tcp_vtw.h revision 1.9 1 /* $NetBSD: tcp_vtw.h,v 1.9 2018/04/19 21:21:44 christos Exp $ */
2 /*
3 * Copyright (c) 2011 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Coyote Point Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * Vestigial time-wait.
33 *
34 * This implementation uses cache-efficient techniques, which will
35 * appear somewhat peculiar. The main philosophy is to optimise the
36 * amount of information available within a cache line. Cache miss is
37 * expensive. So we employ ad-hoc techniques to pull a series of
38 * linked-list follows into a cache line. One cache line, multiple
39 * linked-list equivalents.
40 *
41 * One such ad-hoc technique is fat pointers. Additional degrees of
42 * ad-hoqueness result from having to hand tune it for pointer size
43 * and for cache line size.
44 *
45 * The 'fat pointer' approach aggregates, for x86_32, 15 linked-list
46 * data structures into one cache line. The additional 32 bits in the
47 * cache line are used for linking fat pointers, and for
48 * allocation/bookkeeping.
49 *
50 * The 15 32-bit tags encode the pointers to the linked list elements,
51 * and also encode the results of a search comparison.
52 *
53 * First, some more assumptions/restrictions.
54 *
55 * All the fat pointers are from a contiguous allocation arena. Thus,
56 * we can refer to them by offset from a base, not as full pointers.
57 *
58 * All the linked list data elements are also from a contiguous
59 * allocation arena, again so that we can refer to them as offset from
60 * a base.
61 *
62 * In order to add a data element to a fat pointer, a key value is
63 * computed, based on unique data within the data element. It is the
64 * linear searching of the linked lists of these elements based on
65 * these unique data that are being optimised here.
66 *
67 * Lets call the function that computes the key k(e), where e is the
68 * data element. In this example, k(e) returns 32-bits.
69 *
70 * Consider a set E (say of order 15) of data elements. Let K be
71 * the set of the k(e) for e in E.
72 *
73 * Let O be the set of the offsets from the base of the data elements in E.
74 *
75 * For each x in K, for each matching o in O, let t be x ^ o. These
76 * are the tags. (More or less).
77 *
78 * In order to search all the data elements in E, we compute the
79 * search key, and one at a time, XOR the key into the tags. If any
80 * result is a valid data element index, we have a possible match. If
81 * not, there is no match.
82 *
83 * The no-match cases mean we do not have to de-reference the pointer
84 * to the data element in question. We save cache miss penalty and
85 * cache load decreases. Only in the case of a valid looking data
86 * element index, do we have to look closer.
87 *
88 * Thus, in the absence of false positives, 15 data elements can be
89 * searched with one cache line fill, as opposed to 15 cache line
90 * fills for the usual implementation.
91 *
92 * The vestigial time waits (vtw_t), the data elements in the above, are
93 * searched by faddr, fport, laddr, lport. The key is a function of
94 * these values.
95 *
96 * We hash these keys into the traditional hash chains to reduce the
97 * search time, and use fat pointers to reduce the cache impacts of
98 * searching.
99 *
100 * The vtw_t are, per requirement, in a contiguous chunk. Allocation
101 * is done with a clock hand, and all vtw_t within one allocation
102 * domain have the same lifetime, so they will always be sorted by
103 * age.
104 *
105 * A vtw_t will be allocated, timestamped, and have a fixed future
106 * expiration. It will be added to a hash bucket implemented with fat
107 * pointers, which means that a cache line will be allocated in the
108 * hash bucket, placed at the head (more recent in time) and the vtw_t
109 * will be added to this. As more entries are added, the fat pointer
110 * cache line will fill, requiring additional cache lines for fat
111 * pointers to be allocated. These will be added at the head, and the
112 * aged entries will hang down, tapeworm like. As the vtw_t entries
113 * expire, the corresponding slot in the fat pointer will be
114 * reclaimed, and eventually the cache line will completely empty and
115 * be re-cycled, if not at the head of the chain.
116 *
117 * At times, a time-wait timer is restarted. This corresponds to
118 * deleting the current entry and re-adding it.
119 *
120 * Most of the time, they are just placed here to die.
121 */
122 #ifndef _NETINET_TCP_VTW_H
123 #define _NETINET_TCP_VTW_H
124
125 #include <sys/types.h>
126 #include <sys/socket.h>
127 #include <sys/sysctl.h>
128 #include <net/if.h>
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/in_var.h>
134 #include <netinet/ip_var.h>
135 #include <netinet/in.h>
136 #include <netinet/tcp.h>
137 #include <netinet/tcp_timer.h>
138 #include <netinet/tcp_var.h>
139 #include <netinet6/in6.h>
140 #include <netinet/ip6.h>
141 #include <netinet6/ip6_var.h>
142 #include <netinet6/in6_pcb.h>
143 #include <netinet6/ip6_var.h>
144 #include <netinet6/in6_var.h>
145 #include <netinet/icmp6.h>
146
147 #define VTW_NCLASS (1+3) /* # different classes */
148
149 /*
150 * fat pointers, MI.
151 */
152 struct fatp_mi;
153
154 typedef uint32_t fatp_word_t;
155
156 typedef struct fatp_mi fatp_t;
157
158 /* Supported cacheline sizes: 32 64 128 bytes. See fatp_key(),
159 * fatp_slot_from_key(), fatp_xtra[].
160 */
161 #define FATP_NTAGS (CACHE_LINE_SIZE / sizeof(fatp_word_t) - 1)
162 #define FATP_NXT_WIDTH (sizeof(fatp_word_t) * NBBY - FATP_NTAGS)
163
164 #define FATP_MAX (1 << FATP_NXT_WIDTH)
165
166 /* Worked example: ULP32 with 64-byte cacheline (32-bit x86):
167 * 15 tags per cacheline. At most 2^17 fat pointers per fatp_ctl_t.
168 * The comments on the fatp_mi members, below, correspond to the worked
169 * example.
170 */
171 struct fatp_mi {
172 fatp_word_t inuse : FATP_NTAGS; /* (1+15)*4 == CL_SIZE */
173 fatp_word_t nxt : FATP_NXT_WIDTH;/* at most 2^17 fat pointers */
174 fatp_word_t tag[FATP_NTAGS]; /* 15 tags per CL */
175 };
176
177 static __inline int
178 fatp_ntags(void)
179 {
180 return FATP_NTAGS;
181 }
182
183 static __inline int
184 fatp_full(fatp_t *fp)
185 {
186 fatp_t full;
187
188 full.inuse = (1U << FATP_NTAGS) - 1U;
189
190 return (fp->inuse == full.inuse);
191 }
192
193 struct vtw_common;
194 struct vtw_v4;
195 struct vtw_v6;
196 struct vtw_ctl;
197
198 /*!\brief common to all vtw
199 */
200 typedef struct vtw_common {
201 struct timeval expire; /* date of birth+msl */
202 uint32_t key; /* hash key: full hash */
203 uint32_t port_key; /* hash key: local port hash */
204 uint32_t rcv_nxt;
205 uint32_t rcv_wnd;
206 uint32_t snd_nxt;
207 uint32_t snd_scale : 8; /* window scaling for send win */
208 uint32_t msl_class : 2; /* TCP MSL class {0,1,2,3} */
209 uint32_t reuse_port : 1;
210 uint32_t reuse_addr : 1;
211 uint32_t v6only : 1;
212 uint32_t hashed : 1; /* reachable via FATP */
213 uint32_t uid;
214 } vtw_t;
215
216 /*!\brief vestigial timewait for IPv4
217 */
218 typedef struct vtw_v4 {
219 vtw_t common; /* must be first */
220 uint16_t lport;
221 uint16_t fport;
222 uint32_t laddr;
223 uint32_t faddr;
224 } vtw_v4_t;
225
226 /*!\brief vestigial timewait for IPv6
227 */
228 typedef struct vtw_v6 {
229 vtw_t common; /* must be first */
230 uint16_t lport;
231 uint16_t fport;
232 struct in6_addr laddr;
233 struct in6_addr faddr;
234 } vtw_v6_t;
235
236 struct fatp_ctl;
237 typedef struct vtw_ctl vtw_ctl_t;
238 typedef struct fatp_ctl fatp_ctl_t;
239
240 /*
241 * The vestigial time waits are kept in a contiguous chunk.
242 * Allocation and free pointers run as clock hands thru this array.
243 */
244 struct vtw_ctl {
245 fatp_ctl_t *fat; /* collection of fatp to use */
246 vtw_ctl_t *ctl; /* <! controller's controller */
247 union {
248 vtw_t *v; /* common */
249 struct vtw_v4 *v4; /* IPv4 resources */
250 struct vtw_v6 *v6; /* IPv6 resources */
251 } base, /* base of vtw_t array */
252 /**/ lim, /* extent of vtw_t array */
253 /**/ alloc, /* allocation pointer */
254 /**/ oldest; /* ^ to oldest */
255 uint32_t nfree; /* # free */
256 uint32_t nalloc; /* # allocated */
257 uint32_t idx_mask; /* mask capturing all index bits*/
258 uint32_t is_v4 : 1;
259 uint32_t is_v6 : 1;
260 uint32_t idx_bits: 6;
261 uint32_t clidx : 3; /* <! class index */
262 };
263
264 /*!\brief Collections of fat pointers.
265 */
266 struct fatp_ctl {
267 vtw_ctl_t *vtw; /* associated VTWs */
268 fatp_t *base; /* base of fatp_t array */
269 fatp_t *lim; /* extent of fatp_t array */
270 fatp_t *free; /* free list */
271 uint32_t mask; /* hash mask */
272 uint32_t nfree; /* # free */
273 uint32_t nalloc; /* # allocated */
274 fatp_t **hash; /* hash anchors */
275 fatp_t **port; /* port hash anchors */
276 };
277
278 /*!\brief stats
279 */
280 struct vtw_stats {
281 uint64_t ins; /* <! inserts */
282 uint64_t del; /* <! deleted */
283 uint64_t kill; /* <! assassination */
284 uint64_t look[2]; /* <! lookup: full hash, port hash */
285 uint64_t hit[2]; /* <! lookups that hit */
286 uint64_t miss[2]; /* <! lookups that miss */
287 uint64_t probe[2]; /* <! hits+miss */
288 uint64_t losing[2]; /* <! misses requiring dereference */
289 uint64_t max_chain[2]; /* <! max fatp chain traversed */
290 uint64_t max_probe[2]; /* <! max probes in any one chain */
291 uint64_t max_loss[2]; /* <! max losing probes in any one
292 * chain
293 */
294 };
295
296 typedef struct vtw_stats vtw_stats_t;
297
298 /*!\brief follow fatp next 'pointer'
299 */
300 static __inline fatp_t *
301 fatp_next(fatp_ctl_t *fat, fatp_t *fp)
302 {
303 return fp->nxt ? fat->base + fp->nxt-1 : 0;
304 }
305
306 /*!\brief determine a collection-relative fat pointer index.
307 */
308 static __inline uint32_t
309 fatp_index(fatp_ctl_t *fat, fatp_t *fp)
310 {
311 return fp ? 1 + (fp - fat->base) : 0;
312 }
313
314
315 static __inline uint32_t
316 v4_tag(uint32_t faddr, uint32_t fport, uint32_t laddr, uint32_t lport)
317 {
318 return (ntohl(faddr) + ntohs(fport)
319 + ntohl(laddr) + ntohs(lport));
320 }
321
322 static __inline uint32_t
323 v6_tag(const struct in6_addr *faddr, uint16_t fport,
324 const struct in6_addr *laddr, uint16_t lport)
325 {
326 #ifdef IN6_HASH
327 return IN6_HASH(faddr, fport, laddr, lport);
328 #else
329 return 0;
330 #endif
331 }
332
333 static __inline uint32_t
334 v4_port_tag(uint16_t lport)
335 {
336 uint32_t tag = lport ^ (lport << 11);
337
338 tag ^= tag << 3;
339 tag += tag >> 5;
340 tag ^= tag << 4;
341 tag += tag >> 17;
342 tag ^= tag << 25;
343 tag += tag >> 6;
344
345 return tag;
346 }
347
348 static __inline uint32_t
349 v6_port_tag(uint16_t lport)
350 {
351 return v4_port_tag(lport);
352 }
353
354 struct tcpcb;
355 struct tcphdr;
356
357 int vtw_add(int, struct tcpcb *);
358 void vtw_del(vtw_ctl_t *, vtw_t *);
359 int vtw_lookup_v4(const struct ip *ip, const struct tcphdr *th,
360 uint32_t faddr, uint16_t fport,
361 uint32_t laddr, uint16_t lport);
362 struct ip6_hdr;
363 struct in6_addr;
364
365 int vtw_lookup_v6(const struct ip6_hdr *ip, const struct tcphdr *th,
366 const struct in6_addr *faddr, uint16_t fport,
367 const struct in6_addr *laddr, uint16_t lport);
368
369 typedef struct vestigial_inpcb {
370 union {
371 struct in_addr v4;
372 struct in6_addr v6;
373 } faddr, laddr;
374 uint16_t fport, lport;
375 uint32_t valid : 1;
376 uint32_t v4 : 1;
377 uint32_t reuse_addr : 1;
378 uint32_t reuse_port : 1;
379 uint32_t v6only : 1;
380 uint32_t more_tbd : 1;
381 uint32_t uid;
382 uint32_t rcv_nxt;
383 uint32_t rcv_wnd;
384 uint32_t snd_nxt;
385 struct vtw_common *vtw;
386 struct vtw_ctl *ctl;
387 } vestigial_inpcb_t;
388
389 #ifdef _KERNEL
390 void vtw_restart(vestigial_inpcb_t*);
391 int vtw_earlyinit(void);
392 int sysctl_tcp_vtw_enable(SYSCTLFN_PROTO);
393 #endif /* _KERNEL */
394
395 #ifdef VTW_DEBUG
396 typedef struct sin_either {
397 uint8_t sin_len;
398 uint8_t sin_family;
399 uint16_t sin_port;
400 union {
401 struct in_addr v4;
402 struct in6_addr v6;
403 } sin_addr;
404 } sin_either_t;
405
406 int vtw_debug_add(int af, sin_either_t *, sin_either_t *, int, int);
407
408 typedef struct vtw_sysargs {
409 uint32_t op;
410 sin_either_t fa;
411 sin_either_t la;
412 } vtw_sysargs_t;
413
414 #endif /* VTW_DEBUG */
415
416 #endif /* _NETINET_TCP_VTW_H */
417