Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.94
      1 /*	$NetBSD: tcp_subr.c,v 1.94 2000/10/13 17:53:44 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by the University of
     84  *	California, Berkeley and its contributors.
     85  * 4. Neither the name of the University nor the names of its contributors
     86  *    may be used to endorse or promote products derived from this software
     87  *    without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     99  * SUCH DAMAGE.
    100  *
    101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
    102  */
    103 
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_tcp_compat_42.h"
    107 #include "rnd.h"
    108 
    109 #include <sys/param.h>
    110 #include <sys/proc.h>
    111 #include <sys/systm.h>
    112 #include <sys/malloc.h>
    113 #include <sys/mbuf.h>
    114 #include <sys/socket.h>
    115 #include <sys/socketvar.h>
    116 #include <sys/protosw.h>
    117 #include <sys/errno.h>
    118 #include <sys/kernel.h>
    119 #include <sys/pool.h>
    120 #if NRND > 0
    121 #include <sys/rnd.h>
    122 #endif
    123 
    124 #include <net/route.h>
    125 #include <net/if.h>
    126 
    127 #include <netinet/in.h>
    128 #include <netinet/in_systm.h>
    129 #include <netinet/ip.h>
    130 #include <netinet/in_pcb.h>
    131 #include <netinet/ip_var.h>
    132 #include <netinet/ip_icmp.h>
    133 
    134 #ifdef INET6
    135 #ifndef INET
    136 #include <netinet/in.h>
    137 #endif
    138 #include <netinet/ip6.h>
    139 #include <netinet6/in6_pcb.h>
    140 #include <netinet6/ip6_var.h>
    141 #include <netinet6/in6_var.h>
    142 #include <netinet6/ip6protosw.h>
    143 #endif
    144 
    145 #include <netinet/tcp.h>
    146 #include <netinet/tcp_fsm.h>
    147 #include <netinet/tcp_seq.h>
    148 #include <netinet/tcp_timer.h>
    149 #include <netinet/tcp_var.h>
    150 #include <netinet/tcpip.h>
    151 
    152 #ifdef IPSEC
    153 #include <netinet6/ipsec.h>
    154 #endif /*IPSEC*/
    155 
    156 #ifdef INET6
    157 struct in6pcb tcb6;
    158 #endif
    159 
    160 /* patchable/settable parameters for tcp */
    161 int 	tcp_mssdflt = TCP_MSS;
    162 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    163 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    164 int	tcp_do_sack = 1;	/* selective acknowledgement */
    165 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    166 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    167 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    168 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    169 int	tcp_init_win = 1;
    170 int	tcp_mss_ifmtu = 0;
    171 #ifdef TCP_COMPAT_42
    172 int	tcp_compat_42 = 1;
    173 #else
    174 int	tcp_compat_42 = 0;
    175 #endif
    176 
    177 #ifndef TCBHASHSIZE
    178 #define	TCBHASHSIZE	128
    179 #endif
    180 int	tcbhashsize = TCBHASHSIZE;
    181 
    182 int	tcp_freeq __P((struct tcpcb *));
    183 
    184 struct pool tcpcb_pool;
    185 
    186 /*
    187  * Tcp initialization
    188  */
    189 void
    190 tcp_init()
    191 {
    192 	int hlen;
    193 
    194 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    195 	    0, NULL, NULL, M_PCB);
    196 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    197 #ifdef INET6
    198 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    199 #endif
    200 	LIST_INIT(&tcp_delacks);
    201 
    202 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    203 #ifdef INET6
    204 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    205 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    206 #endif
    207 	if (max_protohdr < hlen)
    208 		max_protohdr = hlen;
    209 	if (max_linkhdr + hlen > MHLEN)
    210 		panic("tcp_init");
    211 
    212 	/* Initialize the compressed state engine. */
    213 	syn_cache_init();
    214 }
    215 
    216 /*
    217  * Create template to be used to send tcp packets on a connection.
    218  * Call after host entry created, allocates an mbuf and fills
    219  * in a skeletal tcp/ip header, minimizing the amount of work
    220  * necessary when the connection is used.
    221  */
    222 struct mbuf *
    223 tcp_template(tp)
    224 	struct tcpcb *tp;
    225 {
    226 	struct inpcb *inp = tp->t_inpcb;
    227 #ifdef INET6
    228 	struct in6pcb *in6p = tp->t_in6pcb;
    229 #endif
    230 	struct tcphdr *n;
    231 	struct mbuf *m;
    232 	int hlen;
    233 
    234 	switch (tp->t_family) {
    235 	case AF_INET:
    236 		hlen = sizeof(struct ip);
    237 		if (inp)
    238 			break;
    239 #ifdef INET6
    240 		if (in6p) {
    241 			/* mapped addr case */
    242 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    243 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    244 				break;
    245 		}
    246 #endif
    247 		return NULL;	/*EINVAL*/
    248 #ifdef INET6
    249 	case AF_INET6:
    250 		hlen = sizeof(struct ip6_hdr);
    251 		if (in6p) {
    252 			/* more sainty check? */
    253 			break;
    254 		}
    255 		return NULL;	/*EINVAL*/
    256 #endif
    257 	default:
    258 		hlen = 0;	/*pacify gcc*/
    259 		return NULL;	/*EAFNOSUPPORT*/
    260 	}
    261 #ifdef DIAGNOSTIC
    262 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    263 		panic("mclbytes too small for t_template");
    264 #endif
    265 	m = tp->t_template;
    266 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    267 		;
    268 	else {
    269 		if (m)
    270 			m_freem(m);
    271 		m = tp->t_template = NULL;
    272 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    273 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    274 			MCLGET(m, M_DONTWAIT);
    275 			if ((m->m_flags & M_EXT) == 0) {
    276 				m_free(m);
    277 				m = NULL;
    278 			}
    279 		}
    280 		if (m == NULL)
    281 			return NULL;
    282 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    283 	}
    284 	bzero(mtod(m, caddr_t), m->m_len);
    285 	switch (tp->t_family) {
    286 	case AF_INET:
    287 	    {
    288 		struct ipovly *ipov;
    289 		mtod(m, struct ip *)->ip_v = 4;
    290 		ipov = mtod(m, struct ipovly *);
    291 		ipov->ih_pr = IPPROTO_TCP;
    292 		ipov->ih_len = htons(sizeof(struct tcphdr));
    293 		if (inp) {
    294 			ipov->ih_src = inp->inp_laddr;
    295 			ipov->ih_dst = inp->inp_faddr;
    296 		}
    297 #ifdef INET6
    298 		else if (in6p) {
    299 			/* mapped addr case */
    300 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    301 				sizeof(ipov->ih_src));
    302 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    303 				sizeof(ipov->ih_dst));
    304 		}
    305 #endif
    306 		break;
    307 	    }
    308 #ifdef INET6
    309 	case AF_INET6:
    310 	    {
    311 		struct ip6_hdr *ip6;
    312 		mtod(m, struct ip *)->ip_v = 6;
    313 		ip6 = mtod(m, struct ip6_hdr *);
    314 		ip6->ip6_nxt = IPPROTO_TCP;
    315 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    316 		ip6->ip6_src = in6p->in6p_laddr;
    317 		ip6->ip6_dst = in6p->in6p_faddr;
    318 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    319 		if (ip6_auto_flowlabel) {
    320 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    321 			ip6->ip6_flow |=
    322 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    323 		}
    324 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    325 		ip6->ip6_vfc |= IPV6_VERSION;
    326 		break;
    327 	    }
    328 #endif
    329 	}
    330 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    331 	if (inp) {
    332 		n->th_sport = inp->inp_lport;
    333 		n->th_dport = inp->inp_fport;
    334 	}
    335 #ifdef INET6
    336 	else if (in6p) {
    337 		n->th_sport = in6p->in6p_lport;
    338 		n->th_dport = in6p->in6p_fport;
    339 	}
    340 #endif
    341 	n->th_seq = 0;
    342 	n->th_ack = 0;
    343 	n->th_x2 = 0;
    344 	n->th_off = 5;
    345 	n->th_flags = 0;
    346 	n->th_win = 0;
    347 	n->th_sum = 0;
    348 	n->th_urp = 0;
    349 	return (m);
    350 }
    351 
    352 /*
    353  * Send a single message to the TCP at address specified by
    354  * the given TCP/IP header.  If m == 0, then we make a copy
    355  * of the tcpiphdr at ti and send directly to the addressed host.
    356  * This is used to force keep alive messages out using the TCP
    357  * template for a connection tp->t_template.  If flags are given
    358  * then we send a message back to the TCP which originated the
    359  * segment ti, and discard the mbuf containing it and any other
    360  * attached mbufs.
    361  *
    362  * In any case the ack and sequence number of the transmitted
    363  * segment are as specified by the parameters.
    364  */
    365 int
    366 tcp_respond(tp, template, m, th0, ack, seq, flags)
    367 	struct tcpcb *tp;
    368 	struct mbuf *template;
    369 	struct mbuf *m;
    370 	struct tcphdr *th0;
    371 	tcp_seq ack, seq;
    372 	int flags;
    373 {
    374 #ifndef INET6
    375 	struct route iproute;
    376 #else
    377 	struct route_in6 iproute;	/* sizeof(route_in6) > sizeof(route) */
    378 #endif
    379 	struct route *ro;
    380 	struct rtentry *rt;
    381 	int error, tlen, win = 0;
    382 	int hlen;
    383 	struct ip *ip;
    384 #ifdef INET6
    385 	struct ip6_hdr *ip6;
    386 #endif
    387 	int family;	/* family on packet, not inpcb/in6pcb! */
    388 	struct tcphdr *th;
    389 
    390 	if (tp != NULL && (flags & TH_RST) == 0) {
    391 		if (tp->t_inpcb)
    392 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    393 #ifdef INET6
    394 		else if (tp->t_in6pcb)
    395 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    396 #endif
    397 	}
    398 
    399 	ip = NULL;
    400 #ifdef INET6
    401 	ip6 = NULL;
    402 #endif
    403 	if (m == 0) {
    404 		if (!template)
    405 			return EINVAL;
    406 
    407 		/* get family information from template */
    408 		switch (mtod(template, struct ip *)->ip_v) {
    409 		case 4:
    410 			family = AF_INET;
    411 			hlen = sizeof(struct ip);
    412 			break;
    413 #ifdef INET6
    414 		case 6:
    415 			family = AF_INET6;
    416 			hlen = sizeof(struct ip6_hdr);
    417 			break;
    418 #endif
    419 		default:
    420 			return EAFNOSUPPORT;
    421 		}
    422 
    423 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    424 		if (m) {
    425 			MCLGET(m, M_DONTWAIT);
    426 			if ((m->m_flags & M_EXT) == 0) {
    427 				m_free(m);
    428 				m = NULL;
    429 			}
    430 		}
    431 		if (m == NULL)
    432 			return (ENOBUFS);
    433 
    434 		if (tcp_compat_42)
    435 			tlen = 1;
    436 		else
    437 			tlen = 0;
    438 
    439 		m->m_data += max_linkhdr;
    440 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    441 			template->m_len);
    442 		switch (family) {
    443 		case AF_INET:
    444 			ip = mtod(m, struct ip *);
    445 			th = (struct tcphdr *)(ip + 1);
    446 			break;
    447 #ifdef INET6
    448 		case AF_INET6:
    449 			ip6 = mtod(m, struct ip6_hdr *);
    450 			th = (struct tcphdr *)(ip6 + 1);
    451 			break;
    452 #endif
    453 #if 0
    454 		default:
    455 			/* noone will visit here */
    456 			m_freem(m);
    457 			return EAFNOSUPPORT;
    458 #endif
    459 		}
    460 		flags = TH_ACK;
    461 	} else {
    462 
    463 		if ((m->m_flags & M_PKTHDR) == 0) {
    464 #if 0
    465 			printf("non PKTHDR to tcp_respond\n");
    466 #endif
    467 			m_freem(m);
    468 			return EINVAL;
    469 		}
    470 #ifdef DIAGNOSTIC
    471 		if (!th0)
    472 			panic("th0 == NULL in tcp_respond");
    473 #endif
    474 
    475 		/* get family information from m */
    476 		switch (mtod(m, struct ip *)->ip_v) {
    477 		case 4:
    478 			family = AF_INET;
    479 			hlen = sizeof(struct ip);
    480 			ip = mtod(m, struct ip *);
    481 			break;
    482 #ifdef INET6
    483 		case 6:
    484 			family = AF_INET6;
    485 			hlen = sizeof(struct ip6_hdr);
    486 			ip6 = mtod(m, struct ip6_hdr *);
    487 			break;
    488 #endif
    489 		default:
    490 			m_freem(m);
    491 			return EAFNOSUPPORT;
    492 		}
    493 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    494 			tlen = sizeof(*th0);
    495 		else
    496 			tlen = th0->th_off << 2;
    497 
    498 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    499 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    500 			m->m_len = hlen + tlen;
    501 			m_freem(m->m_next);
    502 			m->m_next = NULL;
    503 		} else {
    504 			struct mbuf *n;
    505 
    506 #ifdef DIAGNOSTIC
    507 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    508 				m_freem(m);
    509 				return EMSGSIZE;
    510 			}
    511 #endif
    512 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    513 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    514 				MCLGET(n, M_DONTWAIT);
    515 				if ((n->m_flags & M_EXT) == 0) {
    516 					m_freem(n);
    517 					n = NULL;
    518 				}
    519 			}
    520 			if (!n) {
    521 				m_freem(m);
    522 				return ENOBUFS;
    523 			}
    524 
    525 			n->m_data += max_linkhdr;
    526 			n->m_len = hlen + tlen;
    527 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    528 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    529 
    530 			m_freem(m);
    531 			m = n;
    532 			n = NULL;
    533 		}
    534 
    535 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    536 		switch (family) {
    537 		case AF_INET:
    538 			ip = mtod(m, struct ip *);
    539 			th = (struct tcphdr *)(ip + 1);
    540 			ip->ip_p = IPPROTO_TCP;
    541 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    542 			ip->ip_p = IPPROTO_TCP;
    543 			break;
    544 #ifdef INET6
    545 		case AF_INET6:
    546 			ip6 = mtod(m, struct ip6_hdr *);
    547 			th = (struct tcphdr *)(ip6 + 1);
    548 			ip6->ip6_nxt = IPPROTO_TCP;
    549 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    550 			ip6->ip6_nxt = IPPROTO_TCP;
    551 			break;
    552 #endif
    553 #if 0
    554 		default:
    555 			/* noone will visit here */
    556 			m_freem(m);
    557 			return EAFNOSUPPORT;
    558 #endif
    559 		}
    560 		xchg(th->th_dport, th->th_sport, u_int16_t);
    561 #undef xchg
    562 		tlen = 0;	/*be friendly with the following code*/
    563 	}
    564 	th->th_seq = htonl(seq);
    565 	th->th_ack = htonl(ack);
    566 	th->th_x2 = 0;
    567 	if ((flags & TH_SYN) == 0) {
    568 		if (tp)
    569 			win >>= tp->rcv_scale;
    570 		if (win > TCP_MAXWIN)
    571 			win = TCP_MAXWIN;
    572 		th->th_win = htons((u_int16_t)win);
    573 		th->th_off = sizeof (struct tcphdr) >> 2;
    574 		tlen += sizeof(*th);
    575 	} else
    576 		tlen += th->th_off << 2;
    577 	m->m_len = hlen + tlen;
    578 	m->m_pkthdr.len = hlen + tlen;
    579 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    580 	th->th_flags = flags;
    581 	th->th_urp = 0;
    582 
    583 	switch (family) {
    584 	case AF_INET:
    585 	    {
    586 		struct ipovly *ipov = (struct ipovly *)ip;
    587 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    588 		ipov->ih_len = htons((u_int16_t)tlen);
    589 
    590 		th->th_sum = 0;
    591 		th->th_sum = in_cksum(m, hlen + tlen);
    592 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
    593 		ip->ip_ttl = ip_defttl;
    594 		break;
    595 	    }
    596 #ifdef INET6
    597 	case AF_INET6:
    598 	    {
    599 		th->th_sum = 0;
    600 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    601 				tlen);
    602 		ip6->ip6_plen = ntohs(tlen);
    603 		if (tp && tp->t_in6pcb) {
    604 			struct ifnet *oifp;
    605 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    606 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    607 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    608 		} else
    609 			ip6->ip6_hlim = ip6_defhlim;
    610 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    611 		if (ip6_auto_flowlabel) {
    612 			ip6->ip6_flow |=
    613 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    614 		}
    615 		break;
    616 	    }
    617 #endif
    618 	}
    619 
    620 #ifdef IPSEC
    621 	ipsec_setsocket(m, NULL);
    622 #endif /*IPSEC*/
    623 
    624 	/*
    625 	 * If we're doing Path MTU discovery, we need to set DF unless
    626 	 * the route's MTU is locked.  If we lack a route, we need to
    627 	 * look it up now.
    628 	 *
    629 	 * ip_output() could do this for us, but it's convenient to just
    630 	 * do it here unconditionally.
    631 	 */
    632 	if (tp != NULL && tp->t_inpcb != NULL) {
    633 		ro = &tp->t_inpcb->inp_route;
    634 #ifdef IPSEC
    635 		ipsec_setsocket(m, tp->t_inpcb->inp_socket);
    636 #endif
    637 #ifdef DIAGNOSTIC
    638 		if (family != AF_INET)
    639 			panic("tcp_respond: address family mismatch");
    640 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    641 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    642 			    ntohl(ip->ip_dst.s_addr),
    643 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    644 		}
    645 #endif
    646 	}
    647 #ifdef INET6
    648 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    649 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    650 #ifdef IPSEC
    651 		ipsec_setsocket(m, tp->t_in6pcb->in6p_socket);
    652 #endif
    653 #ifdef DIAGNOSTIC
    654 		if (family == AF_INET) {
    655 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    656 				panic("tcp_respond: not mapped addr");
    657 			if (bcmp(&ip->ip_dst,
    658 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    659 					sizeof(ip->ip_dst)) != 0) {
    660 				panic("tcp_respond: ip_dst != in6p_faddr");
    661 			}
    662 		} else if (family == AF_INET6) {
    663 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
    664 				panic("tcp_respond: ip6_dst != in6p_faddr");
    665 		} else
    666 			panic("tcp_respond: address family mismatch");
    667 #endif
    668 	}
    669 #endif
    670 	else {
    671 		ro = (struct route *)&iproute;
    672 		bzero(ro, sizeof(iproute));
    673 	}
    674 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
    675 		if (ro->ro_rt != NULL) {
    676 			RTFREE(ro->ro_rt);
    677 			ro->ro_rt = NULL;
    678 		}
    679 		switch (family) {
    680 		case AF_INET:
    681 		    {
    682 			struct sockaddr_in *dst;
    683 			dst = satosin(&ro->ro_dst);
    684 			dst->sin_family = AF_INET;
    685 			dst->sin_len = sizeof(*dst);
    686 			dst->sin_addr = ip->ip_dst;
    687 			break;
    688 		    }
    689 #ifdef INET6
    690 		case AF_INET6:
    691 		    {
    692 			struct sockaddr_in6 *dst;
    693 			dst = satosin6(&ro->ro_dst);
    694 			bzero(dst, sizeof(*dst));
    695 			dst->sin6_family = AF_INET6;
    696 			dst->sin6_len = sizeof(*dst);
    697 			dst->sin6_addr = ip6->ip6_dst;
    698 			break;
    699 		    }
    700 #endif
    701 		}
    702 		rtalloc(ro);
    703 		if ((rt = ro->ro_rt) == NULL) {
    704 			m_freem(m);
    705 			switch (family) {
    706 			case AF_INET:
    707 				ipstat.ips_noroute++;
    708 				break;
    709 #ifdef INET6
    710 			case AF_INET6:
    711 				ip6stat.ip6s_noroute++;
    712 				break;
    713 #endif
    714 			}
    715 			return (EHOSTUNREACH);
    716 		}
    717 	}
    718 	switch (family) {
    719 	case AF_INET:
    720 		if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
    721 			ip->ip_off |= IP_DF;
    722 
    723 		error = ip_output(m, NULL, ro, 0, NULL);
    724 		break;
    725 #ifdef INET6
    726 	case AF_INET6:
    727 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    728 			NULL);
    729 		break;
    730 #endif
    731 	default:
    732 		error = EAFNOSUPPORT;
    733 		break;
    734 	}
    735 
    736 	if (ro == (struct route *)&iproute) {
    737 		RTFREE(ro->ro_rt);
    738 		ro->ro_rt = NULL;
    739 	}
    740 
    741 	return (error);
    742 }
    743 
    744 /*
    745  * Create a new TCP control block, making an
    746  * empty reassembly queue and hooking it to the argument
    747  * protocol control block.
    748  */
    749 struct tcpcb *
    750 tcp_newtcpcb(family, aux)
    751 	int family;	/* selects inpcb, or in6pcb */
    752 	void *aux;
    753 {
    754 	struct tcpcb *tp;
    755 
    756 	switch (family) {
    757 	case PF_INET:
    758 		break;
    759 #ifdef INET6
    760 	case PF_INET6:
    761 		break;
    762 #endif
    763 	default:
    764 		return NULL;
    765 	}
    766 
    767 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    768 	if (tp == NULL)
    769 		return (NULL);
    770 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    771 	LIST_INIT(&tp->segq);
    772 	LIST_INIT(&tp->timeq);
    773 	tp->t_family = family;		/* may be overridden later on */
    774 	tp->t_peermss = tcp_mssdflt;
    775 	tp->t_ourmss = tcp_mssdflt;
    776 	tp->t_segsz = tcp_mssdflt;
    777 	LIST_INIT(&tp->t_sc);
    778 
    779 	tp->t_flags = 0;
    780 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    781 		tp->t_flags |= TF_REQ_SCALE;
    782 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    783 		tp->t_flags |= TF_REQ_TSTMP;
    784 	if (tcp_do_sack == 2)
    785 		tp->t_flags |= TF_WILL_SACK;
    786 	else if (tcp_do_sack == 1)
    787 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    788 	tp->t_flags |= TF_CANT_TXSACK;
    789 	switch (family) {
    790 	case PF_INET:
    791 		tp->t_inpcb = (struct inpcb *)aux;
    792 		break;
    793 #ifdef INET6
    794 	case PF_INET6:
    795 		tp->t_in6pcb = (struct in6pcb *)aux;
    796 		break;
    797 #endif
    798 	}
    799 	/*
    800 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    801 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    802 	 * reasonable initial retransmit time.
    803 	 */
    804 	tp->t_srtt = TCPTV_SRTTBASE;
    805 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    806 	tp->t_rttmin = TCPTV_MIN;
    807 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    808 	    TCPTV_MIN, TCPTV_REXMTMAX);
    809 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    810 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    811 	if (family == AF_INET) {
    812 		struct inpcb *inp = (struct inpcb *)aux;
    813 		inp->inp_ip.ip_ttl = ip_defttl;
    814 		inp->inp_ppcb = (caddr_t)tp;
    815 	}
    816 #ifdef INET6
    817 	else if (family == AF_INET6) {
    818 		struct in6pcb *in6p = (struct in6pcb *)aux;
    819 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    820 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    821 					       : NULL);
    822 		in6p->in6p_ppcb = (caddr_t)tp;
    823 	}
    824 #endif
    825 	return (tp);
    826 }
    827 
    828 /*
    829  * Drop a TCP connection, reporting
    830  * the specified error.  If connection is synchronized,
    831  * then send a RST to peer.
    832  */
    833 struct tcpcb *
    834 tcp_drop(tp, errno)
    835 	struct tcpcb *tp;
    836 	int errno;
    837 {
    838 	struct socket *so;
    839 
    840 	if (tp->t_inpcb)
    841 		so = tp->t_inpcb->inp_socket;
    842 #ifdef INET6
    843 	else if (tp->t_in6pcb)
    844 		so = tp->t_in6pcb->in6p_socket;
    845 #endif
    846 	else
    847 		return NULL;
    848 
    849 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    850 		tp->t_state = TCPS_CLOSED;
    851 		(void) tcp_output(tp);
    852 		tcpstat.tcps_drops++;
    853 	} else
    854 		tcpstat.tcps_conndrops++;
    855 	if (errno == ETIMEDOUT && tp->t_softerror)
    856 		errno = tp->t_softerror;
    857 	so->so_error = errno;
    858 	return (tcp_close(tp));
    859 }
    860 
    861 /*
    862  * Close a TCP control block:
    863  *	discard all space held by the tcp
    864  *	discard internet protocol block
    865  *	wake up any sleepers
    866  */
    867 struct tcpcb *
    868 tcp_close(tp)
    869 	struct tcpcb *tp;
    870 {
    871 	struct inpcb *inp;
    872 #ifdef INET6
    873 	struct in6pcb *in6p;
    874 #endif
    875 	struct socket *so;
    876 #ifdef RTV_RTT
    877 	struct rtentry *rt;
    878 #endif
    879 	struct route *ro;
    880 
    881 	inp = tp->t_inpcb;
    882 #ifdef INET6
    883 	in6p = tp->t_in6pcb;
    884 #endif
    885 	so = NULL;
    886 	ro = NULL;
    887 	if (inp) {
    888 		so = inp->inp_socket;
    889 		ro = &inp->inp_route;
    890 	}
    891 #ifdef INET6
    892 	else if (in6p) {
    893 		so = in6p->in6p_socket;
    894 		ro = (struct route *)&in6p->in6p_route;
    895 	}
    896 #endif
    897 
    898 #ifdef RTV_RTT
    899 	/*
    900 	 * If we sent enough data to get some meaningful characteristics,
    901 	 * save them in the routing entry.  'Enough' is arbitrarily
    902 	 * defined as the sendpipesize (default 4K) * 16.  This would
    903 	 * give us 16 rtt samples assuming we only get one sample per
    904 	 * window (the usual case on a long haul net).  16 samples is
    905 	 * enough for the srtt filter to converge to within 5% of the correct
    906 	 * value; fewer samples and we could save a very bogus rtt.
    907 	 *
    908 	 * Don't update the default route's characteristics and don't
    909 	 * update anything that the user "locked".
    910 	 */
    911 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    912 	    ro && (rt = ro->ro_rt) &&
    913 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    914 		u_long i = 0;
    915 
    916 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    917 			i = tp->t_srtt *
    918 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    919 			if (rt->rt_rmx.rmx_rtt && i)
    920 				/*
    921 				 * filter this update to half the old & half
    922 				 * the new values, converting scale.
    923 				 * See route.h and tcp_var.h for a
    924 				 * description of the scaling constants.
    925 				 */
    926 				rt->rt_rmx.rmx_rtt =
    927 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    928 			else
    929 				rt->rt_rmx.rmx_rtt = i;
    930 		}
    931 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    932 			i = tp->t_rttvar *
    933 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    934 			if (rt->rt_rmx.rmx_rttvar && i)
    935 				rt->rt_rmx.rmx_rttvar =
    936 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    937 			else
    938 				rt->rt_rmx.rmx_rttvar = i;
    939 		}
    940 		/*
    941 		 * update the pipelimit (ssthresh) if it has been updated
    942 		 * already or if a pipesize was specified & the threshhold
    943 		 * got below half the pipesize.  I.e., wait for bad news
    944 		 * before we start updating, then update on both good
    945 		 * and bad news.
    946 		 */
    947 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
    948 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
    949 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
    950 			/*
    951 			 * convert the limit from user data bytes to
    952 			 * packets then to packet data bytes.
    953 			 */
    954 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
    955 			if (i < 2)
    956 				i = 2;
    957 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
    958 			if (rt->rt_rmx.rmx_ssthresh)
    959 				rt->rt_rmx.rmx_ssthresh =
    960 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
    961 			else
    962 				rt->rt_rmx.rmx_ssthresh = i;
    963 		}
    964 	}
    965 #endif /* RTV_RTT */
    966 	/* free the reassembly queue, if any */
    967 	TCP_REASS_LOCK(tp);
    968 	(void) tcp_freeq(tp);
    969 	TCP_REASS_UNLOCK(tp);
    970 
    971 	TCP_CLEAR_DELACK(tp);
    972 	syn_cache_cleanup(tp);
    973 
    974 	if (tp->t_template) {
    975 		m_free(tp->t_template);
    976 		tp->t_template = NULL;
    977 	}
    978 	pool_put(&tcpcb_pool, tp);
    979 	if (inp) {
    980 		inp->inp_ppcb = 0;
    981 		soisdisconnected(so);
    982 		in_pcbdetach(inp);
    983 	}
    984 #ifdef INET6
    985 	else if (in6p) {
    986 		in6p->in6p_ppcb = 0;
    987 		soisdisconnected(so);
    988 		in6_pcbdetach(in6p);
    989 	}
    990 #endif
    991 	tcpstat.tcps_closed++;
    992 	return ((struct tcpcb *)0);
    993 }
    994 
    995 int
    996 tcp_freeq(tp)
    997 	struct tcpcb *tp;
    998 {
    999 	struct ipqent *qe;
   1000 	int rv = 0;
   1001 #ifdef TCPREASS_DEBUG
   1002 	int i = 0;
   1003 #endif
   1004 
   1005 	TCP_REASS_LOCK_CHECK(tp);
   1006 
   1007 	while ((qe = tp->segq.lh_first) != NULL) {
   1008 #ifdef TCPREASS_DEBUG
   1009 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1010 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1011 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1012 #endif
   1013 		LIST_REMOVE(qe, ipqe_q);
   1014 		LIST_REMOVE(qe, ipqe_timeq);
   1015 		m_freem(qe->ipqe_m);
   1016 		pool_put(&ipqent_pool, qe);
   1017 		rv = 1;
   1018 	}
   1019 	return (rv);
   1020 }
   1021 
   1022 /*
   1023  * Protocol drain routine.  Called when memory is in short supply.
   1024  */
   1025 void
   1026 tcp_drain()
   1027 {
   1028 	struct inpcb *inp;
   1029 	struct tcpcb *tp;
   1030 
   1031 	/*
   1032 	 * Free the sequence queue of all TCP connections.
   1033 	 */
   1034 	inp = tcbtable.inpt_queue.cqh_first;
   1035 	if (inp)						/* XXX */
   1036 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
   1037 	    inp = inp->inp_queue.cqe_next) {
   1038 		if ((tp = intotcpcb(inp)) != NULL) {
   1039 			/*
   1040 			 * We may be called from a device's interrupt
   1041 			 * context.  If the tcpcb is already busy,
   1042 			 * just bail out now.
   1043 			 */
   1044 			if (tcp_reass_lock_try(tp) == 0)
   1045 				continue;
   1046 			if (tcp_freeq(tp))
   1047 				tcpstat.tcps_connsdrained++;
   1048 			TCP_REASS_UNLOCK(tp);
   1049 		}
   1050 	}
   1051 }
   1052 
   1053 /*
   1054  * Notify a tcp user of an asynchronous error;
   1055  * store error as soft error, but wake up user
   1056  * (for now, won't do anything until can select for soft error).
   1057  */
   1058 void
   1059 tcp_notify(inp, error)
   1060 	struct inpcb *inp;
   1061 	int error;
   1062 {
   1063 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1064 	struct socket *so = inp->inp_socket;
   1065 
   1066 	/*
   1067 	 * Ignore some errors if we are hooked up.
   1068 	 * If connection hasn't completed, has retransmitted several times,
   1069 	 * and receives a second error, give up now.  This is better
   1070 	 * than waiting a long time to establish a connection that
   1071 	 * can never complete.
   1072 	 */
   1073 	if (tp->t_state == TCPS_ESTABLISHED &&
   1074 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1075 	      error == EHOSTDOWN)) {
   1076 		return;
   1077 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1078 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1079 		so->so_error = error;
   1080 	else
   1081 		tp->t_softerror = error;
   1082 	wakeup((caddr_t) &so->so_timeo);
   1083 	sorwakeup(so);
   1084 	sowwakeup(so);
   1085 }
   1086 
   1087 #if defined(INET6) && !defined(TCP6)
   1088 void
   1089 tcp6_notify(in6p, error)
   1090 	struct in6pcb *in6p;
   1091 	int error;
   1092 {
   1093 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1094 	struct socket *so = in6p->in6p_socket;
   1095 
   1096 	/*
   1097 	 * Ignore some errors if we are hooked up.
   1098 	 * If connection hasn't completed, has retransmitted several times,
   1099 	 * and receives a second error, give up now.  This is better
   1100 	 * than waiting a long time to establish a connection that
   1101 	 * can never complete.
   1102 	 */
   1103 	if (tp->t_state == TCPS_ESTABLISHED &&
   1104 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1105 	      error == EHOSTDOWN)) {
   1106 		return;
   1107 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1108 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1109 		so->so_error = error;
   1110 	else
   1111 		tp->t_softerror = error;
   1112 	wakeup((caddr_t) &so->so_timeo);
   1113 	sorwakeup(so);
   1114 	sowwakeup(so);
   1115 }
   1116 #endif
   1117 
   1118 #if defined(INET6) && !defined(TCP6)
   1119 void
   1120 tcp6_ctlinput(cmd, sa, d)
   1121 	int cmd;
   1122 	struct sockaddr *sa;
   1123 	void *d;
   1124 {
   1125 	struct tcphdr *thp;
   1126 	struct tcphdr th;
   1127 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1128 	int nmatch;
   1129 	struct sockaddr_in6 sa6;
   1130 	struct ip6_hdr *ip6;
   1131 	struct mbuf *m;
   1132 	int off;
   1133 
   1134 	if (sa->sa_family != AF_INET6 ||
   1135 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1136 		return;
   1137 	if ((unsigned)cmd >= PRC_NCMDS)
   1138 		return;
   1139 	else if (cmd == PRC_QUENCH) {
   1140 		/* XXX there's no PRC_QUENCH in IPv6 */
   1141 		notify = tcp6_quench;
   1142 	} else if (PRC_IS_REDIRECT(cmd))
   1143 		notify = in6_rtchange, d = NULL;
   1144 	else if (cmd == PRC_MSGSIZE)
   1145 		notify = tcp6_mtudisc, d = NULL;
   1146 	else if (cmd == PRC_HOSTDEAD)
   1147 		d = NULL;
   1148 	else if (inet6ctlerrmap[cmd] == 0)
   1149 		return;
   1150 
   1151 	/* if the parameter is from icmp6, decode it. */
   1152 	if (d != NULL) {
   1153 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1154 		m = ip6cp->ip6c_m;
   1155 		ip6 = ip6cp->ip6c_ip6;
   1156 		off = ip6cp->ip6c_off;
   1157 	} else {
   1158 		m = NULL;
   1159 		ip6 = NULL;
   1160 	}
   1161 
   1162 	/* translate addresses into internal form */
   1163 	sa6 = *(struct sockaddr_in6 *)sa;
   1164 	if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) && m && m->m_pkthdr.rcvif)
   1165 		sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
   1166 
   1167 	if (ip6) {
   1168 		/*
   1169 		 * XXX: We assume that when ip6 is non NULL,
   1170 		 * M and OFF are valid.
   1171 		 */
   1172 		struct in6_addr s;
   1173 
   1174 		/* translate addresses into internal form */
   1175 		memcpy(&s, &ip6->ip6_src, sizeof(s));
   1176 		if (IN6_IS_ADDR_LINKLOCAL(&s))
   1177 			s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
   1178 
   1179 		/* check if we can safely examine src and dst ports */
   1180 		if (m->m_pkthdr.len < off + sizeof(th))
   1181 			return;
   1182 
   1183 		if (m->m_len < off + sizeof(th)) {
   1184 			/*
   1185 			 * this should be rare case,
   1186 			 * so we compromise on this copy...
   1187 			 */
   1188 			m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1189 			thp = &th;
   1190 		} else
   1191 			thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
   1192 		nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
   1193 		    thp->th_dport, &s, thp->th_sport, cmd, notify);
   1194 		if (nmatch == 0 && syn_cache_count &&
   1195 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1196 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1197 		     inet6ctlerrmap[cmd] == EHOSTDOWN)) {
   1198 			struct sockaddr_in6 sin6;
   1199 			bzero(&sin6, sizeof(sin6));
   1200 			sin6.sin6_len = sizeof(sin6);
   1201 			sin6.sin6_family = AF_INET6;
   1202 			sin6.sin6_port = thp->th_sport;
   1203 			sin6.sin6_addr = s;
   1204 			syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
   1205 		}
   1206 	} else {
   1207 		(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
   1208 				     &zeroin6_addr, 0, cmd, notify);
   1209 	}
   1210 }
   1211 #endif
   1212 
   1213 /* assumes that ip header and tcp header are contiguous on mbuf */
   1214 void *
   1215 tcp_ctlinput(cmd, sa, v)
   1216 	int cmd;
   1217 	struct sockaddr *sa;
   1218 	void *v;
   1219 {
   1220 	struct ip *ip = v;
   1221 	struct tcphdr *th;
   1222 	extern int inetctlerrmap[];
   1223 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1224 	int errno;
   1225 	int nmatch;
   1226 
   1227 	if (sa->sa_family != AF_INET ||
   1228 	    sa->sa_len != sizeof(struct sockaddr_in))
   1229 		return NULL;
   1230 	if ((unsigned)cmd >= PRC_NCMDS)
   1231 		return NULL;
   1232 	errno = inetctlerrmap[cmd];
   1233 	if (cmd == PRC_QUENCH)
   1234 		notify = tcp_quench;
   1235 	else if (PRC_IS_REDIRECT(cmd))
   1236 		notify = in_rtchange, ip = 0;
   1237 	else if (cmd == PRC_MSGSIZE && ip_mtudisc)
   1238 		notify = tcp_mtudisc, ip = 0;
   1239 	else if (cmd == PRC_HOSTDEAD)
   1240 		ip = 0;
   1241 	else if (errno == 0)
   1242 		return NULL;
   1243 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1244 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1245 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1246 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1247 		if (nmatch == 0 && syn_cache_count &&
   1248 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1249 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1250 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1251 			struct sockaddr_in sin;
   1252 			bzero(&sin, sizeof(sin));
   1253 			sin.sin_len = sizeof(sin);
   1254 			sin.sin_family = AF_INET;
   1255 			sin.sin_port = th->th_sport;
   1256 			sin.sin_addr = ip->ip_src;
   1257 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1258 		}
   1259 
   1260 		/* XXX mapped address case */
   1261 	}
   1262 	else {
   1263 		(void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1264 		    notify);
   1265 	}
   1266 	return NULL;
   1267 }
   1268 
   1269 /*
   1270  * When a source quence is received, we are being notifed of congestion.
   1271  * Close the congestion window down to the Loss Window (one segment).
   1272  * We will gradually open it again as we proceed.
   1273  */
   1274 void
   1275 tcp_quench(inp, errno)
   1276 	struct inpcb *inp;
   1277 	int errno;
   1278 {
   1279 	struct tcpcb *tp = intotcpcb(inp);
   1280 
   1281 	if (tp)
   1282 		tp->snd_cwnd = tp->t_segsz;
   1283 }
   1284 
   1285 #if defined(INET6) && !defined(TCP6)
   1286 void
   1287 tcp6_quench(in6p, errno)
   1288 	struct in6pcb *in6p;
   1289 	int errno;
   1290 {
   1291 	struct tcpcb *tp = in6totcpcb(in6p);
   1292 
   1293 	if (tp)
   1294 		tp->snd_cwnd = tp->t_segsz;
   1295 }
   1296 #endif
   1297 
   1298 /*
   1299  * On receipt of path MTU corrections, flush old route and replace it
   1300  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1301  * that all packets will be received.
   1302  */
   1303 void
   1304 tcp_mtudisc(inp, errno)
   1305 	struct inpcb *inp;
   1306 	int errno;
   1307 {
   1308 	struct tcpcb *tp = intotcpcb(inp);
   1309 	struct rtentry *rt = in_pcbrtentry(inp);
   1310 
   1311 	if (tp != 0) {
   1312 		if (rt != 0) {
   1313 			/*
   1314 			 * If this was not a host route, remove and realloc.
   1315 			 */
   1316 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1317 				in_rtchange(inp, errno);
   1318 				if ((rt = in_pcbrtentry(inp)) == 0)
   1319 					return;
   1320 			}
   1321 
   1322 			/*
   1323 			 * Slow start out of the error condition.  We
   1324 			 * use the MTU because we know it's smaller
   1325 			 * than the previously transmitted segment.
   1326 			 *
   1327 			 * Note: This is more conservative than the
   1328 			 * suggestion in draft-floyd-incr-init-win-03.
   1329 			 */
   1330 			if (rt->rt_rmx.rmx_mtu != 0)
   1331 				tp->snd_cwnd =
   1332 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1333 				    rt->rt_rmx.rmx_mtu);
   1334 		}
   1335 
   1336 		/*
   1337 		 * Resend unacknowledged packets.
   1338 		 */
   1339 		tp->snd_nxt = tp->snd_una;
   1340 		tcp_output(tp);
   1341 	}
   1342 }
   1343 
   1344 #if defined(INET6) && !defined(TCP6)
   1345 void
   1346 tcp6_mtudisc(in6p, errno)
   1347 	struct in6pcb *in6p;
   1348 	int errno;
   1349 {
   1350 	struct tcpcb *tp = in6totcpcb(in6p);
   1351 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1352 
   1353 	if (tp != 0) {
   1354 		if (rt != 0) {
   1355 			/*
   1356 			 * If this was not a host route, remove and realloc.
   1357 			 */
   1358 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1359 				in6_rtchange(in6p, errno);
   1360 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1361 					return;
   1362 			}
   1363 
   1364 			/*
   1365 			 * Slow start out of the error condition.  We
   1366 			 * use the MTU because we know it's smaller
   1367 			 * than the previously transmitted segment.
   1368 			 *
   1369 			 * Note: This is more conservative than the
   1370 			 * suggestion in draft-floyd-incr-init-win-03.
   1371 			 */
   1372 			if (rt->rt_rmx.rmx_mtu != 0)
   1373 				tp->snd_cwnd =
   1374 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1375 				    rt->rt_rmx.rmx_mtu);
   1376 		}
   1377 
   1378 		/*
   1379 		 * Resend unacknowledged packets.
   1380 		 */
   1381 		tp->snd_nxt = tp->snd_una;
   1382 		tcp_output(tp);
   1383 	}
   1384 }
   1385 #endif
   1386 
   1387 /*
   1388  * Compute the MSS to advertise to the peer.  Called only during
   1389  * the 3-way handshake.  If we are the server (peer initiated
   1390  * connection), we are called with a pointer to the interface
   1391  * on which the SYN packet arrived.  If we are the client (we
   1392  * initiated connection), we are called with a pointer to the
   1393  * interface out which this connection should go.
   1394  *
   1395  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1396  * header size from MSS advertisement.  MSS option must hold the maximum
   1397  * segment size we can accept, so it must always be:
   1398  *	 max(if mtu) - ip header - tcp header
   1399  */
   1400 u_long
   1401 tcp_mss_to_advertise(ifp, af)
   1402 	const struct ifnet *ifp;
   1403 	int af;
   1404 {
   1405 	extern u_long in_maxmtu;
   1406 	u_long mss = 0;
   1407 	u_long hdrsiz;
   1408 
   1409 	/*
   1410 	 * In order to avoid defeating path MTU discovery on the peer,
   1411 	 * we advertise the max MTU of all attached networks as our MSS,
   1412 	 * per RFC 1191, section 3.1.
   1413 	 *
   1414 	 * We provide the option to advertise just the MTU of
   1415 	 * the interface on which we hope this connection will
   1416 	 * be receiving.  If we are responding to a SYN, we
   1417 	 * will have a pretty good idea about this, but when
   1418 	 * initiating a connection there is a bit more doubt.
   1419 	 *
   1420 	 * We also need to ensure that loopback has a large enough
   1421 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1422 	 */
   1423 
   1424 	if (ifp != NULL)
   1425 		mss = ifp->if_mtu;
   1426 
   1427 	if (tcp_mss_ifmtu == 0)
   1428 		mss = max(in_maxmtu, mss);
   1429 
   1430 	switch (af) {
   1431 	case AF_INET:
   1432 		hdrsiz = sizeof(struct ip);
   1433 		break;
   1434 #ifdef INET6
   1435 	case AF_INET6:
   1436 		hdrsiz = sizeof(struct ip6_hdr);
   1437 		break;
   1438 #endif
   1439 	default:
   1440 		hdrsiz = 0;
   1441 		break;
   1442 	}
   1443 	hdrsiz += sizeof(struct tcphdr);
   1444 	if (mss > hdrsiz)
   1445 		mss -= hdrsiz;
   1446 
   1447 	mss = max(tcp_mssdflt, mss);
   1448 	return (mss);
   1449 }
   1450 
   1451 /*
   1452  * Set connection variables based on the peer's advertised MSS.
   1453  * We are passed the TCPCB for the actual connection.  If we
   1454  * are the server, we are called by the compressed state engine
   1455  * when the 3-way handshake is complete.  If we are the client,
   1456  * we are called when we recieve the SYN,ACK from the server.
   1457  *
   1458  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1459  * before this routine is called!
   1460  */
   1461 void
   1462 tcp_mss_from_peer(tp, offer)
   1463 	struct tcpcb *tp;
   1464 	int offer;
   1465 {
   1466 	struct socket *so;
   1467 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1468 	struct rtentry *rt;
   1469 #endif
   1470 	u_long bufsize;
   1471 	int mss;
   1472 
   1473 	so = NULL;
   1474 	rt = NULL;
   1475 	if (tp->t_inpcb) {
   1476 		so = tp->t_inpcb->inp_socket;
   1477 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1478 		rt = in_pcbrtentry(tp->t_inpcb);
   1479 #endif
   1480 	}
   1481 #ifdef INET6
   1482 	else if (tp->t_in6pcb) {
   1483 		so = tp->t_in6pcb->in6p_socket;
   1484 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1485 #ifdef TCP6
   1486 		rt = NULL;
   1487 #else
   1488 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1489 #endif
   1490 #endif
   1491 	}
   1492 #endif
   1493 
   1494 	/*
   1495 	 * As per RFC1122, use the default MSS value, unless they
   1496 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1497 	 */
   1498 	mss = tcp_mssdflt;
   1499 	if (offer)
   1500 		mss = offer;
   1501 	mss = max(mss, 32);		/* sanity */
   1502 	tp->t_peermss = mss;
   1503 	mss -= tcp_optlen(tp);
   1504 	if (tp->t_inpcb)
   1505 		mss -= ip_optlen(tp->t_inpcb);
   1506 #ifdef INET6
   1507 	else if (tp->t_in6pcb)
   1508 		mss -= ip6_optlen(tp->t_in6pcb);
   1509 #endif
   1510 
   1511 	/*
   1512 	 * If there's a pipesize, change the socket buffer to that size.
   1513 	 * Make the socket buffer an integral number of MSS units.  If
   1514 	 * the MSS is larger than the socket buffer, artificially decrease
   1515 	 * the MSS.
   1516 	 */
   1517 #ifdef RTV_SPIPE
   1518 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1519 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1520 	else
   1521 #endif
   1522 		bufsize = so->so_snd.sb_hiwat;
   1523 	if (bufsize < mss)
   1524 		mss = bufsize;
   1525 	else {
   1526 		bufsize = roundup(bufsize, mss);
   1527 		if (bufsize > sb_max)
   1528 			bufsize = sb_max;
   1529 		(void) sbreserve(&so->so_snd, bufsize);
   1530 	}
   1531 	tp->t_segsz = mss;
   1532 
   1533 #ifdef RTV_SSTHRESH
   1534 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1535 		/*
   1536 		 * There's some sort of gateway or interface buffer
   1537 		 * limit on the path.  Use this to set the slow
   1538 		 * start threshold, but set the threshold to no less
   1539 		 * than 2 * MSS.
   1540 		 */
   1541 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1542 	}
   1543 #endif
   1544 }
   1545 
   1546 /*
   1547  * Processing necessary when a TCP connection is established.
   1548  */
   1549 void
   1550 tcp_established(tp)
   1551 	struct tcpcb *tp;
   1552 {
   1553 	struct socket *so;
   1554 #ifdef RTV_RPIPE
   1555 	struct rtentry *rt;
   1556 #endif
   1557 	u_long bufsize;
   1558 
   1559 	so = NULL;
   1560 	rt = NULL;
   1561 	if (tp->t_inpcb) {
   1562 		so = tp->t_inpcb->inp_socket;
   1563 #if defined(RTV_RPIPE)
   1564 		rt = in_pcbrtentry(tp->t_inpcb);
   1565 #endif
   1566 	}
   1567 #ifdef INET6
   1568 	else if (tp->t_in6pcb) {
   1569 		so = tp->t_in6pcb->in6p_socket;
   1570 #if defined(RTV_RPIPE)
   1571 #ifdef TCP6
   1572 		rt = NULL;
   1573 #else
   1574 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1575 #endif
   1576 #endif
   1577 	}
   1578 #endif
   1579 
   1580 	tp->t_state = TCPS_ESTABLISHED;
   1581 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1582 
   1583 #ifdef RTV_RPIPE
   1584 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1585 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1586 	else
   1587 #endif
   1588 		bufsize = so->so_rcv.sb_hiwat;
   1589 	if (bufsize > tp->t_ourmss) {
   1590 		bufsize = roundup(bufsize, tp->t_ourmss);
   1591 		if (bufsize > sb_max)
   1592 			bufsize = sb_max;
   1593 		(void) sbreserve(&so->so_rcv, bufsize);
   1594 	}
   1595 }
   1596 
   1597 /*
   1598  * Check if there's an initial rtt or rttvar.  Convert from the
   1599  * route-table units to scaled multiples of the slow timeout timer.
   1600  * Called only during the 3-way handshake.
   1601  */
   1602 void
   1603 tcp_rmx_rtt(tp)
   1604 	struct tcpcb *tp;
   1605 {
   1606 #ifdef RTV_RTT
   1607 	struct rtentry *rt = NULL;
   1608 	int rtt;
   1609 
   1610 	if (tp->t_inpcb)
   1611 		rt = in_pcbrtentry(tp->t_inpcb);
   1612 #ifdef INET6
   1613 	else if (tp->t_in6pcb) {
   1614 #ifdef TCP6
   1615 		rt = NULL;
   1616 #else
   1617 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1618 #endif
   1619 	}
   1620 #endif
   1621 	if (rt == NULL)
   1622 		return;
   1623 
   1624 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1625 		/*
   1626 		 * XXX The lock bit for MTU indicates that the value
   1627 		 * is also a minimum value; this is subject to time.
   1628 		 */
   1629 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1630 			TCPT_RANGESET(tp->t_rttmin,
   1631 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1632 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1633 		tp->t_srtt = rtt /
   1634 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1635 		if (rt->rt_rmx.rmx_rttvar) {
   1636 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1637 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1638 				(TCP_RTTVAR_SHIFT + 2));
   1639 		} else {
   1640 			/* Default variation is +- 1 rtt */
   1641 			tp->t_rttvar =
   1642 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1643 		}
   1644 		TCPT_RANGESET(tp->t_rxtcur,
   1645 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1646 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1647 	}
   1648 #endif
   1649 }
   1650 
   1651 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1652 
   1653 /*
   1654  * Get a new sequence value given a tcp control block
   1655  */
   1656 tcp_seq
   1657 tcp_new_iss(tp, len, addin)
   1658 	void            *tp;
   1659 	u_long           len;
   1660 	tcp_seq		 addin;
   1661 {
   1662 	tcp_seq          tcp_iss;
   1663 
   1664 	/*
   1665 	 * Randomize.
   1666 	 */
   1667 #if NRND > 0
   1668 	rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   1669 #else
   1670 	tcp_iss = random();
   1671 #endif
   1672 
   1673 	/*
   1674 	 * If we were asked to add some amount to a known value,
   1675 	 * we will take a random value obtained above, mask off the upper
   1676 	 * bits, and add in the known value.  We also add in a constant to
   1677 	 * ensure that we are at least a certain distance from the original
   1678 	 * value.
   1679 	 *
   1680 	 * This is used when an old connection is in timed wait
   1681 	 * and we have a new one coming in, for instance.
   1682 	 */
   1683 	if (addin != 0) {
   1684 #ifdef TCPISS_DEBUG
   1685 		printf("Random %08x, ", tcp_iss);
   1686 #endif
   1687 		tcp_iss &= TCP_ISS_RANDOM_MASK;
   1688 		tcp_iss += addin + TCP_ISSINCR;
   1689 #ifdef TCPISS_DEBUG
   1690 		printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   1691 #endif
   1692 	} else {
   1693 		tcp_iss &= TCP_ISS_RANDOM_MASK;
   1694 		tcp_iss += tcp_iss_seq;
   1695 		tcp_iss_seq += TCP_ISSINCR;
   1696 #ifdef TCPISS_DEBUG
   1697 		printf("ISS %08x\n", tcp_iss);
   1698 #endif
   1699 	}
   1700 
   1701 	if (tcp_compat_42) {
   1702 		/*
   1703 		 * Limit it to the positive range for really old TCP
   1704 		 * implementations.
   1705 		 */
   1706 		if (tcp_iss >= 0x80000000)
   1707 			tcp_iss &= 0x7fffffff;		/* XXX */
   1708 	}
   1709 
   1710 	return tcp_iss;
   1711 }
   1712 
   1713 #ifdef IPSEC
   1714 /* compute ESP/AH header size for TCP, including outer IP header. */
   1715 size_t
   1716 ipsec4_hdrsiz_tcp(tp)
   1717 	struct tcpcb *tp;
   1718 {
   1719 	struct inpcb *inp;
   1720 	size_t hdrsiz;
   1721 
   1722 	/* XXX mapped addr case (tp->t_in6pcb) */
   1723 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   1724 		return 0;
   1725 	switch (tp->t_family) {
   1726 	case AF_INET:
   1727 		/* XXX: should use currect direction. */
   1728 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   1729 		break;
   1730 	default:
   1731 		hdrsiz = 0;
   1732 		break;
   1733 	}
   1734 
   1735 	return hdrsiz;
   1736 }
   1737 
   1738 #if defined(INET6) && !defined(TCP6)
   1739 size_t
   1740 ipsec6_hdrsiz_tcp(tp)
   1741 	struct tcpcb *tp;
   1742 {
   1743 	struct in6pcb *in6p;
   1744 	size_t hdrsiz;
   1745 
   1746 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   1747 		return 0;
   1748 	switch (tp->t_family) {
   1749 	case AF_INET6:
   1750 		/* XXX: should use currect direction. */
   1751 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   1752 		break;
   1753 	case AF_INET:
   1754 		/* mapped address case - tricky */
   1755 	default:
   1756 		hdrsiz = 0;
   1757 		break;
   1758 	}
   1759 
   1760 	return hdrsiz;
   1761 }
   1762 #endif
   1763 #endif /*IPSEC*/
   1764 
   1765 /*
   1766  * Determine the length of the TCP options for this connection.
   1767  *
   1768  * XXX:  What do we do for SACK, when we add that?  Just reserve
   1769  *       all of the space?  Otherwise we can't exactly be incrementing
   1770  *       cwnd by an amount that varies depending on the amount we last
   1771  *       had to SACK!
   1772  */
   1773 
   1774 u_int
   1775 tcp_optlen(tp)
   1776 	struct tcpcb *tp;
   1777 {
   1778 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   1779 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   1780 		return TCPOLEN_TSTAMP_APPA;
   1781 	else
   1782 		return 0;
   1783 }
   1784