tcp_subr.c revision 1.95 1 /* $NetBSD: tcp_subr.c,v 1.95 2000/10/17 02:57:02 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #include <netinet6/ip6protosw.h>
143 #endif
144
145 #include <netinet/tcp.h>
146 #include <netinet/tcp_fsm.h>
147 #include <netinet/tcp_seq.h>
148 #include <netinet/tcp_timer.h>
149 #include <netinet/tcp_var.h>
150 #include <netinet/tcpip.h>
151
152 #ifdef IPSEC
153 #include <netinet6/ipsec.h>
154 #endif /*IPSEC*/
155
156 #ifdef INET6
157 struct in6pcb tcb6;
158 #endif
159
160 /* patchable/settable parameters for tcp */
161 int tcp_mssdflt = TCP_MSS;
162 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
163 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
164 int tcp_do_sack = 1; /* selective acknowledgement */
165 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
166 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
167 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
168 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
169 int tcp_init_win = 1;
170 int tcp_mss_ifmtu = 0;
171 #ifdef TCP_COMPAT_42
172 int tcp_compat_42 = 1;
173 #else
174 int tcp_compat_42 = 0;
175 #endif
176
177 #ifndef TCBHASHSIZE
178 #define TCBHASHSIZE 128
179 #endif
180 int tcbhashsize = TCBHASHSIZE;
181
182 int tcp_freeq __P((struct tcpcb *));
183
184 struct pool tcpcb_pool;
185
186 /*
187 * Tcp initialization
188 */
189 void
190 tcp_init()
191 {
192 int hlen;
193
194 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
195 0, NULL, NULL, M_PCB);
196 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
197 #ifdef INET6
198 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
199 #endif
200 LIST_INIT(&tcp_delacks);
201
202 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
203 #ifdef INET6
204 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
205 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
206 #endif
207 if (max_protohdr < hlen)
208 max_protohdr = hlen;
209 if (max_linkhdr + hlen > MHLEN)
210 panic("tcp_init");
211
212 /* Initialize the compressed state engine. */
213 syn_cache_init();
214 }
215
216 /*
217 * Create template to be used to send tcp packets on a connection.
218 * Call after host entry created, allocates an mbuf and fills
219 * in a skeletal tcp/ip header, minimizing the amount of work
220 * necessary when the connection is used.
221 */
222 struct mbuf *
223 tcp_template(tp)
224 struct tcpcb *tp;
225 {
226 struct inpcb *inp = tp->t_inpcb;
227 #ifdef INET6
228 struct in6pcb *in6p = tp->t_in6pcb;
229 #endif
230 struct tcphdr *n;
231 struct mbuf *m;
232 int hlen;
233
234 switch (tp->t_family) {
235 case AF_INET:
236 hlen = sizeof(struct ip);
237 if (inp)
238 break;
239 #ifdef INET6
240 if (in6p) {
241 /* mapped addr case */
242 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
243 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
244 break;
245 }
246 #endif
247 return NULL; /*EINVAL*/
248 #ifdef INET6
249 case AF_INET6:
250 hlen = sizeof(struct ip6_hdr);
251 if (in6p) {
252 /* more sainty check? */
253 break;
254 }
255 return NULL; /*EINVAL*/
256 #endif
257 default:
258 hlen = 0; /*pacify gcc*/
259 return NULL; /*EAFNOSUPPORT*/
260 }
261 #ifdef DIAGNOSTIC
262 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
263 panic("mclbytes too small for t_template");
264 #endif
265 m = tp->t_template;
266 if (m && m->m_len == hlen + sizeof(struct tcphdr))
267 ;
268 else {
269 if (m)
270 m_freem(m);
271 m = tp->t_template = NULL;
272 MGETHDR(m, M_DONTWAIT, MT_HEADER);
273 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
274 MCLGET(m, M_DONTWAIT);
275 if ((m->m_flags & M_EXT) == 0) {
276 m_free(m);
277 m = NULL;
278 }
279 }
280 if (m == NULL)
281 return NULL;
282 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
283 }
284 bzero(mtod(m, caddr_t), m->m_len);
285 switch (tp->t_family) {
286 case AF_INET:
287 {
288 struct ipovly *ipov;
289 mtod(m, struct ip *)->ip_v = 4;
290 ipov = mtod(m, struct ipovly *);
291 ipov->ih_pr = IPPROTO_TCP;
292 ipov->ih_len = htons(sizeof(struct tcphdr));
293 if (inp) {
294 ipov->ih_src = inp->inp_laddr;
295 ipov->ih_dst = inp->inp_faddr;
296 }
297 #ifdef INET6
298 else if (in6p) {
299 /* mapped addr case */
300 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
301 sizeof(ipov->ih_src));
302 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
303 sizeof(ipov->ih_dst));
304 }
305 #endif
306 break;
307 }
308 #ifdef INET6
309 case AF_INET6:
310 {
311 struct ip6_hdr *ip6;
312 mtod(m, struct ip *)->ip_v = 6;
313 ip6 = mtod(m, struct ip6_hdr *);
314 ip6->ip6_nxt = IPPROTO_TCP;
315 ip6->ip6_plen = htons(sizeof(struct tcphdr));
316 ip6->ip6_src = in6p->in6p_laddr;
317 ip6->ip6_dst = in6p->in6p_faddr;
318 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
319 if (ip6_auto_flowlabel) {
320 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
321 ip6->ip6_flow |=
322 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
323 }
324 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
325 ip6->ip6_vfc |= IPV6_VERSION;
326 break;
327 }
328 #endif
329 }
330 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
331 if (inp) {
332 n->th_sport = inp->inp_lport;
333 n->th_dport = inp->inp_fport;
334 }
335 #ifdef INET6
336 else if (in6p) {
337 n->th_sport = in6p->in6p_lport;
338 n->th_dport = in6p->in6p_fport;
339 }
340 #endif
341 n->th_seq = 0;
342 n->th_ack = 0;
343 n->th_x2 = 0;
344 n->th_off = 5;
345 n->th_flags = 0;
346 n->th_win = 0;
347 n->th_sum = 0;
348 n->th_urp = 0;
349 return (m);
350 }
351
352 /*
353 * Send a single message to the TCP at address specified by
354 * the given TCP/IP header. If m == 0, then we make a copy
355 * of the tcpiphdr at ti and send directly to the addressed host.
356 * This is used to force keep alive messages out using the TCP
357 * template for a connection tp->t_template. If flags are given
358 * then we send a message back to the TCP which originated the
359 * segment ti, and discard the mbuf containing it and any other
360 * attached mbufs.
361 *
362 * In any case the ack and sequence number of the transmitted
363 * segment are as specified by the parameters.
364 */
365 int
366 tcp_respond(tp, template, m, th0, ack, seq, flags)
367 struct tcpcb *tp;
368 struct mbuf *template;
369 struct mbuf *m;
370 struct tcphdr *th0;
371 tcp_seq ack, seq;
372 int flags;
373 {
374 struct route *ro;
375 int error, tlen, win = 0;
376 int hlen;
377 struct ip *ip;
378 #ifdef INET6
379 struct ip6_hdr *ip6;
380 #endif
381 int family; /* family on packet, not inpcb/in6pcb! */
382 struct tcphdr *th;
383
384 if (tp != NULL && (flags & TH_RST) == 0) {
385 if (tp->t_inpcb)
386 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
387 #ifdef INET6
388 else if (tp->t_in6pcb)
389 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
390 #endif
391 }
392
393 ip = NULL;
394 #ifdef INET6
395 ip6 = NULL;
396 #endif
397 if (m == 0) {
398 if (!template)
399 return EINVAL;
400
401 /* get family information from template */
402 switch (mtod(template, struct ip *)->ip_v) {
403 case 4:
404 family = AF_INET;
405 hlen = sizeof(struct ip);
406 break;
407 #ifdef INET6
408 case 6:
409 family = AF_INET6;
410 hlen = sizeof(struct ip6_hdr);
411 break;
412 #endif
413 default:
414 return EAFNOSUPPORT;
415 }
416
417 MGETHDR(m, M_DONTWAIT, MT_HEADER);
418 if (m) {
419 MCLGET(m, M_DONTWAIT);
420 if ((m->m_flags & M_EXT) == 0) {
421 m_free(m);
422 m = NULL;
423 }
424 }
425 if (m == NULL)
426 return (ENOBUFS);
427
428 if (tcp_compat_42)
429 tlen = 1;
430 else
431 tlen = 0;
432
433 m->m_data += max_linkhdr;
434 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
435 template->m_len);
436 switch (family) {
437 case AF_INET:
438 ip = mtod(m, struct ip *);
439 th = (struct tcphdr *)(ip + 1);
440 break;
441 #ifdef INET6
442 case AF_INET6:
443 ip6 = mtod(m, struct ip6_hdr *);
444 th = (struct tcphdr *)(ip6 + 1);
445 break;
446 #endif
447 #if 0
448 default:
449 /* noone will visit here */
450 m_freem(m);
451 return EAFNOSUPPORT;
452 #endif
453 }
454 flags = TH_ACK;
455 } else {
456
457 if ((m->m_flags & M_PKTHDR) == 0) {
458 #if 0
459 printf("non PKTHDR to tcp_respond\n");
460 #endif
461 m_freem(m);
462 return EINVAL;
463 }
464 #ifdef DIAGNOSTIC
465 if (!th0)
466 panic("th0 == NULL in tcp_respond");
467 #endif
468
469 /* get family information from m */
470 switch (mtod(m, struct ip *)->ip_v) {
471 case 4:
472 family = AF_INET;
473 hlen = sizeof(struct ip);
474 ip = mtod(m, struct ip *);
475 break;
476 #ifdef INET6
477 case 6:
478 family = AF_INET6;
479 hlen = sizeof(struct ip6_hdr);
480 ip6 = mtod(m, struct ip6_hdr *);
481 break;
482 #endif
483 default:
484 m_freem(m);
485 return EAFNOSUPPORT;
486 }
487 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
488 tlen = sizeof(*th0);
489 else
490 tlen = th0->th_off << 2;
491
492 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
493 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
494 m->m_len = hlen + tlen;
495 m_freem(m->m_next);
496 m->m_next = NULL;
497 } else {
498 struct mbuf *n;
499
500 #ifdef DIAGNOSTIC
501 if (max_linkhdr + hlen + tlen > MCLBYTES) {
502 m_freem(m);
503 return EMSGSIZE;
504 }
505 #endif
506 MGETHDR(n, M_DONTWAIT, MT_HEADER);
507 if (n && max_linkhdr + hlen + tlen > MHLEN) {
508 MCLGET(n, M_DONTWAIT);
509 if ((n->m_flags & M_EXT) == 0) {
510 m_freem(n);
511 n = NULL;
512 }
513 }
514 if (!n) {
515 m_freem(m);
516 return ENOBUFS;
517 }
518
519 n->m_data += max_linkhdr;
520 n->m_len = hlen + tlen;
521 m_copyback(n, 0, hlen, mtod(m, caddr_t));
522 m_copyback(n, hlen, tlen, (caddr_t)th0);
523
524 m_freem(m);
525 m = n;
526 n = NULL;
527 }
528
529 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
530 switch (family) {
531 case AF_INET:
532 ip = mtod(m, struct ip *);
533 th = (struct tcphdr *)(ip + 1);
534 ip->ip_p = IPPROTO_TCP;
535 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
536 ip->ip_p = IPPROTO_TCP;
537 break;
538 #ifdef INET6
539 case AF_INET6:
540 ip6 = mtod(m, struct ip6_hdr *);
541 th = (struct tcphdr *)(ip6 + 1);
542 ip6->ip6_nxt = IPPROTO_TCP;
543 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
544 ip6->ip6_nxt = IPPROTO_TCP;
545 break;
546 #endif
547 #if 0
548 default:
549 /* noone will visit here */
550 m_freem(m);
551 return EAFNOSUPPORT;
552 #endif
553 }
554 xchg(th->th_dport, th->th_sport, u_int16_t);
555 #undef xchg
556 tlen = 0; /*be friendly with the following code*/
557 }
558 th->th_seq = htonl(seq);
559 th->th_ack = htonl(ack);
560 th->th_x2 = 0;
561 if ((flags & TH_SYN) == 0) {
562 if (tp)
563 win >>= tp->rcv_scale;
564 if (win > TCP_MAXWIN)
565 win = TCP_MAXWIN;
566 th->th_win = htons((u_int16_t)win);
567 th->th_off = sizeof (struct tcphdr) >> 2;
568 tlen += sizeof(*th);
569 } else
570 tlen += th->th_off << 2;
571 m->m_len = hlen + tlen;
572 m->m_pkthdr.len = hlen + tlen;
573 m->m_pkthdr.rcvif = (struct ifnet *) 0;
574 th->th_flags = flags;
575 th->th_urp = 0;
576
577 switch (family) {
578 case AF_INET:
579 {
580 struct ipovly *ipov = (struct ipovly *)ip;
581 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
582 ipov->ih_len = htons((u_int16_t)tlen);
583
584 th->th_sum = 0;
585 th->th_sum = in_cksum(m, hlen + tlen);
586 ip->ip_len = hlen + tlen; /*will be flipped on output*/
587 ip->ip_ttl = ip_defttl;
588 break;
589 }
590 #ifdef INET6
591 case AF_INET6:
592 {
593 th->th_sum = 0;
594 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
595 tlen);
596 ip6->ip6_plen = ntohs(tlen);
597 if (tp && tp->t_in6pcb) {
598 struct ifnet *oifp;
599 ro = (struct route *)&tp->t_in6pcb->in6p_route;
600 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
601 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
602 } else
603 ip6->ip6_hlim = ip6_defhlim;
604 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
605 if (ip6_auto_flowlabel) {
606 ip6->ip6_flow |=
607 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
608 }
609 break;
610 }
611 #endif
612 }
613
614 #ifdef IPSEC
615 ipsec_setsocket(m, NULL);
616 #endif /*IPSEC*/
617
618 if (tp != NULL && tp->t_inpcb != NULL) {
619 ro = &tp->t_inpcb->inp_route;
620 #ifdef IPSEC
621 ipsec_setsocket(m, tp->t_inpcb->inp_socket);
622 #endif
623 #ifdef DIAGNOSTIC
624 if (family != AF_INET)
625 panic("tcp_respond: address family mismatch");
626 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
627 panic("tcp_respond: ip_dst %x != inp_faddr %x",
628 ntohl(ip->ip_dst.s_addr),
629 ntohl(tp->t_inpcb->inp_faddr.s_addr));
630 }
631 #endif
632 }
633 #ifdef INET6
634 else if (tp != NULL && tp->t_in6pcb != NULL) {
635 ro = (struct route *)&tp->t_in6pcb->in6p_route;
636 #ifdef IPSEC
637 ipsec_setsocket(m, tp->t_in6pcb->in6p_socket);
638 #endif
639 #ifdef DIAGNOSTIC
640 if (family == AF_INET) {
641 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
642 panic("tcp_respond: not mapped addr");
643 if (bcmp(&ip->ip_dst,
644 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
645 sizeof(ip->ip_dst)) != 0) {
646 panic("tcp_respond: ip_dst != in6p_faddr");
647 }
648 } else if (family == AF_INET6) {
649 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
650 panic("tcp_respond: ip6_dst != in6p_faddr");
651 } else
652 panic("tcp_respond: address family mismatch");
653 #endif
654 }
655 #endif
656 else
657 ro = NULL;
658
659 switch (family) {
660 case AF_INET:
661 error = ip_output(m, NULL, ro,
662 (ip_mtudisc ? IP_MTUDISC : 0),
663 NULL);
664 break;
665 #ifdef INET6
666 case AF_INET6:
667 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
668 NULL);
669 break;
670 #endif
671 default:
672 error = EAFNOSUPPORT;
673 break;
674 }
675
676 return (error);
677 }
678
679 /*
680 * Create a new TCP control block, making an
681 * empty reassembly queue and hooking it to the argument
682 * protocol control block.
683 */
684 struct tcpcb *
685 tcp_newtcpcb(family, aux)
686 int family; /* selects inpcb, or in6pcb */
687 void *aux;
688 {
689 struct tcpcb *tp;
690
691 switch (family) {
692 case PF_INET:
693 break;
694 #ifdef INET6
695 case PF_INET6:
696 break;
697 #endif
698 default:
699 return NULL;
700 }
701
702 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
703 if (tp == NULL)
704 return (NULL);
705 bzero((caddr_t)tp, sizeof(struct tcpcb));
706 LIST_INIT(&tp->segq);
707 LIST_INIT(&tp->timeq);
708 tp->t_family = family; /* may be overridden later on */
709 tp->t_peermss = tcp_mssdflt;
710 tp->t_ourmss = tcp_mssdflt;
711 tp->t_segsz = tcp_mssdflt;
712 LIST_INIT(&tp->t_sc);
713
714 tp->t_flags = 0;
715 if (tcp_do_rfc1323 && tcp_do_win_scale)
716 tp->t_flags |= TF_REQ_SCALE;
717 if (tcp_do_rfc1323 && tcp_do_timestamps)
718 tp->t_flags |= TF_REQ_TSTMP;
719 if (tcp_do_sack == 2)
720 tp->t_flags |= TF_WILL_SACK;
721 else if (tcp_do_sack == 1)
722 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
723 tp->t_flags |= TF_CANT_TXSACK;
724 switch (family) {
725 case PF_INET:
726 tp->t_inpcb = (struct inpcb *)aux;
727 break;
728 #ifdef INET6
729 case PF_INET6:
730 tp->t_in6pcb = (struct in6pcb *)aux;
731 break;
732 #endif
733 }
734 /*
735 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
736 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
737 * reasonable initial retransmit time.
738 */
739 tp->t_srtt = TCPTV_SRTTBASE;
740 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
741 tp->t_rttmin = TCPTV_MIN;
742 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
743 TCPTV_MIN, TCPTV_REXMTMAX);
744 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
745 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
746 if (family == AF_INET) {
747 struct inpcb *inp = (struct inpcb *)aux;
748 inp->inp_ip.ip_ttl = ip_defttl;
749 inp->inp_ppcb = (caddr_t)tp;
750 }
751 #ifdef INET6
752 else if (family == AF_INET6) {
753 struct in6pcb *in6p = (struct in6pcb *)aux;
754 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
755 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
756 : NULL);
757 in6p->in6p_ppcb = (caddr_t)tp;
758 }
759 #endif
760 return (tp);
761 }
762
763 /*
764 * Drop a TCP connection, reporting
765 * the specified error. If connection is synchronized,
766 * then send a RST to peer.
767 */
768 struct tcpcb *
769 tcp_drop(tp, errno)
770 struct tcpcb *tp;
771 int errno;
772 {
773 struct socket *so;
774
775 if (tp->t_inpcb)
776 so = tp->t_inpcb->inp_socket;
777 #ifdef INET6
778 else if (tp->t_in6pcb)
779 so = tp->t_in6pcb->in6p_socket;
780 #endif
781 else
782 return NULL;
783
784 if (TCPS_HAVERCVDSYN(tp->t_state)) {
785 tp->t_state = TCPS_CLOSED;
786 (void) tcp_output(tp);
787 tcpstat.tcps_drops++;
788 } else
789 tcpstat.tcps_conndrops++;
790 if (errno == ETIMEDOUT && tp->t_softerror)
791 errno = tp->t_softerror;
792 so->so_error = errno;
793 return (tcp_close(tp));
794 }
795
796 /*
797 * Close a TCP control block:
798 * discard all space held by the tcp
799 * discard internet protocol block
800 * wake up any sleepers
801 */
802 struct tcpcb *
803 tcp_close(tp)
804 struct tcpcb *tp;
805 {
806 struct inpcb *inp;
807 #ifdef INET6
808 struct in6pcb *in6p;
809 #endif
810 struct socket *so;
811 #ifdef RTV_RTT
812 struct rtentry *rt;
813 #endif
814 struct route *ro;
815
816 inp = tp->t_inpcb;
817 #ifdef INET6
818 in6p = tp->t_in6pcb;
819 #endif
820 so = NULL;
821 ro = NULL;
822 if (inp) {
823 so = inp->inp_socket;
824 ro = &inp->inp_route;
825 }
826 #ifdef INET6
827 else if (in6p) {
828 so = in6p->in6p_socket;
829 ro = (struct route *)&in6p->in6p_route;
830 }
831 #endif
832
833 #ifdef RTV_RTT
834 /*
835 * If we sent enough data to get some meaningful characteristics,
836 * save them in the routing entry. 'Enough' is arbitrarily
837 * defined as the sendpipesize (default 4K) * 16. This would
838 * give us 16 rtt samples assuming we only get one sample per
839 * window (the usual case on a long haul net). 16 samples is
840 * enough for the srtt filter to converge to within 5% of the correct
841 * value; fewer samples and we could save a very bogus rtt.
842 *
843 * Don't update the default route's characteristics and don't
844 * update anything that the user "locked".
845 */
846 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
847 ro && (rt = ro->ro_rt) &&
848 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
849 u_long i = 0;
850
851 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
852 i = tp->t_srtt *
853 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
854 if (rt->rt_rmx.rmx_rtt && i)
855 /*
856 * filter this update to half the old & half
857 * the new values, converting scale.
858 * See route.h and tcp_var.h for a
859 * description of the scaling constants.
860 */
861 rt->rt_rmx.rmx_rtt =
862 (rt->rt_rmx.rmx_rtt + i) / 2;
863 else
864 rt->rt_rmx.rmx_rtt = i;
865 }
866 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
867 i = tp->t_rttvar *
868 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
869 if (rt->rt_rmx.rmx_rttvar && i)
870 rt->rt_rmx.rmx_rttvar =
871 (rt->rt_rmx.rmx_rttvar + i) / 2;
872 else
873 rt->rt_rmx.rmx_rttvar = i;
874 }
875 /*
876 * update the pipelimit (ssthresh) if it has been updated
877 * already or if a pipesize was specified & the threshhold
878 * got below half the pipesize. I.e., wait for bad news
879 * before we start updating, then update on both good
880 * and bad news.
881 */
882 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
883 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
884 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
885 /*
886 * convert the limit from user data bytes to
887 * packets then to packet data bytes.
888 */
889 i = (i + tp->t_segsz / 2) / tp->t_segsz;
890 if (i < 2)
891 i = 2;
892 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
893 if (rt->rt_rmx.rmx_ssthresh)
894 rt->rt_rmx.rmx_ssthresh =
895 (rt->rt_rmx.rmx_ssthresh + i) / 2;
896 else
897 rt->rt_rmx.rmx_ssthresh = i;
898 }
899 }
900 #endif /* RTV_RTT */
901 /* free the reassembly queue, if any */
902 TCP_REASS_LOCK(tp);
903 (void) tcp_freeq(tp);
904 TCP_REASS_UNLOCK(tp);
905
906 TCP_CLEAR_DELACK(tp);
907 syn_cache_cleanup(tp);
908
909 if (tp->t_template) {
910 m_free(tp->t_template);
911 tp->t_template = NULL;
912 }
913 pool_put(&tcpcb_pool, tp);
914 if (inp) {
915 inp->inp_ppcb = 0;
916 soisdisconnected(so);
917 in_pcbdetach(inp);
918 }
919 #ifdef INET6
920 else if (in6p) {
921 in6p->in6p_ppcb = 0;
922 soisdisconnected(so);
923 in6_pcbdetach(in6p);
924 }
925 #endif
926 tcpstat.tcps_closed++;
927 return ((struct tcpcb *)0);
928 }
929
930 int
931 tcp_freeq(tp)
932 struct tcpcb *tp;
933 {
934 struct ipqent *qe;
935 int rv = 0;
936 #ifdef TCPREASS_DEBUG
937 int i = 0;
938 #endif
939
940 TCP_REASS_LOCK_CHECK(tp);
941
942 while ((qe = tp->segq.lh_first) != NULL) {
943 #ifdef TCPREASS_DEBUG
944 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
945 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
946 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
947 #endif
948 LIST_REMOVE(qe, ipqe_q);
949 LIST_REMOVE(qe, ipqe_timeq);
950 m_freem(qe->ipqe_m);
951 pool_put(&ipqent_pool, qe);
952 rv = 1;
953 }
954 return (rv);
955 }
956
957 /*
958 * Protocol drain routine. Called when memory is in short supply.
959 */
960 void
961 tcp_drain()
962 {
963 struct inpcb *inp;
964 struct tcpcb *tp;
965
966 /*
967 * Free the sequence queue of all TCP connections.
968 */
969 inp = tcbtable.inpt_queue.cqh_first;
970 if (inp) /* XXX */
971 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
972 inp = inp->inp_queue.cqe_next) {
973 if ((tp = intotcpcb(inp)) != NULL) {
974 /*
975 * We may be called from a device's interrupt
976 * context. If the tcpcb is already busy,
977 * just bail out now.
978 */
979 if (tcp_reass_lock_try(tp) == 0)
980 continue;
981 if (tcp_freeq(tp))
982 tcpstat.tcps_connsdrained++;
983 TCP_REASS_UNLOCK(tp);
984 }
985 }
986 }
987
988 /*
989 * Notify a tcp user of an asynchronous error;
990 * store error as soft error, but wake up user
991 * (for now, won't do anything until can select for soft error).
992 */
993 void
994 tcp_notify(inp, error)
995 struct inpcb *inp;
996 int error;
997 {
998 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
999 struct socket *so = inp->inp_socket;
1000
1001 /*
1002 * Ignore some errors if we are hooked up.
1003 * If connection hasn't completed, has retransmitted several times,
1004 * and receives a second error, give up now. This is better
1005 * than waiting a long time to establish a connection that
1006 * can never complete.
1007 */
1008 if (tp->t_state == TCPS_ESTABLISHED &&
1009 (error == EHOSTUNREACH || error == ENETUNREACH ||
1010 error == EHOSTDOWN)) {
1011 return;
1012 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1013 tp->t_rxtshift > 3 && tp->t_softerror)
1014 so->so_error = error;
1015 else
1016 tp->t_softerror = error;
1017 wakeup((caddr_t) &so->so_timeo);
1018 sorwakeup(so);
1019 sowwakeup(so);
1020 }
1021
1022 #if defined(INET6) && !defined(TCP6)
1023 void
1024 tcp6_notify(in6p, error)
1025 struct in6pcb *in6p;
1026 int error;
1027 {
1028 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1029 struct socket *so = in6p->in6p_socket;
1030
1031 /*
1032 * Ignore some errors if we are hooked up.
1033 * If connection hasn't completed, has retransmitted several times,
1034 * and receives a second error, give up now. This is better
1035 * than waiting a long time to establish a connection that
1036 * can never complete.
1037 */
1038 if (tp->t_state == TCPS_ESTABLISHED &&
1039 (error == EHOSTUNREACH || error == ENETUNREACH ||
1040 error == EHOSTDOWN)) {
1041 return;
1042 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1043 tp->t_rxtshift > 3 && tp->t_softerror)
1044 so->so_error = error;
1045 else
1046 tp->t_softerror = error;
1047 wakeup((caddr_t) &so->so_timeo);
1048 sorwakeup(so);
1049 sowwakeup(so);
1050 }
1051 #endif
1052
1053 #if defined(INET6) && !defined(TCP6)
1054 void
1055 tcp6_ctlinput(cmd, sa, d)
1056 int cmd;
1057 struct sockaddr *sa;
1058 void *d;
1059 {
1060 struct tcphdr *thp;
1061 struct tcphdr th;
1062 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1063 int nmatch;
1064 struct sockaddr_in6 sa6;
1065 struct ip6_hdr *ip6;
1066 struct mbuf *m;
1067 int off;
1068
1069 if (sa->sa_family != AF_INET6 ||
1070 sa->sa_len != sizeof(struct sockaddr_in6))
1071 return;
1072 if ((unsigned)cmd >= PRC_NCMDS)
1073 return;
1074 else if (cmd == PRC_QUENCH) {
1075 /* XXX there's no PRC_QUENCH in IPv6 */
1076 notify = tcp6_quench;
1077 } else if (PRC_IS_REDIRECT(cmd))
1078 notify = in6_rtchange, d = NULL;
1079 else if (cmd == PRC_MSGSIZE)
1080 notify = tcp6_mtudisc, d = NULL;
1081 else if (cmd == PRC_HOSTDEAD)
1082 d = NULL;
1083 else if (inet6ctlerrmap[cmd] == 0)
1084 return;
1085
1086 /* if the parameter is from icmp6, decode it. */
1087 if (d != NULL) {
1088 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1089 m = ip6cp->ip6c_m;
1090 ip6 = ip6cp->ip6c_ip6;
1091 off = ip6cp->ip6c_off;
1092 } else {
1093 m = NULL;
1094 ip6 = NULL;
1095 }
1096
1097 /* translate addresses into internal form */
1098 sa6 = *(struct sockaddr_in6 *)sa;
1099 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) && m && m->m_pkthdr.rcvif)
1100 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1101
1102 if (ip6) {
1103 /*
1104 * XXX: We assume that when ip6 is non NULL,
1105 * M and OFF are valid.
1106 */
1107 struct in6_addr s;
1108
1109 /* translate addresses into internal form */
1110 memcpy(&s, &ip6->ip6_src, sizeof(s));
1111 if (IN6_IS_ADDR_LINKLOCAL(&s))
1112 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1113
1114 /* check if we can safely examine src and dst ports */
1115 if (m->m_pkthdr.len < off + sizeof(th))
1116 return;
1117
1118 if (m->m_len < off + sizeof(th)) {
1119 /*
1120 * this should be rare case,
1121 * so we compromise on this copy...
1122 */
1123 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1124 thp = &th;
1125 } else
1126 thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1127 nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
1128 thp->th_dport, &s, thp->th_sport, cmd, notify);
1129 if (nmatch == 0 && syn_cache_count &&
1130 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1131 inet6ctlerrmap[cmd] == ENETUNREACH ||
1132 inet6ctlerrmap[cmd] == EHOSTDOWN)) {
1133 struct sockaddr_in6 sin6;
1134 bzero(&sin6, sizeof(sin6));
1135 sin6.sin6_len = sizeof(sin6);
1136 sin6.sin6_family = AF_INET6;
1137 sin6.sin6_port = thp->th_sport;
1138 sin6.sin6_addr = s;
1139 syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
1140 }
1141 } else {
1142 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
1143 &zeroin6_addr, 0, cmd, notify);
1144 }
1145 }
1146 #endif
1147
1148 /* assumes that ip header and tcp header are contiguous on mbuf */
1149 void *
1150 tcp_ctlinput(cmd, sa, v)
1151 int cmd;
1152 struct sockaddr *sa;
1153 void *v;
1154 {
1155 struct ip *ip = v;
1156 struct tcphdr *th;
1157 extern int inetctlerrmap[];
1158 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1159 int errno;
1160 int nmatch;
1161
1162 if (sa->sa_family != AF_INET ||
1163 sa->sa_len != sizeof(struct sockaddr_in))
1164 return NULL;
1165 if ((unsigned)cmd >= PRC_NCMDS)
1166 return NULL;
1167 errno = inetctlerrmap[cmd];
1168 if (cmd == PRC_QUENCH)
1169 notify = tcp_quench;
1170 else if (PRC_IS_REDIRECT(cmd))
1171 notify = in_rtchange, ip = 0;
1172 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1173 notify = tcp_mtudisc, ip = 0;
1174 else if (cmd == PRC_HOSTDEAD)
1175 ip = 0;
1176 else if (errno == 0)
1177 return NULL;
1178 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1179 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1180 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1181 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1182 if (nmatch == 0 && syn_cache_count &&
1183 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1184 inetctlerrmap[cmd] == ENETUNREACH ||
1185 inetctlerrmap[cmd] == EHOSTDOWN)) {
1186 struct sockaddr_in sin;
1187 bzero(&sin, sizeof(sin));
1188 sin.sin_len = sizeof(sin);
1189 sin.sin_family = AF_INET;
1190 sin.sin_port = th->th_sport;
1191 sin.sin_addr = ip->ip_src;
1192 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1193 }
1194
1195 /* XXX mapped address case */
1196 }
1197 else {
1198 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1199 notify);
1200 }
1201 return NULL;
1202 }
1203
1204 /*
1205 * When a source quence is received, we are being notifed of congestion.
1206 * Close the congestion window down to the Loss Window (one segment).
1207 * We will gradually open it again as we proceed.
1208 */
1209 void
1210 tcp_quench(inp, errno)
1211 struct inpcb *inp;
1212 int errno;
1213 {
1214 struct tcpcb *tp = intotcpcb(inp);
1215
1216 if (tp)
1217 tp->snd_cwnd = tp->t_segsz;
1218 }
1219
1220 #if defined(INET6) && !defined(TCP6)
1221 void
1222 tcp6_quench(in6p, errno)
1223 struct in6pcb *in6p;
1224 int errno;
1225 {
1226 struct tcpcb *tp = in6totcpcb(in6p);
1227
1228 if (tp)
1229 tp->snd_cwnd = tp->t_segsz;
1230 }
1231 #endif
1232
1233 /*
1234 * On receipt of path MTU corrections, flush old route and replace it
1235 * with the new one. Retransmit all unacknowledged packets, to ensure
1236 * that all packets will be received.
1237 */
1238 void
1239 tcp_mtudisc(inp, errno)
1240 struct inpcb *inp;
1241 int errno;
1242 {
1243 struct tcpcb *tp = intotcpcb(inp);
1244 struct rtentry *rt = in_pcbrtentry(inp);
1245
1246 if (tp != 0) {
1247 if (rt != 0) {
1248 /*
1249 * If this was not a host route, remove and realloc.
1250 */
1251 if ((rt->rt_flags & RTF_HOST) == 0) {
1252 in_rtchange(inp, errno);
1253 if ((rt = in_pcbrtentry(inp)) == 0)
1254 return;
1255 }
1256
1257 /*
1258 * Slow start out of the error condition. We
1259 * use the MTU because we know it's smaller
1260 * than the previously transmitted segment.
1261 *
1262 * Note: This is more conservative than the
1263 * suggestion in draft-floyd-incr-init-win-03.
1264 */
1265 if (rt->rt_rmx.rmx_mtu != 0)
1266 tp->snd_cwnd =
1267 TCP_INITIAL_WINDOW(tcp_init_win,
1268 rt->rt_rmx.rmx_mtu);
1269 }
1270
1271 /*
1272 * Resend unacknowledged packets.
1273 */
1274 tp->snd_nxt = tp->snd_una;
1275 tcp_output(tp);
1276 }
1277 }
1278
1279 #if defined(INET6) && !defined(TCP6)
1280 void
1281 tcp6_mtudisc(in6p, errno)
1282 struct in6pcb *in6p;
1283 int errno;
1284 {
1285 struct tcpcb *tp = in6totcpcb(in6p);
1286 struct rtentry *rt = in6_pcbrtentry(in6p);
1287
1288 if (tp != 0) {
1289 if (rt != 0) {
1290 /*
1291 * If this was not a host route, remove and realloc.
1292 */
1293 if ((rt->rt_flags & RTF_HOST) == 0) {
1294 in6_rtchange(in6p, errno);
1295 if ((rt = in6_pcbrtentry(in6p)) == 0)
1296 return;
1297 }
1298
1299 /*
1300 * Slow start out of the error condition. We
1301 * use the MTU because we know it's smaller
1302 * than the previously transmitted segment.
1303 *
1304 * Note: This is more conservative than the
1305 * suggestion in draft-floyd-incr-init-win-03.
1306 */
1307 if (rt->rt_rmx.rmx_mtu != 0)
1308 tp->snd_cwnd =
1309 TCP_INITIAL_WINDOW(tcp_init_win,
1310 rt->rt_rmx.rmx_mtu);
1311 }
1312
1313 /*
1314 * Resend unacknowledged packets.
1315 */
1316 tp->snd_nxt = tp->snd_una;
1317 tcp_output(tp);
1318 }
1319 }
1320 #endif
1321
1322 /*
1323 * Compute the MSS to advertise to the peer. Called only during
1324 * the 3-way handshake. If we are the server (peer initiated
1325 * connection), we are called with a pointer to the interface
1326 * on which the SYN packet arrived. If we are the client (we
1327 * initiated connection), we are called with a pointer to the
1328 * interface out which this connection should go.
1329 *
1330 * NOTE: Do not subtract IP option/extension header size nor IPsec
1331 * header size from MSS advertisement. MSS option must hold the maximum
1332 * segment size we can accept, so it must always be:
1333 * max(if mtu) - ip header - tcp header
1334 */
1335 u_long
1336 tcp_mss_to_advertise(ifp, af)
1337 const struct ifnet *ifp;
1338 int af;
1339 {
1340 extern u_long in_maxmtu;
1341 u_long mss = 0;
1342 u_long hdrsiz;
1343
1344 /*
1345 * In order to avoid defeating path MTU discovery on the peer,
1346 * we advertise the max MTU of all attached networks as our MSS,
1347 * per RFC 1191, section 3.1.
1348 *
1349 * We provide the option to advertise just the MTU of
1350 * the interface on which we hope this connection will
1351 * be receiving. If we are responding to a SYN, we
1352 * will have a pretty good idea about this, but when
1353 * initiating a connection there is a bit more doubt.
1354 *
1355 * We also need to ensure that loopback has a large enough
1356 * MSS, as the loopback MTU is never included in in_maxmtu.
1357 */
1358
1359 if (ifp != NULL)
1360 mss = ifp->if_mtu;
1361
1362 if (tcp_mss_ifmtu == 0)
1363 mss = max(in_maxmtu, mss);
1364
1365 switch (af) {
1366 case AF_INET:
1367 hdrsiz = sizeof(struct ip);
1368 break;
1369 #ifdef INET6
1370 case AF_INET6:
1371 hdrsiz = sizeof(struct ip6_hdr);
1372 break;
1373 #endif
1374 default:
1375 hdrsiz = 0;
1376 break;
1377 }
1378 hdrsiz += sizeof(struct tcphdr);
1379 if (mss > hdrsiz)
1380 mss -= hdrsiz;
1381
1382 mss = max(tcp_mssdflt, mss);
1383 return (mss);
1384 }
1385
1386 /*
1387 * Set connection variables based on the peer's advertised MSS.
1388 * We are passed the TCPCB for the actual connection. If we
1389 * are the server, we are called by the compressed state engine
1390 * when the 3-way handshake is complete. If we are the client,
1391 * we are called when we recieve the SYN,ACK from the server.
1392 *
1393 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1394 * before this routine is called!
1395 */
1396 void
1397 tcp_mss_from_peer(tp, offer)
1398 struct tcpcb *tp;
1399 int offer;
1400 {
1401 struct socket *so;
1402 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1403 struct rtentry *rt;
1404 #endif
1405 u_long bufsize;
1406 int mss;
1407
1408 so = NULL;
1409 rt = NULL;
1410 if (tp->t_inpcb) {
1411 so = tp->t_inpcb->inp_socket;
1412 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1413 rt = in_pcbrtentry(tp->t_inpcb);
1414 #endif
1415 }
1416 #ifdef INET6
1417 else if (tp->t_in6pcb) {
1418 so = tp->t_in6pcb->in6p_socket;
1419 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1420 #ifdef TCP6
1421 rt = NULL;
1422 #else
1423 rt = in6_pcbrtentry(tp->t_in6pcb);
1424 #endif
1425 #endif
1426 }
1427 #endif
1428
1429 /*
1430 * As per RFC1122, use the default MSS value, unless they
1431 * sent us an offer. Do not accept offers less than 32 bytes.
1432 */
1433 mss = tcp_mssdflt;
1434 if (offer)
1435 mss = offer;
1436 mss = max(mss, 32); /* sanity */
1437 tp->t_peermss = mss;
1438 mss -= tcp_optlen(tp);
1439 if (tp->t_inpcb)
1440 mss -= ip_optlen(tp->t_inpcb);
1441 #ifdef INET6
1442 else if (tp->t_in6pcb)
1443 mss -= ip6_optlen(tp->t_in6pcb);
1444 #endif
1445
1446 /*
1447 * If there's a pipesize, change the socket buffer to that size.
1448 * Make the socket buffer an integral number of MSS units. If
1449 * the MSS is larger than the socket buffer, artificially decrease
1450 * the MSS.
1451 */
1452 #ifdef RTV_SPIPE
1453 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1454 bufsize = rt->rt_rmx.rmx_sendpipe;
1455 else
1456 #endif
1457 bufsize = so->so_snd.sb_hiwat;
1458 if (bufsize < mss)
1459 mss = bufsize;
1460 else {
1461 bufsize = roundup(bufsize, mss);
1462 if (bufsize > sb_max)
1463 bufsize = sb_max;
1464 (void) sbreserve(&so->so_snd, bufsize);
1465 }
1466 tp->t_segsz = mss;
1467
1468 #ifdef RTV_SSTHRESH
1469 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1470 /*
1471 * There's some sort of gateway or interface buffer
1472 * limit on the path. Use this to set the slow
1473 * start threshold, but set the threshold to no less
1474 * than 2 * MSS.
1475 */
1476 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1477 }
1478 #endif
1479 }
1480
1481 /*
1482 * Processing necessary when a TCP connection is established.
1483 */
1484 void
1485 tcp_established(tp)
1486 struct tcpcb *tp;
1487 {
1488 struct socket *so;
1489 #ifdef RTV_RPIPE
1490 struct rtentry *rt;
1491 #endif
1492 u_long bufsize;
1493
1494 so = NULL;
1495 rt = NULL;
1496 if (tp->t_inpcb) {
1497 so = tp->t_inpcb->inp_socket;
1498 #if defined(RTV_RPIPE)
1499 rt = in_pcbrtentry(tp->t_inpcb);
1500 #endif
1501 }
1502 #ifdef INET6
1503 else if (tp->t_in6pcb) {
1504 so = tp->t_in6pcb->in6p_socket;
1505 #if defined(RTV_RPIPE)
1506 #ifdef TCP6
1507 rt = NULL;
1508 #else
1509 rt = in6_pcbrtentry(tp->t_in6pcb);
1510 #endif
1511 #endif
1512 }
1513 #endif
1514
1515 tp->t_state = TCPS_ESTABLISHED;
1516 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1517
1518 #ifdef RTV_RPIPE
1519 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1520 bufsize = rt->rt_rmx.rmx_recvpipe;
1521 else
1522 #endif
1523 bufsize = so->so_rcv.sb_hiwat;
1524 if (bufsize > tp->t_ourmss) {
1525 bufsize = roundup(bufsize, tp->t_ourmss);
1526 if (bufsize > sb_max)
1527 bufsize = sb_max;
1528 (void) sbreserve(&so->so_rcv, bufsize);
1529 }
1530 }
1531
1532 /*
1533 * Check if there's an initial rtt or rttvar. Convert from the
1534 * route-table units to scaled multiples of the slow timeout timer.
1535 * Called only during the 3-way handshake.
1536 */
1537 void
1538 tcp_rmx_rtt(tp)
1539 struct tcpcb *tp;
1540 {
1541 #ifdef RTV_RTT
1542 struct rtentry *rt = NULL;
1543 int rtt;
1544
1545 if (tp->t_inpcb)
1546 rt = in_pcbrtentry(tp->t_inpcb);
1547 #ifdef INET6
1548 else if (tp->t_in6pcb) {
1549 #ifdef TCP6
1550 rt = NULL;
1551 #else
1552 rt = in6_pcbrtentry(tp->t_in6pcb);
1553 #endif
1554 }
1555 #endif
1556 if (rt == NULL)
1557 return;
1558
1559 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1560 /*
1561 * XXX The lock bit for MTU indicates that the value
1562 * is also a minimum value; this is subject to time.
1563 */
1564 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1565 TCPT_RANGESET(tp->t_rttmin,
1566 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1567 TCPTV_MIN, TCPTV_REXMTMAX);
1568 tp->t_srtt = rtt /
1569 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1570 if (rt->rt_rmx.rmx_rttvar) {
1571 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1572 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1573 (TCP_RTTVAR_SHIFT + 2));
1574 } else {
1575 /* Default variation is +- 1 rtt */
1576 tp->t_rttvar =
1577 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1578 }
1579 TCPT_RANGESET(tp->t_rxtcur,
1580 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1581 tp->t_rttmin, TCPTV_REXMTMAX);
1582 }
1583 #endif
1584 }
1585
1586 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1587
1588 /*
1589 * Get a new sequence value given a tcp control block
1590 */
1591 tcp_seq
1592 tcp_new_iss(tp, len, addin)
1593 void *tp;
1594 u_long len;
1595 tcp_seq addin;
1596 {
1597 tcp_seq tcp_iss;
1598
1599 /*
1600 * Randomize.
1601 */
1602 #if NRND > 0
1603 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1604 #else
1605 tcp_iss = random();
1606 #endif
1607
1608 /*
1609 * If we were asked to add some amount to a known value,
1610 * we will take a random value obtained above, mask off the upper
1611 * bits, and add in the known value. We also add in a constant to
1612 * ensure that we are at least a certain distance from the original
1613 * value.
1614 *
1615 * This is used when an old connection is in timed wait
1616 * and we have a new one coming in, for instance.
1617 */
1618 if (addin != 0) {
1619 #ifdef TCPISS_DEBUG
1620 printf("Random %08x, ", tcp_iss);
1621 #endif
1622 tcp_iss &= TCP_ISS_RANDOM_MASK;
1623 tcp_iss += addin + TCP_ISSINCR;
1624 #ifdef TCPISS_DEBUG
1625 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1626 #endif
1627 } else {
1628 tcp_iss &= TCP_ISS_RANDOM_MASK;
1629 tcp_iss += tcp_iss_seq;
1630 tcp_iss_seq += TCP_ISSINCR;
1631 #ifdef TCPISS_DEBUG
1632 printf("ISS %08x\n", tcp_iss);
1633 #endif
1634 }
1635
1636 if (tcp_compat_42) {
1637 /*
1638 * Limit it to the positive range for really old TCP
1639 * implementations.
1640 */
1641 if (tcp_iss >= 0x80000000)
1642 tcp_iss &= 0x7fffffff; /* XXX */
1643 }
1644
1645 return tcp_iss;
1646 }
1647
1648 #ifdef IPSEC
1649 /* compute ESP/AH header size for TCP, including outer IP header. */
1650 size_t
1651 ipsec4_hdrsiz_tcp(tp)
1652 struct tcpcb *tp;
1653 {
1654 struct inpcb *inp;
1655 size_t hdrsiz;
1656
1657 /* XXX mapped addr case (tp->t_in6pcb) */
1658 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1659 return 0;
1660 switch (tp->t_family) {
1661 case AF_INET:
1662 /* XXX: should use currect direction. */
1663 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1664 break;
1665 default:
1666 hdrsiz = 0;
1667 break;
1668 }
1669
1670 return hdrsiz;
1671 }
1672
1673 #if defined(INET6) && !defined(TCP6)
1674 size_t
1675 ipsec6_hdrsiz_tcp(tp)
1676 struct tcpcb *tp;
1677 {
1678 struct in6pcb *in6p;
1679 size_t hdrsiz;
1680
1681 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1682 return 0;
1683 switch (tp->t_family) {
1684 case AF_INET6:
1685 /* XXX: should use currect direction. */
1686 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1687 break;
1688 case AF_INET:
1689 /* mapped address case - tricky */
1690 default:
1691 hdrsiz = 0;
1692 break;
1693 }
1694
1695 return hdrsiz;
1696 }
1697 #endif
1698 #endif /*IPSEC*/
1699
1700 /*
1701 * Determine the length of the TCP options for this connection.
1702 *
1703 * XXX: What do we do for SACK, when we add that? Just reserve
1704 * all of the space? Otherwise we can't exactly be incrementing
1705 * cwnd by an amount that varies depending on the amount we last
1706 * had to SACK!
1707 */
1708
1709 u_int
1710 tcp_optlen(tp)
1711 struct tcpcb *tp;
1712 {
1713 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1714 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1715 return TCPOLEN_TSTAMP_APPA;
1716 else
1717 return 0;
1718 }
1719