Home | History | Annotate | Line # | Download | only in netinet
tcp_vtw.h revision 1.5.12.1
      1 /*	$NetBSD: tcp_vtw.h,v 1.5.12.1 2013/02/25 00:30:05 tls Exp $	*/
      2 /*
      3  * Copyright (c) 2011 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Coyote Point Systems, Inc.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * Vestigial time-wait.
     33  *
     34  * This implementation uses cache-efficient techniques, which will
     35  * appear somewhat peculiar.  The main philosophy is to optimise the
     36  * amount of information available within a cache line.  Cache miss is
     37  * expensive.  So we employ ad-hoc techniques to pull a series of
     38  * linked-list follows into a cache line.  One cache line, multiple
     39  * linked-list equivalents.
     40  *
     41  * One such ad-hoc technique is fat pointers.  Additional degrees of
     42  * ad-hoqueness result from having to hand tune it for pointer size
     43  * and for cache line size.
     44  *
     45  * The 'fat pointer' approach aggregates, for x86_32, 15 linked-list
     46  * data structures into one cache line.  The additional 32 bits in the
     47  * cache line are used for linking fat pointers, and for
     48  * allocation/bookkeeping.
     49  *
     50  * The 15 32-bit tags encode the pointers to the linked list elements,
     51  * and also encode the results of a search comparison.
     52  *
     53  * First, some more assumptions/restrictions.
     54  *
     55  * All the fat pointers are from a contiguous allocation arena.  Thus,
     56  * we can refer to them by offset from a base, not as full pointers.
     57  *
     58  * All the linked list data elements are also from a contiguous
     59  * allocation arena, again so that we can refer to them as offset from
     60  * a base.
     61  *
     62  * In order to add a data element to a fat pointer, a key value is
     63  * computed, based on unique data within the data element.  It is the
     64  * linear searching of the linked lists of these elements based on
     65  * these unique data that are being optimised here.
     66  *
     67  * Lets call the function that computes the key k(e), where e is the
     68  * data element.  In this example, k(e) returns 32-bits.
     69  *
     70  * Consider a set E (say of order 15) of data elements.  Let K be
     71  * the set of the k(e) for e in E.
     72  *
     73  * Let O be the set of the offsets from the base of the data elements in E.
     74  *
     75  * For each x in K, for each matching o in O, let t be x ^ o.  These
     76  * are the tags. (More or less).
     77  *
     78  * In order to search all the data elements in E, we compute the
     79  * search key, and one at a time, XOR the key into the tags.  If any
     80  * result is a valid data element index, we have a possible match.  If
     81  * not, there is no match.
     82  *
     83  * The no-match cases mean we do not have to de-reference the pointer
     84  * to the data element in question.  We save cache miss penalty and
     85  * cache load decreases.  Only in the case of a valid looking data
     86  * element index, do we have to look closer.
     87  *
     88  * Thus, in the absence of false positives, 15 data elements can be
     89  * searched with one cache line fill, as opposed to 15 cache line
     90  * fills for the usual implementation.
     91  *
     92  * The vestigial time waits (vtw_t), the data elements in the above, are
     93  * searched by faddr, fport, laddr, lport.  The key is a function of
     94  * these values.
     95  *
     96  * We hash these keys into the traditional hash chains to reduce the
     97  * search time, and use fat pointers to reduce the cache impacts of
     98  * searching.
     99  *
    100  * The vtw_t are, per requirement, in a contiguous chunk.  Allocation
    101  * is done with a clock hand, and all vtw_t within one allocation
    102  * domain have the same lifetime, so they will always be sorted by
    103  * age.
    104  *
    105  * A vtw_t will be allocated, timestamped, and have a fixed future
    106  * expiration.  It will be added to a hash bucket implemented with fat
    107  * pointers, which means that a cache line will be allocated in the
    108  * hash bucket, placed at the head (more recent in time) and the vtw_t
    109  * will be added to this.  As more entries are added, the fat pointer
    110  * cache line will fill, requiring additional cache lines for fat
    111  * pointers to be allocated. These will be added at the head, and the
    112  * aged entries will hang down, tapeworm like.  As the vtw_t entries
    113  * expire, the corresponding slot in the fat pointer will be
    114  * reclaimed, and eventually the cache line will completely empty and
    115  * be re-cycled, if not at the head of the chain.
    116  *
    117  * At times, a time-wait timer is restarted.  This corresponds to
    118  * deleting the current entry and re-adding it.
    119  *
    120  * Most of the time, they are just placed here to die.
    121  */
    122 #ifndef _NETINET_TCP_VTW_H
    123 #define _NETINET_TCP_VTW_H
    124 
    125 #include <sys/types.h>
    126 #include <sys/socket.h>
    127 #include <sys/sysctl.h>
    128 #include <net/if.h>
    129 #include <net/route.h>
    130 #include <netinet/in.h>
    131 #include <netinet/in_systm.h>
    132 #include <netinet/ip.h>
    133 #include <netinet/in_pcb.h>
    134 #include <netinet/in_var.h>
    135 #include <netinet/ip_var.h>
    136 #include <netinet/in.h>
    137 #include <netinet/tcp.h>
    138 #include <netinet/tcp_timer.h>
    139 #include <netinet/tcp_var.h>
    140 #include <netinet6/in6.h>
    141 #include <netinet/ip6.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_pcb.h>
    144 #include <netinet6/ip6_var.h>
    145 #include <netinet6/in6_var.h>
    146 #include <netinet/icmp6.h>
    147 #include <netinet6/nd6.h>
    148 
    149 #define	VTW_NCLASS	(1+3)		/* # different classes */
    150 
    151 /*
    152  * fat pointers, MI.
    153  */
    154 struct fatp_mi;
    155 
    156 typedef uint32_t fatp_word_t;
    157 
    158 typedef struct fatp_mi	fatp_t;
    159 
    160 /* Supported cacheline sizes: 32 64 128 bytes.  See fatp_key(),
    161  * fatp_slot_from_key(), fatp_xtra[].
    162  */
    163 #define	FATP_NTAGS	(CACHE_LINE_SIZE / sizeof(fatp_word_t) - 1)
    164 #define	FATP_NXT_WIDTH	(sizeof(fatp_word_t) * NBBY - FATP_NTAGS)
    165 
    166 #define	FATP_MAX	(1 << FATP_NXT_WIDTH)
    167 
    168 /* Worked example: ULP32 with 64-byte cacheline (32-bit x86):
    169  * 15 tags per cacheline.  At most 2^17 fat pointers per fatp_ctl_t.
    170  * The comments on the fatp_mi members, below, correspond to the worked
    171  * example.
    172  */
    173 struct fatp_mi {
    174 	fatp_word_t	inuse	: FATP_NTAGS;	/* (1+15)*4 == CL_SIZE */
    175 	fatp_word_t	nxt	: FATP_NXT_WIDTH;/* at most 2^17 fat pointers */
    176 	fatp_word_t	tag[FATP_NTAGS];	/* 15 tags per CL */
    177 };
    178 
    179 static inline int
    180 fatp_ntags(void)
    181 {
    182 	return FATP_NTAGS;
    183 }
    184 
    185 static inline int
    186 fatp_full(fatp_t *fp)
    187 {
    188 	fatp_t full;
    189 
    190 	full.inuse = (1U << FATP_NTAGS) - 1U;
    191 
    192 	return (fp->inuse == full.inuse);
    193 }
    194 
    195 struct vtw_common;
    196 struct vtw_v4;
    197 struct vtw_v6;
    198 struct vtw_ctl;
    199 
    200 /*!\brief common to all vtw
    201  */
    202 typedef struct vtw_common {
    203 	struct timeval	expire;		/* date of birth+msl */
    204 	uint32_t	key;		/* hash key: full hash */
    205 	uint32_t	port_key;	/* hash key: local port hash */
    206 	uint32_t	rcv_nxt;
    207 	uint32_t	rcv_wnd;
    208 	uint32_t	snd_nxt;
    209 	uint32_t	snd_scale	: 8;	/* window scaling for send win */
    210 	uint32_t	msl_class	: 2;	/* TCP MSL class {0,1,2,3} */
    211 	uint32_t	reuse_port	: 1;
    212 	uint32_t	reuse_addr	: 1;
    213 	uint32_t	v6only		: 1;
    214 	uint32_t	hashed		: 1;	/* reachable via FATP */
    215 	uint32_t	uid;
    216 } vtw_t;
    217 
    218 /*!\brief vestigial timewait for IPv4
    219  */
    220 typedef struct vtw_v4 {
    221 	vtw_t		common;		/*  must be first */
    222 	uint16_t	lport;
    223 	uint16_t	fport;
    224 	uint32_t	laddr;
    225 	uint32_t	faddr;
    226 } vtw_v4_t;
    227 
    228 /*!\brief vestigial timewait for IPv6
    229  */
    230 typedef struct vtw_v6 {
    231 	vtw_t		common;		/* must be first */
    232 	uint16_t	lport;
    233 	uint16_t	fport;
    234 	struct in6_addr	laddr;
    235 	struct in6_addr	faddr;
    236 } vtw_v6_t;
    237 
    238 struct fatp_ctl;
    239 typedef struct vtw_ctl		vtw_ctl_t;
    240 typedef struct fatp_ctl		fatp_ctl_t;
    241 
    242 /*
    243  * The vestigial time waits are kept in a contiguous chunk.
    244  * Allocation and free pointers run as clock hands thru this array.
    245  */
    246 struct vtw_ctl {
    247 	fatp_ctl_t	*fat;		/* collection of fatp to use	*/
    248 	vtw_ctl_t	*ctl;		/* <! controller's controller	*/
    249 	union {
    250 		vtw_t		*v;	/* common			*/
    251 		struct vtw_v4	*v4;	/* IPv4 resources		*/
    252 		struct vtw_v6	*v6;	/* IPv6 resources		*/
    253 	}		base,		/* base of vtw_t array		*/
    254 		/**/	lim,		/* extent of vtw_t array	*/
    255 		/**/	alloc,		/* allocation pointer		*/
    256 		/**/	oldest;		/* ^ to oldest			*/
    257 	uint32_t	nfree;		/* # free			*/
    258 	uint32_t	nalloc;		/* # allocated			*/
    259 	uint32_t	idx_mask;	/* mask capturing all index bits*/
    260 	uint32_t	is_v4	: 1;
    261 	uint32_t	is_v6	: 1;
    262 	uint32_t	idx_bits: 6;
    263 	uint32_t	clidx	: 3;	/* <! class index */
    264 };
    265 
    266 /*!\brief Collections of fat pointers.
    267  */
    268 struct fatp_ctl {
    269 	vtw_ctl_t	*vtw;		/* associated VTWs		*/
    270 	fatp_t		*base;		/* base of fatp_t array		*/
    271 	fatp_t		*lim;		/* extent of fatp_t array	*/
    272 	fatp_t		*free;		/* free list			*/
    273 	uint32_t	mask;		/* hash mask			*/
    274 	uint32_t	nfree;		/* # free			*/
    275 	uint32_t	nalloc;		/* # allocated			*/
    276 	fatp_t		**hash;		/* hash anchors			*/
    277 	fatp_t		**port;		/* port hash anchors		*/
    278 };
    279 
    280 /*!\brief stats
    281  */
    282 struct vtw_stats {
    283 	uint64_t	ins;		/* <! inserts */
    284 	uint64_t	del;		/* <! deleted */
    285 	uint64_t	kill;		/* <! assassination */
    286 	uint64_t	look[2];	/* <! lookup: full hash, port hash */
    287 	uint64_t	hit[2];		/* <! lookups that hit */
    288 	uint64_t	miss[2];	/* <! lookups that miss */
    289 	uint64_t	probe[2];	/* <! hits+miss */
    290 	uint64_t	losing[2];	/* <! misses requiring dereference */
    291 	uint64_t	max_chain[2];	/* <! max fatp chain traversed */
    292 	uint64_t	max_probe[2];	/* <! max probes in any one chain */
    293 	uint64_t	max_loss[2];	/* <! max losing probes in any one
    294 					 * chain
    295 					 */
    296 };
    297 
    298 typedef struct vtw_stats	vtw_stats_t;
    299 
    300 /*!\brief	follow fatp next 'pointer'
    301  */
    302 static inline fatp_t *
    303 fatp_next(fatp_ctl_t *fat, fatp_t *fp)
    304 {
    305 	return fp->nxt ? fat->base + fp->nxt-1 : 0;
    306 }
    307 
    308 /*!\brief determine a collection-relative fat pointer index.
    309  */
    310 static inline uint32_t
    311 fatp_index(fatp_ctl_t *fat, fatp_t *fp)
    312 {
    313 	return fp ? 1 + (fp - fat->base) : 0;
    314 }
    315 
    316 
    317 static inline uint32_t
    318 v4_tag(uint32_t faddr, uint32_t fport, uint32_t laddr, uint32_t lport)
    319 {
    320 	return (ntohl(faddr)   + ntohs(fport)
    321 		+ ntohl(laddr) + ntohs(lport));
    322 }
    323 
    324 static inline uint32_t
    325 v6_tag(const struct in6_addr *faddr, uint16_t fport,
    326        const struct in6_addr *laddr, uint16_t lport)
    327 {
    328 #ifdef IN6_HASH
    329 	return IN6_HASH(faddr, fport, laddr, lport);
    330 #else
    331 	return 0;
    332 #endif
    333 }
    334 
    335 static inline uint32_t
    336 v4_port_tag(uint16_t lport)
    337 {
    338 	uint32_t tag = lport ^ (lport << 11);
    339 
    340 	tag ^= tag << 3;
    341 	tag += tag >> 5;
    342 	tag ^= tag << 4;
    343 	tag += tag >> 17;
    344 	tag ^= tag << 25;
    345 	tag += tag >> 6;
    346 
    347 	return tag;
    348 }
    349 
    350 static inline uint32_t
    351 v6_port_tag(uint16_t lport)
    352 {
    353 	return v4_port_tag(lport);
    354 }
    355 
    356 struct tcpcb;
    357 struct tcphdr;
    358 
    359 int  vtw_add(int, struct tcpcb *);
    360 void vtw_del(vtw_ctl_t *, vtw_t *);
    361 int vtw_lookup_v4(const struct ip *ip, const struct tcphdr *th,
    362 		  uint32_t faddr, uint16_t fport,
    363 		  uint32_t laddr, uint16_t lport);
    364 struct ip6_hdr;
    365 struct in6_addr;
    366 
    367 int vtw_lookup_v6(const struct ip6_hdr *ip, const struct tcphdr *th,
    368 		  const struct in6_addr *faddr, uint16_t fport,
    369 		  const struct in6_addr *laddr, uint16_t lport);
    370 
    371 typedef struct vestigial_inpcb {
    372 	union {
    373 		struct in_addr	v4;
    374 		struct in6_addr	v6;
    375 	} faddr, laddr;
    376 	uint16_t		fport, lport;
    377 	uint32_t		valid		: 1;
    378 	uint32_t		v4		: 1;
    379 	uint32_t		reuse_addr	: 1;
    380 	uint32_t		reuse_port	: 1;
    381 	uint32_t		v6only		: 1;
    382 	uint32_t		more_tbd	: 1;
    383 	uint32_t		uid;
    384 	uint32_t		rcv_nxt;
    385 	uint32_t		rcv_wnd;
    386 	uint32_t		snd_nxt;
    387 	struct vtw_common	*vtw;
    388 	struct vtw_ctl		*ctl;
    389 } vestigial_inpcb_t;
    390 
    391 #ifdef _KERNEL
    392 void vtw_restart(vestigial_inpcb_t*);
    393 int vtw_earlyinit(void);
    394 int sysctl_tcp_vtw_enable(SYSCTLFN_PROTO);
    395 #endif /* _KERNEL */
    396 
    397 #ifdef VTW_DEBUG
    398 typedef struct sin_either {
    399 	uint8_t		sin_len;
    400 	uint8_t		sin_family;
    401 	uint16_t	sin_port;
    402 	union {
    403 		struct in_addr	v4;
    404 		struct in6_addr	v6;
    405 	}		sin_addr;
    406 } sin_either_t;
    407 
    408 int vtw_debug_add(int af, sin_either_t *, sin_either_t *, int, int);
    409 
    410 typedef struct vtw_sysargs {
    411 	uint32_t	op;
    412 	sin_either_t	fa;
    413 	sin_either_t	la;
    414 } vtw_sysargs_t;
    415 
    416 #endif /* VTW_DEBUG */
    417 
    418 #endif /* _NETINET_TCP_VTW_H */
    419