frag6.c revision 1.36 1 /* $NetBSD: frag6.c,v 1.36 2007/03/04 06:03:25 christos Exp $ */
2 /* $KAME: frag6.c,v 1.40 2002/05/27 21:40:31 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: frag6.c,v 1.36 2007/03/04 06:03:25 christos Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/malloc.h>
39 #include <sys/mbuf.h>
40 #include <sys/domain.h>
41 #include <sys/protosw.h>
42 #include <sys/socket.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/kernel.h>
46 #include <sys/syslog.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_var.h>
53 #include <netinet/ip6.h>
54 #include <netinet6/ip6_var.h>
55 #include <netinet/icmp6.h>
56
57 #include <net/net_osdep.h>
58
59 /*
60 * Define it to get a correct behavior on per-interface statistics.
61 * You will need to perform an extra routing table lookup, per fragment,
62 * to do it. This may, or may not be, a performance hit.
63 */
64 #define IN6_IFSTAT_STRICT
65
66 static void frag6_enq __P((struct ip6asfrag *, struct ip6asfrag *));
67 static void frag6_deq __P((struct ip6asfrag *));
68 static void frag6_insque __P((struct ip6q *, struct ip6q *));
69 static void frag6_remque __P((struct ip6q *));
70 static void frag6_freef __P((struct ip6q *));
71
72 static int ip6q_locked;
73 u_int frag6_nfragpackets;
74 u_int frag6_nfrags;
75 struct ip6q ip6q; /* ip6 reassemble queue */
76
77 static inline int ip6q_lock_try __P((void));
78 static inline void ip6q_unlock __P((void));
79
80 static inline int
81 ip6q_lock_try()
82 {
83 int s;
84
85 /*
86 * Use splvm() -- we're bloking things that would cause
87 * mbuf allocation.
88 */
89 s = splvm();
90 if (ip6q_locked) {
91 splx(s);
92 return (0);
93 }
94 ip6q_locked = 1;
95 splx(s);
96 return (1);
97 }
98
99 static inline void
100 ip6q_unlock()
101 {
102 int s;
103
104 s = splvm();
105 ip6q_locked = 0;
106 splx(s);
107 }
108
109 #ifdef DIAGNOSTIC
110 #define IP6Q_LOCK() \
111 do { \
112 if (ip6q_lock_try() == 0) { \
113 printf("%s:%d: ip6q already locked\n", __FILE__, __LINE__); \
114 panic("ip6q_lock"); \
115 } \
116 } while (/*CONSTCOND*/ 0)
117 #define IP6Q_LOCK_CHECK() \
118 do { \
119 if (ip6q_locked == 0) { \
120 printf("%s:%d: ip6q lock not held\n", __FILE__, __LINE__); \
121 panic("ip6q lock check"); \
122 } \
123 } while (/*CONSTCOND*/ 0)
124 #else
125 #define IP6Q_LOCK() (void) ip6q_lock_try()
126 #define IP6Q_LOCK_CHECK() /* nothing */
127 #endif
128
129 #define IP6Q_UNLOCK() ip6q_unlock()
130
131 #ifndef offsetof /* XXX */
132 #define offsetof(type, member) ((size_t)(&((type *)0)->member))
133 #endif
134
135 /*
136 * Initialise reassembly queue and fragment identifier.
137 */
138 void
139 frag6_init()
140 {
141
142 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
143 }
144
145 /*
146 * In RFC2460, fragment and reassembly rule do not agree with each other,
147 * in terms of next header field handling in fragment header.
148 * While the sender will use the same value for all of the fragmented packets,
149 * receiver is suggested not to check the consistency.
150 *
151 * fragment rule (p20):
152 * (2) A Fragment header containing:
153 * The Next Header value that identifies the first header of
154 * the Fragmentable Part of the original packet.
155 * -> next header field is same for all fragments
156 *
157 * reassembly rule (p21):
158 * The Next Header field of the last header of the Unfragmentable
159 * Part is obtained from the Next Header field of the first
160 * fragment's Fragment header.
161 * -> should grab it from the first fragment only
162 *
163 * The following note also contradicts with fragment rule - noone is going to
164 * send different fragment with different next header field.
165 *
166 * additional note (p22):
167 * The Next Header values in the Fragment headers of different
168 * fragments of the same original packet may differ. Only the value
169 * from the Offset zero fragment packet is used for reassembly.
170 * -> should grab it from the first fragment only
171 *
172 * There is no explicit reason given in the RFC. Historical reason maybe?
173 */
174 /*
175 * Fragment input
176 */
177 int
178 frag6_input(struct mbuf **mp, int *offp, int proto)
179 {
180 struct mbuf *m = *mp, *t;
181 struct ip6_hdr *ip6;
182 struct ip6_frag *ip6f;
183 struct ip6q *q6;
184 struct ip6asfrag *af6, *ip6af, *af6dwn;
185 int offset = *offp, nxt, i, next;
186 int first_frag = 0;
187 int fragoff, frgpartlen; /* must be larger than u_int16_t */
188 struct ifnet *dstifp;
189 #ifdef IN6_IFSTAT_STRICT
190 static struct route_in6 ro;
191 const struct sockaddr_in6 *cdst;
192 #endif
193
194 ip6 = mtod(m, struct ip6_hdr *);
195 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
196 if (ip6f == NULL)
197 return IPPROTO_DONE;
198
199 dstifp = NULL;
200 #ifdef IN6_IFSTAT_STRICT
201 /* find the destination interface of the packet. */
202 cdst = (const struct sockaddr_in6 *)rtcache_getdst((struct route *)&ro);
203 if (!IN6_ARE_ADDR_EQUAL(&cdst->sin6_addr, &ip6->ip6_dst))
204 rtcache_free((struct route *)&ro);
205 else
206 rtcache_check((struct route *)&ro);
207 if (ro.ro_rt == NULL) {
208 struct sockaddr_in6 *dst;
209
210 dst = (struct sockaddr_in6 *)&ro.ro_dst;
211 memset(dst, 0, sizeof(*dst));
212 dst->sin6_family = AF_INET6;
213 dst->sin6_len = sizeof(struct sockaddr_in6);
214 dst->sin6_addr = ip6->ip6_dst;
215 rtcache_init((struct route *)&ro);
216 }
217 if (ro.ro_rt != NULL && ro.ro_rt->rt_ifa != NULL)
218 dstifp = ((struct in6_ifaddr *)ro.ro_rt->rt_ifa)->ia_ifp;
219 #else
220 /* we are violating the spec, this is not the destination interface */
221 if ((m->m_flags & M_PKTHDR) != 0)
222 dstifp = m->m_pkthdr.rcvif;
223 #endif
224
225 /* jumbo payload can't contain a fragment header */
226 if (ip6->ip6_plen == 0) {
227 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
228 in6_ifstat_inc(dstifp, ifs6_reass_fail);
229 return IPPROTO_DONE;
230 }
231
232 /*
233 * check whether fragment packet's fragment length is
234 * multiple of 8 octets.
235 * sizeof(struct ip6_frag) == 8
236 * sizeof(struct ip6_hdr) = 40
237 */
238 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
239 (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
240 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
241 offsetof(struct ip6_hdr, ip6_plen));
242 in6_ifstat_inc(dstifp, ifs6_reass_fail);
243 return IPPROTO_DONE;
244 }
245
246 ip6stat.ip6s_fragments++;
247 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
248
249 /* offset now points to data portion */
250 offset += sizeof(struct ip6_frag);
251
252 IP6Q_LOCK();
253
254 /*
255 * Enforce upper bound on number of fragments.
256 * If maxfrag is 0, never accept fragments.
257 * If maxfrag is -1, accept all fragments without limitation.
258 */
259 if (ip6_maxfrags < 0)
260 ;
261 else if (frag6_nfrags >= (u_int)ip6_maxfrags)
262 goto dropfrag;
263
264 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
265 if (ip6f->ip6f_ident == q6->ip6q_ident &&
266 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
267 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
268 break;
269
270 if (q6 == &ip6q) {
271 /*
272 * the first fragment to arrive, create a reassembly queue.
273 */
274 first_frag = 1;
275
276 /*
277 * Enforce upper bound on number of fragmented packets
278 * for which we attempt reassembly;
279 * If maxfragpackets is 0, never accept fragments.
280 * If maxfragpackets is -1, accept all fragments without
281 * limitation.
282 */
283 if (ip6_maxfragpackets < 0)
284 ;
285 else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets)
286 goto dropfrag;
287 frag6_nfragpackets++;
288 q6 = (struct ip6q *)malloc(sizeof(struct ip6q), M_FTABLE,
289 M_DONTWAIT);
290 if (q6 == NULL)
291 goto dropfrag;
292 bzero(q6, sizeof(*q6));
293
294 frag6_insque(q6, &ip6q);
295
296 /* ip6q_nxt will be filled afterwards, from 1st fragment */
297 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
298 #ifdef notyet
299 q6->ip6q_nxtp = (u_char *)nxtp;
300 #endif
301 q6->ip6q_ident = ip6f->ip6f_ident;
302 q6->ip6q_arrive = 0; /* Is it used anywhere? */
303 q6->ip6q_ttl = IPV6_FRAGTTL;
304 q6->ip6q_src = ip6->ip6_src;
305 q6->ip6q_dst = ip6->ip6_dst;
306 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
307
308 q6->ip6q_nfrag = 0;
309 }
310
311 /*
312 * If it's the 1st fragment, record the length of the
313 * unfragmentable part and the next header of the fragment header.
314 */
315 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
316 if (fragoff == 0) {
317 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
318 sizeof(struct ip6_frag);
319 q6->ip6q_nxt = ip6f->ip6f_nxt;
320 }
321
322 /*
323 * Check that the reassembled packet would not exceed 65535 bytes
324 * in size.
325 * If it would exceed, discard the fragment and return an ICMP error.
326 */
327 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
328 if (q6->ip6q_unfrglen >= 0) {
329 /* The 1st fragment has already arrived. */
330 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
331 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
332 offset - sizeof(struct ip6_frag) +
333 offsetof(struct ip6_frag, ip6f_offlg));
334 IP6Q_UNLOCK();
335 return (IPPROTO_DONE);
336 }
337 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
338 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
339 offset - sizeof(struct ip6_frag) +
340 offsetof(struct ip6_frag, ip6f_offlg));
341 IP6Q_UNLOCK();
342 return (IPPROTO_DONE);
343 }
344 /*
345 * If it's the first fragment, do the above check for each
346 * fragment already stored in the reassembly queue.
347 */
348 if (fragoff == 0) {
349 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
350 af6 = af6dwn) {
351 af6dwn = af6->ip6af_down;
352
353 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
354 IPV6_MAXPACKET) {
355 struct mbuf *merr = IP6_REASS_MBUF(af6);
356 struct ip6_hdr *ip6err;
357 int erroff = af6->ip6af_offset;
358
359 /* dequeue the fragment. */
360 frag6_deq(af6);
361 free(af6, M_FTABLE);
362
363 /* adjust pointer. */
364 ip6err = mtod(merr, struct ip6_hdr *);
365
366 /*
367 * Restore source and destination addresses
368 * in the erroneous IPv6 header.
369 */
370 ip6err->ip6_src = q6->ip6q_src;
371 ip6err->ip6_dst = q6->ip6q_dst;
372
373 icmp6_error(merr, ICMP6_PARAM_PROB,
374 ICMP6_PARAMPROB_HEADER,
375 erroff - sizeof(struct ip6_frag) +
376 offsetof(struct ip6_frag, ip6f_offlg));
377 }
378 }
379 }
380
381 ip6af = (struct ip6asfrag *)malloc(sizeof(struct ip6asfrag), M_FTABLE,
382 M_DONTWAIT);
383 if (ip6af == NULL)
384 goto dropfrag;
385 bzero(ip6af, sizeof(*ip6af));
386 ip6af->ip6af_head = ip6->ip6_flow;
387 ip6af->ip6af_len = ip6->ip6_plen;
388 ip6af->ip6af_nxt = ip6->ip6_nxt;
389 ip6af->ip6af_hlim = ip6->ip6_hlim;
390 ip6af->ip6af_mff = ip6f->ip6f_offlg & IP6F_MORE_FRAG;
391 ip6af->ip6af_off = fragoff;
392 ip6af->ip6af_frglen = frgpartlen;
393 ip6af->ip6af_offset = offset;
394 IP6_REASS_MBUF(ip6af) = m;
395
396 if (first_frag) {
397 af6 = (struct ip6asfrag *)q6;
398 goto insert;
399 }
400
401 /*
402 * Find a segment which begins after this one does.
403 */
404 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
405 af6 = af6->ip6af_down)
406 if (af6->ip6af_off > ip6af->ip6af_off)
407 break;
408
409 #if 0
410 /*
411 * If there is a preceding segment, it may provide some of
412 * our data already. If so, drop the data from the incoming
413 * segment. If it provides all of our data, drop us.
414 */
415 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
416 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
417 - ip6af->ip6af_off;
418 if (i > 0) {
419 if (i >= ip6af->ip6af_frglen)
420 goto dropfrag;
421 m_adj(IP6_REASS_MBUF(ip6af), i);
422 ip6af->ip6af_off += i;
423 ip6af->ip6af_frglen -= i;
424 }
425 }
426
427 /*
428 * While we overlap succeeding segments trim them or,
429 * if they are completely covered, dequeue them.
430 */
431 while (af6 != (struct ip6asfrag *)q6 &&
432 ip6af->ip6af_off + ip6af->ip6af_frglen > af6->ip6af_off) {
433 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
434 if (i < af6->ip6af_frglen) {
435 af6->ip6af_frglen -= i;
436 af6->ip6af_off += i;
437 m_adj(IP6_REASS_MBUF(af6), i);
438 break;
439 }
440 af6 = af6->ip6af_down;
441 m_freem(IP6_REASS_MBUF(af6->ip6af_up));
442 frag6_deq(af6->ip6af_up);
443 }
444 #else
445 /*
446 * If the incoming framgent overlaps some existing fragments in
447 * the reassembly queue, drop it, since it is dangerous to override
448 * existing fragments from a security point of view.
449 * We don't know which fragment is the bad guy - here we trust
450 * fragment that came in earlier, with no real reason.
451 */
452 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
453 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
454 - ip6af->ip6af_off;
455 if (i > 0) {
456 #if 0 /* suppress the noisy log */
457 log(LOG_ERR, "%d bytes of a fragment from %s "
458 "overlaps the previous fragment\n",
459 i, ip6_sprintf(&q6->ip6q_src));
460 #endif
461 free(ip6af, M_FTABLE);
462 goto dropfrag;
463 }
464 }
465 if (af6 != (struct ip6asfrag *)q6) {
466 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
467 if (i > 0) {
468 #if 0 /* suppress the noisy log */
469 log(LOG_ERR, "%d bytes of a fragment from %s "
470 "overlaps the succeeding fragment",
471 i, ip6_sprintf(&q6->ip6q_src));
472 #endif
473 free(ip6af, M_FTABLE);
474 goto dropfrag;
475 }
476 }
477 #endif
478
479 insert:
480
481 /*
482 * Stick new segment in its place;
483 * check for complete reassembly.
484 * Move to front of packet queue, as we are
485 * the most recently active fragmented packet.
486 */
487 frag6_enq(ip6af, af6->ip6af_up);
488 frag6_nfrags++;
489 q6->ip6q_nfrag++;
490 #if 0 /* xxx */
491 if (q6 != ip6q.ip6q_next) {
492 frag6_remque(q6);
493 frag6_insque(q6, &ip6q);
494 }
495 #endif
496 next = 0;
497 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
498 af6 = af6->ip6af_down) {
499 if (af6->ip6af_off != next) {
500 IP6Q_UNLOCK();
501 return IPPROTO_DONE;
502 }
503 next += af6->ip6af_frglen;
504 }
505 if (af6->ip6af_up->ip6af_mff) {
506 IP6Q_UNLOCK();
507 return IPPROTO_DONE;
508 }
509
510 /*
511 * Reassembly is complete; concatenate fragments.
512 */
513 ip6af = q6->ip6q_down;
514 t = m = IP6_REASS_MBUF(ip6af);
515 af6 = ip6af->ip6af_down;
516 frag6_deq(ip6af);
517 while (af6 != (struct ip6asfrag *)q6) {
518 af6dwn = af6->ip6af_down;
519 frag6_deq(af6);
520 while (t->m_next)
521 t = t->m_next;
522 t->m_next = IP6_REASS_MBUF(af6);
523 m_adj(t->m_next, af6->ip6af_offset);
524 free(af6, M_FTABLE);
525 af6 = af6dwn;
526 }
527
528 /* adjust offset to point where the original next header starts */
529 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
530 free(ip6af, M_FTABLE);
531 ip6 = mtod(m, struct ip6_hdr *);
532 ip6->ip6_plen = htons(next + offset - sizeof(struct ip6_hdr));
533 ip6->ip6_src = q6->ip6q_src;
534 ip6->ip6_dst = q6->ip6q_dst;
535 nxt = q6->ip6q_nxt;
536 #ifdef notyet
537 *q6->ip6q_nxtp = (u_char)(nxt & 0xff);
538 #endif
539
540 /*
541 * Delete frag6 header with as a few cost as possible.
542 */
543 if (offset < m->m_len) {
544 memmove((char *)ip6 + sizeof(struct ip6_frag), ip6, offset);
545 m->m_data += sizeof(struct ip6_frag);
546 m->m_len -= sizeof(struct ip6_frag);
547 } else {
548 /* this comes with no copy if the boundary is on cluster */
549 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
550 frag6_remque(q6);
551 frag6_nfrags -= q6->ip6q_nfrag;
552 free(q6, M_FTABLE);
553 frag6_nfragpackets--;
554 goto dropfrag;
555 }
556 m_adj(t, sizeof(struct ip6_frag));
557 m_cat(m, t);
558 }
559
560 /*
561 * Store NXT to the original.
562 */
563 {
564 u_int8_t *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
565 *prvnxtp = nxt;
566 }
567
568 frag6_remque(q6);
569 frag6_nfrags -= q6->ip6q_nfrag;
570 free(q6, M_FTABLE);
571 frag6_nfragpackets--;
572
573 if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
574 int plen = 0;
575 for (t = m; t; t = t->m_next)
576 plen += t->m_len;
577 m->m_pkthdr.len = plen;
578 }
579
580 ip6stat.ip6s_reassembled++;
581 in6_ifstat_inc(dstifp, ifs6_reass_ok);
582
583 /*
584 * Tell launch routine the next header
585 */
586
587 *mp = m;
588 *offp = offset;
589
590 IP6Q_UNLOCK();
591 return nxt;
592
593 dropfrag:
594 in6_ifstat_inc(dstifp, ifs6_reass_fail);
595 ip6stat.ip6s_fragdropped++;
596 m_freem(m);
597 IP6Q_UNLOCK();
598 return IPPROTO_DONE;
599 }
600
601 /*
602 * Free a fragment reassembly header and all
603 * associated datagrams.
604 */
605 void
606 frag6_freef(q6)
607 struct ip6q *q6;
608 {
609 struct ip6asfrag *af6, *down6;
610
611 IP6Q_LOCK_CHECK();
612
613 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
614 af6 = down6) {
615 struct mbuf *m = IP6_REASS_MBUF(af6);
616
617 down6 = af6->ip6af_down;
618 frag6_deq(af6);
619
620 /*
621 * Return ICMP time exceeded error for the 1st fragment.
622 * Just free other fragments.
623 */
624 if (af6->ip6af_off == 0) {
625 struct ip6_hdr *ip6;
626
627 /* adjust pointer */
628 ip6 = mtod(m, struct ip6_hdr *);
629
630 /* restoure source and destination addresses */
631 ip6->ip6_src = q6->ip6q_src;
632 ip6->ip6_dst = q6->ip6q_dst;
633
634 icmp6_error(m, ICMP6_TIME_EXCEEDED,
635 ICMP6_TIME_EXCEED_REASSEMBLY, 0);
636 } else
637 m_freem(m);
638 free(af6, M_FTABLE);
639 }
640 frag6_remque(q6);
641 frag6_nfrags -= q6->ip6q_nfrag;
642 free(q6, M_FTABLE);
643 frag6_nfragpackets--;
644 }
645
646 /*
647 * Put an ip fragment on a reassembly chain.
648 * Like insque, but pointers in middle of structure.
649 */
650 void
651 frag6_enq(af6, up6)
652 struct ip6asfrag *af6, *up6;
653 {
654
655 IP6Q_LOCK_CHECK();
656
657 af6->ip6af_up = up6;
658 af6->ip6af_down = up6->ip6af_down;
659 up6->ip6af_down->ip6af_up = af6;
660 up6->ip6af_down = af6;
661 }
662
663 /*
664 * To frag6_enq as remque is to insque.
665 */
666 void
667 frag6_deq(af6)
668 struct ip6asfrag *af6;
669 {
670
671 IP6Q_LOCK_CHECK();
672
673 af6->ip6af_up->ip6af_down = af6->ip6af_down;
674 af6->ip6af_down->ip6af_up = af6->ip6af_up;
675 }
676
677 void
678 frag6_insque(new, old)
679 struct ip6q *new, *old;
680 {
681
682 IP6Q_LOCK_CHECK();
683
684 new->ip6q_prev = old;
685 new->ip6q_next = old->ip6q_next;
686 old->ip6q_next->ip6q_prev= new;
687 old->ip6q_next = new;
688 }
689
690 void
691 frag6_remque(p6)
692 struct ip6q *p6;
693 {
694
695 IP6Q_LOCK_CHECK();
696
697 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
698 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
699 }
700
701 /*
702 * IPv6 reassembling timer processing;
703 * if a timer expires on a reassembly
704 * queue, discard it.
705 */
706 void
707 frag6_slowtimo()
708 {
709 struct ip6q *q6;
710 int s = splsoftnet();
711
712 IP6Q_LOCK();
713 q6 = ip6q.ip6q_next;
714 if (q6)
715 while (q6 != &ip6q) {
716 --q6->ip6q_ttl;
717 q6 = q6->ip6q_next;
718 if (q6->ip6q_prev->ip6q_ttl == 0) {
719 ip6stat.ip6s_fragtimeout++;
720 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
721 frag6_freef(q6->ip6q_prev);
722 }
723 }
724 /*
725 * If we are over the maximum number of fragments
726 * (due to the limit being lowered), drain off
727 * enough to get down to the new limit.
728 */
729 while (frag6_nfragpackets > (u_int)ip6_maxfragpackets &&
730 ip6q.ip6q_prev) {
731 ip6stat.ip6s_fragoverflow++;
732 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
733 frag6_freef(ip6q.ip6q_prev);
734 }
735 IP6Q_UNLOCK();
736
737 #if 0
738 /*
739 * Routing changes might produce a better route than we last used;
740 * make sure we notice eventually, even if forwarding only for one
741 * destination and the cache is never replaced.
742 */
743 rtcache_free((struct route *)&ip6_forward_rt);
744 rtcache_free((struct route *)&ipsrcchk_rt);
745 #endif
746
747 splx(s);
748 }
749
750 /*
751 * Drain off all datagram fragments.
752 */
753 void
754 frag6_drain()
755 {
756
757 if (ip6q_lock_try() == 0)
758 return;
759 while (ip6q.ip6q_next != &ip6q) {
760 ip6stat.ip6s_fragdropped++;
761 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
762 frag6_freef(ip6q.ip6q_next);
763 }
764 IP6Q_UNLOCK();
765 }
766