udp_usrreq.c revision 1.266 1 /* $NetBSD: udp_usrreq.c,v 1.266 2024/10/08 02:30:04 riastradh Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
61 */
62
63 /*
64 * UDP protocol implementation.
65 * Per RFC 768, August, 1980.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: udp_usrreq.c,v 1.266 2024/10/08 02:30:04 riastradh Exp $");
70
71 #ifdef _KERNEL_OPT
72 #include "opt_inet.h"
73 #include "opt_ipsec.h"
74 #include "opt_inet_csum.h"
75 #include "opt_mbuftrace.h"
76 #include "opt_net_mpsafe.h"
77 #endif
78
79 #include <sys/param.h>
80 #include <sys/mbuf.h>
81 #include <sys/once.h>
82 #include <sys/protosw.h>
83 #include <sys/socket.h>
84 #include <sys/socketvar.h>
85 #include <sys/systm.h>
86 #include <sys/proc.h>
87 #include <sys/domain.h>
88 #include <sys/sysctl.h>
89
90 #include <net/if.h>
91
92 #include <netinet/in.h>
93 #include <netinet/in_systm.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip.h>
96 #include <netinet/in_pcb.h>
97 #include <netinet/ip_var.h>
98 #include <netinet/ip_icmp.h>
99 #include <netinet/udp.h>
100 #include <netinet/udp_var.h>
101 #include <netinet/udp_private.h>
102
103 #ifdef INET6
104 #include <netinet/ip6.h>
105 #include <netinet6/ip6_var.h>
106 #include <netinet6/ip6_private.h>
107 #include <netinet6/in6_pcb.h>
108 #include <netinet6/udp6_var.h>
109 #include <netinet6/udp6_private.h>
110 #endif
111
112 #ifndef INET6
113 #include <netinet/ip6.h>
114 #endif
115
116 #ifdef IPSEC
117 #include <netipsec/ipsec.h>
118 #include <netipsec/esp.h>
119 #endif
120
121 int udpcksum = 1;
122 int udp_do_loopback_cksum = 0;
123
124 struct inpcbtable udbtable;
125
126 percpu_t *udpstat_percpu;
127
128 #ifdef INET
129 #ifdef IPSEC
130 static int udp4_espinudp(struct mbuf **, int);
131 #endif
132 static void udp4_sendup(struct mbuf *, int, struct sockaddr *,
133 struct socket *);
134 static int udp4_realinput(struct sockaddr_in *, struct sockaddr_in *,
135 struct mbuf **, int);
136 static int udp4_input_checksum(struct mbuf *, const struct udphdr *, int, int);
137 #endif
138 #ifdef INET
139 static void udp_notify (struct inpcb *, int);
140 #endif
141
142 #ifndef UDBHASHSIZE
143 #define UDBHASHSIZE 128
144 #endif
145 int udbhashsize = UDBHASHSIZE;
146
147 /*
148 * For send - really max datagram size; for receive - 40 1K datagrams.
149 */
150 static int udp_sendspace = 9216;
151 static int udp_recvspace = 40 * (1024 + sizeof(struct sockaddr_in));
152
153 #ifdef MBUFTRACE
154 struct mowner udp_mowner = MOWNER_INIT("udp", "");
155 struct mowner udp_rx_mowner = MOWNER_INIT("udp", "rx");
156 struct mowner udp_tx_mowner = MOWNER_INIT("udp", "tx");
157 #endif
158
159 #ifdef UDP_CSUM_COUNTERS
160 #include <sys/device.h>
161
162 #if defined(INET)
163 struct evcnt udp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
164 NULL, "udp", "hwcsum bad");
165 struct evcnt udp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
166 NULL, "udp", "hwcsum ok");
167 struct evcnt udp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
168 NULL, "udp", "hwcsum data");
169 struct evcnt udp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
170 NULL, "udp", "swcsum");
171
172 EVCNT_ATTACH_STATIC(udp_hwcsum_bad);
173 EVCNT_ATTACH_STATIC(udp_hwcsum_ok);
174 EVCNT_ATTACH_STATIC(udp_hwcsum_data);
175 EVCNT_ATTACH_STATIC(udp_swcsum);
176 #endif /* defined(INET) */
177
178 #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
179 #else
180 #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
181 #endif /* UDP_CSUM_COUNTERS */
182
183 static void sysctl_net_inet_udp_setup(struct sysctllog **);
184
185 static int
186 do_udpinit(void)
187 {
188
189 inpcb_init(&udbtable, udbhashsize, udbhashsize);
190 udpstat_percpu = percpu_alloc(sizeof(uint64_t) * UDP_NSTATS);
191
192 MOWNER_ATTACH(&udp_tx_mowner);
193 MOWNER_ATTACH(&udp_rx_mowner);
194 MOWNER_ATTACH(&udp_mowner);
195
196 return 0;
197 }
198
199 void
200 udp_init_common(void)
201 {
202 static ONCE_DECL(doudpinit);
203
204 RUN_ONCE(&doudpinit, do_udpinit);
205 }
206
207 void
208 udp_init(void)
209 {
210
211 sysctl_net_inet_udp_setup(NULL);
212
213 udp_init_common();
214 }
215
216 /*
217 * Checksum extended UDP header and data.
218 */
219 int
220 udp_input_checksum(int af, struct mbuf *m, const struct udphdr *uh,
221 int iphlen, int len)
222 {
223
224 switch (af) {
225 #ifdef INET
226 case AF_INET:
227 return udp4_input_checksum(m, uh, iphlen, len);
228 #endif
229 #ifdef INET6
230 case AF_INET6:
231 return udp6_input_checksum(m, uh, iphlen, len);
232 #endif
233 }
234 #ifdef DIAGNOSTIC
235 panic("udp_input_checksum: unknown af %d", af);
236 #endif
237 /* NOTREACHED */
238 return -1;
239 }
240
241 #ifdef INET
242
243 /*
244 * Checksum extended UDP header and data.
245 */
246 static int
247 udp4_input_checksum(struct mbuf *m, const struct udphdr *uh,
248 int iphlen, int len)
249 {
250
251 /*
252 * XXX it's better to record and check if this mbuf is
253 * already checked.
254 */
255
256 if (uh->uh_sum == 0)
257 return 0;
258
259 switch (m->m_pkthdr.csum_flags &
260 ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv4) |
261 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
262 case M_CSUM_UDPv4|M_CSUM_TCP_UDP_BAD:
263 UDP_CSUM_COUNTER_INCR(&udp_hwcsum_bad);
264 goto badcsum;
265
266 case M_CSUM_UDPv4|M_CSUM_DATA: {
267 u_int32_t hw_csum = m->m_pkthdr.csum_data;
268
269 UDP_CSUM_COUNTER_INCR(&udp_hwcsum_data);
270 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
271 const struct ip *ip =
272 mtod(m, const struct ip *);
273
274 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
275 ip->ip_dst.s_addr,
276 htons(hw_csum + len + IPPROTO_UDP));
277 }
278 if ((hw_csum ^ 0xffff) != 0)
279 goto badcsum;
280 break;
281 }
282
283 case M_CSUM_UDPv4:
284 /* Checksum was okay. */
285 UDP_CSUM_COUNTER_INCR(&udp_hwcsum_ok);
286 break;
287
288 default:
289 /*
290 * Need to compute it ourselves. Maybe skip checksum
291 * on loopback interfaces.
292 */
293 if (__predict_true(!(m_get_rcvif_NOMPSAFE(m)->if_flags &
294 IFF_LOOPBACK) ||
295 udp_do_loopback_cksum)) {
296 UDP_CSUM_COUNTER_INCR(&udp_swcsum);
297 if (in4_cksum(m, IPPROTO_UDP, iphlen, len) != 0)
298 goto badcsum;
299 }
300 break;
301 }
302
303 return 0;
304
305 badcsum:
306 UDP_STATINC(UDP_STAT_BADSUM);
307 return -1;
308 }
309
310 void
311 udp_input(struct mbuf *m, int off, int proto)
312 {
313 struct sockaddr_in src, dst;
314 struct ip *ip;
315 struct udphdr *uh;
316 int iphlen = off;
317 int len;
318 int n;
319 u_int16_t ip_len;
320
321 MCLAIM(m, &udp_rx_mowner);
322 UDP_STATINC(UDP_STAT_IPACKETS);
323
324 /*
325 * Get IP and UDP header together in first mbuf.
326 */
327 ip = mtod(m, struct ip *);
328 M_REGION_GET(uh, struct udphdr *, m, iphlen, sizeof(struct udphdr));
329 if (uh == NULL) {
330 UDP_STATINC(UDP_STAT_HDROPS);
331 return;
332 }
333
334 /*
335 * Enforce alignment requirements that are violated in
336 * some cases, see kern/50766 for details.
337 */
338 if (ACCESSIBLE_POINTER(uh, struct udphdr) == 0) {
339 m = m_copyup(m, iphlen + sizeof(struct udphdr), 0);
340 if (m == NULL) {
341 UDP_STATINC(UDP_STAT_HDROPS);
342 return;
343 }
344 ip = mtod(m, struct ip *);
345 uh = (struct udphdr *)(mtod(m, char *) + iphlen);
346 }
347 KASSERT(ACCESSIBLE_POINTER(uh, struct udphdr));
348
349 /* destination port of 0 is illegal, based on RFC768. */
350 if (uh->uh_dport == 0)
351 goto bad;
352
353 /*
354 * Make mbuf data length reflect UDP length.
355 * If not enough data to reflect UDP length, drop.
356 */
357 ip_len = ntohs(ip->ip_len);
358 len = ntohs((u_int16_t)uh->uh_ulen);
359 if (len < sizeof(struct udphdr)) {
360 UDP_STATINC(UDP_STAT_BADLEN);
361 goto bad;
362 }
363 if (ip_len != iphlen + len) {
364 if (ip_len < iphlen + len) {
365 UDP_STATINC(UDP_STAT_BADLEN);
366 goto bad;
367 }
368 m_adj(m, iphlen + len - ip_len);
369 }
370
371 /*
372 * Checksum extended UDP header and data.
373 */
374 if (udp4_input_checksum(m, uh, iphlen, len))
375 goto badcsum;
376
377 /* construct source and dst sockaddrs. */
378 sockaddr_in_init(&src, &ip->ip_src, uh->uh_sport);
379 sockaddr_in_init(&dst, &ip->ip_dst, uh->uh_dport);
380
381 if ((n = udp4_realinput(&src, &dst, &m, iphlen)) == -1) {
382 UDP_STATINC(UDP_STAT_HDROPS);
383 return;
384 }
385 if (m == NULL) {
386 /*
387 * packet has been processed by ESP stuff -
388 * e.g. dropped NAT-T-keep-alive-packet ...
389 */
390 return;
391 }
392
393 ip = mtod(m, struct ip *);
394 M_REGION_GET(uh, struct udphdr *, m, iphlen, sizeof(struct udphdr));
395 if (uh == NULL) {
396 UDP_STATINC(UDP_STAT_HDROPS);
397 return;
398 }
399 /* XXX Re-enforce alignment? */
400
401 #ifdef INET6
402 if (IN_MULTICAST(ip->ip_dst.s_addr) || n == 0) {
403 struct sockaddr_in6 src6, dst6;
404
405 memset(&src6, 0, sizeof(src6));
406 src6.sin6_family = AF_INET6;
407 src6.sin6_len = sizeof(struct sockaddr_in6);
408 in6_in_2_v4mapin6(&ip->ip_src, &src6.sin6_addr);
409 src6.sin6_port = uh->uh_sport;
410 memset(&dst6, 0, sizeof(dst6));
411 dst6.sin6_family = AF_INET6;
412 dst6.sin6_len = sizeof(struct sockaddr_in6);
413 in6_in_2_v4mapin6(&ip->ip_dst, &dst6.sin6_addr);
414 dst6.sin6_port = uh->uh_dport;
415
416 n += udp6_realinput(AF_INET, &src6, &dst6, &m, iphlen);
417 }
418 #endif
419
420 if (n == 0) {
421 if (m->m_flags & (M_BCAST | M_MCAST)) {
422 UDP_STATINC(UDP_STAT_NOPORTBCAST);
423 goto bad;
424 }
425 UDP_STATINC(UDP_STAT_NOPORT);
426 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
427 m = NULL;
428 }
429
430 bad:
431 m_freem(m);
432 return;
433
434 badcsum:
435 m_freem(m);
436 }
437 #endif
438
439 #ifdef INET
440 static void
441 udp4_sendup(struct mbuf *m, int off /* offset of data portion */,
442 struct sockaddr *src, struct socket *so)
443 {
444 struct mbuf *opts = NULL;
445 struct mbuf *n;
446 struct inpcb *inp;
447
448 KASSERT(so != NULL);
449 KASSERT(so->so_proto->pr_domain->dom_family == AF_INET);
450 inp = sotoinpcb(so);
451 KASSERT(inp != NULL);
452
453 #if defined(IPSEC)
454 if (ipsec_used && ipsec_in_reject(m, inp)) {
455 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL)
456 icmp_error(n, ICMP_UNREACH, ICMP_UNREACH_ADMIN_PROHIBIT,
457 0, 0);
458 return;
459 }
460 #endif
461
462 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) {
463 if (inp->inp_flags & INP_CONTROLOPTS ||
464 SOOPT_TIMESTAMP(so->so_options)) {
465 struct ip *ip = mtod(n, struct ip *);
466 ip_savecontrol(inp, &opts, ip, n);
467 }
468
469 m_adj(n, off);
470 if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
471 m_freem(n);
472 m_freem(opts);
473 UDP_STATINC(UDP_STAT_FULLSOCK);
474 soroverflow(so);
475 } else
476 sorwakeup(so);
477 }
478 }
479 #endif
480
481 #ifdef INET
482 static int
483 udp4_realinput(struct sockaddr_in *src, struct sockaddr_in *dst,
484 struct mbuf **mp, int off /* offset of udphdr */)
485 {
486 u_int16_t *sport, *dport;
487 int rcvcnt;
488 struct in_addr *src4, *dst4;
489 struct inpcb *inp;
490 struct mbuf *m = *mp;
491
492 rcvcnt = 0;
493 off += sizeof(struct udphdr); /* now, offset of payload */
494
495 if (src->sin_family != AF_INET || dst->sin_family != AF_INET)
496 goto bad;
497
498 src4 = &src->sin_addr;
499 sport = &src->sin_port;
500 dst4 = &dst->sin_addr;
501 dport = &dst->sin_port;
502
503 if (IN_MULTICAST(dst4->s_addr) ||
504 in_broadcast(*dst4, m_get_rcvif_NOMPSAFE(m))) {
505 /*
506 * Deliver a multicast or broadcast datagram to *all* sockets
507 * for which the local and remote addresses and ports match
508 * those of the incoming datagram. This allows more than
509 * one process to receive multi/broadcasts on the same port.
510 * (This really ought to be done for unicast datagrams as
511 * well, but that would cause problems with existing
512 * applications that open both address-specific sockets and
513 * a wildcard socket listening to the same port -- they would
514 * end up receiving duplicates of every unicast datagram.
515 * Those applications open the multiple sockets to overcome an
516 * inadequacy of the UDP socket interface, but for backwards
517 * compatibility we avoid the problem here rather than
518 * fixing the interface. Maybe 4.5BSD will remedy this?)
519 */
520
521 /*
522 * KAME note: traditionally we dropped udpiphdr from mbuf here.
523 * we need udpiphdr for IPsec processing so we do that later.
524 */
525 /*
526 * Locate pcb(s) for datagram.
527 */
528 TAILQ_FOREACH(inp, &udbtable.inpt_queue, inp_queue) {
529 if (inp->inp_af != AF_INET)
530 continue;
531
532 if (inp->inp_lport != *dport)
533 continue;
534 if (!in_nullhost(in4p_laddr(inp))) {
535 if (!in_hosteq(in4p_laddr(inp), *dst4))
536 continue;
537 }
538 if (!in_nullhost(in4p_faddr(inp))) {
539 if (!in_hosteq(in4p_faddr(inp), *src4) ||
540 inp->inp_fport != *sport)
541 continue;
542 }
543
544 udp4_sendup(m, off, (struct sockaddr *)src,
545 inp->inp_socket);
546 rcvcnt++;
547
548 /*
549 * Don't look for additional matches if this one does
550 * not have either the SO_REUSEPORT or SO_REUSEADDR
551 * socket options set. This heuristic avoids searching
552 * through all pcbs in the common case of a non-shared
553 * port. It assumes that an application will never
554 * clear these options after setting them.
555 */
556 if ((inp->inp_socket->so_options &
557 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
558 break;
559 }
560 } else {
561 /*
562 * Locate pcb for datagram.
563 */
564 inp = inpcb_lookup(&udbtable, *src4, *sport, *dst4,
565 *dport, 0);
566 if (inp == 0) {
567 UDP_STATINC(UDP_STAT_PCBHASHMISS);
568 inp = inpcb_lookup_bound(&udbtable, *dst4, *dport);
569 if (inp == 0)
570 return rcvcnt;
571 }
572
573 #ifdef IPSEC
574 /* Handle ESP over UDP */
575 if (inp->inp_flags & INP_ESPINUDP) {
576 switch (udp4_espinudp(mp, off)) {
577 case -1: /* Error, m was freed */
578 KASSERT(*mp == NULL);
579 rcvcnt = -1;
580 goto bad;
581
582 case 1: /* ESP over UDP */
583 KASSERT(*mp == NULL);
584 rcvcnt++;
585 goto bad;
586
587 case 0: /* plain UDP */
588 default: /* Unexpected */
589 /*
590 * Normal UDP processing will take place,
591 * m may have changed.
592 */
593 m = *mp;
594 break;
595 }
596 }
597 #endif
598 if (inp->inp_overudp_cb != NULL) {
599 int ret;
600 ret = inp->inp_overudp_cb(mp, off, inp->inp_socket,
601 sintosa(src), inp->inp_overudp_arg);
602 switch (ret) {
603 case -1: /* Error, m was freed */
604 KASSERT(*mp == NULL);
605 rcvcnt = -1;
606 goto bad;
607
608 case 1: /* Foo over UDP */
609 KASSERT(*mp == NULL);
610 rcvcnt++;
611 goto bad;
612
613 case 0: /* plain UDP */
614 default: /* Unexpected */
615 /*
616 * Normal UDP processing will take place,
617 * m may have changed.
618 */
619 m = *mp;
620 break;
621 }
622 }
623
624 /*
625 * Check the minimum TTL for socket.
626 */
627 if (mtod(m, struct ip *)->ip_ttl < in4p_ip_minttl(inp))
628 goto bad;
629
630 udp4_sendup(m, off, (struct sockaddr *)src, inp->inp_socket);
631 rcvcnt++;
632 }
633
634 bad:
635 return rcvcnt;
636 }
637 #endif
638
639 #ifdef INET
640 /*
641 * Notify a udp user of an asynchronous error;
642 * just wake up so that he can collect error status.
643 */
644 static void
645 udp_notify(struct inpcb *inp, int errno)
646 {
647 inp->inp_socket->so_error = errno;
648 sorwakeup(inp->inp_socket);
649 sowwakeup(inp->inp_socket);
650 }
651
652 void *
653 udp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
654 {
655 struct ip *ip = v;
656 struct udphdr *uh;
657 void (*notify)(struct inpcb *, int) = udp_notify;
658 int errno;
659
660 if (sa->sa_family != AF_INET ||
661 sa->sa_len != sizeof(struct sockaddr_in))
662 return NULL;
663 if ((unsigned)cmd >= PRC_NCMDS)
664 return NULL;
665
666 errno = inetctlerrmap[cmd];
667 if (PRC_IS_REDIRECT(cmd)) {
668 notify = inpcb_rtchange;
669 ip = NULL;
670 } else if (cmd == PRC_HOSTDEAD) {
671 ip = NULL;
672 } else if (errno == 0) {
673 return NULL;
674 }
675
676 if (ip) {
677 uh = (struct udphdr *)((char *)ip + (ip->ip_hl << 2));
678 inpcb_notify(&udbtable, satocsin(sa)->sin_addr, uh->uh_dport,
679 ip->ip_src, uh->uh_sport, errno, notify);
680 /* XXX mapped address case */
681 } else {
682 inpcb_notifyall(&udbtable, satocsin(sa)->sin_addr, errno,
683 notify);
684 }
685
686 return NULL;
687 }
688
689 int
690 udp_ctloutput(int op, struct socket *so, struct sockopt *sopt)
691 {
692 int s;
693 int error = 0;
694 struct inpcb *inp;
695 int family;
696 int optval;
697
698 family = so->so_proto->pr_domain->dom_family;
699
700 s = splsoftnet();
701 switch (family) {
702 #ifdef INET
703 case PF_INET:
704 if (sopt->sopt_level != IPPROTO_UDP) {
705 error = ip_ctloutput(op, so, sopt);
706 goto end;
707 }
708 break;
709 #endif
710 #ifdef INET6
711 case PF_INET6:
712 if (sopt->sopt_level != IPPROTO_UDP) {
713 error = ip6_ctloutput(op, so, sopt);
714 goto end;
715 }
716 break;
717 #endif
718 default:
719 error = EAFNOSUPPORT;
720 goto end;
721 }
722
723
724 switch (op) {
725 case PRCO_SETOPT:
726 inp = sotoinpcb(so);
727
728 switch (sopt->sopt_name) {
729 case UDP_ENCAP:
730 error = sockopt_getint(sopt, &optval);
731 if (error)
732 break;
733
734 switch(optval) {
735 case 0:
736 inp->inp_flags &= ~INP_ESPINUDP;
737 break;
738
739 case UDP_ENCAP_ESPINUDP:
740 inp->inp_flags |= INP_ESPINUDP;
741 break;
742
743 default:
744 error = EINVAL;
745 break;
746 }
747 break;
748
749 default:
750 error = ENOPROTOOPT;
751 break;
752 }
753 break;
754
755 default:
756 error = EINVAL;
757 break;
758 }
759
760 end:
761 splx(s);
762 return error;
763 }
764
765 int
766 udp_output(struct mbuf *m, struct inpcb *inp, struct mbuf *control,
767 struct lwp *l)
768 {
769 struct udpiphdr *ui;
770 struct route *ro;
771 struct ip_pktopts pktopts;
772 kauth_cred_t cred;
773 int len = m->m_pkthdr.len;
774 int error, flags = 0;
775
776 MCLAIM(m, &udp_tx_mowner);
777
778 /*
779 * Calculate data length and get a mbuf
780 * for UDP and IP headers.
781 */
782 M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT);
783 if (m == NULL) {
784 error = ENOBUFS;
785 goto release;
786 }
787
788 /*
789 * Compute the packet length of the IP header, and
790 * punt if the length looks bogus.
791 */
792 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
793 error = EMSGSIZE;
794 goto release;
795 }
796
797 if (l == NULL)
798 cred = NULL;
799 else
800 cred = l->l_cred;
801
802 /* Setup IP outgoing packet options */
803 memset(&pktopts, 0, sizeof(pktopts));
804 error = ip_setpktopts(control, &pktopts, &flags, inp, cred);
805 if (error != 0)
806 goto release;
807
808 m_freem(control);
809 control = NULL;
810
811 /*
812 * Fill in mbuf with extended UDP header
813 * and addresses and length put into network format.
814 */
815 ui = mtod(m, struct udpiphdr *);
816 ui->ui_pr = IPPROTO_UDP;
817 ui->ui_src = pktopts.ippo_laddr.sin_addr;
818 ui->ui_dst = in4p_faddr(inp);
819 ui->ui_sport = inp->inp_lport;
820 ui->ui_dport = inp->inp_fport;
821 ui->ui_ulen = htons((u_int16_t)len + sizeof(struct udphdr));
822
823 ro = &inp->inp_route;
824
825 /*
826 * Set up checksum and output datagram.
827 */
828 if (udpcksum) {
829 /*
830 * XXX Cache pseudo-header checksum part for
831 * XXX "connected" UDP sockets.
832 */
833 ui->ui_sum = in_cksum_phdr(ui->ui_src.s_addr,
834 ui->ui_dst.s_addr, htons((u_int16_t)len +
835 sizeof(struct udphdr) + IPPROTO_UDP));
836 m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
837 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
838 } else
839 ui->ui_sum = 0;
840
841 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len);
842 ((struct ip *)ui)->ip_ttl = in4p_ip(inp).ip_ttl; /* XXX */
843 ((struct ip *)ui)->ip_tos = in4p_ip(inp).ip_tos; /* XXX */
844 UDP_STATINC(UDP_STAT_OPACKETS);
845
846 flags |= inp->inp_socket->so_options & (SO_DONTROUTE|SO_BROADCAST);
847 return ip_output(m, inp->inp_options, ro, flags, pktopts.ippo_imo, inp);
848
849 release:
850 m_freem(control);
851 m_freem(m);
852 return error;
853 }
854
855 static int
856 udp_attach(struct socket *so, int proto)
857 {
858 struct inpcb *inp;
859 int error;
860
861 KASSERT(sotoinpcb(so) == NULL);
862
863 /* Assign the lock (must happen even if we will error out). */
864 sosetlock(so);
865
866 #ifdef MBUFTRACE
867 so->so_mowner = &udp_mowner;
868 so->so_rcv.sb_mowner = &udp_rx_mowner;
869 so->so_snd.sb_mowner = &udp_tx_mowner;
870 #endif
871 if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
872 error = soreserve(so, udp_sendspace, udp_recvspace);
873 if (error) {
874 return error;
875 }
876 }
877
878 error = inpcb_create(so, &udbtable);
879 if (error) {
880 return error;
881 }
882 inp = sotoinpcb(so);
883 in4p_ip(inp).ip_ttl = ip_defttl;
884 KASSERT(solocked(so));
885
886 return error;
887 }
888
889 static void
890 udp_detach(struct socket *so)
891 {
892 struct inpcb *inp;
893
894 KASSERT(solocked(so));
895 inp = sotoinpcb(so);
896 KASSERT(inp != NULL);
897 inpcb_destroy(inp);
898 }
899
900 static int
901 udp_accept(struct socket *so, struct sockaddr *nam)
902 {
903 KASSERT(solocked(so));
904
905 panic("udp_accept");
906
907 return EOPNOTSUPP;
908 }
909
910 static int
911 udp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
912 {
913 struct inpcb *inp = sotoinpcb(so);
914 struct sockaddr_in *sin = (struct sockaddr_in *)nam;
915 int error = 0;
916 int s;
917
918 KASSERT(solocked(so));
919 KASSERT(inp != NULL);
920 KASSERT(nam != NULL);
921
922 s = splsoftnet();
923 error = inpcb_bind(inp, sin, l);
924 splx(s);
925
926 return error;
927 }
928
929 static int
930 udp_listen(struct socket *so, struct lwp *l)
931 {
932 KASSERT(solocked(so));
933
934 return EOPNOTSUPP;
935 }
936
937 static int
938 udp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
939 {
940 struct inpcb *inp = sotoinpcb(so);
941 int error = 0;
942 int s;
943
944 KASSERT(solocked(so));
945 KASSERT(inp != NULL);
946 KASSERT(nam != NULL);
947
948 s = splsoftnet();
949 error = inpcb_connect(inp, (struct sockaddr_in *)nam, l);
950 if (! error)
951 soisconnected(so);
952 splx(s);
953 return error;
954 }
955
956 static int
957 udp_connect2(struct socket *so, struct socket *so2)
958 {
959 KASSERT(solocked(so));
960
961 return EOPNOTSUPP;
962 }
963
964 static int
965 udp_disconnect(struct socket *so)
966 {
967 struct inpcb *inp = sotoinpcb(so);
968 int s;
969
970 KASSERT(solocked(so));
971 KASSERT(inp != NULL);
972
973 s = splsoftnet();
974 /*soisdisconnected(so);*/
975 so->so_state &= ~SS_ISCONNECTED; /* XXX */
976 inpcb_disconnect(inp);
977 in4p_laddr(inp) = zeroin_addr; /* XXX */
978 inpcb_set_state(inp, INP_BOUND); /* XXX */
979 splx(s);
980
981 return 0;
982 }
983
984 static int
985 udp_shutdown(struct socket *so)
986 {
987 int s;
988
989 KASSERT(solocked(so));
990
991 s = splsoftnet();
992 socantsendmore(so);
993 splx(s);
994
995 return 0;
996 }
997
998 static int
999 udp_abort(struct socket *so)
1000 {
1001 KASSERT(solocked(so));
1002
1003 panic("udp_abort");
1004
1005 return EOPNOTSUPP;
1006 }
1007
1008 static int
1009 udp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
1010 {
1011 return in_control(so, cmd, nam, ifp);
1012 }
1013
1014 static int
1015 udp_stat(struct socket *so, struct stat *ub)
1016 {
1017 KASSERT(solocked(so));
1018
1019 /* stat: don't bother with a blocksize. */
1020 return 0;
1021 }
1022
1023 static int
1024 udp_peeraddr(struct socket *so, struct sockaddr *nam)
1025 {
1026 int s;
1027
1028 KASSERT(solocked(so));
1029 KASSERT(sotoinpcb(so) != NULL);
1030 KASSERT(nam != NULL);
1031
1032 s = splsoftnet();
1033 inpcb_fetch_peeraddr(sotoinpcb(so), (struct sockaddr_in *)nam);
1034 splx(s);
1035
1036 return 0;
1037 }
1038
1039 static int
1040 udp_sockaddr(struct socket *so, struct sockaddr *nam)
1041 {
1042 int s;
1043
1044 KASSERT(solocked(so));
1045 KASSERT(sotoinpcb(so) != NULL);
1046 KASSERT(nam != NULL);
1047
1048 s = splsoftnet();
1049 inpcb_fetch_sockaddr(sotoinpcb(so), (struct sockaddr_in *)nam);
1050 splx(s);
1051
1052 return 0;
1053 }
1054
1055 static int
1056 udp_rcvd(struct socket *so, int flags, struct lwp *l)
1057 {
1058 KASSERT(solocked(so));
1059
1060 return EOPNOTSUPP;
1061 }
1062
1063 static int
1064 udp_recvoob(struct socket *so, struct mbuf *m, int flags)
1065 {
1066 KASSERT(solocked(so));
1067
1068 return EOPNOTSUPP;
1069 }
1070
1071 int
1072 udp_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
1073 struct mbuf *control, struct lwp *l)
1074 {
1075 struct inpcb *inp = sotoinpcb(so);
1076 int error = 0;
1077 struct in_addr laddr; /* XXX */
1078 int s;
1079
1080 KASSERT(solocked(so));
1081 KASSERT(inp != NULL);
1082 KASSERT(m != NULL);
1083
1084 memset(&laddr, 0, sizeof laddr);
1085
1086 s = splsoftnet();
1087 if (nam) {
1088 laddr = in4p_laddr(inp); /* XXX */
1089 if ((so->so_state & SS_ISCONNECTED) != 0) {
1090 error = EISCONN;
1091 goto die;
1092 }
1093 error = inpcb_connect(inp, (struct sockaddr_in *)nam, l);
1094 if (error)
1095 goto die;
1096 } else {
1097 if ((so->so_state & SS_ISCONNECTED) == 0) {
1098 error = ENOTCONN;
1099 goto die;
1100 }
1101 }
1102 error = udp_output(m, inp, control, l);
1103 m = NULL;
1104 control = NULL;
1105 if (nam) {
1106 inpcb_disconnect(inp);
1107 in4p_laddr(inp) = laddr; /* XXX */
1108 inpcb_set_state(inp, INP_BOUND); /* XXX */
1109 }
1110 die:
1111 m_freem(m);
1112 m_freem(control);
1113
1114 splx(s);
1115 return error;
1116 }
1117
1118 static int
1119 udp_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
1120 {
1121 KASSERT(solocked(so));
1122
1123 m_freem(m);
1124 m_freem(control);
1125
1126 return EOPNOTSUPP;
1127 }
1128
1129 static int
1130 udp_purgeif(struct socket *so, struct ifnet *ifp)
1131 {
1132 int s;
1133
1134 s = splsoftnet();
1135 mutex_enter(softnet_lock);
1136 inpcb_purgeif0(&udbtable, ifp);
1137 #ifdef NET_MPSAFE
1138 mutex_exit(softnet_lock);
1139 #endif
1140 in_purgeif(ifp);
1141 #ifdef NET_MPSAFE
1142 mutex_enter(softnet_lock);
1143 #endif
1144 inpcb_purgeif(&udbtable, ifp);
1145 mutex_exit(softnet_lock);
1146 splx(s);
1147
1148 return 0;
1149 }
1150
1151 static int
1152 sysctl_net_inet_udp_stats(SYSCTLFN_ARGS)
1153 {
1154
1155 return (NETSTAT_SYSCTL(udpstat_percpu, UDP_NSTATS));
1156 }
1157
1158 /*
1159 * Sysctl for udp variables.
1160 */
1161 static void
1162 sysctl_net_inet_udp_setup(struct sysctllog **clog)
1163 {
1164
1165 sysctl_createv(clog, 0, NULL, NULL,
1166 CTLFLAG_PERMANENT,
1167 CTLTYPE_NODE, "inet", NULL,
1168 NULL, 0, NULL, 0,
1169 CTL_NET, PF_INET, CTL_EOL);
1170 sysctl_createv(clog, 0, NULL, NULL,
1171 CTLFLAG_PERMANENT,
1172 CTLTYPE_NODE, "udp",
1173 SYSCTL_DESCR("UDPv4 related settings"),
1174 NULL, 0, NULL, 0,
1175 CTL_NET, PF_INET, IPPROTO_UDP, CTL_EOL);
1176
1177 sysctl_createv(clog, 0, NULL, NULL,
1178 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1179 CTLTYPE_INT, "checksum",
1180 SYSCTL_DESCR("Compute UDP checksums"),
1181 NULL, 0, &udpcksum, 0,
1182 CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_CHECKSUM,
1183 CTL_EOL);
1184 sysctl_createv(clog, 0, NULL, NULL,
1185 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1186 CTLTYPE_INT, "sendspace",
1187 SYSCTL_DESCR("Default UDP send buffer size"),
1188 NULL, 0, &udp_sendspace, 0,
1189 CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_SENDSPACE,
1190 CTL_EOL);
1191 sysctl_createv(clog, 0, NULL, NULL,
1192 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1193 CTLTYPE_INT, "recvspace",
1194 SYSCTL_DESCR("Default UDP receive buffer size"),
1195 NULL, 0, &udp_recvspace, 0,
1196 CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_RECVSPACE,
1197 CTL_EOL);
1198 sysctl_createv(clog, 0, NULL, NULL,
1199 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1200 CTLTYPE_INT, "do_loopback_cksum",
1201 SYSCTL_DESCR("Perform UDP checksum on loopback"),
1202 NULL, 0, &udp_do_loopback_cksum, 0,
1203 CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_LOOPBACKCKSUM,
1204 CTL_EOL);
1205 sysctl_createv(clog, 0, NULL, NULL,
1206 CTLFLAG_PERMANENT,
1207 CTLTYPE_STRUCT, "pcblist",
1208 SYSCTL_DESCR("UDP protocol control block list"),
1209 sysctl_inpcblist, 0, &udbtable, 0,
1210 CTL_NET, PF_INET, IPPROTO_UDP, CTL_CREATE,
1211 CTL_EOL);
1212 sysctl_createv(clog, 0, NULL, NULL,
1213 CTLFLAG_PERMANENT,
1214 CTLTYPE_STRUCT, "stats",
1215 SYSCTL_DESCR("UDP statistics"),
1216 sysctl_net_inet_udp_stats, 0, NULL, 0,
1217 CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_STATS,
1218 CTL_EOL);
1219 }
1220 #endif
1221
1222 void
1223 udp_statinc(u_int stat)
1224 {
1225
1226 KASSERT(stat < UDP_NSTATS);
1227 UDP_STATINC(stat);
1228 }
1229
1230 #if defined(INET) && defined(IPSEC)
1231 /*
1232 * Handle ESP-in-UDP packets (RFC3948).
1233 *
1234 * We need to distinguish between ESP packets and IKE packets. We do so by
1235 * looking at the Non-ESP marker. If IKE, we process the UDP packet as usual.
1236 * Otherwise, ESP, we invoke IPsec.
1237 *
1238 * Returns:
1239 * 1 if the packet was processed
1240 * 0 if normal UDP processing should take place
1241 * -1 if an error occurred and m was freed
1242 */
1243 static int
1244 udp4_espinudp(struct mbuf **mp, int off)
1245 {
1246 const size_t skip = sizeof(struct udphdr);
1247 size_t len;
1248 uint8_t *data;
1249 size_t minlen;
1250 size_t iphdrlen;
1251 struct ip *ip;
1252 struct m_tag *tag;
1253 struct udphdr *udphdr;
1254 u_int16_t sport, dport;
1255 struct mbuf *m = *mp;
1256 uint32_t *marker;
1257
1258 minlen = off + sizeof(struct esp);
1259 if (minlen > m->m_pkthdr.len)
1260 minlen = m->m_pkthdr.len;
1261
1262 if (m->m_len < minlen) {
1263 if ((*mp = m_pullup(m, minlen)) == NULL) {
1264 return -1; /* dropped */
1265 }
1266 m = *mp;
1267 }
1268
1269 len = m->m_len - off;
1270 data = mtod(m, uint8_t *) + off;
1271
1272 /* Ignore keepalive packets. */
1273 if ((len == 1) && (*data == 0xff)) {
1274 m_freem(m);
1275 *mp = NULL; /* avoid any further processing by caller */
1276 return 1; /* consumed */
1277 }
1278
1279 /* Handle Non-ESP marker (32bit). If zero, then IKE. */
1280 marker = (uint32_t *)data;
1281 if (len <= sizeof(uint32_t))
1282 return 0; /* passthrough */
1283 if (marker[0] == 0)
1284 return 0; /* passthrough */
1285
1286 /*
1287 * Get the UDP ports. They are handled in network order
1288 * everywhere in the IPSEC_NAT_T code.
1289 */
1290 udphdr = (struct udphdr *)((char *)data - skip);
1291 sport = udphdr->uh_sport;
1292 dport = udphdr->uh_dport;
1293
1294 /*
1295 * Remove the UDP header, plus a possible marker. IP header
1296 * length is iphdrlen.
1297 *
1298 * Before:
1299 * <--- off --->
1300 * +----+------+-----+
1301 * | IP | UDP | ESP |
1302 * +----+------+-----+
1303 * <-skip->
1304 * After:
1305 * +----+-----+
1306 * | IP | ESP |
1307 * +----+-----+
1308 * <-skip->
1309 */
1310 iphdrlen = off - sizeof(struct udphdr);
1311 memmove(mtod(m, char *) + skip, mtod(m, void *), iphdrlen);
1312 m_adj(m, skip);
1313
1314 ip = mtod(m, struct ip *);
1315 ip->ip_len = htons(ntohs(ip->ip_len) - skip);
1316 ip->ip_p = IPPROTO_ESP;
1317
1318 /*
1319 * We have modified the packet - it is now ESP, so we should not
1320 * return to UDP processing.
1321 *
1322 * Add a PACKET_TAG_IPSEC_NAT_T_PORTS tag to remember the source
1323 * UDP port. This is required if we want to select the right SPD
1324 * for multiple hosts behind same NAT.
1325 */
1326 if ((tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1327 sizeof(sport) + sizeof(dport), M_DONTWAIT)) == NULL) {
1328 m_freem(m);
1329 *mp = NULL;
1330 return -1; /* dropped */
1331 }
1332 ((u_int16_t *)(tag + 1))[0] = sport;
1333 ((u_int16_t *)(tag + 1))[1] = dport;
1334 m_tag_prepend(m, tag);
1335
1336 if (ipsec_used)
1337 ipsec4_common_input(m, iphdrlen, IPPROTO_ESP);
1338 else
1339 m_freem(m);
1340
1341 /* We handled it, it shouldn't be handled by UDP */
1342 *mp = NULL; /* avoid free by caller ... */
1343 return 1; /* consumed */
1344 }
1345 #endif
1346
1347 PR_WRAP_USRREQS(udp)
1348 #define udp_attach udp_attach_wrapper
1349 #define udp_detach udp_detach_wrapper
1350 #define udp_accept udp_accept_wrapper
1351 #define udp_bind udp_bind_wrapper
1352 #define udp_listen udp_listen_wrapper
1353 #define udp_connect udp_connect_wrapper
1354 #define udp_connect2 udp_connect2_wrapper
1355 #define udp_disconnect udp_disconnect_wrapper
1356 #define udp_shutdown udp_shutdown_wrapper
1357 #define udp_abort udp_abort_wrapper
1358 #define udp_ioctl udp_ioctl_wrapper
1359 #define udp_stat udp_stat_wrapper
1360 #define udp_peeraddr udp_peeraddr_wrapper
1361 #define udp_sockaddr udp_sockaddr_wrapper
1362 #define udp_rcvd udp_rcvd_wrapper
1363 #define udp_recvoob udp_recvoob_wrapper
1364 #define udp_send udp_send_wrapper
1365 #define udp_sendoob udp_sendoob_wrapper
1366 #define udp_purgeif udp_purgeif_wrapper
1367
1368 const struct pr_usrreqs udp_usrreqs = {
1369 .pr_attach = udp_attach,
1370 .pr_detach = udp_detach,
1371 .pr_accept = udp_accept,
1372 .pr_bind = udp_bind,
1373 .pr_listen = udp_listen,
1374 .pr_connect = udp_connect,
1375 .pr_connect2 = udp_connect2,
1376 .pr_disconnect = udp_disconnect,
1377 .pr_shutdown = udp_shutdown,
1378 .pr_abort = udp_abort,
1379 .pr_ioctl = udp_ioctl,
1380 .pr_stat = udp_stat,
1381 .pr_peeraddr = udp_peeraddr,
1382 .pr_sockaddr = udp_sockaddr,
1383 .pr_rcvd = udp_rcvd,
1384 .pr_recvoob = udp_recvoob,
1385 .pr_send = udp_send,
1386 .pr_sendoob = udp_sendoob,
1387 .pr_purgeif = udp_purgeif,
1388 };
1389