF_INET:
644 ipstat.ips_noroute++;
645 break;
646 #ifdef INET6
647 case AF_INET6:
648 ip6stat.ip6s_noroute++;
649 break;
650 #endif
651 }
652 return (EHOSTUNREACH);
653 }
654 }
655 switch (family) {
656 case AF_INET:
657 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
658 ip->ip_off |= IP_DF;
659
660 error = ip_output(m, NULL, ro, 0, NULL);
661 break;
662 #ifdef INET6
663 case AF_INET6:
664 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
665 NULL);
666 break;
667 #endif
668 default:
669 error = EAFNOSUPPORT;
670 break;
671 }
672
673 if (ro == (struct route *)&iproute) {
674 RTFREE(ro->ro_rt);
675 ro->ro_rt = NULL;
676 }
677
678 return (error);
679 }
680
681 /*
682 * Create a new TCP control block, making an
683 * empty reassembly queue and hooking it to the argument
684 * protocol control block.
685 */
686 struct tcpcb *
687 tcp_newtcpcb(family, aux)
688 int family; /* selects inpcb, or in6pcb */
689 void *aux;
690 {
691 register struct tcpcb *tp;
692
693 switch (family) {
694 case PF_INET:
695 break;
696 #ifdef INET6
697 case PF_INET6:
698 break;
699 #endif
700 default:
701 return NULL;
702 }
703
704 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
705 if (tp == NULL)
706 return (NULL);
707 bzero((caddr_t)tp, sizeof(struct tcpcb));
708 LIST_INIT(&tp->segq);
709 LIST_INIT(&tp->timeq);
710 tp->t_family = family; /* may be overridden later on */
711 tp->t_peermss = tcp_mssdflt;
712 tp->t_ourmss = tcp_mssdflt;
713 tp->t_segsz = tcp_mssdflt;
714 LIST_INIT(&tp->t_sc);
715
716 tp->t_flags = 0;
717 if (tcp_do_rfc1323 && tcp_do_win_scale)
718 tp->t_flags |= TF_REQ_SCALE;
719 if (tcp_do_rfc1323 && tcp_do_timestamps)
720 tp->t_flags |= TF_REQ_TSTMP;
721 if (tcp_do_sack == 2)
722 tp->t_flags |= TF_WILL_SACK;
723 else if (tcp_do_sack == 1)
724 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
725 tp->t_flags |= TF_CANT_TXSACK;
726 switch (family) {
727 case PF_INET:
728 tp->t_inpcb = (struct inpcb *)aux;
729 break;
730 #ifdef INET6
731 case PF_INET6:
732 tp->t_in6pcb = (struct in6pcb *)aux;
733 break;
734 #endif
735 }
736 /*
737 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
738 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
739 * reasonable initial retransmit time.
740 */
741 tp->t_srtt = TCPTV_SRTTBASE;
742 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
743 tp->t_rttmin = TCPTV_MIN;
744 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
745 TCPTV_MIN, TCPTV_REXMTMAX);
746 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
747 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
748 if (family == AF_INET) {
749 struct inpcb *inp = (struct inpcb *)aux;
750 inp->inp_ip.ip_ttl = ip_defttl;
751 inp->inp_ppcb = (caddr_t)tp;
752 }
753 #ifdef INET6
754 else if (family == AF_INET6) {
755 struct in6pcb *in6p = (struct in6pcb *)aux;
756 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
757 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
758 : NULL);
759 in6p->in6p_ppcb = (caddr_t)tp;
760 }
761 #endif
762 return (tp);
763 }
764
765 /*
766 * Drop a TCP connection, reporting
767 * the specified error. If connection is synchronized,
768 * then send a RST to peer.
769 */
770 struct tcpcb *
771 tcp_drop(tp, errno)
772 register struct tcpcb *tp;
773 int errno;
774 {
775 struct socket *so;
776
777 if (tp->t_inpcb)
778 so = tp->t_inpcb->inp_socket;
779 #ifdef INET6
780 else if (tp->t_in6pcb)
781 so = tp->t_in6pcb->in6p_socket;
782 #endif
783 else
784 return NULL;
785
786 if (TCPS_HAVERCVDSYN(tp->t_state)) {
787 tp->t_state = TCPS_CLOSED;
788 (void) tcp_output(tp);
789 tcpstat.tcps_drops++;
790 } else
791 tcpstat.tcps_conndrops++;
792 if (errno == ETIMEDOUT && tp->t_softerror)
793 errno = tp->t_softerror;
794 so->so_error = errno;
795 return (tcp_close(tp));
796 }
797
798 /*
799 * Close a TCP control block:
800 * discard all space held by the tcp
801 * discard internet protocol block
802 * wake up any sleepers
803 */
804 struct tcpcb *
805 tcp_close(tp)
806 register struct tcpcb *tp;
807 {
808 struct inpcb *inp;
809 #ifdef INET6
810 struct in6pcb *in6p;
811 #endif
812 struct socket *so;
813 #ifdef RTV_RTT
814 register struct rtentry *rt;
815 #endif
816 struct route *ro;
817
818 inp = tp->t_inpcb;
819 #ifdef INET6
820 in6p = tp->t_in6pcb;
821 #endif
822 so = NULL;
823 ro = NULL;
824 if (inp) {
825 so = inp->inp_socket;
826 ro = &inp->inp_route;
827 }
828 #ifdef INET6
829 else if (in6p) {
830 so = in6p->in6p_socket;
831 ro = (struct route *)&in6p->in6p_route;
832 }
833 #endif
834
835 #ifdef RTV_RTT
836 /*
837 * If we sent enough data to get some meaningful characteristics,
838 * save them in the routing entry. 'Enough' is arbitrarily
839 * defined as the sendpipesize (default 4K) * 16. This would
840 * give us 16 rtt samples assuming we only get one sample per
841 * window (the usual case on a long haul net). 16 samples is
842 * enough for the srtt filter to converge to within 5% of the correct
843 * value; fewer samples and we could save a very bogus rtt.
844 *
845 * Don't update the default route's characteristics and don't
846 * update anything that the user "locked".
847 */
848 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
849 ro && (rt = ro->ro_rt) &&
850 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
851 register u_long i = 0;
852
853 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
854 i = tp->t_srtt *
855 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
856 if (rt->rt_rmx.rmx_rtt && i)
857 /*
858 * filter this update to half the old & half
859 * the new values, converting scale.
860 * See route.h and tcp_var.h for a
861 * description of the scaling constants.
862 */
863 rt->rt_rmx.rmx_rtt =
864 (rt->rt_rmx.rmx_rtt + i) / 2;
865 else
866 rt->rt_rmx.rmx_rtt = i;
867 }
868 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
869 i = tp->t_rttvar *
870 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
871 if (rt->rt_rmx.rmx_rttvar && i)
872 rt->rt_rmx.rmx_rttvar =
873 (rt->rt_rmx.rmx_rttvar + i) / 2;
874 else
875 rt->rt_rmx.rmx_rttvar = i;
876 }
877 /*
878 * update the pipelimit (ssthresh) if it has been updated
879 * already or if a pipesize was specified & the threshhold
880 * got below half the pipesize. I.e., wait for bad news
881 * before we start updating, then update on both good
882 * and bad news.
883 */
884 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
885 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
886 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
887 /*
888 * convert the limit from user data bytes to
889 * packets then to packet data bytes.
890 */
891 i = (i + tp->t_segsz / 2) / tp->t_segsz;
892 if (i < 2)
893 i = 2;
894 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
895 if (rt->rt_rmx.rmx_ssthresh)
896 rt->rt_rmx.rmx_ssthresh =
897 (rt->rt_rmx.rmx_ssthresh + i) / 2;
898 else
899 rt->rt_rmx.rmx_ssthresh = i;
900 }
901 }
902 #endif /* RTV_RTT */
903 /* free the reassembly queue, if any */
904 TCP_REASS_LOCK(tp);
905 (void) tcp_freeq(tp);
906 TCP_REASS_UNLOCK(tp);
907
908 TCP_CLEAR_DELACK(tp);
909 syn_cache_cleanup(tp);
910
911 if (tp->t_template) {
912 m_free(tp->t_template);
913 tp->t_template = NULL;
914 }
915 pool_put(&tcpcb_pool, tp);
916 if (inp) {
917 inp->inp_ppcb = 0;
918 soisdisconnected(so);
919 in_pcbdetach(inp);
920 }
921 #ifdef INET6
922 else if (in6p) {
923 in6p->in6p_ppcb = 0;
924 soisdisconnected(so);
925 in6_pcbdetach(in6p);
926 }
927 #endif
928 tcpstat.tcps_closed++;
929 return ((struct tcpcb *)0);
930 }
931
932 int
933 tcp_freeq(tp)
934 struct tcpcb *tp;
935 {
936 register struct ipqent *qe;
937 int rv = 0;
938 #ifdef TCPREASS_DEBUG
939 int i = 0;
940 #endif
941
942 TCP_REASS_LOCK_CHECK(tp);
943
944 while ((qe = tp->segq.lh_first) != NULL) {
945 #ifdef TCPREASS_DEBUG
946 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
947 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
948 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
949 #endif
950 LIST_REMOVE(qe, ipqe_q);
951 LIST_REMOVE(qe, ipqe_timeq);
952 m_freem(qe->ipqe_m);
953 pool_put(&ipqent_pool, qe);
954 rv = 1;
955 }
956 return (rv);
957 }
958
959 /*
960 * Protocol drain routine. Called when memory is in short supply.
961 */
962 void
963 tcp_drain()
964 {
965 register struct inpcb *inp;
966 register struct tcpcb *tp;
967
968 /*
969 * Free the sequence queue of all TCP connections.
970 */
971 inp = tcbtable.inpt_queue.cqh_first;
972 if (inp) /* XXX */
973 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
974 inp = inp->inp_queue.cqe_next) {
975 if ((tp = intotcpcb(inp)) != NULL) {
976 /*
977 * We may be called from a device's interrupt
978 * context. If the tcpcb is already busy,
979 * just bail out now.
980 */
981 if (tcp_reass_lock_try(tp) == 0)
982 continue;
983 if (tcp_freeq(tp))
984 tcpstat.tcps_connsdrained++;
985 TCP_REASS_UNLOCK(tp);
986 }
987 }
988 }
989
990 /*
991 * Notify a tcp user of an asynchronous error;
992 * store error as soft error, but wake up user
993 * (for now, won't do anything until can select for soft error).
994 */
995 void
996 tcp_notify(inp, error)
997 struct inpcb *inp;
998 int error;
999 {
1000 register struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1001 register struct socket *so = inp->inp_socket;
1002
1003 /*
1004 * Ignore some errors if we are hooked up.
1005 * If connection hasn't completed, has retransmitted several times,
1006 * and receives a second error, give up now. This is better
1007 * than waiting a long time to establish a connection that
1008 * can never complete.
1009 */
1010 if (tp->t_state == TCPS_ESTABLISHED &&
1011 (error == EHOSTUNREACH || error == ENETUNREACH ||
1012 error == EHOSTDOWN)) {
1013 return;
1014 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1015 tp->t_rxtshift > 3 && tp->t_softerror)
1016 so->so_error = error;
1017 else
1018 tp->t_softerror = error;
1019 wakeup((caddr_t) &so->so_timeo);
1020 sorwakeup(so);
1021 sowwakeup(so);
1022 }
1023
1024 #if defined(INET6) && !defined(TCP6)
1025 void
1026 tcp6_notify(in6p, error)
1027 struct in6pcb *in6p;
1028 int error;
1029 {
1030 register struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1031 register struct socket *so = in6p->in6p_socket;
1032
1033 /*
1034 * Ignore some errors if we are hooked up.
1035 * If connection hasn't completed, has retransmitted several times,
1036 * and receives a second error, give up now. This is better
1037 * than waiting a long time to establish a connection that
1038 * can never complete.
1039 */
1040 if (tp->t_state == TCPS_ESTABLISHED &&
1041 (error == EHOSTUNREACH || error == ENETUNREACH ||
1042 error == EHOSTDOWN)) {
1043 return;
1044 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1045 tp->t_rxtshift > 3 && tp->t_softerror)
1046 so->so_error = error;
1047 else
1048 tp->t_softerror = error;
1049 wakeup((caddr_t) &so->so_timeo);
1050 sorwakeup(so);
1051 sowwakeup(so);
1052 }
1053 #endif
1054
1055 #if defined(INET6) && !defined(TCP6)
1056 void
1057 tcp6_ctlinput(cmd, sa, d)
1058 int cmd;
1059 struct sockaddr *sa;
1060 void *d;
1061 {
1062 register struct tcphdr *thp;
1063 struct tcphdr th;
1064 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1065 int nmatch;
1066 extern struct in6_addr zeroin6_addr; /* netinet6/in6_pcb.c */
1067 struct sockaddr_in6 sa6;
1068 register struct ip6_hdr *ip6;
1069 struct mbuf *m;
1070 int off;
1071
1072 if (sa->sa_family != AF_INET6 ||
1073 sa->sa_len != sizeof(struct sockaddr_in6))
1074 return;
1075 if ((unsigned)cmd >= PRC_NCMDS)
1076 return;
1077 else if (cmd == PRC_QUENCH) {
1078 /* XXX there's no PRC_QUENCH in IPv6 */
1079 notify = tcp6_quench;
1080 } else if (PRC_IS_REDIRECT(cmd))
1081 notify = in6_rtchange, d = NULL;
1082 else if (cmd == PRC_MSGSIZE)
1083 notify = tcp6_mtudisc, d = NULL;
1084 else if (cmd == PRC_HOSTDEAD)
1085 d = NULL;
1086 else if (inet6ctlerrmap[cmd] == 0)
1087 return;
1088
1089 /* if the parameter is from icmp6, decode it. */
1090 if (d != NULL) {
1091 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1092 m = ip6cp->ip6c_m;
1093 ip6 = ip6cp->ip6c_ip6;
1094 off = ip6cp->ip6c_off;
1095 } else {
1096 m = NULL;
1097 ip6 = NULL;
1098 }
1099
1100 /* translate addresses into internal form */
1101 sa6 = *(struct sockaddr_in6 *)sa;
1102 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) && m && m->m_pkthdr.rcvif)
1103 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1104
1105 if (ip6) {
1106 /*
1107 * XXX: We assume that when ip6 is non NULL,
1108 * M and OFF are valid.
1109 */
1110 struct in6_addr s;
1111
1112 /* translate addresses into internal form */
1113 memcpy(&s, &ip6->ip6_src, sizeof(s));
1114 if (IN6_IS_ADDR_LINKLOCAL(&s))
1115 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1116
1117 if (m->m_len < off + sizeof(th)) {
1118 /*
1119 * this should be rare case,
1120 * so we compromise on this copy...
1121 */
1122 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1123 thp = &th;
1124 } else
1125 thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1126 nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
1127 thp->th_dport, &s, thp->th_sport, cmd, notify);
1128 if (nmatch == 0 && syn_cache_count &&
1129 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1130 inet6ctlerrmap[cmd] == ENETUNREACH ||
1131 inet6ctlerrmap[cmd] == EHOSTDOWN)) {
1132 struct sockaddr_in6 sin6;
1133 bzero(&sin6, sizeof(sin6));
1134 sin6.sin6_len = sizeof(sin6);
1135 sin6.sin6_family = AF_INET6;
1136 sin6.sin6_port = thp->th_sport;
1137 sin6.sin6_addr = s;
1138 syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
1139 }
1140 } else {
1141 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
1142 &zeroin6_addr, 0, cmd, notify);
1143 }
1144 }
1145 #endif
1146
1147 /* assumes that ip header and tcp header are contiguous on mbuf */
1148 void *
1149 tcp_ctlinput(cmd, sa, v)
1150 int cmd;
1151 struct sockaddr *sa;
1152 register void *v;
1153 {
1154 register struct ip *ip = v;
1155 register struct tcphdr *th;
1156 extern int inetctlerrmap[];
1157 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1158 int errno;
1159 int nmatch;
1160
1161 if (sa->sa_family != AF_INET ||
1162 sa->sa_len != sizeof(struct sockaddr_in))
1163 return NULL;
1164 if ((unsigned)cmd >= PRC_NCMDS)
1165 return NULL;
1166 errno = inetctlerrmap[cmd];
1167 if (cmd == PRC_QUENCH)
1168 notify = tcp_quench;
1169 else if (PRC_IS_REDIRECT(cmd))
1170 notify = in_rtchange, ip = 0;
1171 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1172 notify = tcp_mtudisc, ip = 0;
1173 else if (cmd == PRC_HOSTDEAD)
1174 ip = 0;
1175 else if (errno == 0)
1176 return NULL;
1177 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1178 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1179 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1180 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1181 if (nmatch == 0 && syn_cache_count &&
1182 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1183 inetctlerrmap[cmd] == ENETUNREACH ||
1184 inetctlerrmap[cmd] == EHOSTDOWN)) {
1185 struct sockaddr_in sin;
1186 bzero(&sin, sizeof(sin));
1187 sin.sin_len = sizeof(sin);
1188 sin.sin_family = AF_INET;
1189 sin.sin_port = th->th_sport;
1190 sin.sin_addr = ip->ip_src;
1191 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1192 }
1193
1194 /* XXX mapped address case */
1195 }
1196 else {
1197 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1198 notify);
1199 }
1200 return NULL;
1201 }
1202
1203 /*
1204 * When a source quence is received, we are being notifed of congestion.
1205 * Close the congestion window down to the Loss Window (one segment).
1206 * We will gradually open it again as we proceed.
1207 */
1208 void
1209 tcp_quench(inp, errno)
1210 struct inpcb *inp;
1211 int errno;
1212 {
1213 struct tcpcb *tp = intotcpcb(inp);
1214
1215 if (tp)
1216 tp->snd_cwnd = tp->t_segsz;
1217 }
1218
1219 #if defined(INET6) && !defined(TCP6)
1220 void
1221 tcp6_quench(in6p, errno)
1222 struct in6pcb *in6p;
1223 int errno;
1224 {
1225 struct tcpcb *tp = in6totcpcb(in6p);
1226
1227 if (tp)
1228 tp->snd_cwnd = tp->t_segsz;
1229 }
1230 #endif
1231
1232 /*
1233 * On receipt of path MTU corrections, flush old route and replace it
1234 * with the new one. Retransmit all unacknowledged packets, to ensure
1235 * that all packets will be received.
1236 */
1237 void
1238 tcp_mtudisc(inp, errno)
1239 struct inpcb *inp;
1240 int errno;
1241 {
1242 struct tcpcb *tp = intotcpcb(inp);
1243 struct rtentry *rt = in_pcbrtentry(inp);
1244
1245 if (tp != 0) {
1246 if (rt != 0) {
1247 /*
1248 * If this was not a host route, remove and realloc.
1249 */
1250 if ((rt->rt_flags & RTF_HOST) == 0) {
1251 in_rtchange(inp, errno);
1252 if ((rt = in_pcbrtentry(inp)) == 0)
1253 return;
1254 }
1255
1256 /*
1257 * Slow start out of the error condition. We
1258 * use the MTU because we know it's smaller
1259 * than the previously transmitted segment.
1260 *
1261 * Note: This is more conservative than the
1262 * suggestion in draft-floyd-incr-init-win-03.
1263 */
1264 if (rt->rt_rmx.rmx_mtu != 0)
1265 tp->snd_cwnd =
1266 TCP_INITIAL_WINDOW(tcp_init_win,
1267 rt->rt_rmx.rmx_mtu);
1268 }
1269
1270 /*
1271 * Resend unacknowledged packets.
1272 */
1273 tp->snd_nxt = tp->snd_una;
1274 tcp_output(tp);
1275 }
1276 }
1277
1278 #if defined(INET6) && !defined(TCP6)
1279 void
1280 tcp6_mtudisc(in6p, errno)
1281 struct in6pcb *in6p;
1282 int errno;
1283 {
1284 struct tcpcb *tp = in6totcpcb(in6p);
1285 struct rtentry *rt = in6_pcbrtentry(in6p);
1286
1287 if (tp != 0) {
1288 if (rt != 0) {
1289 /*
1290 * If this was not a host route, remove and realloc.
1291 */
1292 if ((rt->rt_flags & RTF_HOST) == 0) {
1293 in6_rtchange(in6p, errno);
1294 if ((rt = in6_pcbrtentry(in6p)) == 0)
1295 return;
1296 }
1297
1298 /*
1299 * Slow start out of the error condition. We
1300 * use the MTU because we know it's smaller
1301 * than the previously transmitted segment.
1302 *
1303 * Note: This is more conservative than the
1304 * suggestion in draft-floyd-incr-init-win-03.
1305 */
1306 if (rt->rt_rmx.rmx_mtu != 0)
1307 tp->snd_cwnd =
1308 TCP_INITIAL_WINDOW(tcp_init_win,
1309 rt->rt_rmx.rmx_mtu);
1310 }
1311
1312 /*
1313 * Resend unacknowledged packets.
1314 */
1315 tp->snd_nxt = tp->snd_una;
1316 tcp_output(tp);
1317 }
1318 }
1319 #endif
1320
1321 /*
1322 * Compute the MSS to advertise to the peer. Called only during
1323 * the 3-way handshake. If we are the server (peer initiated
1324 * connection), we are called with a pointer to the interface
1325 * on which the SYN packet arrived. If we are the client (we
1326 * initiated connection), we are called with a pointer to the
1327 * interface out which this connection should go.
1328 *
1329 * NOTE: Do not subtract IP option/extension header size nor IPsec
1330 * header size from MSS advertisement. MSS option must hold the maximum
1331 * segment size we can accept, so it must always be:
1332 * max(if mtu) - ip header - tcp header
1333 */
1334 u_long
1335 tcp_mss_to_advertise(ifp, af)
1336 const struct ifnet *ifp;
1337 int af;
1338 {
1339 extern u_long in_maxmtu;
1340 u_long mss = 0;
1341 u_long hdrsiz;
1342
1343 /*
1344 * In order to avoid defeating path MTU discovery on the peer,
1345 * we advertise the max MTU of all attached networks as our MSS,
1346 * per RFC 1191, section 3.1.
1347 *
1348 * We provide the option to advertise just the MTU of
1349 * the interface on which we hope this connection will
1350 * be receiving. If we are responding to a SYN, we
1351 * will have a pretty good idea about this, but when
1352 * initiating a connection there is a bit more doubt.
1353 *
1354 * We also need to ensure that loopback has a large enough
1355 * MSS, as the loopback MTU is never included in in_maxmtu.
1356 */
1357
1358 if (ifp != NULL)
1359 mss = ifp->if_mtu;
1360
1361 if (tcp_mss_ifmtu == 0)
1362 mss = max(in_maxmtu, mss);
1363
1364 switch (af) {
1365 case AF_INET:
1366 hdrsiz = sizeof(struct ip);
1367 break;
1368 #ifdef INET6
1369 case AF_INET6:
1370 hdrsiz = sizeof(struct ip6_hdr);
1371 break;
1372 #endif
1373 default:
1374 hdrsiz = 0;
1375 break;
1376 }
1377 hdrsiz += sizeof(struct tcphdr);
1378 if (mss > hdrsiz)
1379 mss -= hdrsiz;
1380
1381 mss = max(tcp_mssdflt, mss);
1382 return (mss);
1383 }
1384
1385 /*
1386 * Set connection variables based on the peer's advertised MSS.
1387 * We are passed the TCPCB for the actual connection. If we
1388 * are the server, we are called by the compressed state engine
1389 * when the 3-way handshake is complete. If we are the client,
1390 * we are called when we recieve the SYN,ACK from the server.
1391 *
1392 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1393 * before this routine is called!
1394 */
1395 void
1396 tcp_mss_from_peer(tp, offer)
1397 struct tcpcb *tp;
1398 int offer;
1399 {
1400 struct socket *so;
1401 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1402 struct rtentry *rt;
1403 #endif
1404 u_long bufsize;
1405 int mss;
1406
1407 so = NULL;
1408 rt = NULL;
1409 if (tp->t_inpcb) {
1410 so = tp->t_inpcb->inp_socket;
1411 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1412 rt = in_pcbrtentry(tp->t_inpcb);
1413 #endif
1414 }
1415 #ifdef INET6
1416 else if (tp->t_in6pcb) {
1417 so = tp->t_in6pcb->in6p_socket;
1418 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1419 #ifdef TCP6
1420 rt = NULL;
1421 #else
1422 rt = in6_pcbrtentry(tp->t_in6pcb);
1423 #endif
1424 #endif
1425 }
1426 #endif
1427
1428 /*
1429 * As per RFC1122, use the default MSS value, unless they
1430 * sent us an offer. Do not accept offers less than 32 bytes.
1431 */
1432 mss = tcp_mssdflt;
1433 if (offer)
1434 mss = offer;
1435 mss = max(mss, 32); /* sanity */
1436 tp->t_peermss = mss;
1437 mss -= tcp_optlen(tp);
1438 if (tp->t_inpcb)
1439 mss -= ip_optlen(tp->t_inpcb);
1440 #ifdef INET6
1441 else if (tp->t_in6pcb)
1442 mss -= ip6_optlen(tp->t_in6pcb);
1443 #endif
1444
1445 /*
1446 * If there's a pipesize, change the socket buffer to that size.
1447 * Make the socket buffer an integral number of MSS units. If
1448 * the MSS is larger than the socket buffer, artificially decrease
1449 * the MSS.
1450 */
1451 #ifdef RTV_SPIPE
1452 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1453 bufsize = rt->rt_rmx.rmx_sendpipe;
1454 else
1455 #endif
1456 bufsize = so->so_snd.sb_hiwat;
1457 if (bufsize < mss)
1458 mss = bufsize;
1459 else {
1460 bufsize = roundup(bufsize, mss);
1461 if (bufsize > sb_max)
1462 bufsize = sb_max;
1463 (void) sbreserve(&so->so_snd, bufsize);
1464 }
1465 tp->t_segsz = mss;
1466
1467 #ifdef RTV_SSTHRESH
1468 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1469 /*
1470 * There's some sort of gateway or interface buffer
1471 * limit on the path. Use this to set the slow
1472 * start threshold, but set the threshold to no less
1473 * than 2 * MSS.
1474 */
1475 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1476 }
1477 #endif
1478 }
1479
1480 /*
1481 * Processing necessary when a TCP connection is established.
1482 */
1483 void
1484 tcp_established(tp)
1485 struct tcpcb *tp;
1486 {
1487 struct socket *so;
1488 #ifdef RTV_RPIPE
1489 struct rtentry *rt;
1490 #endif
1491 u_long bufsize;
1492
1493 so = NULL;
1494 rt = NULL;
1495 if (tp->t_inpcb) {
1496 so = tp->t_inpcb->inp_socket;
1497 #if defined(RTV_RPIPE)
1498 rt = in_pcbrtentry(tp->t_inpcb);
1499 #endif
1500 }
1501 #ifdef INET6
1502 else if (tp->t_in6pcb) {
1503 so = tp->t_in6pcb->in6p_socket;
1504 #if defined(RTV_RPIPE)
1505 #ifdef TCP6
1506 rt = NULL;
1507 #else
1508 rt = in6_pcbrtentry(tp->t_in6pcb);
1509 #endif
1510 #endif
1511 }
1512 #endif
1513
1514 tp->t_state = TCPS_ESTABLISHED;
1515 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1516
1517 #ifdef RTV_RPIPE
1518 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1519 bufsize = rt->rt_rmx.rmx_recvpipe;
1520 else
1521 #endif
1522 bufsize = so->so_rcv.sb_hiwat;
1523 if (bufsize > tp->t_ourmss) {
1524 bufsize = roundup(bufsize, tp->t_ourmss);
1525 if (bufsize > sb_max)
1526 bufsize = sb_max;
1527 (void) sbreserve(&so->so_rcv, bufsize);
1528 }
1529 }
1530
1531 /*
1532 * Check if there's an initial rtt or rttvar. Convert from the
1533 * route-table units to scaled multiples of the slow timeout timer.
1534 * Called only during the 3-way handshake.
1535 */
1536 void
1537 tcp_rmx_rtt(tp)
1538 struct tcpcb *tp;
1539 {
1540 #ifdef RTV_RTT
1541 struct rtentry *rt = NULL;
1542 int rtt;
1543
1544 if (tp->t_inpcb)
1545 rt = in_pcbrtentry(tp->t_inpcb);
1546 #ifdef INET6
1547 else if (tp->t_in6pcb) {
1548 #ifdef TCP6
1549 rt = NULL;
1550 #else
1551 rt = in6_pcbrtentry(tp->t_in6pcb);
1552 #endif
1553 }
1554 #endif
1555 if (rt == NULL)
1556 return;
1557
1558 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1559 /*
1560 * XXX The lock bit for MTU indicates that the value
1561 * is also a minimum value; this is subject to time.
1562 */
1563 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1564 TCPT_RANGESET(tp->t_rttmin,
1565 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1566 TCPTV_MIN, TCPTV_REXMTMAX);
1567 tp->t_srtt = rtt /
1568 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1569 if (rt->rt_rmx.rmx_rttvar) {
1570 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1571 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1572 (TCP_RTTVAR_SHIFT + 2));
1573 } else {
1574 /* Default variation is +- 1 rtt */
1575 tp->t_rttvar =
1576 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1577 }
1578 TCPT_RANGESET(tp->t_rxtcur,
1579 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1580 tp->t_rttmin, TCPTV_REXMTMAX);
1581 }
1582 #endif
1583 }
1584
1585 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1586
1587 /*
1588 * Get a new sequence value given a tcp control block
1589 */
1590 tcp_seq
1591 tcp_new_iss(tp, len, addin)
1592 void *tp;
1593 u_long len;
1594 tcp_seq addin;
1595 {
1596 tcp_seq tcp_iss;
1597
1598 /*
1599 * Randomize.
1600 */
1601 #if NRND > 0
1602 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1603 #else
1604 tcp_iss = random();
1605 #endif
1606
1607 /*
1608 * If we were asked to add some amount to a known value,
1609 * we will take a random value obtained above, mask off the upper
1610 * bits, and add in the known value. We also add in a constant to
1611 * ensure that we are at least a certain distance from the original
1612 * value.
1613 *
1614 * This is used when an old connection is in timed wait
1615 * and we have a new one coming in, for instance.
1616 */
1617 if (addin != 0) {
1618 #ifdef TCPISS_DEBUG
1619 printf("Random %08x, ", tcp_iss);
1620 #endif
1621 tcp_iss &= TCP_ISS_RANDOM_MASK;
1622 tcp_iss += addin + TCP_ISSINCR;
1623 #ifdef TCPISS_DEBUG
1624 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1625 #endif
1626 } else {
1627 tcp_iss &= TCP_ISS_RANDOM_MASK;
1628 tcp_iss += tcp_iss_seq;
1629 tcp_iss_seq += TCP_ISSINCR;
1630 #ifdef TCPISS_DEBUG
1631 printf("ISS %08x\n", tcp_iss);
1632 #endif
1633 }
1634
1635 if (tcp_compat_42) {
1636 /*
1637 * Limit it to the positive range for really old TCP
1638 * implementations.
1639 */
1640 if (tcp_iss >= 0x80000000)
1641 tcp_iss &= 0x7fffffff; /* XXX */
1642 }
1643
1644 return tcp_iss;
1645 }
1646
1647 #ifdef IPSEC
1648 /* compute ESP/AH header size for TCP, including outer IP header. */
1649 size_t
1650 ipsec4_hdrsiz_tcp(tp)
1651 struct tcpcb *tp;
1652 {
1653 struct inpcb *inp;
1654 size_t hdrsiz;
1655
1656 /* XXX mapped addr case (tp->t_in6pcb) */
1657 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1658 return 0;
1659 switch (tp->t_family) {
1660 case AF_INET:
1661 /* XXX: should use currect direction. */
1662 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1663 break;
1664 default:
1665 hdrsiz = 0;
1666 break;
1667 }
1668
1669 return hdrsiz;
1670 }
1671
1672 #if defined(INET6) && !defined(TCP6)
1673 size_t
1674 ipsec6_hdrsiz_tcp(tp)
1675 struct tcpcb *tp;
1676 {
1677 struct in6pcb *in6p;
1678 size_t hdrsiz;
1679
1680 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1681 return 0;
1682 switch (tp->t_family) {
1683 case AF_INET6:
1684 /* XXX: should use currect direction. */
1685 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1686 break;
1687 case AF_INET:
1688 /* mapped address case - tricky */
1689 default:
1690 hdrsiz = 0;
1691 break;
1692 }
1693
1694 return hdrsiz;
1695 }
1696 #endif
1697 #endif /*IPSEC*/
1698
1699 /*
1700 * Determine the length of the TCP options for this connection.
1701 *
1702 * XXX: What do we do for SACK, when we add that? Just reserve
1703 * all of the space? Otherwise we can't exactly be incrementing
1704 * cwnd by an amount that varies depending on the amount we last
1705 * had to SACK!
1706 */
1707
1708 u_int
1709 tcp_optlen(tp)
1710 struct tcpcb *tp;
1711 {
1712 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1713 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1714 return TCPOLEN_TSTAMP_APPA;
1715 else
1716 return 0;
1717 }
1718