tcp_subr.c revision 1.98 1 /* $NetBSD: tcp_subr.c,v 1.98 2000/10/18 17:09:15 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #include <netinet6/ip6protosw.h>
143 #endif
144
145 #include <netinet/tcp.h>
146 #include <netinet/tcp_fsm.h>
147 #include <netinet/tcp_seq.h>
148 #include <netinet/tcp_timer.h>
149 #include <netinet/tcp_var.h>
150 #include <netinet/tcpip.h>
151
152 #ifdef IPSEC
153 #include <netinet6/ipsec.h>
154 #endif /*IPSEC*/
155
156 #ifdef INET6
157 struct in6pcb tcb6;
158 #endif
159
160 /* patchable/settable parameters for tcp */
161 int tcp_mssdflt = TCP_MSS;
162 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
163 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
164 int tcp_do_sack = 1; /* selective acknowledgement */
165 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
166 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
167 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
168 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
169 int tcp_init_win = 1;
170 int tcp_mss_ifmtu = 0;
171 #ifdef TCP_COMPAT_42
172 int tcp_compat_42 = 1;
173 #else
174 int tcp_compat_42 = 0;
175 #endif
176 int tcp_rst_ppslim = 100; /* 100pps */
177
178 /* tcb hash */
179 #ifndef TCBHASHSIZE
180 #define TCBHASHSIZE 128
181 #endif
182 int tcbhashsize = TCBHASHSIZE;
183
184 /* syn hash parameters */
185 #define TCP_SYN_HASH_SIZE 293
186 #define TCP_SYN_BUCKET_SIZE 35
187 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
188 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
189 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
190 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
191 int tcp_syn_cache_interval = 1; /* runs timer twice a second */
192
193 int tcp_freeq __P((struct tcpcb *));
194
195 void tcp_mtudisc_callback __P((struct in_addr));
196
197 void tcp_mtudisc __P((struct inpcb *, int));
198 #if defined(INET6) && !defined(TCP6)
199 void tcp6_mtudisc __P((struct in6pcb *, int));
200 #endif
201
202 struct pool tcpcb_pool;
203
204 /*
205 * Tcp initialization
206 */
207 void
208 tcp_init()
209 {
210 int hlen;
211
212 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
213 0, NULL, NULL, M_PCB);
214 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
215 #ifdef INET6
216 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
217 #endif
218 LIST_INIT(&tcp_delacks);
219
220 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
221 #ifdef INET6
222 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
223 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
224 #endif
225 if (max_protohdr < hlen)
226 max_protohdr = hlen;
227 if (max_linkhdr + hlen > MHLEN)
228 panic("tcp_init");
229
230 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
231
232 /* Initialize the compressed state engine. */
233 syn_cache_init();
234 }
235
236 /*
237 * Create template to be used to send tcp packets on a connection.
238 * Call after host entry created, allocates an mbuf and fills
239 * in a skeletal tcp/ip header, minimizing the amount of work
240 * necessary when the connection is used.
241 */
242 struct mbuf *
243 tcp_template(tp)
244 struct tcpcb *tp;
245 {
246 struct inpcb *inp = tp->t_inpcb;
247 #ifdef INET6
248 struct in6pcb *in6p = tp->t_in6pcb;
249 #endif
250 struct tcphdr *n;
251 struct mbuf *m;
252 int hlen;
253
254 switch (tp->t_family) {
255 case AF_INET:
256 hlen = sizeof(struct ip);
257 if (inp)
258 break;
259 #ifdef INET6
260 if (in6p) {
261 /* mapped addr case */
262 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
263 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
264 break;
265 }
266 #endif
267 return NULL; /*EINVAL*/
268 #ifdef INET6
269 case AF_INET6:
270 hlen = sizeof(struct ip6_hdr);
271 if (in6p) {
272 /* more sainty check? */
273 break;
274 }
275 return NULL; /*EINVAL*/
276 #endif
277 default:
278 hlen = 0; /*pacify gcc*/
279 return NULL; /*EAFNOSUPPORT*/
280 }
281 #ifdef DIAGNOSTIC
282 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
283 panic("mclbytes too small for t_template");
284 #endif
285 m = tp->t_template;
286 if (m && m->m_len == hlen + sizeof(struct tcphdr))
287 ;
288 else {
289 if (m)
290 m_freem(m);
291 m = tp->t_template = NULL;
292 MGETHDR(m, M_DONTWAIT, MT_HEADER);
293 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
294 MCLGET(m, M_DONTWAIT);
295 if ((m->m_flags & M_EXT) == 0) {
296 m_free(m);
297 m = NULL;
298 }
299 }
300 if (m == NULL)
301 return NULL;
302 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
303 }
304 bzero(mtod(m, caddr_t), m->m_len);
305 switch (tp->t_family) {
306 case AF_INET:
307 {
308 struct ipovly *ipov;
309 mtod(m, struct ip *)->ip_v = 4;
310 ipov = mtod(m, struct ipovly *);
311 ipov->ih_pr = IPPROTO_TCP;
312 ipov->ih_len = htons(sizeof(struct tcphdr));
313 if (inp) {
314 ipov->ih_src = inp->inp_laddr;
315 ipov->ih_dst = inp->inp_faddr;
316 }
317 #ifdef INET6
318 else if (in6p) {
319 /* mapped addr case */
320 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
321 sizeof(ipov->ih_src));
322 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
323 sizeof(ipov->ih_dst));
324 }
325 #endif
326 break;
327 }
328 #ifdef INET6
329 case AF_INET6:
330 {
331 struct ip6_hdr *ip6;
332 mtod(m, struct ip *)->ip_v = 6;
333 ip6 = mtod(m, struct ip6_hdr *);
334 ip6->ip6_nxt = IPPROTO_TCP;
335 ip6->ip6_plen = htons(sizeof(struct tcphdr));
336 ip6->ip6_src = in6p->in6p_laddr;
337 ip6->ip6_dst = in6p->in6p_faddr;
338 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
339 if (ip6_auto_flowlabel) {
340 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
341 ip6->ip6_flow |=
342 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
343 }
344 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
345 ip6->ip6_vfc |= IPV6_VERSION;
346 break;
347 }
348 #endif
349 }
350 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
351 if (inp) {
352 n->th_sport = inp->inp_lport;
353 n->th_dport = inp->inp_fport;
354 }
355 #ifdef INET6
356 else if (in6p) {
357 n->th_sport = in6p->in6p_lport;
358 n->th_dport = in6p->in6p_fport;
359 }
360 #endif
361 n->th_seq = 0;
362 n->th_ack = 0;
363 n->th_x2 = 0;
364 n->th_off = 5;
365 n->th_flags = 0;
366 n->th_win = 0;
367 n->th_sum = 0;
368 n->th_urp = 0;
369 return (m);
370 }
371
372 /*
373 * Send a single message to the TCP at address specified by
374 * the given TCP/IP header. If m == 0, then we make a copy
375 * of the tcpiphdr at ti and send directly to the addressed host.
376 * This is used to force keep alive messages out using the TCP
377 * template for a connection tp->t_template. If flags are given
378 * then we send a message back to the TCP which originated the
379 * segment ti, and discard the mbuf containing it and any other
380 * attached mbufs.
381 *
382 * In any case the ack and sequence number of the transmitted
383 * segment are as specified by the parameters.
384 */
385 int
386 tcp_respond(tp, template, m, th0, ack, seq, flags)
387 struct tcpcb *tp;
388 struct mbuf *template;
389 struct mbuf *m;
390 struct tcphdr *th0;
391 tcp_seq ack, seq;
392 int flags;
393 {
394 struct route *ro;
395 int error, tlen, win = 0;
396 int hlen;
397 struct ip *ip;
398 #ifdef INET6
399 struct ip6_hdr *ip6;
400 #endif
401 int family; /* family on packet, not inpcb/in6pcb! */
402 struct tcphdr *th;
403
404 if (tp != NULL && (flags & TH_RST) == 0) {
405 #ifdef DIAGNOSTIC
406 if (tp->t_inpcb && tp->t_in6pcb)
407 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
408 #endif
409 #ifdef INET
410 if (tp->t_inpcb)
411 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
412 #endif
413 #ifdef INET6
414 if (tp->t_in6pcb)
415 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
416 #endif
417 }
418
419 ip = NULL;
420 #ifdef INET6
421 ip6 = NULL;
422 #endif
423 if (m == 0) {
424 if (!template)
425 return EINVAL;
426
427 /* get family information from template */
428 switch (mtod(template, struct ip *)->ip_v) {
429 case 4:
430 family = AF_INET;
431 hlen = sizeof(struct ip);
432 break;
433 #ifdef INET6
434 case 6:
435 family = AF_INET6;
436 hlen = sizeof(struct ip6_hdr);
437 break;
438 #endif
439 default:
440 return EAFNOSUPPORT;
441 }
442
443 MGETHDR(m, M_DONTWAIT, MT_HEADER);
444 if (m) {
445 MCLGET(m, M_DONTWAIT);
446 if ((m->m_flags & M_EXT) == 0) {
447 m_free(m);
448 m = NULL;
449 }
450 }
451 if (m == NULL)
452 return (ENOBUFS);
453
454 if (tcp_compat_42)
455 tlen = 1;
456 else
457 tlen = 0;
458
459 m->m_data += max_linkhdr;
460 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
461 template->m_len);
462 switch (family) {
463 case AF_INET:
464 ip = mtod(m, struct ip *);
465 th = (struct tcphdr *)(ip + 1);
466 break;
467 #ifdef INET6
468 case AF_INET6:
469 ip6 = mtod(m, struct ip6_hdr *);
470 th = (struct tcphdr *)(ip6 + 1);
471 break;
472 #endif
473 #if 0
474 default:
475 /* noone will visit here */
476 m_freem(m);
477 return EAFNOSUPPORT;
478 #endif
479 }
480 flags = TH_ACK;
481 } else {
482
483 if ((m->m_flags & M_PKTHDR) == 0) {
484 #if 0
485 printf("non PKTHDR to tcp_respond\n");
486 #endif
487 m_freem(m);
488 return EINVAL;
489 }
490 #ifdef DIAGNOSTIC
491 if (!th0)
492 panic("th0 == NULL in tcp_respond");
493 #endif
494
495 /* get family information from m */
496 switch (mtod(m, struct ip *)->ip_v) {
497 case 4:
498 family = AF_INET;
499 hlen = sizeof(struct ip);
500 ip = mtod(m, struct ip *);
501 break;
502 #ifdef INET6
503 case 6:
504 family = AF_INET6;
505 hlen = sizeof(struct ip6_hdr);
506 ip6 = mtod(m, struct ip6_hdr *);
507 break;
508 #endif
509 default:
510 m_freem(m);
511 return EAFNOSUPPORT;
512 }
513 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
514 tlen = sizeof(*th0);
515 else
516 tlen = th0->th_off << 2;
517
518 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
519 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
520 m->m_len = hlen + tlen;
521 m_freem(m->m_next);
522 m->m_next = NULL;
523 } else {
524 struct mbuf *n;
525
526 #ifdef DIAGNOSTIC
527 if (max_linkhdr + hlen + tlen > MCLBYTES) {
528 m_freem(m);
529 return EMSGSIZE;
530 }
531 #endif
532 MGETHDR(n, M_DONTWAIT, MT_HEADER);
533 if (n && max_linkhdr + hlen + tlen > MHLEN) {
534 MCLGET(n, M_DONTWAIT);
535 if ((n->m_flags & M_EXT) == 0) {
536 m_freem(n);
537 n = NULL;
538 }
539 }
540 if (!n) {
541 m_freem(m);
542 return ENOBUFS;
543 }
544
545 n->m_data += max_linkhdr;
546 n->m_len = hlen + tlen;
547 m_copyback(n, 0, hlen, mtod(m, caddr_t));
548 m_copyback(n, hlen, tlen, (caddr_t)th0);
549
550 m_freem(m);
551 m = n;
552 n = NULL;
553 }
554
555 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
556 switch (family) {
557 case AF_INET:
558 ip = mtod(m, struct ip *);
559 th = (struct tcphdr *)(ip + 1);
560 ip->ip_p = IPPROTO_TCP;
561 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
562 ip->ip_p = IPPROTO_TCP;
563 break;
564 #ifdef INET6
565 case AF_INET6:
566 ip6 = mtod(m, struct ip6_hdr *);
567 th = (struct tcphdr *)(ip6 + 1);
568 ip6->ip6_nxt = IPPROTO_TCP;
569 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
570 ip6->ip6_nxt = IPPROTO_TCP;
571 break;
572 #endif
573 #if 0
574 default:
575 /* noone will visit here */
576 m_freem(m);
577 return EAFNOSUPPORT;
578 #endif
579 }
580 xchg(th->th_dport, th->th_sport, u_int16_t);
581 #undef xchg
582 tlen = 0; /*be friendly with the following code*/
583 }
584 th->th_seq = htonl(seq);
585 th->th_ack = htonl(ack);
586 th->th_x2 = 0;
587 if ((flags & TH_SYN) == 0) {
588 if (tp)
589 win >>= tp->rcv_scale;
590 if (win > TCP_MAXWIN)
591 win = TCP_MAXWIN;
592 th->th_win = htons((u_int16_t)win);
593 th->th_off = sizeof (struct tcphdr) >> 2;
594 tlen += sizeof(*th);
595 } else
596 tlen += th->th_off << 2;
597 m->m_len = hlen + tlen;
598 m->m_pkthdr.len = hlen + tlen;
599 m->m_pkthdr.rcvif = (struct ifnet *) 0;
600 th->th_flags = flags;
601 th->th_urp = 0;
602
603 switch (family) {
604 #ifdef INET
605 case AF_INET:
606 {
607 struct ipovly *ipov = (struct ipovly *)ip;
608 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
609 ipov->ih_len = htons((u_int16_t)tlen);
610
611 th->th_sum = 0;
612 th->th_sum = in_cksum(m, hlen + tlen);
613 ip->ip_len = hlen + tlen; /*will be flipped on output*/
614 ip->ip_ttl = ip_defttl;
615 break;
616 }
617 #endif
618 #ifdef INET6
619 case AF_INET6:
620 {
621 th->th_sum = 0;
622 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
623 tlen);
624 ip6->ip6_plen = ntohs(tlen);
625 if (tp && tp->t_in6pcb) {
626 struct ifnet *oifp;
627 ro = (struct route *)&tp->t_in6pcb->in6p_route;
628 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
629 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
630 } else
631 ip6->ip6_hlim = ip6_defhlim;
632 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
633 if (ip6_auto_flowlabel) {
634 ip6->ip6_flow |=
635 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
636 }
637 break;
638 }
639 #endif
640 }
641
642 #ifdef IPSEC
643 ipsec_setsocket(m, NULL);
644 #endif /*IPSEC*/
645
646 if (tp != NULL && tp->t_inpcb != NULL) {
647 ro = &tp->t_inpcb->inp_route;
648 #ifdef IPSEC
649 ipsec_setsocket(m, tp->t_inpcb->inp_socket);
650 #endif
651 #ifdef DIAGNOSTIC
652 if (family != AF_INET)
653 panic("tcp_respond: address family mismatch");
654 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
655 panic("tcp_respond: ip_dst %x != inp_faddr %x",
656 ntohl(ip->ip_dst.s_addr),
657 ntohl(tp->t_inpcb->inp_faddr.s_addr));
658 }
659 #endif
660 }
661 #ifdef INET6
662 else if (tp != NULL && tp->t_in6pcb != NULL) {
663 ro = (struct route *)&tp->t_in6pcb->in6p_route;
664 #ifdef IPSEC
665 ipsec_setsocket(m, tp->t_in6pcb->in6p_socket);
666 #endif
667 #ifdef DIAGNOSTIC
668 if (family == AF_INET) {
669 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
670 panic("tcp_respond: not mapped addr");
671 if (bcmp(&ip->ip_dst,
672 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
673 sizeof(ip->ip_dst)) != 0) {
674 panic("tcp_respond: ip_dst != in6p_faddr");
675 }
676 } else if (family == AF_INET6) {
677 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
678 panic("tcp_respond: ip6_dst != in6p_faddr");
679 } else
680 panic("tcp_respond: address family mismatch");
681 #endif
682 }
683 #endif
684 else
685 ro = NULL;
686
687 switch (family) {
688 #ifdef INET
689 case AF_INET:
690 error = ip_output(m, NULL, ro,
691 (ip_mtudisc ? IP_MTUDISC : 0),
692 NULL);
693 break;
694 #endif
695 #ifdef INET6
696 case AF_INET6:
697 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
698 NULL);
699 break;
700 #endif
701 default:
702 error = EAFNOSUPPORT;
703 break;
704 }
705
706 return (error);
707 }
708
709 /*
710 * Create a new TCP control block, making an
711 * empty reassembly queue and hooking it to the argument
712 * protocol control block.
713 */
714 struct tcpcb *
715 tcp_newtcpcb(family, aux)
716 int family; /* selects inpcb, or in6pcb */
717 void *aux;
718 {
719 struct tcpcb *tp;
720
721 switch (family) {
722 case PF_INET:
723 break;
724 #ifdef INET6
725 case PF_INET6:
726 break;
727 #endif
728 default:
729 return NULL;
730 }
731
732 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
733 if (tp == NULL)
734 return (NULL);
735 bzero((caddr_t)tp, sizeof(struct tcpcb));
736 LIST_INIT(&tp->segq);
737 LIST_INIT(&tp->timeq);
738 tp->t_family = family; /* may be overridden later on */
739 tp->t_peermss = tcp_mssdflt;
740 tp->t_ourmss = tcp_mssdflt;
741 tp->t_segsz = tcp_mssdflt;
742 LIST_INIT(&tp->t_sc);
743
744 tp->t_flags = 0;
745 if (tcp_do_rfc1323 && tcp_do_win_scale)
746 tp->t_flags |= TF_REQ_SCALE;
747 if (tcp_do_rfc1323 && tcp_do_timestamps)
748 tp->t_flags |= TF_REQ_TSTMP;
749 if (tcp_do_sack == 2)
750 tp->t_flags |= TF_WILL_SACK;
751 else if (tcp_do_sack == 1)
752 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
753 tp->t_flags |= TF_CANT_TXSACK;
754 switch (family) {
755 case PF_INET:
756 tp->t_inpcb = (struct inpcb *)aux;
757 break;
758 #ifdef INET6
759 case PF_INET6:
760 tp->t_in6pcb = (struct in6pcb *)aux;
761 break;
762 #endif
763 }
764 /*
765 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
766 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
767 * reasonable initial retransmit time.
768 */
769 tp->t_srtt = TCPTV_SRTTBASE;
770 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
771 tp->t_rttmin = TCPTV_MIN;
772 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
773 TCPTV_MIN, TCPTV_REXMTMAX);
774 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
775 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
776 if (family == AF_INET) {
777 struct inpcb *inp = (struct inpcb *)aux;
778 inp->inp_ip.ip_ttl = ip_defttl;
779 inp->inp_ppcb = (caddr_t)tp;
780 }
781 #ifdef INET6
782 else if (family == AF_INET6) {
783 struct in6pcb *in6p = (struct in6pcb *)aux;
784 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
785 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
786 : NULL);
787 in6p->in6p_ppcb = (caddr_t)tp;
788 }
789 #endif
790 return (tp);
791 }
792
793 /*
794 * Drop a TCP connection, reporting
795 * the specified error. If connection is synchronized,
796 * then send a RST to peer.
797 */
798 struct tcpcb *
799 tcp_drop(tp, errno)
800 struct tcpcb *tp;
801 int errno;
802 {
803 struct socket *so;
804
805 #ifdef DIAGNOSTIC
806 if (tp->t_inpcb && tp->t_in6pcb)
807 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
808 #endif
809 #ifdef INET
810 if (tp->t_inpcb)
811 so = tp->t_inpcb->inp_socket;
812 #endif
813 #ifdef INET6
814 if (tp->t_in6pcb)
815 so = tp->t_in6pcb->in6p_socket;
816 #endif
817 else
818 return NULL;
819
820 if (TCPS_HAVERCVDSYN(tp->t_state)) {
821 tp->t_state = TCPS_CLOSED;
822 (void) tcp_output(tp);
823 tcpstat.tcps_drops++;
824 } else
825 tcpstat.tcps_conndrops++;
826 if (errno == ETIMEDOUT && tp->t_softerror)
827 errno = tp->t_softerror;
828 so->so_error = errno;
829 return (tcp_close(tp));
830 }
831
832 /*
833 * Close a TCP control block:
834 * discard all space held by the tcp
835 * discard internet protocol block
836 * wake up any sleepers
837 */
838 struct tcpcb *
839 tcp_close(tp)
840 struct tcpcb *tp;
841 {
842 struct inpcb *inp;
843 #ifdef INET6
844 struct in6pcb *in6p;
845 #endif
846 struct socket *so;
847 #ifdef RTV_RTT
848 struct rtentry *rt;
849 #endif
850 struct route *ro;
851
852 inp = tp->t_inpcb;
853 #ifdef INET6
854 in6p = tp->t_in6pcb;
855 #endif
856 so = NULL;
857 ro = NULL;
858 if (inp) {
859 so = inp->inp_socket;
860 ro = &inp->inp_route;
861 }
862 #ifdef INET6
863 else if (in6p) {
864 so = in6p->in6p_socket;
865 ro = (struct route *)&in6p->in6p_route;
866 }
867 #endif
868
869 #ifdef RTV_RTT
870 /*
871 * If we sent enough data to get some meaningful characteristics,
872 * save them in the routing entry. 'Enough' is arbitrarily
873 * defined as the sendpipesize (default 4K) * 16. This would
874 * give us 16 rtt samples assuming we only get one sample per
875 * window (the usual case on a long haul net). 16 samples is
876 * enough for the srtt filter to converge to within 5% of the correct
877 * value; fewer samples and we could save a very bogus rtt.
878 *
879 * Don't update the default route's characteristics and don't
880 * update anything that the user "locked".
881 */
882 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
883 ro && (rt = ro->ro_rt) &&
884 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
885 u_long i = 0;
886
887 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
888 i = tp->t_srtt *
889 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
890 if (rt->rt_rmx.rmx_rtt && i)
891 /*
892 * filter this update to half the old & half
893 * the new values, converting scale.
894 * See route.h and tcp_var.h for a
895 * description of the scaling constants.
896 */
897 rt->rt_rmx.rmx_rtt =
898 (rt->rt_rmx.rmx_rtt + i) / 2;
899 else
900 rt->rt_rmx.rmx_rtt = i;
901 }
902 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
903 i = tp->t_rttvar *
904 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
905 if (rt->rt_rmx.rmx_rttvar && i)
906 rt->rt_rmx.rmx_rttvar =
907 (rt->rt_rmx.rmx_rttvar + i) / 2;
908 else
909 rt->rt_rmx.rmx_rttvar = i;
910 }
911 /*
912 * update the pipelimit (ssthresh) if it has been updated
913 * already or if a pipesize was specified & the threshhold
914 * got below half the pipesize. I.e., wait for bad news
915 * before we start updating, then update on both good
916 * and bad news.
917 */
918 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
919 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
920 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
921 /*
922 * convert the limit from user data bytes to
923 * packets then to packet data bytes.
924 */
925 i = (i + tp->t_segsz / 2) / tp->t_segsz;
926 if (i < 2)
927 i = 2;
928 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
929 if (rt->rt_rmx.rmx_ssthresh)
930 rt->rt_rmx.rmx_ssthresh =
931 (rt->rt_rmx.rmx_ssthresh + i) / 2;
932 else
933 rt->rt_rmx.rmx_ssthresh = i;
934 }
935 }
936 #endif /* RTV_RTT */
937 /* free the reassembly queue, if any */
938 TCP_REASS_LOCK(tp);
939 (void) tcp_freeq(tp);
940 TCP_REASS_UNLOCK(tp);
941
942 TCP_CLEAR_DELACK(tp);
943 syn_cache_cleanup(tp);
944
945 if (tp->t_template) {
946 m_free(tp->t_template);
947 tp->t_template = NULL;
948 }
949 pool_put(&tcpcb_pool, tp);
950 if (inp) {
951 inp->inp_ppcb = 0;
952 soisdisconnected(so);
953 in_pcbdetach(inp);
954 }
955 #ifdef INET6
956 else if (in6p) {
957 in6p->in6p_ppcb = 0;
958 soisdisconnected(so);
959 in6_pcbdetach(in6p);
960 }
961 #endif
962 tcpstat.tcps_closed++;
963 return ((struct tcpcb *)0);
964 }
965
966 int
967 tcp_freeq(tp)
968 struct tcpcb *tp;
969 {
970 struct ipqent *qe;
971 int rv = 0;
972 #ifdef TCPREASS_DEBUG
973 int i = 0;
974 #endif
975
976 TCP_REASS_LOCK_CHECK(tp);
977
978 while ((qe = tp->segq.lh_first) != NULL) {
979 #ifdef TCPREASS_DEBUG
980 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
981 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
982 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
983 #endif
984 LIST_REMOVE(qe, ipqe_q);
985 LIST_REMOVE(qe, ipqe_timeq);
986 m_freem(qe->ipqe_m);
987 pool_put(&ipqent_pool, qe);
988 rv = 1;
989 }
990 return (rv);
991 }
992
993 /*
994 * Protocol drain routine. Called when memory is in short supply.
995 */
996 void
997 tcp_drain()
998 {
999 struct inpcb *inp;
1000 struct tcpcb *tp;
1001
1002 /*
1003 * Free the sequence queue of all TCP connections.
1004 */
1005 inp = tcbtable.inpt_queue.cqh_first;
1006 if (inp) /* XXX */
1007 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
1008 inp = inp->inp_queue.cqe_next) {
1009 if ((tp = intotcpcb(inp)) != NULL) {
1010 /*
1011 * We may be called from a device's interrupt
1012 * context. If the tcpcb is already busy,
1013 * just bail out now.
1014 */
1015 if (tcp_reass_lock_try(tp) == 0)
1016 continue;
1017 if (tcp_freeq(tp))
1018 tcpstat.tcps_connsdrained++;
1019 TCP_REASS_UNLOCK(tp);
1020 }
1021 }
1022 }
1023
1024 /*
1025 * Notify a tcp user of an asynchronous error;
1026 * store error as soft error, but wake up user
1027 * (for now, won't do anything until can select for soft error).
1028 */
1029 void
1030 tcp_notify(inp, error)
1031 struct inpcb *inp;
1032 int error;
1033 {
1034 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1035 struct socket *so = inp->inp_socket;
1036
1037 /*
1038 * Ignore some errors if we are hooked up.
1039 * If connection hasn't completed, has retransmitted several times,
1040 * and receives a second error, give up now. This is better
1041 * than waiting a long time to establish a connection that
1042 * can never complete.
1043 */
1044 if (tp->t_state == TCPS_ESTABLISHED &&
1045 (error == EHOSTUNREACH || error == ENETUNREACH ||
1046 error == EHOSTDOWN)) {
1047 return;
1048 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1049 tp->t_rxtshift > 3 && tp->t_softerror)
1050 so->so_error = error;
1051 else
1052 tp->t_softerror = error;
1053 wakeup((caddr_t) &so->so_timeo);
1054 sorwakeup(so);
1055 sowwakeup(so);
1056 }
1057
1058 #if defined(INET6) && !defined(TCP6)
1059 void
1060 tcp6_notify(in6p, error)
1061 struct in6pcb *in6p;
1062 int error;
1063 {
1064 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1065 struct socket *so = in6p->in6p_socket;
1066
1067 /*
1068 * Ignore some errors if we are hooked up.
1069 * If connection hasn't completed, has retransmitted several times,
1070 * and receives a second error, give up now. This is better
1071 * than waiting a long time to establish a connection that
1072 * can never complete.
1073 */
1074 if (tp->t_state == TCPS_ESTABLISHED &&
1075 (error == EHOSTUNREACH || error == ENETUNREACH ||
1076 error == EHOSTDOWN)) {
1077 return;
1078 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1079 tp->t_rxtshift > 3 && tp->t_softerror)
1080 so->so_error = error;
1081 else
1082 tp->t_softerror = error;
1083 wakeup((caddr_t) &so->so_timeo);
1084 sorwakeup(so);
1085 sowwakeup(so);
1086 }
1087 #endif
1088
1089 #if defined(INET6) && !defined(TCP6)
1090 void
1091 tcp6_ctlinput(cmd, sa, d)
1092 int cmd;
1093 struct sockaddr *sa;
1094 void *d;
1095 {
1096 struct tcphdr *thp;
1097 struct tcphdr th;
1098 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1099 int nmatch;
1100 struct sockaddr_in6 sa6;
1101 struct ip6_hdr *ip6;
1102 struct mbuf *m;
1103 int off;
1104
1105 if (sa->sa_family != AF_INET6 ||
1106 sa->sa_len != sizeof(struct sockaddr_in6))
1107 return;
1108 if ((unsigned)cmd >= PRC_NCMDS)
1109 return;
1110 else if (cmd == PRC_QUENCH) {
1111 /* XXX there's no PRC_QUENCH in IPv6 */
1112 notify = tcp6_quench;
1113 } else if (PRC_IS_REDIRECT(cmd))
1114 notify = in6_rtchange, d = NULL;
1115 else if (cmd == PRC_MSGSIZE)
1116 notify = tcp6_mtudisc, d = NULL;
1117 else if (cmd == PRC_HOSTDEAD)
1118 d = NULL;
1119 else if (inet6ctlerrmap[cmd] == 0)
1120 return;
1121
1122 /* if the parameter is from icmp6, decode it. */
1123 if (d != NULL) {
1124 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1125 m = ip6cp->ip6c_m;
1126 ip6 = ip6cp->ip6c_ip6;
1127 off = ip6cp->ip6c_off;
1128 } else {
1129 m = NULL;
1130 ip6 = NULL;
1131 }
1132
1133 /* translate addresses into internal form */
1134 sa6 = *(struct sockaddr_in6 *)sa;
1135 if (IN6_IS_ADDR_LINKLOCAL(&sa6.sin6_addr) && m && m->m_pkthdr.rcvif)
1136 sa6.sin6_addr.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1137
1138 if (ip6) {
1139 /*
1140 * XXX: We assume that when ip6 is non NULL,
1141 * M and OFF are valid.
1142 */
1143 struct in6_addr s;
1144
1145 /* translate addresses into internal form */
1146 memcpy(&s, &ip6->ip6_src, sizeof(s));
1147 if (IN6_IS_ADDR_LINKLOCAL(&s))
1148 s.s6_addr16[1] = htons(m->m_pkthdr.rcvif->if_index);
1149
1150 /* check if we can safely examine src and dst ports */
1151 if (m->m_pkthdr.len < off + sizeof(th))
1152 return;
1153
1154 if (m->m_len < off + sizeof(th)) {
1155 /*
1156 * this should be rare case,
1157 * so we compromise on this copy...
1158 */
1159 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1160 thp = &th;
1161 } else
1162 thp = (struct tcphdr *)(mtod(m, caddr_t) + off);
1163 nmatch = in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6,
1164 thp->th_dport, &s, thp->th_sport, cmd, notify);
1165 if (nmatch == 0 && syn_cache_count &&
1166 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1167 inet6ctlerrmap[cmd] == ENETUNREACH ||
1168 inet6ctlerrmap[cmd] == EHOSTDOWN)) {
1169 struct sockaddr_in6 sin6;
1170 bzero(&sin6, sizeof(sin6));
1171 sin6.sin6_len = sizeof(sin6);
1172 sin6.sin6_family = AF_INET6;
1173 sin6.sin6_port = thp->th_sport;
1174 sin6.sin6_addr = s;
1175 syn_cache_unreach((struct sockaddr *)&sin6, sa, thp);
1176 }
1177 } else {
1178 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sa6, 0,
1179 &zeroin6_addr, 0, cmd, notify);
1180 }
1181 }
1182 #endif
1183
1184 #ifdef INET
1185 /* assumes that ip header and tcp header are contiguous on mbuf */
1186 void *
1187 tcp_ctlinput(cmd, sa, v)
1188 int cmd;
1189 struct sockaddr *sa;
1190 void *v;
1191 {
1192 struct ip *ip = v;
1193 struct tcphdr *th;
1194 struct icmp *icp;
1195 extern int inetctlerrmap[];
1196 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1197 int errno;
1198 int nmatch;
1199
1200 if (sa->sa_family != AF_INET ||
1201 sa->sa_len != sizeof(struct sockaddr_in))
1202 return NULL;
1203 if ((unsigned)cmd >= PRC_NCMDS)
1204 return NULL;
1205 errno = inetctlerrmap[cmd];
1206 if (cmd == PRC_QUENCH)
1207 notify = tcp_quench;
1208 else if (PRC_IS_REDIRECT(cmd))
1209 notify = in_rtchange, ip = 0;
1210 else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1211 /*
1212 * Check to see if we have a valid TCP connection
1213 * corresponding to the address in the ICMP message
1214 * payload.
1215 */
1216 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1217 if (in_pcblookup_connect(&tcbtable,
1218 ip->ip_dst, th->th_dport,
1219 ip->ip_src, th->th_sport) == NULL)
1220 return NULL;
1221
1222 /*
1223 * Now that we've validated that we are actually communicating
1224 * with the host indicated in the ICMP message, locate the
1225 * ICMP header, recalculate the new MTU, and create the
1226 * corresponding routing entry.
1227 */
1228 icp = (struct icmp *)((caddr_t)ip -
1229 offsetof(struct icmp, icmp_ip));
1230 icmp_mtudisc(icp, ip->ip_dst);
1231
1232 return NULL;
1233 } else if (cmd == PRC_HOSTDEAD)
1234 ip = 0;
1235 else if (errno == 0)
1236 return NULL;
1237 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1238 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1239 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1240 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1241 if (nmatch == 0 && syn_cache_count &&
1242 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1243 inetctlerrmap[cmd] == ENETUNREACH ||
1244 inetctlerrmap[cmd] == EHOSTDOWN)) {
1245 struct sockaddr_in sin;
1246 bzero(&sin, sizeof(sin));
1247 sin.sin_len = sizeof(sin);
1248 sin.sin_family = AF_INET;
1249 sin.sin_port = th->th_sport;
1250 sin.sin_addr = ip->ip_src;
1251 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1252 }
1253
1254 /* XXX mapped address case */
1255 } else
1256 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1257 notify);
1258 return NULL;
1259 }
1260
1261 /*
1262 * When a source quence is received, we are being notifed of congestion.
1263 * Close the congestion window down to the Loss Window (one segment).
1264 * We will gradually open it again as we proceed.
1265 */
1266 void
1267 tcp_quench(inp, errno)
1268 struct inpcb *inp;
1269 int errno;
1270 {
1271 struct tcpcb *tp = intotcpcb(inp);
1272
1273 if (tp)
1274 tp->snd_cwnd = tp->t_segsz;
1275 }
1276 #endif
1277
1278 #if defined(INET6) && !defined(TCP6)
1279 void
1280 tcp6_quench(in6p, errno)
1281 struct in6pcb *in6p;
1282 int errno;
1283 {
1284 struct tcpcb *tp = in6totcpcb(in6p);
1285
1286 if (tp)
1287 tp->snd_cwnd = tp->t_segsz;
1288 }
1289 #endif
1290
1291 /*
1292 * Path MTU Discovery handlers.
1293 */
1294 void
1295 tcp_mtudisc_callback(faddr)
1296 struct in_addr faddr;
1297 {
1298
1299 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1300 }
1301
1302 /*
1303 * On receipt of path MTU corrections, flush old route and replace it
1304 * with the new one. Retransmit all unacknowledged packets, to ensure
1305 * that all packets will be received.
1306 */
1307 void
1308 tcp_mtudisc(inp, errno)
1309 struct inpcb *inp;
1310 int errno;
1311 {
1312 struct tcpcb *tp = intotcpcb(inp);
1313 struct rtentry *rt = in_pcbrtentry(inp);
1314
1315 if (tp != 0) {
1316 if (rt != 0) {
1317 /*
1318 * If this was not a host route, remove and realloc.
1319 */
1320 if ((rt->rt_flags & RTF_HOST) == 0) {
1321 in_rtchange(inp, errno);
1322 if ((rt = in_pcbrtentry(inp)) == 0)
1323 return;
1324 }
1325
1326 /*
1327 * Slow start out of the error condition. We
1328 * use the MTU because we know it's smaller
1329 * than the previously transmitted segment.
1330 *
1331 * Note: This is more conservative than the
1332 * suggestion in draft-floyd-incr-init-win-03.
1333 */
1334 if (rt->rt_rmx.rmx_mtu != 0)
1335 tp->snd_cwnd =
1336 TCP_INITIAL_WINDOW(tcp_init_win,
1337 rt->rt_rmx.rmx_mtu);
1338 }
1339
1340 /*
1341 * Resend unacknowledged packets.
1342 */
1343 tp->snd_nxt = tp->snd_una;
1344 tcp_output(tp);
1345 }
1346 }
1347
1348 #if defined(INET6) && !defined(TCP6)
1349 void
1350 tcp6_mtudisc(in6p, errno)
1351 struct in6pcb *in6p;
1352 int errno;
1353 {
1354 struct tcpcb *tp = in6totcpcb(in6p);
1355 struct rtentry *rt = in6_pcbrtentry(in6p);
1356
1357 if (tp != 0) {
1358 if (rt != 0) {
1359 /*
1360 * If this was not a host route, remove and realloc.
1361 */
1362 if ((rt->rt_flags & RTF_HOST) == 0) {
1363 in6_rtchange(in6p, errno);
1364 if ((rt = in6_pcbrtentry(in6p)) == 0)
1365 return;
1366 }
1367
1368 /*
1369 * Slow start out of the error condition. We
1370 * use the MTU because we know it's smaller
1371 * than the previously transmitted segment.
1372 *
1373 * Note: This is more conservative than the
1374 * suggestion in draft-floyd-incr-init-win-03.
1375 */
1376 if (rt->rt_rmx.rmx_mtu != 0)
1377 tp->snd_cwnd =
1378 TCP_INITIAL_WINDOW(tcp_init_win,
1379 rt->rt_rmx.rmx_mtu);
1380 }
1381
1382 /*
1383 * Resend unacknowledged packets.
1384 */
1385 tp->snd_nxt = tp->snd_una;
1386 tcp_output(tp);
1387 }
1388 }
1389 #endif /* INET6 && !TCP6 */
1390
1391 /*
1392 * Compute the MSS to advertise to the peer. Called only during
1393 * the 3-way handshake. If we are the server (peer initiated
1394 * connection), we are called with a pointer to the interface
1395 * on which the SYN packet arrived. If we are the client (we
1396 * initiated connection), we are called with a pointer to the
1397 * interface out which this connection should go.
1398 *
1399 * NOTE: Do not subtract IP option/extension header size nor IPsec
1400 * header size from MSS advertisement. MSS option must hold the maximum
1401 * segment size we can accept, so it must always be:
1402 * max(if mtu) - ip header - tcp header
1403 */
1404 u_long
1405 tcp_mss_to_advertise(ifp, af)
1406 const struct ifnet *ifp;
1407 int af;
1408 {
1409 extern u_long in_maxmtu;
1410 u_long mss = 0;
1411 u_long hdrsiz;
1412
1413 /*
1414 * In order to avoid defeating path MTU discovery on the peer,
1415 * we advertise the max MTU of all attached networks as our MSS,
1416 * per RFC 1191, section 3.1.
1417 *
1418 * We provide the option to advertise just the MTU of
1419 * the interface on which we hope this connection will
1420 * be receiving. If we are responding to a SYN, we
1421 * will have a pretty good idea about this, but when
1422 * initiating a connection there is a bit more doubt.
1423 *
1424 * We also need to ensure that loopback has a large enough
1425 * MSS, as the loopback MTU is never included in in_maxmtu.
1426 */
1427
1428 if (ifp != NULL)
1429 mss = ifp->if_mtu;
1430
1431 if (tcp_mss_ifmtu == 0)
1432 mss = max(in_maxmtu, mss);
1433
1434 switch (af) {
1435 case AF_INET:
1436 hdrsiz = sizeof(struct ip);
1437 break;
1438 #ifdef INET6
1439 case AF_INET6:
1440 hdrsiz = sizeof(struct ip6_hdr);
1441 break;
1442 #endif
1443 default:
1444 hdrsiz = 0;
1445 break;
1446 }
1447 hdrsiz += sizeof(struct tcphdr);
1448 if (mss > hdrsiz)
1449 mss -= hdrsiz;
1450
1451 mss = max(tcp_mssdflt, mss);
1452 return (mss);
1453 }
1454
1455 /*
1456 * Set connection variables based on the peer's advertised MSS.
1457 * We are passed the TCPCB for the actual connection. If we
1458 * are the server, we are called by the compressed state engine
1459 * when the 3-way handshake is complete. If we are the client,
1460 * we are called when we recieve the SYN,ACK from the server.
1461 *
1462 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1463 * before this routine is called!
1464 */
1465 void
1466 tcp_mss_from_peer(tp, offer)
1467 struct tcpcb *tp;
1468 int offer;
1469 {
1470 struct socket *so;
1471 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1472 struct rtentry *rt;
1473 #endif
1474 u_long bufsize;
1475 int mss;
1476
1477 #ifdef DIAGNOSTIC
1478 if (tp->t_inpcb && tp->t_in6pcb)
1479 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1480 #endif
1481 so = NULL;
1482 rt = NULL;
1483 #ifdef INET
1484 if (tp->t_inpcb) {
1485 so = tp->t_inpcb->inp_socket;
1486 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1487 rt = in_pcbrtentry(tp->t_inpcb);
1488 #endif
1489 }
1490 #endif
1491 #ifdef INET6
1492 if (tp->t_in6pcb) {
1493 so = tp->t_in6pcb->in6p_socket;
1494 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1495 #ifdef TCP6
1496 rt = NULL;
1497 #else
1498 rt = in6_pcbrtentry(tp->t_in6pcb);
1499 #endif
1500 #endif
1501 }
1502 #endif
1503
1504 /*
1505 * As per RFC1122, use the default MSS value, unless they
1506 * sent us an offer. Do not accept offers less than 32 bytes.
1507 */
1508 mss = tcp_mssdflt;
1509 if (offer)
1510 mss = offer;
1511 mss = max(mss, 32); /* sanity */
1512 tp->t_peermss = mss;
1513 mss -= tcp_optlen(tp);
1514 #ifdef INET
1515 if (tp->t_inpcb)
1516 mss -= ip_optlen(tp->t_inpcb);
1517 #endif
1518 #ifdef INET6
1519 if (tp->t_in6pcb)
1520 mss -= ip6_optlen(tp->t_in6pcb);
1521 #endif
1522
1523 /*
1524 * If there's a pipesize, change the socket buffer to that size.
1525 * Make the socket buffer an integral number of MSS units. If
1526 * the MSS is larger than the socket buffer, artificially decrease
1527 * the MSS.
1528 */
1529 #ifdef RTV_SPIPE
1530 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1531 bufsize = rt->rt_rmx.rmx_sendpipe;
1532 else
1533 #endif
1534 bufsize = so->so_snd.sb_hiwat;
1535 if (bufsize < mss)
1536 mss = bufsize;
1537 else {
1538 bufsize = roundup(bufsize, mss);
1539 if (bufsize > sb_max)
1540 bufsize = sb_max;
1541 (void) sbreserve(&so->so_snd, bufsize);
1542 }
1543 tp->t_segsz = mss;
1544
1545 #ifdef RTV_SSTHRESH
1546 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1547 /*
1548 * There's some sort of gateway or interface buffer
1549 * limit on the path. Use this to set the slow
1550 * start threshold, but set the threshold to no less
1551 * than 2 * MSS.
1552 */
1553 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1554 }
1555 #endif
1556 }
1557
1558 /*
1559 * Processing necessary when a TCP connection is established.
1560 */
1561 void
1562 tcp_established(tp)
1563 struct tcpcb *tp;
1564 {
1565 struct socket *so;
1566 #ifdef RTV_RPIPE
1567 struct rtentry *rt;
1568 #endif
1569 u_long bufsize;
1570
1571 #ifdef DIAGNOSTIC
1572 if (tp->t_inpcb && tp->t_in6pcb)
1573 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1574 #endif
1575 so = NULL;
1576 rt = NULL;
1577 #ifdef INET
1578 if (tp->t_inpcb) {
1579 so = tp->t_inpcb->inp_socket;
1580 #if defined(RTV_RPIPE)
1581 rt = in_pcbrtentry(tp->t_inpcb);
1582 #endif
1583 }
1584 #endif
1585 #ifdef INET6
1586 if (tp->t_in6pcb) {
1587 so = tp->t_in6pcb->in6p_socket;
1588 #if defined(RTV_RPIPE)
1589 #ifdef TCP6
1590 rt = NULL;
1591 #else
1592 rt = in6_pcbrtentry(tp->t_in6pcb);
1593 #endif
1594 #endif
1595 }
1596 #endif
1597
1598 tp->t_state = TCPS_ESTABLISHED;
1599 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1600
1601 #ifdef RTV_RPIPE
1602 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1603 bufsize = rt->rt_rmx.rmx_recvpipe;
1604 else
1605 #endif
1606 bufsize = so->so_rcv.sb_hiwat;
1607 if (bufsize > tp->t_ourmss) {
1608 bufsize = roundup(bufsize, tp->t_ourmss);
1609 if (bufsize > sb_max)
1610 bufsize = sb_max;
1611 (void) sbreserve(&so->so_rcv, bufsize);
1612 }
1613 }
1614
1615 /*
1616 * Check if there's an initial rtt or rttvar. Convert from the
1617 * route-table units to scaled multiples of the slow timeout timer.
1618 * Called only during the 3-way handshake.
1619 */
1620 void
1621 tcp_rmx_rtt(tp)
1622 struct tcpcb *tp;
1623 {
1624 #ifdef RTV_RTT
1625 struct rtentry *rt = NULL;
1626 int rtt;
1627
1628 #ifdef DIAGNOSTIC
1629 if (tp->t_inpcb && tp->t_in6pcb)
1630 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1631 #endif
1632 #ifdef INET
1633 if (tp->t_inpcb)
1634 rt = in_pcbrtentry(tp->t_inpcb);
1635 #endif
1636 #ifdef INET6
1637 if (tp->t_in6pcb) {
1638 #ifdef TCP6
1639 rt = NULL;
1640 #else
1641 rt = in6_pcbrtentry(tp->t_in6pcb);
1642 #endif
1643 }
1644 #endif
1645 if (rt == NULL)
1646 return;
1647
1648 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1649 /*
1650 * XXX The lock bit for MTU indicates that the value
1651 * is also a minimum value; this is subject to time.
1652 */
1653 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1654 TCPT_RANGESET(tp->t_rttmin,
1655 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1656 TCPTV_MIN, TCPTV_REXMTMAX);
1657 tp->t_srtt = rtt /
1658 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1659 if (rt->rt_rmx.rmx_rttvar) {
1660 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1661 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1662 (TCP_RTTVAR_SHIFT + 2));
1663 } else {
1664 /* Default variation is +- 1 rtt */
1665 tp->t_rttvar =
1666 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1667 }
1668 TCPT_RANGESET(tp->t_rxtcur,
1669 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1670 tp->t_rttmin, TCPTV_REXMTMAX);
1671 }
1672 #endif
1673 }
1674
1675 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1676
1677 /*
1678 * Get a new sequence value given a tcp control block
1679 */
1680 tcp_seq
1681 tcp_new_iss(tp, len, addin)
1682 void *tp;
1683 u_long len;
1684 tcp_seq addin;
1685 {
1686 tcp_seq tcp_iss;
1687
1688 /*
1689 * Randomize.
1690 */
1691 #if NRND > 0
1692 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1693 #else
1694 tcp_iss = random();
1695 #endif
1696
1697 /*
1698 * If we were asked to add some amount to a known value,
1699 * we will take a random value obtained above, mask off the upper
1700 * bits, and add in the known value. We also add in a constant to
1701 * ensure that we are at least a certain distance from the original
1702 * value.
1703 *
1704 * This is used when an old connection is in timed wait
1705 * and we have a new one coming in, for instance.
1706 */
1707 if (addin != 0) {
1708 #ifdef TCPISS_DEBUG
1709 printf("Random %08x, ", tcp_iss);
1710 #endif
1711 tcp_iss &= TCP_ISS_RANDOM_MASK;
1712 tcp_iss += addin + TCP_ISSINCR;
1713 #ifdef TCPISS_DEBUG
1714 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1715 #endif
1716 } else {
1717 tcp_iss &= TCP_ISS_RANDOM_MASK;
1718 tcp_iss += tcp_iss_seq;
1719 tcp_iss_seq += TCP_ISSINCR;
1720 #ifdef TCPISS_DEBUG
1721 printf("ISS %08x\n", tcp_iss);
1722 #endif
1723 }
1724
1725 if (tcp_compat_42) {
1726 /*
1727 * Limit it to the positive range for really old TCP
1728 * implementations.
1729 */
1730 if (tcp_iss >= 0x80000000)
1731 tcp_iss &= 0x7fffffff; /* XXX */
1732 }
1733
1734 return tcp_iss;
1735 }
1736
1737 #ifdef IPSEC
1738 /* compute ESP/AH header size for TCP, including outer IP header. */
1739 size_t
1740 ipsec4_hdrsiz_tcp(tp)
1741 struct tcpcb *tp;
1742 {
1743 struct inpcb *inp;
1744 size_t hdrsiz;
1745
1746 /* XXX mapped addr case (tp->t_in6pcb) */
1747 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1748 return 0;
1749 switch (tp->t_family) {
1750 case AF_INET:
1751 /* XXX: should use currect direction. */
1752 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1753 break;
1754 default:
1755 hdrsiz = 0;
1756 break;
1757 }
1758
1759 return hdrsiz;
1760 }
1761
1762 #if defined(INET6) && !defined(TCP6)
1763 size_t
1764 ipsec6_hdrsiz_tcp(tp)
1765 struct tcpcb *tp;
1766 {
1767 struct in6pcb *in6p;
1768 size_t hdrsiz;
1769
1770 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1771 return 0;
1772 switch (tp->t_family) {
1773 case AF_INET6:
1774 /* XXX: should use currect direction. */
1775 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1776 break;
1777 case AF_INET:
1778 /* mapped address case - tricky */
1779 default:
1780 hdrsiz = 0;
1781 break;
1782 }
1783
1784 return hdrsiz;
1785 }
1786 #endif
1787 #endif /*IPSEC*/
1788
1789 /*
1790 * Determine the length of the TCP options for this connection.
1791 *
1792 * XXX: What do we do for SACK, when we add that? Just reserve
1793 * all of the space? Otherwise we can't exactly be incrementing
1794 * cwnd by an amount that varies depending on the amount we last
1795 * had to SACK!
1796 */
1797
1798 u_int
1799 tcp_optlen(tp)
1800 struct tcpcb *tp;
1801 {
1802 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1803 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1804 return TCPOLEN_TSTAMP_APPA;
1805 else
1806 return 0;
1807 }
1808