tcp_subr.c revision 1.96 1 /* $NetBSD: tcp_subr.c,v 1.96 2000/10/17 03:06:43 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #include <netinet6/ip6protosw.h>
143 #endif
144
145 #include <netinet/tcp.h>
146 #include <netinet/tcp_fsm.h>
147 #include <netinet/tcp_seq.h>
148 #include <netinet/tcp_timer.h>
149 #include <netinet/tcp_var.h>
150 #include <netinet/tcpip.h>
151
152 #ifdef IPSEC
153 #include <netinet6/ipsec.h>
154 #endif /*IPSEC*/
155
156 #ifdef INET6
157 struct in6pcb tcb6;
158 #endif
159
160 /* patchable/settable parameters for tcp */
161 int tcp_mssdflt = TCP_MSS;
162 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
163 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
164 int tcp_do_sack = 1; /* selective acknowledgement */
165 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
166 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
167 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
168 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
169 int tcp_init_win = 1;
170 int tcp_mss_ifmtu = 0;
171 #ifdef TCP_COMPAT_42
172 int tcp_compat_42 = 1;
173 #else
174 int tcp_compat_42 = 0;
175 #endif
176
177 #ifndef TCBHASHSIZE
178 #define TCBHASHSIZE 128
179 #endif
180 int tcbhashsize = TCBHASHSIZE;
181
182 int tcp_freeq __P((struct tcpcb *));
183
184 struct pool tcpcb_pool;
185
186 /*
187 * Tcp initialization
188 */
189 void
190 tcp_init()
191 {
192 int hlen;
193
194 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
195 0, NULL, NULL, M_PCB);
196 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
197 #ifdef INET6
198 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
199 #endif
200 LIST_INIT(&tcp_delacks);
201
202 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
203 #ifdef INET6
204 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
205 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
206 #endif
207 if (max_protohdr < hlen)
208 max_protohdr = hlen;
209 if (max_linkhdr + hlen > MHLEN)
210 panic("tcp_init");
211
212 /* Initialize the compressed state engine. */
213 syn_cache_init();
214 }
215
216 /*
217 * Create template to be used to send tcp packets on a connection.
218 * Call after host entry created, allocates an mbuf and fills
219 * in a skeletal tcp/ip header, minimizing the amount of work
220 * necessary when the connection is used.
221 */
222 struct mbuf *
223 tcp_template(tp)
224 struct tcpcb *tp;
225 {
226 struct inpcb *inp = tp->t_inpcb;
227 #ifdef INET6
228 struct in6pcb *in6p = tp->t_in6pcb;
229 #endif
230 struct tcphdr *n;
231 struct mbuf *m;
232 int hlen;
233
234 switch (tp->t_family) {
235 case AF_INET:
236 hlen = sizeof(struct ip);
237 if (inp)
238 break;
239 #ifdef INET6
240 if (in6p) {
241 /* mapped addr case */
242 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
243 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
244 break;
245 }
246 #endif
247 return NULL; /*EINVAL*/
248 #ifdef INET6
249 case AF_INET6:
250 hlen = sizeof(struct ip6_hdr);
251 if (in6p) {
252 /* more sainty check? */
253 break;
254 }
255 return NULL; /*EINVAL*/
256 #endif
257 default:
258 hlen = 0; /*pacify gcc*/
259 return NULL; /*EAFNOSUPPORT*/
260 }
261 #ifdef DIAGNOSTIC
262 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
263 panic("mclbytes too small for t_template");
264 #endif
265 m = tp->t_template;
266 if (m && m->m_len == hlen + sizeof(struct tcphdr))
267 ;
268 else {
269 if (m)
270 m_freem(m);
271 m = tp->t_template = NULL;
272 MGETHDR(m, M_DONTWAIT, MT_HEADER);
273 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
274 MCLGET(m, M_DONTWAIT);
275 if ((m->m_flags & M_EXT) == 0) {
276 m_free(m);
277 m = NULL;
278 }
279 }
280 if (m == NULL)
281 return NULL;
282 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
283 }
284 bzero(mtod(m, caddr_t), m->m_len);
285 switch (tp->t_family) {
286 case AF_INET:
287 {
288 struct ipovly *ipov;
289 mtod(m, struct ip *)->ip_v = 4;
290 ipov = mtod(m, struct ipovly *);
291 ipov->ih_pr = IPPROTO_TCP;
292 ipov->ih_len = htons(sizeof(struct tcphdr));
293 if (inp) {
294 ipov->ih_src = inp->inp_laddr;
295 ipov->ih_dst = inp->inp_faddr;
296 }
297 #ifdef INET6
298 else if (in6p) {
299 /* mapped addr case */
300 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
301 sizeof(ipov->ih_src));
302 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
303 sizeof(ipov->ih_dst));
304 }
305 #endif
306 break;
307 }
308 #ifdef INET6
309 case AF_INET6:
310 {
311 struct ip6_hdr *ip6;
312 mtod(m, struct ip *)->ip_v = 6;
313 ip6 = mtod(m, struct ip6_hdr *);
314 ip6->ip6_nxt = IPPROTO_TCP;
315 ip6->ip6_plen = htons(sizeof(struct tcphdr));
316 ip6->ip6_src = in6p->in6p_laddr;
317 ip6->ip6_dst = in6p->in6p_faddr;
318 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
319 if (ip6_auto_flowlabel) {
320 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
321 ip6->ip6_flow |=
322 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
323 }
324 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
325 ip6->ip6_vfc |= IPV6_VERSION;
326 break;
327 }
328 #endif
329 }
330 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
331 if (inp) {
332 n->th_sport = inp->inp_lport;
333 n->th_dport = inp->inp_fport;
334 }
335 #ifdef INET6
336 else if (in6p) {
337 n->th_sport = in6p->in6p_lport;
338 n->th_dport = in6p->in6p_fport;
339 }
340 #endif
341 n->th_seq = 0;
342 n->th_ack = 0;
343 n->th_x2 = 0;
344 n->th_off = 5;
345 n->th_flags = 0;
346 n->th_win = 0;
347 n->th_sum = 0;
348 n->th_urp = 0;
349 return (m);
350 }
351
352 /*
353 * Send a single message to the TCP at address specified by
354 * the given TCP/IP header. If m == 0, then we make a copy
355 * of the tcpiphdr at ti and send directly to the addressed host.
356 * This is used to force keep alive messages out using the TCP
357 * template for a connection tp->t_template. If flags are given
358 * then we send a message back to the TCP which originated the
359 * segment ti, and discard the mbuf containing it and any other
360 * attached mbufs.
361 *
362 * In any case the ack and sequence number of the transmitted
363 * segment are as specified by the parameters.
364 */
365 int
366 tcp_respond(tp, template, m, th0, ack, seq, flags)
367 struct tcpcb *tp;
368 struct mbuf *template;
369 struct mbuf *m;
370 struct tcphdr *th0;
371 tcp_seq ack, seq;
372 int flags;
373 {
374 struct route *ro;
375 int error, tlen, win = 0;
376 int hlen;
377 struct ip *ip;
378 #ifdef INET6
379 struct ip6_hdr *ip6;
380 #endif
381 int family; /* family on packet, not inpcb/in6pcb! */
382 struct tcphdr *th;
383
384 if (tp != NULL && (flags & TH_RST) == 0) {
385 #ifdef DIAGNOSTIC
386 if (tp->t_inpcb && tp->t_in6pcb)
387 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
388 #endif
389 #ifdef INET
390 if (tp->t_inpcb)
391 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
392 #endif
393 #ifdef INET6
394 if (tp->t_in6pcb)
395 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
396 #endif
397 }
398
399 ip = NULL;
400 #ifdef INET6
401 ip6 = NULL;
402 #endif
403 if (m == 0) {
404 if (!template)
405 return EINVAL;
406
407 /* get family information from template */
408 switch (mtod(template, struct ip *)->ip_v) {
409 case 4:
410 family = AF_INET;
411 hlen = sizeof(struct ip);
412 break;
413 #ifdef INET6
414 case 6:
415 family = AF_INET6;
416 hlen = sizeof(struct ip6_hdr);
417 break;
418 #endif
419 default:
420 return EAFNOSUPPORT;
421 }
422
423 MGETHDR(m, M_DONTWAIT, MT_HEADER);
424 if (m) {
425 MCLGET(m, M_DONTWAIT);
426 if ((m->m_flags & M_EXT) == 0) {
427 m_free(m);
428 m = NULL;
429 }
430 }
431 if (m == NULL)
432 return (ENOBUFS);
433
434 if (tcp_compat_42)
435 tlen = 1;
436 else
437 tlen = 0;
438
439 m->m_data += max_linkhdr;
440 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
441 template->m_len);
442 switch (family) {
443 case AF_INET:
444 ip = mtod(m, struct ip *);
445 th = (struct tcphdr *)(ip + 1);
446 break;
447 #ifdef INET6
448 case AF_INET6:
449 ip6 = mtod(m, struct ip6_hdr *);
450 th = (struct tcphdr *)(ip6 + 1);
451 break;
452 #endif
453 #if 0
454 default:
455 /* noone will visit here */
456 m_freem(m);
457 return EAFNOSUPPORT;
458 #endif
459 }
460 flags = TH_ACK;
461 } else {
462
463 if ((m->m_flags & M_PKTHDR) == 0) {
464 #if 0
465 printf("non PKTHDR to tcp_respond\n");
466 #endif
467 m_freem(m);
468 return EINVAL;
469 }
470 #ifdef DIAGNOSTIC
471 if (!th0)
472 panic("th0 == NULL in tcp_respond");
473 #endif
474
475 /* get family information from m */
476 switch (mtod(m, struct ip *)->ip_v) {
477 case 4:
478 family = AF_INET;
479 hlen = sizeof(struct ip);
480 ip = mtod(m, struct ip *);
481 break;
482 #ifdef INET6
483 case 6:
484 family = AF_INET6;
485 hlen = sizeof(struct ip6_hdr);
486 ip6 = mtod(m, struct ip6_hdr *);
487 break;
488 #endif
489 default:
490 m_freem(m);
491 return EAFNOSUPPORT;
492 }
493 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
494 tlen = sizeof(*th0);
495 else
496 tlen = th0->th_off << 2;
497
498 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
499 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
500 m->m_len = hlen + tlen;
501 m_freem(m->m_next);
502 m->m_next = NULL;
503 } else {
504 struct mbuf *n;
505
506 #ifdef DIAGNOSTIC
507 if (max_linkhdr + hlen + tlen > MCLBYTES) {
508 m_freem(m);
509 return EMSGSIZE;
510 }
511 #endif
512 MGETHDR(n, M_DONTWAIT, MT_HEADER);
513 if (n && max_linkhdr + hlen + tlen > MHLEN) {
514 MCLGET(n, M_DONTWAIT);
515 if ((n->m_flags & M_EXT) == 0) {
516 m_freem(n);
517 n = NULL;
518 }
519 }
520 if (!n) {
521 m_freem(m);
522 return ENOBUFS;
523 }
524
525 n->m_data += max_linkhdr;
526 n->m_len = hlen + tlen;
527 m_copyback(n, 0, hlen, mtod(m, caddr_t));
528 m_copyback(n, hlen, tlen, (caddr_t)th0);
529
530 m_freem(m);
531 m = n;
532 n = NULL;
533 }
534
535 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
536 switch (family) {
537 case AF_INET:
538 ip = mtod(m, struct ip *);
539 th = (struct tcphdr *)(ip + 1);
540 ip->ip_p = IPPROTO_TCP;
541 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
542 ip->ip_p = IPPROTO_TCP;
543 break;
544 #ifdef INET6
545 case AF_INET6:
546 ip6 = mtod(m, struct ip6_hdr *);
547 th = (struct tcphdr *)(ip6 + 1);
548 ip6->ip6_nxt = IPPROTO_TCP;
549 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
550 ip6->ip6_nxt = IPPROTO_TCP;
551 break;
552 #endif
553 #if 0
554 default:
555 /* noone will visit here */
556 m_freem(m);
557 return EAFNOSUPPORT;
558 #endif
559 }
560 xchg(th->th_dport, th->th_sport, u_int16_t);
561 #undef xchg
562 tlen = 0; /*be friendly with the following code*/
563 }
564 th->th_seq = htonl(seq);
565 th->th_ack = htonl(ack);
566 th->th_x2 = 0;
567 if ((flags & TH_SYN) == 0) {
568 if (tp)
569 win >>= tp->rcv_scale;
570 if (win > TCP_MAXWIN)
571 win = TCP_MAXWIN;
572 th->th_win = htons((u_int16_t)win);
573 th->th_off = sizeof (struct tcphdr) >> 2;
574 tlen += sizeof(*th);
575 } else
576 tlen += th->th_off << 2;
577 m->m_len = hlen + tlen;
578 m->m_pkthdr.len = hlen + tlen;
579 m->m_pkthdr.rcvif = (struct ifnet *) 0;
580 th->th_flags = flags;
581 th->th_urp = 0;
582
583 switch (family) {
584 #ifdef INET
585 case AF_INET:
586 {
587 struct ipovly *ipov = (struct ipovly *)ip;
588 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
589 ipov->ih_len = htons((u_int16_t)tlen);
590
591 th->th_sum = 0;
592 th->th_sum = in_cksum(m, hlen + tlen);
593 ip->ip_len = hlen + tlen; /*will be flipped on output*/
594 ip->ip_ttl = ip_defttl;
595 break;
596 }
597 #endif
598 #ifdef INET6
599 case AF_INET6:
600 {
601 th->th_sum = 0;
602 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
603 tlen);
604 ip6->ip6_plen = ntohs(tlen);
605 if (tp && tp->t_in6pcb) {
606 struct ifnet *oifp;
607 ro = (struct route *)&tp->t_in6pcb->in6p_route;
608 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
609 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
610 } else
611 ip6->ip6_hlim = ip6_defhlim;
612 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
613 if (ip6_auto_flowlabel) {
614 ip6->ip6_flow |=
615 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
616 }
617 break;
618 }
619 #endif
620 }
621
622 #ifdef IPSEC
623 ipsec_setsocket(m, NULL);
624 #endif /*IPSEC*/
625
626 if (tp != NULL && tp->t_inpcb != NULL) {
627 ro = &tp->t_inpcb->inp_route;
628 #ifdef IPSEC
629 ipsec_setsocket(m, tp->t_inpcb->inp_socket);
630 #endif
631 #ifdef DIAGNOSTIC
632 if (family != AF_INET)
633 panic("tcp_respond: address family mismatch");
634 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
635 panic("tcp_respond: ip_dst %x != inp_faddr %x",
636 ntohl(ip->ip_dst.s_addr),
637 ntohl(tp->t_inpcb->inp_faddr.s_addr));
638 }
639 #endif
640 }
641 #ifdef INET6
642 else if (tp != NULL && tp->t_in6pcb != NULL) {
643 ro = (struct route *)&tp->t_in6pcb->in6p_route;
644 #ifdef IPSEC
645 ipsec_setsocket(m, tp->t_in6pcb->in6p_socket);
646 #endif
647 #ifdef DIAGNOSTIC
648 if (family == AF_INET) {
649 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
650 panic("tcp_respond: not mapped addr");
651 if (bcmp(&ip->ip_dst,
652 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
653 sizeof(ip->ip_dst)) != 0) {
654 panic("tcp_respond: ip_dst != in6p_faddr");
655 }
656 } else if (family == AF_INET6) {
657 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
658 panic("tcp_respond: ip6_dst != in6p_faddr");
659 } else
660 panic("tcp_respond: address family mismatch");
661 #endif
662 }
663 #endif
664 else
665 ro = NULL;
666
667 switch (family) {
668 #ifdef INET
669 case AF_INET:
670 error = ip_output(m, NULL, ro,
671 (ip_mtudisc ? IP_MTUDISC : 0),
672 NULL);
673 break;
674 #endif
675 #ifdef INET6
676 case AF_INET6:
677 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
678 NULL);
679 break;
680 #endif
681 default:
682 error = EAFNOSUPPORT;
683 break;
684 }
685
686 return (error);
687 }
688
689 /*
690 * Create a new TCP control block, making an
691 * empty reassembly queue and hooking it to the argument
692 * protocol control block.
693 */
694 struct tcpcb *
695 tcp_newtcpcb(family, aux)
696 int family; /* selects inpcb, or in6pcb */
697 void *aux;
698 {
699 struct tcpcb *tp;
700
701 switch (family) {
702 case PF_INET:
703 break;
704 #ifdef INET6
705 case PF_INET6:
706 break;
707 #endif
708 default:
709 return NULL;
710 }
711
712 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
713 if (tp == NULL)
714 return (NULL);
715 bzero((caddr_t)tp, sizeof(struct tcpcb));
716 LIST_INIT(&tp->segq);
717 LIST_INIT(&tp->timeq);
718 tp->t_family = family; /* may be overridden later on */
719 tp->t_peermss = tcp_mssdflt;
720 tp->t_ourmss = tcp_mssdflt;
721 tp->t_segsz = tcp_mssdflt;
722 LIST_INIT(&tp->t_sc);
723
724 tp->t_flags = 0;
725 if (tcp_do_rfc1323 && tcp_do_win_scale)
726 tp->t_flags |= TF_REQ_SCALE;
727 if (tcp_do_rfc1323 && tcp_do_timestamps)
728 tp->t_flags |= TF_REQ_TSTMP;
729 if (tcp_do_sack == 2)
730 tp->t_flags |= TF_WILL_SACK;
731 else if (tcp_do_sack == 1)
732 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
733 tp->t_flags |= TF_CANT_TXSACK;
734 switch (family) {
735 case PF_INET:
736 tp->t_inpcb = (struct inpcb *)aux;
737 break;
738 #ifdef INET6
739 case PF_INET6:
740 tp->t_in6pcb = (struct in6pcb *)aux;
741 break;
742 #endif
743 }
744 /*
745 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
746 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
747 * reasonable initial retransmit time.
748 */
749 tp->t_srtt = TCPTV_SRTTBASE;
750 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
751 tp->t_rttmin = TCPTV_MIN;
752 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
753 TCPTV_MIN, TCPTV_REXMTMAX);
754 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
755 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
756 if (family == AF_INET) {
757 struct inpcb *inp = (struct inpcb *)aux;
758 inp->inp_ip.ip_ttl = ip_defttl;
759 inp->inp_ppcb = (caddr_t)tp;
760 }
761 #ifdef INET6
762 else if (family == AF_INET6) {
763 struct in6pcb *in6p = (struct in6pcb *)aux;
764 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
765 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
766 : NULL);
767 in6p->in6p_ppcb = (caddr_t)tp;
768 }
769 #endif
770 return (tp);
771 }
772
773 /*
774 * Drop a TCP connection, reporting
775 * the specified error. If connection is synchronized,
776 * then send a RST to peer.
777 */
778 struct tcpcb *
779 tcp_drop(tp, errno)
780 struct tcpcb *tp;
781 int errno;
782 {
783 struct socket *so;
784
785 #ifdef DIAGNOSTIC
786 if (tp->t_inpcb && tp->t_in6pcb)
787 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
788 #endif
789 #ifdef INET
790 if (tp->t_inpcb)
791 so = tp->t_inpcb->inp_socket;
792 #endif
793 #ifdef INET6
794 if (tp->t_in6pcb)
795 so = tp->t_in6pcb->in6p_socket;
796 #endif
797 else
798 return NULL;
799
800 if (TCPS_HAVERCVDSYN(tp->t_state)) {
801 tp->t_state = TCPS_CLOSED;
802 (void) tcp_output(tp);
803 tcpstat.tcps_drops++;
804 } else
805 tcpstat.tcps_conndrops++;
806 if (errno == ETIMEDOUT && tp->t_softerror)
807 errno = tp->t_softerror;
808 so->so_error = errno;
809 return (tcp_close(tp));
810 }
811
812 /*
813 * Close a TCP control block:
814 * discard all space held by the tcp
815 * discard internet protocol block
816 * wake up any sleepers
817 */
818 struct tcpcb *
819 tcp_close(tp)
820 struct tcpcb *tp;
821 {
822 struct inpcb *inp;
823 #ifdef INET6
824 struct in6pcb *in6p;
825 #endif
826 struct socket *so;
827 #ifdef RTV_RTT
828 struct rtentry *rt;
829 #endif
830 struct route *ro;
831
832 inp = tp->t_inpcb;
833 #ifdef INET6
834 in6p = tp->t_in6pcb;
835 #endif
836 so = NULL;
837 ro = NULL;
838 if (inp) {
839 so = inp->inp_socket;
840 ro = &inp->inp_route;
841 }
842 #ifdef INET6
843 else if (in6p) {
844 so = in6p->in6p_socket;
845 ro = (struct route *)&in6p->in6p_route;
846 }
847 #endif
848
849 #ifdef RTV_RTT
850 /*
851 * If we sent enough data to get some meaningful characteristics,
852 * save them in the routing entry. 'Enough' is arbitrarily
853 * defined as the sendpipesize (default 4K) * 16. This would
854 * give us 16 rtt samples assuming we only get one sample per
855 * window (the usual case on a long haul net). 16 samples is
856 * enough for the srtt filter to converge to within 5% of the correct
857 * value; fewer samples and we could save a very bogus rtt.
858 *
859 * Don't update the default route's characteristics and don't
860 * update anything that the user "locked".
861 */
862 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
863 ro && (rt = ro->ro_rt) &&
864 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
865 u_long i = 0;
866
867 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
868 i = tp->t_srtt *
869 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
870 if (rt->rt_rmx.rmx_rtt && i)
871 /*
872 * filter this update to half the old & half
873 * the new values, converting scale.
874 * See route.h and tcp_var.h for a
875 * description of the scaling constants.
876 */
877 rt->rt_rmx.rmx_rtt =
878 (rt->rt_rmx.rmx_rtt + i) / 2;
879 else
880 rt->rt_rmx.rmx_rtt = i;
881 }
882 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
883 i = tp->t_rttvar *
884 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
885 if (rt->rt_rmx.rmx_rttvar && i)
886 rt->rt_rmx.rmx_rttvar =
887 (rt->rt_rmx.rmx_rttvar + i) / 2;
888 else
889 rt->rt_rmx.rmx_rttvar = i;
890 }
891 /*
892 * update the pipelimit (ssthresh) if it has been updated
893 * already or if a pipesize was specified & the threshhold
894 * got below half the pipesize. I.e., wait for bad news
895 * before we start updating, then update on both good
896 * and bad news.
897 */
898 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
899 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
900 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
901 /*
902 * convert the limit from user data bytes to
903 * packets then to packet data bytes.
904 */
905 i = (i + tp->t_segsz / 2) / tp->t_segsz;
906 if (i < 2)
907 i = 2;
908 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
909 if (rt->rt_rmx.rmx_ssthresh)
910 rt->rt_rmx.rmx_ssthresh =
911 (rt->rt_rmx.rmx_ssthresh + i) / 2;
912 else
913 rt->rt_rmx.rmx_ssthresh = i;
914 }
915 }
916 #endif /* RTV_RTT */
917 /* free the reassembly queue, if any */
918 TCP_REASS_LOCK(tp);
919 (void) tcp_freeq(tp);
920 TCP_REASS_UNLOCK(tp);
921
922 TCP_CLEAR_DELACK(tp);
923 syn_cache_cleanup(tp);
924
925 if (tp->t_template) {
926 m_free(tp->t_template);
927 tp->t_template = NULL;
928 }
929 pool_put(&tcpcb_pool, tp);
930 if (inp) {
931 inp->inp_ppcb = 0;
932 soisdisconnected(so);
933 in_pcbdetach(inp);
934 }
935 #ifdef INET6
936 else if (in6p) {
937 in6p->in6p_ppcb = 0;
938 soisdisconnected(so);
939 in6_pcbdetach(in6p);
940 }
941 #endif
942 tcpstat.tcps_closed++;
943 return ((struct tcpcb *)0);
944 }
945
946 int
947 tcp_freeq(tp)
948 struct tcpcb *tp;
949 {
950 struct ipqent *qe;
951 int rv = 0;
952 #ifdef TCPREASS_DEBUG
953 int i = 0;
954 #endif
955
956 TCP_REASS_LOCK_CHECK(tp);
957
958 while ((qe = tp->segq.lh_first) != NULL) {
959 #ifdef TCPREASS_DEBUG
960 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
961 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
962 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
963 #endif
964 LIST_REMOVE(qe, ipqe_q);
965 LIST_REMOVE(qe, ipqe_timeq);
966 m_freem(qe->ipqe_m);
967 pool_put(&ipqent_pool, qe);
968 rv = 1;
969 }
970 return (rv);
971 }
972
973 /*
974 * Protocol drain routine. Called when memory is in short supply.
975 */
976 void
977 tcp_drain()
978 {
979 struct inpcb *inp;
980 struct tcpcb *tp;
981
982 /*
983 * Free the sequence queue of all TCP connections.
984 */
985 inp = tcbtable.inpt_queue.cqh_first;
986 if (inp) /* XXX */
987 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
988 inp = inp->inp_queue.cqe_next) {
989 if ((tp = intotcpcb(inp)) != NULL) {
990 /*
991 * We may be called from a device's interrupt
992 * context. If the tcpcb is already busy,
993 * just bail out now.
994 */
995 if (tcp_reass_lock_try(tp) == 0)
996 continue;
997 if (tcp_freeq(tp))
998 tcpstat.tcps_connsdrained++;
999 TCP_REASS_UNLOCK(tp);
1000 }
1001 }
1002 }
1003
1004 /*
1005 * Notify a tcp user of an asynchronous error;
1006 * store error as soft error, but wake up user
1007 * (for now, won't do anything until can select for soft error).
1008 */
1009 void
1010 tcp_notify(inp, error)
1011 struct inpcb *inp;
1012 int error;
1013 {
1014 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1015 struct socket *so = inp->inp_socket;
1016
1017 /*
1018 * Ignore some errors if we are hooked up.
1019 * If connection hasn't completed, has retransmitted several times,
1020 * and receives a second error, give up now. This is better
1021 * than waiting a long time to establish a connection that
1022 * can never complete.
1023 */
1024 if (tp->t_state == TCPS_ESTABLISHED &&
1025 (error == EHOSTUNREACH || error == ENETUNREACH ||
1026 error == EHOSTDOWN)) {
1027 return;
1028 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1029 tp->t_rxtshift > 3 && tp->t_softerror)
1030 so->so_error = error;
1031 else
1032 tp->t_softerror = error;
1033 wakeup((caddr_t) &so->so_timeo);
1034 sorwakeup(so);
1035 sowwakeup(so);
1036 }
1037
1038 #if defined(INET6) && !defined(TCP6)
1039 void
1040 tcp6_notify(in6p, error)
1041 struct in6pcb *in6p;
1042 int error;
1043 {
1044 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1045 struct socket *so = in6p->in6p_socket;
1046
1047 /*
1048 * Ignore some errors if we are hooked up.
1049 * If connection hasn't completed, has retransmitted several times,
1050 * and receives a second error, give up now. This is better
1051 * than waiting a long time to establish a connection that
1052 * can never complete.
1053 */
1054 if (tp->t_state == TCPS_ESTABLISHED &&
1055 (error == EHOSTUNREACH || error == ENETUNREACH ||
1056 error == EHOSTDOWN)) {
1057 return;
1058 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1059 tp->t_rxtshift > 3 && tp->t_softerror)
1060 so->so_error = error;
1061 else
1062 tp->t_softerror = error;
1063 wakeup((caddr_t) &so->so_timeo);
1064 sorwakeup(so);
1065 sowwakeup(so);
1066 }
1067 #endif
1068
1069 #if defined(INET6) && !defined(TCP6)
1070 void
1071 tcp6_ctlinput(cmd, sa, d)
1072 int cmd;
1073 struct sockaddr *sa;
1074 void *d;
1075 {
1076 struct tcphdr *thp;
1077 struct tcphdr th;
1078 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1079 int nmatch;
1080 struct sockaddr_in6 sa6;
1081 struct ip6_hdr *ip6;
1082 struct mbuf *m;
1083 int off;
1084
1085 if (sa->sa_family != AF_INET6 ||
1086 sa->sa_len != sizeof(struct sockaddr_in6))
1087 return;
1088 if ((unsigned)cmd >= PRC_NCMDS)
1089 return;
1090 else if (cmd == PRC_QUENCH) {
1091 /* XXX there's no PRC_QUENCH in IPv6 */
1092 notify = tcp6_quench;
1093 } else if (PRC_IS_REDIRECT(cmd))
1094 notify = in6_rtchange, d = NULL;
1095 else if (cmd == PRC_MSGSIZE)
1096 notify = tcp6_mtudisc, d = NULL;
1097 else if (cmd == PRC_HOSTDEAD)
1098 d = NULL;
1099 else if (inet6ctlerrmap[cmd] == 0)
1100 return;
1101
1102 /* if the parameter is from icmp6, decode it. */
1103 if (d != NULL) {
1104 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1105 m = ip6cp->ip6c_m;
1106 ip6 = ip6cp->ip6c_ip6;
1107 off = ip6cp->ip6c_off;
1108 } else {
1109 m = NULL;
1110 ip6 = NULL;
1111 }
1112
1113 /* translate addresses into internal form */
1114 sa6 = *(struct sockaddr_in6 *)sa;
1115 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) && m && m->m_pkthdr.rcvif)
1116 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1117
1118 if (ip6) {
1119 /*
1120 * XXX: We assume that when ip6 is non NULL,
1121 * M and OFF are valid.
1122 */
1123 struct in6_addr s;
1124
1125 /* translate addresses into internal form */
1126 memcpy(&s, &ip6->ip6_src, sizeof(s));
1127 if (IN6_IS_ADDR_LINKLOCAL(&s))
1128 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1129
1130 /* check if we can safely examine src and dst ports */
1131 if (m->m_pkthdr.len < off + sizeof(th))
1132 return;
1133
1134 if (m->m_len < off + sizeof(th)) {
1135 /*
1136 * this should be rare case,
1137 * so we compromise on this copy...
1138 */
1139 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1140 thp = &th;
1141 } else
1142 thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1143 nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
1144 thp->th_dport, &s, thp->th_sport, cmd, notify);
1145 if (nmatch == 0 && syn_cache_count &&
1146 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1147 inet6ctlerrmap[cmd] == ENETUNREACH ||
1148 inet6ctlerrmap[cmd] == EHOSTDOWN)) {
1149 struct sockaddr_in6 sin6;
1150 bzero(&sin6, sizeof(sin6));
1151 sin6.sin6_len = sizeof(sin6);
1152 sin6.sin6_family = AF_INET6;
1153 sin6.sin6_port = thp->th_sport;
1154 sin6.sin6_addr = s;
1155 syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
1156 }
1157 } else {
1158 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
1159 &zeroin6_addr, 0, cmd, notify);
1160 }
1161 }
1162 #endif
1163
1164 #ifdef INET
1165 /* assumes that ip header and tcp header are contiguous on mbuf */
1166 void *
1167 tcp_ctlinput(cmd, sa, v)
1168 int cmd;
1169 struct sockaddr *sa;
1170 void *v;
1171 {
1172 struct ip *ip = v;
1173 struct tcphdr *th;
1174 extern int inetctlerrmap[];
1175 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1176 int errno;
1177 int nmatch;
1178
1179 if (sa->sa_family != AF_INET ||
1180 sa->sa_len != sizeof(struct sockaddr_in))
1181 return NULL;
1182 if ((unsigned)cmd >= PRC_NCMDS)
1183 return NULL;
1184 errno = inetctlerrmap[cmd];
1185 if (cmd == PRC_QUENCH)
1186 notify = tcp_quench;
1187 else if (PRC_IS_REDIRECT(cmd))
1188 notify = in_rtchange, ip = 0;
1189 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1190 notify = tcp_mtudisc, ip = 0;
1191 else if (cmd == PRC_HOSTDEAD)
1192 ip = 0;
1193 else if (errno == 0)
1194 return NULL;
1195 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1196 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1197 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1198 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1199 if (nmatch == 0 && syn_cache_count &&
1200 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1201 inetctlerrmap[cmd] == ENETUNREACH ||
1202 inetctlerrmap[cmd] == EHOSTDOWN)) {
1203 struct sockaddr_in sin;
1204 bzero(&sin, sizeof(sin));
1205 sin.sin_len = sizeof(sin);
1206 sin.sin_family = AF_INET;
1207 sin.sin_port = th->th_sport;
1208 sin.sin_addr = ip->ip_src;
1209 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1210 }
1211
1212 /* XXX mapped address case */
1213 }
1214 else {
1215 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1216 notify);
1217 }
1218 return NULL;
1219 }
1220
1221 /*
1222 * When a source quence is received, we are being notifed of congestion.
1223 * Close the congestion window down to the Loss Window (one segment).
1224 * We will gradually open it again as we proceed.
1225 */
1226 void
1227 tcp_quench(inp, errno)
1228 struct inpcb *inp;
1229 int errno;
1230 {
1231 struct tcpcb *tp = intotcpcb(inp);
1232
1233 if (tp)
1234 tp->snd_cwnd = tp->t_segsz;
1235 }
1236 #endif
1237
1238 #if defined(INET6) && !defined(TCP6)
1239 void
1240 tcp6_quench(in6p, errno)
1241 struct in6pcb *in6p;
1242 int errno;
1243 {
1244 struct tcpcb *tp = in6totcpcb(in6p);
1245
1246 if (tp)
1247 tp->snd_cwnd = tp->t_segsz;
1248 }
1249 #endif
1250
1251 /*
1252 * On receipt of path MTU corrections, flush old route and replace it
1253 * with the new one. Retransmit all unacknowledged packets, to ensure
1254 * that all packets will be received.
1255 */
1256 void
1257 tcp_mtudisc(inp, errno)
1258 struct inpcb *inp;
1259 int errno;
1260 {
1261 struct tcpcb *tp = intotcpcb(inp);
1262 struct rtentry *rt = in_pcbrtentry(inp);
1263
1264 if (tp != 0) {
1265 if (rt != 0) {
1266 /*
1267 * If this was not a host route, remove and realloc.
1268 */
1269 if ((rt->rt_flags & RTF_HOST) == 0) {
1270 in_rtchange(inp, errno);
1271 if ((rt = in_pcbrtentry(inp)) == 0)
1272 return;
1273 }
1274
1275 /*
1276 * Slow start out of the error condition. We
1277 * use the MTU because we know it's smaller
1278 * than the previously transmitted segment.
1279 *
1280 * Note: This is more conservative than the
1281 * suggestion in draft-floyd-incr-init-win-03.
1282 */
1283 if (rt->rt_rmx.rmx_mtu != 0)
1284 tp->snd_cwnd =
1285 TCP_INITIAL_WINDOW(tcp_init_win,
1286 rt->rt_rmx.rmx_mtu);
1287 }
1288
1289 /*
1290 * Resend unacknowledged packets.
1291 */
1292 tp->snd_nxt = tp->snd_una;
1293 tcp_output(tp);
1294 }
1295 }
1296
1297 #if defined(INET6) && !defined(TCP6)
1298 void
1299 tcp6_mtudisc(in6p, errno)
1300 struct in6pcb *in6p;
1301 int errno;
1302 {
1303 struct tcpcb *tp = in6totcpcb(in6p);
1304 struct rtentry *rt = in6_pcbrtentry(in6p);
1305
1306 if (tp != 0) {
1307 if (rt != 0) {
1308 /*
1309 * If this was not a host route, remove and realloc.
1310 */
1311 if ((rt->rt_flags & RTF_HOST) == 0) {
1312 in6_rtchange(in6p, errno);
1313 if ((rt = in6_pcbrtentry(in6p)) == 0)
1314 return;
1315 }
1316
1317 /*
1318 * Slow start out of the error condition. We
1319 * use the MTU because we know it's smaller
1320 * than the previously transmitted segment.
1321 *
1322 * Note: This is more conservative than the
1323 * suggestion in draft-floyd-incr-init-win-03.
1324 */
1325 if (rt->rt_rmx.rmx_mtu != 0)
1326 tp->snd_cwnd =
1327 TCP_INITIAL_WINDOW(tcp_init_win,
1328 rt->rt_rmx.rmx_mtu);
1329 }
1330
1331 /*
1332 * Resend unacknowledged packets.
1333 */
1334 tp->snd_nxt = tp->snd_una;
1335 tcp_output(tp);
1336 }
1337 }
1338 #endif
1339
1340 /*
1341 * Compute the MSS to advertise to the peer. Called only during
1342 * the 3-way handshake. If we are the server (peer initiated
1343 * connection), we are called with a pointer to the interface
1344 * on which the SYN packet arrived. If we are the client (we
1345 * initiated connection), we are called with a pointer to the
1346 * interface out which this connection should go.
1347 *
1348 * NOTE: Do not subtract IP option/extension header size nor IPsec
1349 * header size from MSS advertisement. MSS option must hold the maximum
1350 * segment size we can accept, so it must always be:
1351 * max(if mtu) - ip header - tcp header
1352 */
1353 u_long
1354 tcp_mss_to_advertise(ifp, af)
1355 const struct ifnet *ifp;
1356 int af;
1357 {
1358 extern u_long in_maxmtu;
1359 u_long mss = 0;
1360 u_long hdrsiz;
1361
1362 /*
1363 * In order to avoid defeating path MTU discovery on the peer,
1364 * we advertise the max MTU of all attached networks as our MSS,
1365 * per RFC 1191, section 3.1.
1366 *
1367 * We provide the option to advertise just the MTU of
1368 * the interface on which we hope this connection will
1369 * be receiving. If we are responding to a SYN, we
1370 * will have a pretty good idea about this, but when
1371 * initiating a connection there is a bit more doubt.
1372 *
1373 * We also need to ensure that loopback has a large enough
1374 * MSS, as the loopback MTU is never included in in_maxmtu.
1375 */
1376
1377 if (ifp != NULL)
1378 mss = ifp->if_mtu;
1379
1380 if (tcp_mss_ifmtu == 0)
1381 mss = max(in_maxmtu, mss);
1382
1383 switch (af) {
1384 case AF_INET:
1385 hdrsiz = sizeof(struct ip);
1386 break;
1387 #ifdef INET6
1388 case AF_INET6:
1389 hdrsiz = sizeof(struct ip6_hdr);
1390 break;
1391 #endif
1392 default:
1393 hdrsiz = 0;
1394 break;
1395 }
1396 hdrsiz += sizeof(struct tcphdr);
1397 if (mss > hdrsiz)
1398 mss -= hdrsiz;
1399
1400 mss = max(tcp_mssdflt, mss);
1401 return (mss);
1402 }
1403
1404 /*
1405 * Set connection variables based on the peer's advertised MSS.
1406 * We are passed the TCPCB for the actual connection. If we
1407 * are the server, we are called by the compressed state engine
1408 * when the 3-way handshake is complete. If we are the client,
1409 * we are called when we recieve the SYN,ACK from the server.
1410 *
1411 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1412 * before this routine is called!
1413 */
1414 void
1415 tcp_mss_from_peer(tp, offer)
1416 struct tcpcb *tp;
1417 int offer;
1418 {
1419 struct socket *so;
1420 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1421 struct rtentry *rt;
1422 #endif
1423 u_long bufsize;
1424 int mss;
1425
1426 #ifdef DIAGNOSTIC
1427 if (tp->t_inpcb && tp->t_in6pcb)
1428 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1429 #endif
1430 so = NULL;
1431 rt = NULL;
1432 #ifdef INET
1433 if (tp->t_inpcb) {
1434 so = tp->t_inpcb->inp_socket;
1435 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1436 rt = in_pcbrtentry(tp->t_inpcb);
1437 #endif
1438 }
1439 #endif
1440 #ifdef INET6
1441 if (tp->t_in6pcb) {
1442 so = tp->t_in6pcb->in6p_socket;
1443 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1444 #ifdef TCP6
1445 rt = NULL;
1446 #else
1447 rt = in6_pcbrtentry(tp->t_in6pcb);
1448 #endif
1449 #endif
1450 }
1451 #endif
1452
1453 /*
1454 * As per RFC1122, use the default MSS value, unless they
1455 * sent us an offer. Do not accept offers less than 32 bytes.
1456 */
1457 mss = tcp_mssdflt;
1458 if (offer)
1459 mss = offer;
1460 mss = max(mss, 32); /* sanity */
1461 tp->t_peermss = mss;
1462 mss -= tcp_optlen(tp);
1463 #ifdef INET
1464 if (tp->t_inpcb)
1465 mss -= ip_optlen(tp->t_inpcb);
1466 #endif
1467 #ifdef INET6
1468 if (tp->t_in6pcb)
1469 mss -= ip6_optlen(tp->t_in6pcb);
1470 #endif
1471
1472 /*
1473 * If there's a pipesize, change the socket buffer to that size.
1474 * Make the socket buffer an integral number of MSS units. If
1475 * the MSS is larger than the socket buffer, artificially decrease
1476 * the MSS.
1477 */
1478 #ifdef RTV_SPIPE
1479 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1480 bufsize = rt->rt_rmx.rmx_sendpipe;
1481 else
1482 #endif
1483 bufsize = so->so_snd.sb_hiwat;
1484 if (bufsize < mss)
1485 mss = bufsize;
1486 else {
1487 bufsize = roundup(bufsize, mss);
1488 if (bufsize > sb_max)
1489 bufsize = sb_max;
1490 (void) sbreserve(&so->so_snd, bufsize);
1491 }
1492 tp->t_segsz = mss;
1493
1494 #ifdef RTV_SSTHRESH
1495 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1496 /*
1497 * There's some sort of gateway or interface buffer
1498 * limit on the path. Use this to set the slow
1499 * start threshold, but set the threshold to no less
1500 * than 2 * MSS.
1501 */
1502 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1503 }
1504 #endif
1505 }
1506
1507 /*
1508 * Processing necessary when a TCP connection is established.
1509 */
1510 void
1511 tcp_established(tp)
1512 struct tcpcb *tp;
1513 {
1514 struct socket *so;
1515 #ifdef RTV_RPIPE
1516 struct rtentry *rt;
1517 #endif
1518 u_long bufsize;
1519
1520 #ifdef DIAGNOSTIC
1521 if (tp->t_inpcb && tp->t_in6pcb)
1522 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1523 #endif
1524 so = NULL;
1525 rt = NULL;
1526 #ifdef INET
1527 if (tp->t_inpcb) {
1528 so = tp->t_inpcb->inp_socket;
1529 #if defined(RTV_RPIPE)
1530 rt = in_pcbrtentry(tp->t_inpcb);
1531 #endif
1532 }
1533 #endif
1534 #ifdef INET6
1535 if (tp->t_in6pcb) {
1536 so = tp->t_in6pcb->in6p_socket;
1537 #if defined(RTV_RPIPE)
1538 #ifdef TCP6
1539 rt = NULL;
1540 #else
1541 rt = in6_pcbrtentry(tp->t_in6pcb);
1542 #endif
1543 #endif
1544 }
1545 #endif
1546
1547 tp->t_state = TCPS_ESTABLISHED;
1548 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1549
1550 #ifdef RTV_RPIPE
1551 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1552 bufsize = rt->rt_rmx.rmx_recvpipe;
1553 else
1554 #endif
1555 bufsize = so->so_rcv.sb_hiwat;
1556 if (bufsize > tp->t_ourmss) {
1557 bufsize = roundup(bufsize, tp->t_ourmss);
1558 if (bufsize > sb_max)
1559 bufsize = sb_max;
1560 (void) sbreserve(&so->so_rcv, bufsize);
1561 }
1562 }
1563
1564 /*
1565 * Check if there's an initial rtt or rttvar. Convert from the
1566 * route-table units to scaled multiples of the slow timeout timer.
1567 * Called only during the 3-way handshake.
1568 */
1569 void
1570 tcp_rmx_rtt(tp)
1571 struct tcpcb *tp;
1572 {
1573 #ifdef RTV_RTT
1574 struct rtentry *rt = NULL;
1575 int rtt;
1576
1577 #ifdef DIAGNOSTIC
1578 if (tp->t_inpcb && tp->t_in6pcb)
1579 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1580 #endif
1581 #ifdef INET
1582 if (tp->t_inpcb)
1583 rt = in_pcbrtentry(tp->t_inpcb);
1584 #endif
1585 #ifdef INET6
1586 if (tp->t_in6pcb) {
1587 #ifdef TCP6
1588 rt = NULL;
1589 #else
1590 rt = in6_pcbrtentry(tp->t_in6pcb);
1591 #endif
1592 }
1593 #endif
1594 if (rt == NULL)
1595 return;
1596
1597 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1598 /*
1599 * XXX The lock bit for MTU indicates that the value
1600 * is also a minimum value; this is subject to time.
1601 */
1602 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1603 TCPT_RANGESET(tp->t_rttmin,
1604 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1605 TCPTV_MIN, TCPTV_REXMTMAX);
1606 tp->t_srtt = rtt /
1607 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1608 if (rt->rt_rmx.rmx_rttvar) {
1609 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1610 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1611 (TCP_RTTVAR_SHIFT + 2));
1612 } else {
1613 /* Default variation is +- 1 rtt */
1614 tp->t_rttvar =
1615 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1616 }
1617 TCPT_RANGESET(tp->t_rxtcur,
1618 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1619 tp->t_rttmin, TCPTV_REXMTMAX);
1620 }
1621 #endif
1622 }
1623
1624 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1625
1626 /*
1627 * Get a new sequence value given a tcp control block
1628 */
1629 tcp_seq
1630 tcp_new_iss(tp, len, addin)
1631 void *tp;
1632 u_long len;
1633 tcp_seq addin;
1634 {
1635 tcp_seq tcp_iss;
1636
1637 /*
1638 * Randomize.
1639 */
1640 #if NRND > 0
1641 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1642 #else
1643 tcp_iss = random();
1644 #endif
1645
1646 /*
1647 * If we were asked to add some amount to a known value,
1648 * we will take a random value obtained above, mask off the upper
1649 * bits, and add in the known value. We also add in a constant to
1650 * ensure that we are at least a certain distance from the original
1651 * value.
1652 *
1653 * This is used when an old connection is in timed wait
1654 * and we have a new one coming in, for instance.
1655 */
1656 if (addin != 0) {
1657 #ifdef TCPISS_DEBUG
1658 printf("Random %08x, ", tcp_iss);
1659 #endif
1660 tcp_iss &= TCP_ISS_RANDOM_MASK;
1661 tcp_iss += addin + TCP_ISSINCR;
1662 #ifdef TCPISS_DEBUG
1663 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1664 #endif
1665 } else {
1666 tcp_iss &= TCP_ISS_RANDOM_MASK;
1667 tcp_iss += tcp_iss_seq;
1668 tcp_iss_seq += TCP_ISSINCR;
1669 #ifdef TCPISS_DEBUG
1670 printf("ISS %08x\n", tcp_iss);
1671 #endif
1672 }
1673
1674 if (tcp_compat_42) {
1675 /*
1676 * Limit it to the positive range for really old TCP
1677 * implementations.
1678 */
1679 if (tcp_iss >= 0x80000000)
1680 tcp_iss &= 0x7fffffff; /* XXX */
1681 }
1682
1683 return tcp_iss;
1684 }
1685
1686 #ifdef IPSEC
1687 /* compute ESP/AH header size for TCP, including outer IP header. */
1688 size_t
1689 ipsec4_hdrsiz_tcp(tp)
1690 struct tcpcb *tp;
1691 {
1692 struct inpcb *inp;
1693 size_t hdrsiz;
1694
1695 /* XXX mapped addr case (tp->t_in6pcb) */
1696 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1697 return 0;
1698 switch (tp->t_family) {
1699 case AF_INET:
1700 /* XXX: should use currect direction. */
1701 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1702 break;
1703 default:
1704 hdrsiz = 0;
1705 break;
1706 }
1707
1708 return hdrsiz;
1709 }
1710
1711 #if defined(INET6) && !defined(TCP6)
1712 size_t
1713 ipsec6_hdrsiz_tcp(tp)
1714 struct tcpcb *tp;
1715 {
1716 struct in6pcb *in6p;
1717 size_t hdrsiz;
1718
1719 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1720 return 0;
1721 switch (tp->t_family) {
1722 case AF_INET6:
1723 /* XXX: should use currect direction. */
1724 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1725 break;
1726 case AF_INET:
1727 /* mapped address case - tricky */
1728 default:
1729 hdrsiz = 0;
1730 break;
1731 }
1732
1733 return hdrsiz;
1734 }
1735 #endif
1736 #endif /*IPSEC*/
1737
1738 /*
1739 * Determine the length of the TCP options for this connection.
1740 *
1741 * XXX: What do we do for SACK, when we add that? Just reserve
1742 * all of the space? Otherwise we can't exactly be incrementing
1743 * cwnd by an amount that varies depending on the amount we last
1744 * had to SACK!
1745 */
1746
1747 u_int
1748 tcp_optlen(tp)
1749 struct tcpcb *tp;
1750 {
1751 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1752 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1753 return TCPOLEN_TSTAMP_APPA;
1754 else
1755 return 0;
1756 }
1757