tcp_subr.c revision 1.97 1 /* $NetBSD: tcp_subr.c,v 1.97 2000/10/18 07:21:10 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #include <netinet6/ip6protosw.h>
143 #endif
144
145 #include <netinet/tcp.h>
146 #include <netinet/tcp_fsm.h>
147 #include <netinet/tcp_seq.h>
148 #include <netinet/tcp_timer.h>
149 #include <netinet/tcp_var.h>
150 #include <netinet/tcpip.h>
151
152 #ifdef IPSEC
153 #include <netinet6/ipsec.h>
154 #endif /*IPSEC*/
155
156 #ifdef INET6
157 struct in6pcb tcb6;
158 #endif
159
160 /* patchable/settable parameters for tcp */
161 int tcp_mssdflt = TCP_MSS;
162 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
163 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
164 int tcp_do_sack = 1; /* selective acknowledgement */
165 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
166 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
167 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
168 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
169 int tcp_init_win = 1;
170 int tcp_mss_ifmtu = 0;
171 #ifdef TCP_COMPAT_42
172 int tcp_compat_42 = 1;
173 #else
174 int tcp_compat_42 = 0;
175 #endif
176 int tcp_rst_ppslim = 100; /* 100pps */
177
178 /* tcb hash */
179 #ifndef TCBHASHSIZE
180 #define TCBHASHSIZE 128
181 #endif
182 int tcbhashsize = TCBHASHSIZE;
183
184 /* syn hash parameters */
185 #define TCP_SYN_HASH_SIZE 293
186 #define TCP_SYN_BUCKET_SIZE 35
187 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
188 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
189 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
190 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
191 int tcp_syn_cache_interval = 1; /* runs timer twice a second */
192
193 int tcp_freeq __P((struct tcpcb *));
194
195 struct pool tcpcb_pool;
196
197 /*
198 * Tcp initialization
199 */
200 void
201 tcp_init()
202 {
203 int hlen;
204
205 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
206 0, NULL, NULL, M_PCB);
207 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
208 #ifdef INET6
209 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
210 #endif
211 LIST_INIT(&tcp_delacks);
212
213 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
214 #ifdef INET6
215 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
216 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
217 #endif
218 if (max_protohdr < hlen)
219 max_protohdr = hlen;
220 if (max_linkhdr + hlen > MHLEN)
221 panic("tcp_init");
222
223 /* Initialize the compressed state engine. */
224 syn_cache_init();
225 }
226
227 /*
228 * Create template to be used to send tcp packets on a connection.
229 * Call after host entry created, allocates an mbuf and fills
230 * in a skeletal tcp/ip header, minimizing the amount of work
231 * necessary when the connection is used.
232 */
233 struct mbuf *
234 tcp_template(tp)
235 struct tcpcb *tp;
236 {
237 struct inpcb *inp = tp->t_inpcb;
238 #ifdef INET6
239 struct in6pcb *in6p = tp->t_in6pcb;
240 #endif
241 struct tcphdr *n;
242 struct mbuf *m;
243 int hlen;
244
245 switch (tp->t_family) {
246 case AF_INET:
247 hlen = sizeof(struct ip);
248 if (inp)
249 break;
250 #ifdef INET6
251 if (in6p) {
252 /* mapped addr case */
253 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
254 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
255 break;
256 }
257 #endif
258 return NULL; /*EINVAL*/
259 #ifdef INET6
260 case AF_INET6:
261 hlen = sizeof(struct ip6_hdr);
262 if (in6p) {
263 /* more sainty check? */
264 break;
265 }
266 return NULL; /*EINVAL*/
267 #endif
268 default:
269 hlen = 0; /*pacify gcc*/
270 return NULL; /*EAFNOSUPPORT*/
271 }
272 #ifdef DIAGNOSTIC
273 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
274 panic("mclbytes too small for t_template");
275 #endif
276 m = tp->t_template;
277 if (m && m->m_len == hlen + sizeof(struct tcphdr))
278 ;
279 else {
280 if (m)
281 m_freem(m);
282 m = tp->t_template = NULL;
283 MGETHDR(m, M_DONTWAIT, MT_HEADER);
284 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
285 MCLGET(m, M_DONTWAIT);
286 if ((m->m_flags & M_EXT) == 0) {
287 m_free(m);
288 m = NULL;
289 }
290 }
291 if (m == NULL)
292 return NULL;
293 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
294 }
295 bzero(mtod(m, caddr_t), m->m_len);
296 switch (tp->t_family) {
297 case AF_INET:
298 {
299 struct ipovly *ipov;
300 mtod(m, struct ip *)->ip_v = 4;
301 ipov = mtod(m, struct ipovly *);
302 ipov->ih_pr = IPPROTO_TCP;
303 ipov->ih_len = htons(sizeof(struct tcphdr));
304 if (inp) {
305 ipov->ih_src = inp->inp_laddr;
306 ipov->ih_dst = inp->inp_faddr;
307 }
308 #ifdef INET6
309 else if (in6p) {
310 /* mapped addr case */
311 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
312 sizeof(ipov->ih_src));
313 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
314 sizeof(ipov->ih_dst));
315 }
316 #endif
317 break;
318 }
319 #ifdef INET6
320 case AF_INET6:
321 {
322 struct ip6_hdr *ip6;
323 mtod(m, struct ip *)->ip_v = 6;
324 ip6 = mtod(m, struct ip6_hdr *);
325 ip6->ip6_nxt = IPPROTO_TCP;
326 ip6->ip6_plen = htons(sizeof(struct tcphdr));
327 ip6->ip6_src = in6p->in6p_laddr;
328 ip6->ip6_dst = in6p->in6p_faddr;
329 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
330 if (ip6_auto_flowlabel) {
331 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
332 ip6->ip6_flow |=
333 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
334 }
335 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
336 ip6->ip6_vfc |= IPV6_VERSION;
337 break;
338 }
339 #endif
340 }
341 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
342 if (inp) {
343 n->th_sport = inp->inp_lport;
344 n->th_dport = inp->inp_fport;
345 }
346 #ifdef INET6
347 else if (in6p) {
348 n->th_sport = in6p->in6p_lport;
349 n->th_dport = in6p->in6p_fport;
350 }
351 #endif
352 n->th_seq = 0;
353 n->th_ack = 0;
354 n->th_x2 = 0;
355 n->th_off = 5;
356 n->th_flags = 0;
357 n->th_win = 0;
358 n->th_sum = 0;
359 n->th_urp = 0;
360 return (m);
361 }
362
363 /*
364 * Send a single message to the TCP at address specified by
365 * the given TCP/IP header. If m == 0, then we make a copy
366 * of the tcpiphdr at ti and send directly to the addressed host.
367 * This is used to force keep alive messages out using the TCP
368 * template for a connection tp->t_template. If flags are given
369 * then we send a message back to the TCP which originated the
370 * segment ti, and discard the mbuf containing it and any other
371 * attached mbufs.
372 *
373 * In any case the ack and sequence number of the transmitted
374 * segment are as specified by the parameters.
375 */
376 int
377 tcp_respond(tp, template, m, th0, ack, seq, flags)
378 struct tcpcb *tp;
379 struct mbuf *template;
380 struct mbuf *m;
381 struct tcphdr *th0;
382 tcp_seq ack, seq;
383 int flags;
384 {
385 struct route *ro;
386 int error, tlen, win = 0;
387 int hlen;
388 struct ip *ip;
389 #ifdef INET6
390 struct ip6_hdr *ip6;
391 #endif
392 int family; /* family on packet, not inpcb/in6pcb! */
393 struct tcphdr *th;
394
395 if (tp != NULL && (flags & TH_RST) == 0) {
396 #ifdef DIAGNOSTIC
397 if (tp->t_inpcb && tp->t_in6pcb)
398 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
399 #endif
400 #ifdef INET
401 if (tp->t_inpcb)
402 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
403 #endif
404 #ifdef INET6
405 if (tp->t_in6pcb)
406 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
407 #endif
408 }
409
410 ip = NULL;
411 #ifdef INET6
412 ip6 = NULL;
413 #endif
414 if (m == 0) {
415 if (!template)
416 return EINVAL;
417
418 /* get family information from template */
419 switch (mtod(template, struct ip *)->ip_v) {
420 case 4:
421 family = AF_INET;
422 hlen = sizeof(struct ip);
423 break;
424 #ifdef INET6
425 case 6:
426 family = AF_INET6;
427 hlen = sizeof(struct ip6_hdr);
428 break;
429 #endif
430 default:
431 return EAFNOSUPPORT;
432 }
433
434 MGETHDR(m, M_DONTWAIT, MT_HEADER);
435 if (m) {
436 MCLGET(m, M_DONTWAIT);
437 if ((m->m_flags & M_EXT) == 0) {
438 m_free(m);
439 m = NULL;
440 }
441 }
442 if (m == NULL)
443 return (ENOBUFS);
444
445 if (tcp_compat_42)
446 tlen = 1;
447 else
448 tlen = 0;
449
450 m->m_data += max_linkhdr;
451 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
452 template->m_len);
453 switch (family) {
454 case AF_INET:
455 ip = mtod(m, struct ip *);
456 th = (struct tcphdr *)(ip + 1);
457 break;
458 #ifdef INET6
459 case AF_INET6:
460 ip6 = mtod(m, struct ip6_hdr *);
461 th = (struct tcphdr *)(ip6 + 1);
462 break;
463 #endif
464 #if 0
465 default:
466 /* noone will visit here */
467 m_freem(m);
468 return EAFNOSUPPORT;
469 #endif
470 }
471 flags = TH_ACK;
472 } else {
473
474 if ((m->m_flags & M_PKTHDR) == 0) {
475 #if 0
476 printf("non PKTHDR to tcp_respond\n");
477 #endif
478 m_freem(m);
479 return EINVAL;
480 }
481 #ifdef DIAGNOSTIC
482 if (!th0)
483 panic("th0 == NULL in tcp_respond");
484 #endif
485
486 /* get family information from m */
487 switch (mtod(m, struct ip *)->ip_v) {
488 case 4:
489 family = AF_INET;
490 hlen = sizeof(struct ip);
491 ip = mtod(m, struct ip *);
492 break;
493 #ifdef INET6
494 case 6:
495 family = AF_INET6;
496 hlen = sizeof(struct ip6_hdr);
497 ip6 = mtod(m, struct ip6_hdr *);
498 break;
499 #endif
500 default:
501 m_freem(m);
502 return EAFNOSUPPORT;
503 }
504 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
505 tlen = sizeof(*th0);
506 else
507 tlen = th0->th_off << 2;
508
509 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
510 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
511 m->m_len = hlen + tlen;
512 m_freem(m->m_next);
513 m->m_next = NULL;
514 } else {
515 struct mbuf *n;
516
517 #ifdef DIAGNOSTIC
518 if (max_linkhdr + hlen + tlen > MCLBYTES) {
519 m_freem(m);
520 return EMSGSIZE;
521 }
522 #endif
523 MGETHDR(n, M_DONTWAIT, MT_HEADER);
524 if (n && max_linkhdr + hlen + tlen > MHLEN) {
525 MCLGET(n, M_DONTWAIT);
526 if ((n->m_flags & M_EXT) == 0) {
527 m_freem(n);
528 n = NULL;
529 }
530 }
531 if (!n) {
532 m_freem(m);
533 return ENOBUFS;
534 }
535
536 n->m_data += max_linkhdr;
537 n->m_len = hlen + tlen;
538 m_copyback(n, 0, hlen, mtod(m, caddr_t));
539 m_copyback(n, hlen, tlen, (caddr_t)th0);
540
541 m_freem(m);
542 m = n;
543 n = NULL;
544 }
545
546 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
547 switch (family) {
548 case AF_INET:
549 ip = mtod(m, struct ip *);
550 th = (struct tcphdr *)(ip + 1);
551 ip->ip_p = IPPROTO_TCP;
552 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
553 ip->ip_p = IPPROTO_TCP;
554 break;
555 #ifdef INET6
556 case AF_INET6:
557 ip6 = mtod(m, struct ip6_hdr *);
558 th = (struct tcphdr *)(ip6 + 1);
559 ip6->ip6_nxt = IPPROTO_TCP;
560 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
561 ip6->ip6_nxt = IPPROTO_TCP;
562 break;
563 #endif
564 #if 0
565 default:
566 /* noone will visit here */
567 m_freem(m);
568 return EAFNOSUPPORT;
569 #endif
570 }
571 xchg(th->th_dport, th->th_sport, u_int16_t);
572 #undef xchg
573 tlen = 0; /*be friendly with the following code*/
574 }
575 th->th_seq = htonl(seq);
576 th->th_ack = htonl(ack);
577 th->th_x2 = 0;
578 if ((flags & TH_SYN) == 0) {
579 if (tp)
580 win >>= tp->rcv_scale;
581 if (win > TCP_MAXWIN)
582 win = TCP_MAXWIN;
583 th->th_win = htons((u_int16_t)win);
584 th->th_off = sizeof (struct tcphdr) >> 2;
585 tlen += sizeof(*th);
586 } else
587 tlen += th->th_off << 2;
588 m->m_len = hlen + tlen;
589 m->m_pkthdr.len = hlen + tlen;
590 m->m_pkthdr.rcvif = (struct ifnet *) 0;
591 th->th_flags = flags;
592 th->th_urp = 0;
593
594 switch (family) {
595 #ifdef INET
596 case AF_INET:
597 {
598 struct ipovly *ipov = (struct ipovly *)ip;
599 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
600 ipov->ih_len = htons((u_int16_t)tlen);
601
602 th->th_sum = 0;
603 th->th_sum = in_cksum(m, hlen + tlen);
604 ip->ip_len = hlen + tlen; /*will be flipped on output*/
605 ip->ip_ttl = ip_defttl;
606 break;
607 }
608 #endif
609 #ifdef INET6
610 case AF_INET6:
611 {
612 th->th_sum = 0;
613 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
614 tlen);
615 ip6->ip6_plen = ntohs(tlen);
616 if (tp && tp->t_in6pcb) {
617 struct ifnet *oifp;
618 ro = (struct route *)&tp->t_in6pcb->in6p_route;
619 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
620 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
621 } else
622 ip6->ip6_hlim = ip6_defhlim;
623 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
624 if (ip6_auto_flowlabel) {
625 ip6->ip6_flow |=
626 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
627 }
628 break;
629 }
630 #endif
631 }
632
633 #ifdef IPSEC
634 ipsec_setsocket(m, NULL);
635 #endif /*IPSEC*/
636
637 if (tp != NULL && tp->t_inpcb != NULL) {
638 ro = &tp->t_inpcb->inp_route;
639 #ifdef IPSEC
640 ipsec_setsocket(m, tp->t_inpcb->inp_socket);
641 #endif
642 #ifdef DIAGNOSTIC
643 if (family != AF_INET)
644 panic("tcp_respond: address family mismatch");
645 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
646 panic("tcp_respond: ip_dst %x != inp_faddr %x",
647 ntohl(ip->ip_dst.s_addr),
648 ntohl(tp->t_inpcb->inp_faddr.s_addr));
649 }
650 #endif
651 }
652 #ifdef INET6
653 else if (tp != NULL && tp->t_in6pcb != NULL) {
654 ro = (struct route *)&tp->t_in6pcb->in6p_route;
655 #ifdef IPSEC
656 ipsec_setsocket(m, tp->t_in6pcb->in6p_socket);
657 #endif
658 #ifdef DIAGNOSTIC
659 if (family == AF_INET) {
660 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
661 panic("tcp_respond: not mapped addr");
662 if (bcmp(&ip->ip_dst,
663 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
664 sizeof(ip->ip_dst)) != 0) {
665 panic("tcp_respond: ip_dst != in6p_faddr");
666 }
667 } else if (family == AF_INET6) {
668 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
669 panic("tcp_respond: ip6_dst != in6p_faddr");
670 } else
671 panic("tcp_respond: address family mismatch");
672 #endif
673 }
674 #endif
675 else
676 ro = NULL;
677
678 switch (family) {
679 #ifdef INET
680 case AF_INET:
681 error = ip_output(m, NULL, ro,
682 (ip_mtudisc ? IP_MTUDISC : 0),
683 NULL);
684 break;
685 #endif
686 #ifdef INET6
687 case AF_INET6:
688 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
689 NULL);
690 break;
691 #endif
692 default:
693 error = EAFNOSUPPORT;
694 break;
695 }
696
697 return (error);
698 }
699
700 /*
701 * Create a new TCP control block, making an
702 * empty reassembly queue and hooking it to the argument
703 * protocol control block.
704 */
705 struct tcpcb *
706 tcp_newtcpcb(family, aux)
707 int family; /* selects inpcb, or in6pcb */
708 void *aux;
709 {
710 struct tcpcb *tp;
711
712 switch (family) {
713 case PF_INET:
714 break;
715 #ifdef INET6
716 case PF_INET6:
717 break;
718 #endif
719 default:
720 return NULL;
721 }
722
723 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
724 if (tp == NULL)
725 return (NULL);
726 bzero((caddr_t)tp, sizeof(struct tcpcb));
727 LIST_INIT(&tp->segq);
728 LIST_INIT(&tp->timeq);
729 tp->t_family = family; /* may be overridden later on */
730 tp->t_peermss = tcp_mssdflt;
731 tp->t_ourmss = tcp_mssdflt;
732 tp->t_segsz = tcp_mssdflt;
733 LIST_INIT(&tp->t_sc);
734
735 tp->t_flags = 0;
736 if (tcp_do_rfc1323 && tcp_do_win_scale)
737 tp->t_flags |= TF_REQ_SCALE;
738 if (tcp_do_rfc1323 && tcp_do_timestamps)
739 tp->t_flags |= TF_REQ_TSTMP;
740 if (tcp_do_sack == 2)
741 tp->t_flags |= TF_WILL_SACK;
742 else if (tcp_do_sack == 1)
743 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
744 tp->t_flags |= TF_CANT_TXSACK;
745 switch (family) {
746 case PF_INET:
747 tp->t_inpcb = (struct inpcb *)aux;
748 break;
749 #ifdef INET6
750 case PF_INET6:
751 tp->t_in6pcb = (struct in6pcb *)aux;
752 break;
753 #endif
754 }
755 /*
756 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
757 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
758 * reasonable initial retransmit time.
759 */
760 tp->t_srtt = TCPTV_SRTTBASE;
761 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
762 tp->t_rttmin = TCPTV_MIN;
763 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
764 TCPTV_MIN, TCPTV_REXMTMAX);
765 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
766 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
767 if (family == AF_INET) {
768 struct inpcb *inp = (struct inpcb *)aux;
769 inp->inp_ip.ip_ttl = ip_defttl;
770 inp->inp_ppcb = (caddr_t)tp;
771 }
772 #ifdef INET6
773 else if (family == AF_INET6) {
774 struct in6pcb *in6p = (struct in6pcb *)aux;
775 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
776 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
777 : NULL);
778 in6p->in6p_ppcb = (caddr_t)tp;
779 }
780 #endif
781 return (tp);
782 }
783
784 /*
785 * Drop a TCP connection, reporting
786 * the specified error. If connection is synchronized,
787 * then send a RST to peer.
788 */
789 struct tcpcb *
790 tcp_drop(tp, errno)
791 struct tcpcb *tp;
792 int errno;
793 {
794 struct socket *so;
795
796 #ifdef DIAGNOSTIC
797 if (tp->t_inpcb && tp->t_in6pcb)
798 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
799 #endif
800 #ifdef INET
801 if (tp->t_inpcb)
802 so = tp->t_inpcb->inp_socket;
803 #endif
804 #ifdef INET6
805 if (tp->t_in6pcb)
806 so = tp->t_in6pcb->in6p_socket;
807 #endif
808 else
809 return NULL;
810
811 if (TCPS_HAVERCVDSYN(tp->t_state)) {
812 tp->t_state = TCPS_CLOSED;
813 (void) tcp_output(tp);
814 tcpstat.tcps_drops++;
815 } else
816 tcpstat.tcps_conndrops++;
817 if (errno == ETIMEDOUT && tp->t_softerror)
818 errno = tp->t_softerror;
819 so->so_error = errno;
820 return (tcp_close(tp));
821 }
822
823 /*
824 * Close a TCP control block:
825 * discard all space held by the tcp
826 * discard internet protocol block
827 * wake up any sleepers
828 */
829 struct tcpcb *
830 tcp_close(tp)
831 struct tcpcb *tp;
832 {
833 struct inpcb *inp;
834 #ifdef INET6
835 struct in6pcb *in6p;
836 #endif
837 struct socket *so;
838 #ifdef RTV_RTT
839 struct rtentry *rt;
840 #endif
841 struct route *ro;
842
843 inp = tp->t_inpcb;
844 #ifdef INET6
845 in6p = tp->t_in6pcb;
846 #endif
847 so = NULL;
848 ro = NULL;
849 if (inp) {
850 so = inp->inp_socket;
851 ro = &inp->inp_route;
852 }
853 #ifdef INET6
854 else if (in6p) {
855 so = in6p->in6p_socket;
856 ro = (struct route *)&in6p->in6p_route;
857 }
858 #endif
859
860 #ifdef RTV_RTT
861 /*
862 * If we sent enough data to get some meaningful characteristics,
863 * save them in the routing entry. 'Enough' is arbitrarily
864 * defined as the sendpipesize (default 4K) * 16. This would
865 * give us 16 rtt samples assuming we only get one sample per
866 * window (the usual case on a long haul net). 16 samples is
867 * enough for the srtt filter to converge to within 5% of the correct
868 * value; fewer samples and we could save a very bogus rtt.
869 *
870 * Don't update the default route's characteristics and don't
871 * update anything that the user "locked".
872 */
873 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
874 ro && (rt = ro->ro_rt) &&
875 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
876 u_long i = 0;
877
878 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
879 i = tp->t_srtt *
880 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
881 if (rt->rt_rmx.rmx_rtt && i)
882 /*
883 * filter this update to half the old & half
884 * the new values, converting scale.
885 * See route.h and tcp_var.h for a
886 * description of the scaling constants.
887 */
888 rt->rt_rmx.rmx_rtt =
889 (rt->rt_rmx.rmx_rtt + i) / 2;
890 else
891 rt->rt_rmx.rmx_rtt = i;
892 }
893 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
894 i = tp->t_rttvar *
895 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
896 if (rt->rt_rmx.rmx_rttvar && i)
897 rt->rt_rmx.rmx_rttvar =
898 (rt->rt_rmx.rmx_rttvar + i) / 2;
899 else
900 rt->rt_rmx.rmx_rttvar = i;
901 }
902 /*
903 * update the pipelimit (ssthresh) if it has been updated
904 * already or if a pipesize was specified & the threshhold
905 * got below half the pipesize. I.e., wait for bad news
906 * before we start updating, then update on both good
907 * and bad news.
908 */
909 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
910 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
911 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
912 /*
913 * convert the limit from user data bytes to
914 * packets then to packet data bytes.
915 */
916 i = (i + tp->t_segsz / 2) / tp->t_segsz;
917 if (i < 2)
918 i = 2;
919 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
920 if (rt->rt_rmx.rmx_ssthresh)
921 rt->rt_rmx.rmx_ssthresh =
922 (rt->rt_rmx.rmx_ssthresh + i) / 2;
923 else
924 rt->rt_rmx.rmx_ssthresh = i;
925 }
926 }
927 #endif /* RTV_RTT */
928 /* free the reassembly queue, if any */
929 TCP_REASS_LOCK(tp);
930 (void) tcp_freeq(tp);
931 TCP_REASS_UNLOCK(tp);
932
933 TCP_CLEAR_DELACK(tp);
934 syn_cache_cleanup(tp);
935
936 if (tp->t_template) {
937 m_free(tp->t_template);
938 tp->t_template = NULL;
939 }
940 pool_put(&tcpcb_pool, tp);
941 if (inp) {
942 inp->inp_ppcb = 0;
943 soisdisconnected(so);
944 in_pcbdetach(inp);
945 }
946 #ifdef INET6
947 else if (in6p) {
948 in6p->in6p_ppcb = 0;
949 soisdisconnected(so);
950 in6_pcbdetach(in6p);
951 }
952 #endif
953 tcpstat.tcps_closed++;
954 return ((struct tcpcb *)0);
955 }
956
957 int
958 tcp_freeq(tp)
959 struct tcpcb *tp;
960 {
961 struct ipqent *qe;
962 int rv = 0;
963 #ifdef TCPREASS_DEBUG
964 int i = 0;
965 #endif
966
967 TCP_REASS_LOCK_CHECK(tp);
968
969 while ((qe = tp->segq.lh_first) != NULL) {
970 #ifdef TCPREASS_DEBUG
971 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
972 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
973 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
974 #endif
975 LIST_REMOVE(qe, ipqe_q);
976 LIST_REMOVE(qe, ipqe_timeq);
977 m_freem(qe->ipqe_m);
978 pool_put(&ipqent_pool, qe);
979 rv = 1;
980 }
981 return (rv);
982 }
983
984 /*
985 * Protocol drain routine. Called when memory is in short supply.
986 */
987 void
988 tcp_drain()
989 {
990 struct inpcb *inp;
991 struct tcpcb *tp;
992
993 /*
994 * Free the sequence queue of all TCP connections.
995 */
996 inp = tcbtable.inpt_queue.cqh_first;
997 if (inp) /* XXX */
998 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
999 inp = inp->inp_queue.cqe_next) {
1000 if ((tp = intotcpcb(inp)) != NULL) {
1001 /*
1002 * We may be called from a device's interrupt
1003 * context. If the tcpcb is already busy,
1004 * just bail out now.
1005 */
1006 if (tcp_reass_lock_try(tp) == 0)
1007 continue;
1008 if (tcp_freeq(tp))
1009 tcpstat.tcps_connsdrained++;
1010 TCP_REASS_UNLOCK(tp);
1011 }
1012 }
1013 }
1014
1015 /*
1016 * Notify a tcp user of an asynchronous error;
1017 * store error as soft error, but wake up user
1018 * (for now, won't do anything until can select for soft error).
1019 */
1020 void
1021 tcp_notify(inp, error)
1022 struct inpcb *inp;
1023 int error;
1024 {
1025 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1026 struct socket *so = inp->inp_socket;
1027
1028 /*
1029 * Ignore some errors if we are hooked up.
1030 * If connection hasn't completed, has retransmitted several times,
1031 * and receives a second error, give up now. This is better
1032 * than waiting a long time to establish a connection that
1033 * can never complete.
1034 */
1035 if (tp->t_state == TCPS_ESTABLISHED &&
1036 (error == EHOSTUNREACH || error == ENETUNREACH ||
1037 error == EHOSTDOWN)) {
1038 return;
1039 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1040 tp->t_rxtshift > 3 && tp->t_softerror)
1041 so->so_error = error;
1042 else
1043 tp->t_softerror = error;
1044 wakeup((caddr_t) &so->so_timeo);
1045 sorwakeup(so);
1046 sowwakeup(so);
1047 }
1048
1049 #if defined(INET6) && !defined(TCP6)
1050 void
1051 tcp6_notify(in6p, error)
1052 struct in6pcb *in6p;
1053 int error;
1054 {
1055 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1056 struct socket *so = in6p->in6p_socket;
1057
1058 /*
1059 * Ignore some errors if we are hooked up.
1060 * If connection hasn't completed, has retransmitted several times,
1061 * and receives a second error, give up now. This is better
1062 * than waiting a long time to establish a connection that
1063 * can never complete.
1064 */
1065 if (tp->t_state == TCPS_ESTABLISHED &&
1066 (error == EHOSTUNREACH || error == ENETUNREACH ||
1067 error == EHOSTDOWN)) {
1068 return;
1069 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1070 tp->t_rxtshift > 3 && tp->t_softerror)
1071 so->so_error = error;
1072 else
1073 tp->t_softerror = error;
1074 wakeup((caddr_t) &so->so_timeo);
1075 sorwakeup(so);
1076 sowwakeup(so);
1077 }
1078 #endif
1079
1080 #if defined(INET6) && !defined(TCP6)
1081 void
1082 tcp6_ctlinput(cmd, sa, d)
1083 int cmd;
1084 struct sockaddr *sa;
1085 void *d;
1086 {
1087 struct tcphdr *thp;
1088 struct tcphdr th;
1089 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1090 int nmatch;
1091 struct sockaddr_in6 sa6;
1092 struct ip6_hdr *ip6;
1093 struct mbuf *m;
1094 int off;
1095
1096 if (sa->sa_family != AF_INET6 ||
1097 sa->sa_len != sizeof(struct sockaddr_in6))
1098 return;
1099 if ((unsigned)cmd >= PRC_NCMDS)
1100 return;
1101 else if (cmd == PRC_QUENCH) {
1102 /* XXX there's no PRC_QUENCH in IPv6 */
1103 notify = tcp6_quench;
1104 } else if (PRC_IS_REDIRECT(cmd))
1105 notify = in6_rtchange, d = NULL;
1106 else if (cmd == PRC_MSGSIZE)
1107 notify = tcp6_mtudisc, d = NULL;
1108 else if (cmd == PRC_HOSTDEAD)
1109 d = NULL;
1110 else if (inet6ctlerrmap[cmd] == 0)
1111 return;
1112
1113 /* if the parameter is from icmp6, decode it. */
1114 if (d != NULL) {
1115 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1116 m = ip6cp->ip6c_m;
1117 ip6 = ip6cp->ip6c_ip6;
1118 off = ip6cp->ip6c_off;
1119 } else {
1120 m = NULL;
1121 ip6 = NULL;
1122 }
1123
1124 /* translate addresses into internal form */
1125 sa6 = *(struct sockaddr_in6 *)sa;
1126 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) && m && m->m_pkthdr.rcvif)
1127 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1128
1129 if (ip6) {
1130 /*
1131 * XXX: We assume that when ip6 is non NULL,
1132 * M and OFF are valid.
1133 */
1134 struct in6_addr s;
1135
1136 /* translate addresses into internal form */
1137 memcpy(&s, &ip6->ip6_src, sizeof(s));
1138 if (IN6_IS_ADDR_LINKLOCAL(&s))
1139 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1140
1141 /* check if we can safely examine src and dst ports */
1142 if (m->m_pkthdr.len < off + sizeof(th))
1143 return;
1144
1145 if (m->m_len < off + sizeof(th)) {
1146 /*
1147 * this should be rare case,
1148 * so we compromise on this copy...
1149 */
1150 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1151 thp = &th;
1152 } else
1153 thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1154 nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
1155 thp->th_dport, &s, thp->th_sport, cmd, notify);
1156 if (nmatch == 0 && syn_cache_count &&
1157 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1158 inet6ctlerrmap[cmd] == ENETUNREACH ||
1159 inet6ctlerrmap[cmd] == EHOSTDOWN)) {
1160 struct sockaddr_in6 sin6;
1161 bzero(&sin6, sizeof(sin6));
1162 sin6.sin6_len = sizeof(sin6);
1163 sin6.sin6_family = AF_INET6;
1164 sin6.sin6_port = thp->th_sport;
1165 sin6.sin6_addr = s;
1166 syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
1167 }
1168 } else {
1169 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
1170 &zeroin6_addr, 0, cmd, notify);
1171 }
1172 }
1173 #endif
1174
1175 #ifdef INET
1176 /* assumes that ip header and tcp header are contiguous on mbuf */
1177 void *
1178 tcp_ctlinput(cmd, sa, v)
1179 int cmd;
1180 struct sockaddr *sa;
1181 void *v;
1182 {
1183 struct ip *ip = v;
1184 struct tcphdr *th;
1185 extern int inetctlerrmap[];
1186 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1187 int errno;
1188 int nmatch;
1189
1190 if (sa->sa_family != AF_INET ||
1191 sa->sa_len != sizeof(struct sockaddr_in))
1192 return NULL;
1193 if ((unsigned)cmd >= PRC_NCMDS)
1194 return NULL;
1195 errno = inetctlerrmap[cmd];
1196 if (cmd == PRC_QUENCH)
1197 notify = tcp_quench;
1198 else if (PRC_IS_REDIRECT(cmd))
1199 notify = in_rtchange, ip = 0;
1200 else if (cmd == PRC_MSGSIZE && ip_mtudisc)
1201 notify = tcp_mtudisc, ip = 0;
1202 else if (cmd == PRC_HOSTDEAD)
1203 ip = 0;
1204 else if (errno == 0)
1205 return NULL;
1206 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1207 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1208 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1209 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1210 if (nmatch == 0 && syn_cache_count &&
1211 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1212 inetctlerrmap[cmd] == ENETUNREACH ||
1213 inetctlerrmap[cmd] == EHOSTDOWN)) {
1214 struct sockaddr_in sin;
1215 bzero(&sin, sizeof(sin));
1216 sin.sin_len = sizeof(sin);
1217 sin.sin_family = AF_INET;
1218 sin.sin_port = th->th_sport;
1219 sin.sin_addr = ip->ip_src;
1220 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1221 }
1222
1223 /* XXX mapped address case */
1224 }
1225 else {
1226 (void)in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1227 notify);
1228 }
1229 return NULL;
1230 }
1231
1232 /*
1233 * When a source quence is received, we are being notifed of congestion.
1234 * Close the congestion window down to the Loss Window (one segment).
1235 * We will gradually open it again as we proceed.
1236 */
1237 void
1238 tcp_quench(inp, errno)
1239 struct inpcb *inp;
1240 int errno;
1241 {
1242 struct tcpcb *tp = intotcpcb(inp);
1243
1244 if (tp)
1245 tp->snd_cwnd = tp->t_segsz;
1246 }
1247 #endif
1248
1249 #if defined(INET6) && !defined(TCP6)
1250 void
1251 tcp6_quench(in6p, errno)
1252 struct in6pcb *in6p;
1253 int errno;
1254 {
1255 struct tcpcb *tp = in6totcpcb(in6p);
1256
1257 if (tp)
1258 tp->snd_cwnd = tp->t_segsz;
1259 }
1260 #endif
1261
1262 /*
1263 * On receipt of path MTU corrections, flush old route and replace it
1264 * with the new one. Retransmit all unacknowledged packets, to ensure
1265 * that all packets will be received.
1266 */
1267 void
1268 tcp_mtudisc(inp, errno)
1269 struct inpcb *inp;
1270 int errno;
1271 {
1272 struct tcpcb *tp = intotcpcb(inp);
1273 struct rtentry *rt = in_pcbrtentry(inp);
1274
1275 if (tp != 0) {
1276 if (rt != 0) {
1277 /*
1278 * If this was not a host route, remove and realloc.
1279 */
1280 if ((rt->rt_flags & RTF_HOST) == 0) {
1281 in_rtchange(inp, errno);
1282 if ((rt = in_pcbrtentry(inp)) == 0)
1283 return;
1284 }
1285
1286 /*
1287 * Slow start out of the error condition. We
1288 * use the MTU because we know it's smaller
1289 * than the previously transmitted segment.
1290 *
1291 * Note: This is more conservative than the
1292 * suggestion in draft-floyd-incr-init-win-03.
1293 */
1294 if (rt->rt_rmx.rmx_mtu != 0)
1295 tp->snd_cwnd =
1296 TCP_INITIAL_WINDOW(tcp_init_win,
1297 rt->rt_rmx.rmx_mtu);
1298 }
1299
1300 /*
1301 * Resend unacknowledged packets.
1302 */
1303 tp->snd_nxt = tp->snd_una;
1304 tcp_output(tp);
1305 }
1306 }
1307
1308 #if defined(INET6) && !defined(TCP6)
1309 void
1310 tcp6_mtudisc(in6p, errno)
1311 struct in6pcb *in6p;
1312 int errno;
1313 {
1314 struct tcpcb *tp = in6totcpcb(in6p);
1315 struct rtentry *rt = in6_pcbrtentry(in6p);
1316
1317 if (tp != 0) {
1318 if (rt != 0) {
1319 /*
1320 * If this was not a host route, remove and realloc.
1321 */
1322 if ((rt->rt_flags & RTF_HOST) == 0) {
1323 in6_rtchange(in6p, errno);
1324 if ((rt = in6_pcbrtentry(in6p)) == 0)
1325 return;
1326 }
1327
1328 /*
1329 * Slow start out of the error condition. We
1330 * use the MTU because we know it's smaller
1331 * than the previously transmitted segment.
1332 *
1333 * Note: This is more conservative than the
1334 * suggestion in draft-floyd-incr-init-win-03.
1335 */
1336 if (rt->rt_rmx.rmx_mtu != 0)
1337 tp->snd_cwnd =
1338 TCP_INITIAL_WINDOW(tcp_init_win,
1339 rt->rt_rmx.rmx_mtu);
1340 }
1341
1342 /*
1343 * Resend unacknowledged packets.
1344 */
1345 tp->snd_nxt = tp->snd_una;
1346 tcp_output(tp);
1347 }
1348 }
1349 #endif
1350
1351 /*
1352 * Compute the MSS to advertise to the peer. Called only during
1353 * the 3-way handshake. If we are the server (peer initiated
1354 * connection), we are called with a pointer to the interface
1355 * on which the SYN packet arrived. If we are the client (we
1356 * initiated connection), we are called with a pointer to the
1357 * interface out which this connection should go.
1358 *
1359 * NOTE: Do not subtract IP option/extension header size nor IPsec
1360 * header size from MSS advertisement. MSS option must hold the maximum
1361 * segment size we can accept, so it must always be:
1362 * max(if mtu) - ip header - tcp header
1363 */
1364 u_long
1365 tcp_mss_to_advertise(ifp, af)
1366 const struct ifnet *ifp;
1367 int af;
1368 {
1369 extern u_long in_maxmtu;
1370 u_long mss = 0;
1371 u_long hdrsiz;
1372
1373 /*
1374 * In order to avoid defeating path MTU discovery on the peer,
1375 * we advertise the max MTU of all attached networks as our MSS,
1376 * per RFC 1191, section 3.1.
1377 *
1378 * We provide the option to advertise just the MTU of
1379 * the interface on which we hope this connection will
1380 * be receiving. If we are responding to a SYN, we
1381 * will have a pretty good idea about this, but when
1382 * initiating a connection there is a bit more doubt.
1383 *
1384 * We also need to ensure that loopback has a large enough
1385 * MSS, as the loopback MTU is never included in in_maxmtu.
1386 */
1387
1388 if (ifp != NULL)
1389 mss = ifp->if_mtu;
1390
1391 if (tcp_mss_ifmtu == 0)
1392 mss = max(in_maxmtu, mss);
1393
1394 switch (af) {
1395 case AF_INET:
1396 hdrsiz = sizeof(struct ip);
1397 break;
1398 #ifdef INET6
1399 case AF_INET6:
1400 hdrsiz = sizeof(struct ip6_hdr);
1401 break;
1402 #endif
1403 default:
1404 hdrsiz = 0;
1405 break;
1406 }
1407 hdrsiz += sizeof(struct tcphdr);
1408 if (mss > hdrsiz)
1409 mss -= hdrsiz;
1410
1411 mss = max(tcp_mssdflt, mss);
1412 return (mss);
1413 }
1414
1415 /*
1416 * Set connection variables based on the peer's advertised MSS.
1417 * We are passed the TCPCB for the actual connection. If we
1418 * are the server, we are called by the compressed state engine
1419 * when the 3-way handshake is complete. If we are the client,
1420 * we are called when we recieve the SYN,ACK from the server.
1421 *
1422 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1423 * before this routine is called!
1424 */
1425 void
1426 tcp_mss_from_peer(tp, offer)
1427 struct tcpcb *tp;
1428 int offer;
1429 {
1430 struct socket *so;
1431 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1432 struct rtentry *rt;
1433 #endif
1434 u_long bufsize;
1435 int mss;
1436
1437 #ifdef DIAGNOSTIC
1438 if (tp->t_inpcb && tp->t_in6pcb)
1439 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1440 #endif
1441 so = NULL;
1442 rt = NULL;
1443 #ifdef INET
1444 if (tp->t_inpcb) {
1445 so = tp->t_inpcb->inp_socket;
1446 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1447 rt = in_pcbrtentry(tp->t_inpcb);
1448 #endif
1449 }
1450 #endif
1451 #ifdef INET6
1452 if (tp->t_in6pcb) {
1453 so = tp->t_in6pcb->in6p_socket;
1454 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1455 #ifdef TCP6
1456 rt = NULL;
1457 #else
1458 rt = in6_pcbrtentry(tp->t_in6pcb);
1459 #endif
1460 #endif
1461 }
1462 #endif
1463
1464 /*
1465 * As per RFC1122, use the default MSS value, unless they
1466 * sent us an offer. Do not accept offers less than 32 bytes.
1467 */
1468 mss = tcp_mssdflt;
1469 if (offer)
1470 mss = offer;
1471 mss = max(mss, 32); /* sanity */
1472 tp->t_peermss = mss;
1473 mss -= tcp_optlen(tp);
1474 #ifdef INET
1475 if (tp->t_inpcb)
1476 mss -= ip_optlen(tp->t_inpcb);
1477 #endif
1478 #ifdef INET6
1479 if (tp->t_in6pcb)
1480 mss -= ip6_optlen(tp->t_in6pcb);
1481 #endif
1482
1483 /*
1484 * If there's a pipesize, change the socket buffer to that size.
1485 * Make the socket buffer an integral number of MSS units. If
1486 * the MSS is larger than the socket buffer, artificially decrease
1487 * the MSS.
1488 */
1489 #ifdef RTV_SPIPE
1490 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1491 bufsize = rt->rt_rmx.rmx_sendpipe;
1492 else
1493 #endif
1494 bufsize = so->so_snd.sb_hiwat;
1495 if (bufsize < mss)
1496 mss = bufsize;
1497 else {
1498 bufsize = roundup(bufsize, mss);
1499 if (bufsize > sb_max)
1500 bufsize = sb_max;
1501 (void) sbreserve(&so->so_snd, bufsize);
1502 }
1503 tp->t_segsz = mss;
1504
1505 #ifdef RTV_SSTHRESH
1506 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1507 /*
1508 * There's some sort of gateway or interface buffer
1509 * limit on the path. Use this to set the slow
1510 * start threshold, but set the threshold to no less
1511 * than 2 * MSS.
1512 */
1513 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1514 }
1515 #endif
1516 }
1517
1518 /*
1519 * Processing necessary when a TCP connection is established.
1520 */
1521 void
1522 tcp_established(tp)
1523 struct tcpcb *tp;
1524 {
1525 struct socket *so;
1526 #ifdef RTV_RPIPE
1527 struct rtentry *rt;
1528 #endif
1529 u_long bufsize;
1530
1531 #ifdef DIAGNOSTIC
1532 if (tp->t_inpcb && tp->t_in6pcb)
1533 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1534 #endif
1535 so = NULL;
1536 rt = NULL;
1537 #ifdef INET
1538 if (tp->t_inpcb) {
1539 so = tp->t_inpcb->inp_socket;
1540 #if defined(RTV_RPIPE)
1541 rt = in_pcbrtentry(tp->t_inpcb);
1542 #endif
1543 }
1544 #endif
1545 #ifdef INET6
1546 if (tp->t_in6pcb) {
1547 so = tp->t_in6pcb->in6p_socket;
1548 #if defined(RTV_RPIPE)
1549 #ifdef TCP6
1550 rt = NULL;
1551 #else
1552 rt = in6_pcbrtentry(tp->t_in6pcb);
1553 #endif
1554 #endif
1555 }
1556 #endif
1557
1558 tp->t_state = TCPS_ESTABLISHED;
1559 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1560
1561 #ifdef RTV_RPIPE
1562 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1563 bufsize = rt->rt_rmx.rmx_recvpipe;
1564 else
1565 #endif
1566 bufsize = so->so_rcv.sb_hiwat;
1567 if (bufsize > tp->t_ourmss) {
1568 bufsize = roundup(bufsize, tp->t_ourmss);
1569 if (bufsize > sb_max)
1570 bufsize = sb_max;
1571 (void) sbreserve(&so->so_rcv, bufsize);
1572 }
1573 }
1574
1575 /*
1576 * Check if there's an initial rtt or rttvar. Convert from the
1577 * route-table units to scaled multiples of the slow timeout timer.
1578 * Called only during the 3-way handshake.
1579 */
1580 void
1581 tcp_rmx_rtt(tp)
1582 struct tcpcb *tp;
1583 {
1584 #ifdef RTV_RTT
1585 struct rtentry *rt = NULL;
1586 int rtt;
1587
1588 #ifdef DIAGNOSTIC
1589 if (tp->t_inpcb && tp->t_in6pcb)
1590 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1591 #endif
1592 #ifdef INET
1593 if (tp->t_inpcb)
1594 rt = in_pcbrtentry(tp->t_inpcb);
1595 #endif
1596 #ifdef INET6
1597 if (tp->t_in6pcb) {
1598 #ifdef TCP6
1599 rt = NULL;
1600 #else
1601 rt = in6_pcbrtentry(tp->t_in6pcb);
1602 #endif
1603 }
1604 #endif
1605 if (rt == NULL)
1606 return;
1607
1608 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1609 /*
1610 * XXX The lock bit for MTU indicates that the value
1611 * is also a minimum value; this is subject to time.
1612 */
1613 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1614 TCPT_RANGESET(tp->t_rttmin,
1615 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1616 TCPTV_MIN, TCPTV_REXMTMAX);
1617 tp->t_srtt = rtt /
1618 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1619 if (rt->rt_rmx.rmx_rttvar) {
1620 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1621 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1622 (TCP_RTTVAR_SHIFT + 2));
1623 } else {
1624 /* Default variation is +- 1 rtt */
1625 tp->t_rttvar =
1626 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1627 }
1628 TCPT_RANGESET(tp->t_rxtcur,
1629 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1630 tp->t_rttmin, TCPTV_REXMTMAX);
1631 }
1632 #endif
1633 }
1634
1635 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1636
1637 /*
1638 * Get a new sequence value given a tcp control block
1639 */
1640 tcp_seq
1641 tcp_new_iss(tp, len, addin)
1642 void *tp;
1643 u_long len;
1644 tcp_seq addin;
1645 {
1646 tcp_seq tcp_iss;
1647
1648 /*
1649 * Randomize.
1650 */
1651 #if NRND > 0
1652 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1653 #else
1654 tcp_iss = random();
1655 #endif
1656
1657 /*
1658 * If we were asked to add some amount to a known value,
1659 * we will take a random value obtained above, mask off the upper
1660 * bits, and add in the known value. We also add in a constant to
1661 * ensure that we are at least a certain distance from the original
1662 * value.
1663 *
1664 * This is used when an old connection is in timed wait
1665 * and we have a new one coming in, for instance.
1666 */
1667 if (addin != 0) {
1668 #ifdef TCPISS_DEBUG
1669 printf("Random %08x, ", tcp_iss);
1670 #endif
1671 tcp_iss &= TCP_ISS_RANDOM_MASK;
1672 tcp_iss += addin + TCP_ISSINCR;
1673 #ifdef TCPISS_DEBUG
1674 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1675 #endif
1676 } else {
1677 tcp_iss &= TCP_ISS_RANDOM_MASK;
1678 tcp_iss += tcp_iss_seq;
1679 tcp_iss_seq += TCP_ISSINCR;
1680 #ifdef TCPISS_DEBUG
1681 printf("ISS %08x\n", tcp_iss);
1682 #endif
1683 }
1684
1685 if (tcp_compat_42) {
1686 /*
1687 * Limit it to the positive range for really old TCP
1688 * implementations.
1689 */
1690 if (tcp_iss >= 0x80000000)
1691 tcp_iss &= 0x7fffffff; /* XXX */
1692 }
1693
1694 return tcp_iss;
1695 }
1696
1697 #ifdef IPSEC
1698 /* compute ESP/AH header size for TCP, including outer IP header. */
1699 size_t
1700 ipsec4_hdrsiz_tcp(tp)
1701 struct tcpcb *tp;
1702 {
1703 struct inpcb *inp;
1704 size_t hdrsiz;
1705
1706 /* XXX mapped addr case (tp->t_in6pcb) */
1707 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1708 return 0;
1709 switch (tp->t_family) {
1710 case AF_INET:
1711 /* XXX: should use currect direction. */
1712 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1713 break;
1714 default:
1715 hdrsiz = 0;
1716 break;
1717 }
1718
1719 return hdrsiz;
1720 }
1721
1722 #if defined(INET6) && !defined(TCP6)
1723 size_t
1724 ipsec6_hdrsiz_tcp(tp)
1725 struct tcpcb *tp;
1726 {
1727 struct in6pcb *in6p;
1728 size_t hdrsiz;
1729
1730 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1731 return 0;
1732 switch (tp->t_family) {
1733 case AF_INET6:
1734 /* XXX: should use currect direction. */
1735 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1736 break;
1737 case AF_INET:
1738 /* mapped address case - tricky */
1739 default:
1740 hdrsiz = 0;
1741 break;
1742 }
1743
1744 return hdrsiz;
1745 }
1746 #endif
1747 #endif /*IPSEC*/
1748
1749 /*
1750 * Determine the length of the TCP options for this connection.
1751 *
1752 * XXX: What do we do for SACK, when we add that? Just reserve
1753 * all of the space? Otherwise we can't exactly be incrementing
1754 * cwnd by an amount that varies depending on the amount we last
1755 * had to SACK!
1756 */
1757
1758 u_int
1759 tcp_optlen(tp)
1760 struct tcpcb *tp;
1761 {
1762 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1763 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1764 return TCPOLEN_TSTAMP_APPA;
1765 else
1766 return 0;
1767 }
1768