frag6.c revision 1.63 1 /* $NetBSD: frag6.c,v 1.63 2018/01/25 15:55:57 maxv Exp $ */
2 /* $KAME: frag6.c,v 1.40 2002/05/27 21:40:31 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: frag6.c,v 1.63 2018/01/25 15:55:57 maxv Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/mbuf.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/kmem.h>
46 #include <sys/kernel.h>
47 #include <sys/syslog.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip6.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet6/ip6_private.h>
57 #include <netinet/icmp6.h>
58
59 #include <net/net_osdep.h>
60
61 /*
62 * IP6 reassembly queue structure. Each fragment
63 * being reassembled is attached to one of these structures.
64 */
65 struct ip6q {
66 u_int32_t ip6q_head;
67 u_int16_t ip6q_len;
68 u_int8_t ip6q_nxt; /* ip6f_nxt in first fragment */
69 u_int8_t ip6q_hlim;
70 struct ip6asfrag *ip6q_down;
71 struct ip6asfrag *ip6q_up;
72 u_int32_t ip6q_ident;
73 u_int8_t ip6q_ttl;
74 struct in6_addr ip6q_src, ip6q_dst;
75 struct ip6q *ip6q_next;
76 struct ip6q *ip6q_prev;
77 int ip6q_unfrglen; /* len of unfragmentable part */
78 int ip6q_nfrag; /* # of fragments */
79 };
80
81 struct ip6asfrag {
82 u_int32_t ip6af_head;
83 u_int16_t ip6af_len;
84 u_int8_t ip6af_nxt;
85 u_int8_t ip6af_hlim;
86 /* must not override the above members during reassembling */
87 struct ip6asfrag *ip6af_down;
88 struct ip6asfrag *ip6af_up;
89 struct mbuf *ip6af_m;
90 int ip6af_offset; /* offset in ip6af_m to next header */
91 int ip6af_frglen; /* fragmentable part length */
92 int ip6af_off; /* fragment offset */
93 bool ip6af_more; /* more fragment bit in frag off */
94 };
95
96
97 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
98 static void frag6_deq(struct ip6asfrag *);
99 static void frag6_insque(struct ip6q *, struct ip6q *);
100 static void frag6_remque(struct ip6q *);
101 static void frag6_freef(struct ip6q *);
102
103 static int frag6_drainwanted;
104
105 u_int frag6_nfragpackets;
106 u_int frag6_nfrags;
107 struct ip6q ip6q; /* ip6 reassembly queue */
108
109 /* Protects ip6q */
110 static kmutex_t frag6_lock __cacheline_aligned;
111
112 /*
113 * Initialise reassembly queue and fragment identifier.
114 */
115 void
116 frag6_init(void)
117 {
118
119 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
120 mutex_init(&frag6_lock, MUTEX_DEFAULT, IPL_NET);
121 }
122
123 /*
124 * IPv6 fragment input.
125 *
126 * In RFC2460, fragment and reassembly rule do not agree with each other,
127 * in terms of next header field handling in fragment header.
128 * While the sender will use the same value for all of the fragmented packets,
129 * receiver is suggested not to check the consistency.
130 *
131 * fragment rule (p20):
132 * (2) A Fragment header containing:
133 * The Next Header value that identifies the first header of
134 * the Fragmentable Part of the original packet.
135 * -> next header field is same for all fragments
136 *
137 * reassembly rule (p21):
138 * The Next Header field of the last header of the Unfragmentable
139 * Part is obtained from the Next Header field of the first
140 * fragment's Fragment header.
141 * -> should grab it from the first fragment only
142 *
143 * The following note also contradicts with fragment rule - noone is going to
144 * send different fragment with different next header field.
145 *
146 * additional note (p22):
147 * The Next Header values in the Fragment headers of different
148 * fragments of the same original packet may differ. Only the value
149 * from the Offset zero fragment packet is used for reassembly.
150 * -> should grab it from the first fragment only
151 *
152 * There is no explicit reason given in the RFC. Historical reason maybe?
153 */
154 int
155 frag6_input(struct mbuf **mp, int *offp, int proto)
156 {
157 struct rtentry *rt;
158 struct mbuf *m = *mp, *t;
159 struct ip6_hdr *ip6;
160 struct ip6_frag *ip6f;
161 struct ip6q *q6;
162 struct ip6asfrag *af6, *ip6af, *af6dwn;
163 int offset = *offp, nxt, i, next;
164 int first_frag = 0;
165 int fragoff, frgpartlen; /* must be larger than u_int16_t */
166 struct ifnet *dstifp;
167 static struct route ro;
168 union {
169 struct sockaddr dst;
170 struct sockaddr_in6 dst6;
171 } u;
172
173 ip6 = mtod(m, struct ip6_hdr *);
174 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
175 if (ip6f == NULL)
176 return IPPROTO_DONE;
177
178 dstifp = NULL;
179 /* find the destination interface of the packet. */
180 sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0);
181 if ((rt = rtcache_lookup(&ro, &u.dst)) != NULL && rt->rt_ifa != NULL)
182 dstifp = ((struct in6_ifaddr *)rt->rt_ifa)->ia_ifp;
183
184 /* jumbo payload can't contain a fragment header */
185 if (ip6->ip6_plen == 0) {
186 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
187 in6_ifstat_inc(dstifp, ifs6_reass_fail);
188 goto done;
189 }
190
191 /*
192 * check whether fragment packet's fragment length is
193 * multiple of 8 octets.
194 * sizeof(struct ip6_frag) == 8
195 * sizeof(struct ip6_hdr) = 40
196 */
197 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
198 (((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
199 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
200 offsetof(struct ip6_hdr, ip6_plen));
201 in6_ifstat_inc(dstifp, ifs6_reass_fail);
202 goto done;
203 }
204
205 IP6_STATINC(IP6_STAT_FRAGMENTS);
206 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
207
208 /* offset now points to data portion */
209 offset += sizeof(struct ip6_frag);
210
211 /*
212 * RFC6946: A host that receives an IPv6 packet which includes
213 * a Fragment Header with the "Fragment Offset" equal to 0 and
214 * the "M" bit equal to 0 MUST process such packet in isolation
215 * from any other packets/fragments.
216 */
217 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
218 if (fragoff == 0 && !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
219 IP6_STATINC(IP6_STAT_REASSEMBLED);
220 in6_ifstat_inc(dstifp, ifs6_reass_ok);
221 *offp = offset;
222 rtcache_unref(rt, &ro);
223 return ip6f->ip6f_nxt;
224 }
225
226 mutex_enter(&frag6_lock);
227
228 /*
229 * Enforce upper bound on number of fragments.
230 * If maxfrag is 0, never accept fragments.
231 * If maxfrag is -1, accept all fragments without limitation.
232 */
233 if (ip6_maxfrags < 0)
234 ;
235 else if (frag6_nfrags >= (u_int)ip6_maxfrags)
236 goto dropfrag;
237
238 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
239 if (ip6f->ip6f_ident == q6->ip6q_ident &&
240 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
241 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
242 break;
243
244 if (q6 == &ip6q) {
245 /*
246 * the first fragment to arrive, create a reassembly queue.
247 */
248 first_frag = 1;
249
250 /*
251 * Enforce upper bound on number of fragmented packets
252 * for which we attempt reassembly;
253 * If maxfragpackets is 0, never accept fragments.
254 * If maxfragpackets is -1, accept all fragments without
255 * limitation.
256 */
257 if (ip6_maxfragpackets < 0)
258 ;
259 else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets)
260 goto dropfrag;
261 frag6_nfragpackets++;
262
263 q6 = kmem_intr_zalloc(sizeof(struct ip6q), KM_NOSLEEP);
264 if (q6 == NULL) {
265 goto dropfrag;
266 }
267 frag6_insque(q6, &ip6q);
268
269 /* ip6q_nxt will be filled afterwards, from 1st fragment */
270 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
271 q6->ip6q_ident = ip6f->ip6f_ident;
272 q6->ip6q_ttl = IPV6_FRAGTTL;
273 q6->ip6q_src = ip6->ip6_src;
274 q6->ip6q_dst = ip6->ip6_dst;
275 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
276
277 q6->ip6q_nfrag = 0;
278 }
279
280 /*
281 * If it's the 1st fragment, record the length of the
282 * unfragmentable part and the next header of the fragment header.
283 */
284 if (fragoff == 0) {
285 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
286 sizeof(struct ip6_frag);
287 q6->ip6q_nxt = ip6f->ip6f_nxt;
288 }
289
290 /*
291 * Check that the reassembled packet would not exceed 65535 bytes
292 * in size. If it would exceed, discard the fragment and return an
293 * ICMP error.
294 */
295 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
296 if (q6->ip6q_unfrglen >= 0) {
297 /* The 1st fragment has already arrived. */
298 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
299 mutex_exit(&frag6_lock);
300 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
301 offset - sizeof(struct ip6_frag) +
302 offsetof(struct ip6_frag, ip6f_offlg));
303 goto done;
304 }
305 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
306 mutex_exit(&frag6_lock);
307 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
308 offset - sizeof(struct ip6_frag) +
309 offsetof(struct ip6_frag, ip6f_offlg));
310 goto done;
311 }
312
313 /*
314 * If it's the first fragment, do the above check for each
315 * fragment already stored in the reassembly queue.
316 */
317 if (fragoff == 0) {
318 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
319 af6 = af6dwn) {
320 af6dwn = af6->ip6af_down;
321
322 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
323 IPV6_MAXPACKET) {
324 struct mbuf *merr = af6->ip6af_m;
325 struct ip6_hdr *ip6err;
326 int erroff = af6->ip6af_offset;
327
328 /* dequeue the fragment. */
329 frag6_deq(af6);
330 kmem_intr_free(af6, sizeof(struct ip6asfrag));
331
332 /* adjust pointer. */
333 ip6err = mtod(merr, struct ip6_hdr *);
334
335 /*
336 * Restore source and destination addresses
337 * in the erroneous IPv6 header.
338 */
339 ip6err->ip6_src = q6->ip6q_src;
340 ip6err->ip6_dst = q6->ip6q_dst;
341
342 icmp6_error(merr, ICMP6_PARAM_PROB,
343 ICMP6_PARAMPROB_HEADER,
344 erroff - sizeof(struct ip6_frag) +
345 offsetof(struct ip6_frag, ip6f_offlg));
346 }
347 }
348 }
349
350 ip6af = kmem_intr_zalloc(sizeof(struct ip6asfrag), KM_NOSLEEP);
351 if (ip6af == NULL) {
352 goto dropfrag;
353 }
354 ip6af->ip6af_head = ip6->ip6_flow;
355 ip6af->ip6af_len = ip6->ip6_plen;
356 ip6af->ip6af_nxt = ip6->ip6_nxt;
357 ip6af->ip6af_hlim = ip6->ip6_hlim;
358 ip6af->ip6af_more = (ip6f->ip6f_offlg & IP6F_MORE_FRAG) != 0;
359 ip6af->ip6af_off = fragoff;
360 ip6af->ip6af_frglen = frgpartlen;
361 ip6af->ip6af_offset = offset;
362 ip6af->ip6af_m = m;
363
364 if (first_frag) {
365 af6 = (struct ip6asfrag *)q6;
366 goto insert;
367 }
368
369 /*
370 * Find a segment which begins after this one does.
371 */
372 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
373 af6 = af6->ip6af_down)
374 if (af6->ip6af_off > ip6af->ip6af_off)
375 break;
376
377 /*
378 * If the incoming fragment overlaps some existing fragments in
379 * the reassembly queue - drop it as per RFC 5722.
380 */
381 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
382 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
383 - ip6af->ip6af_off;
384 if (i > 0) {
385 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
386 goto dropfrag;
387 }
388 }
389 if (af6 != (struct ip6asfrag *)q6) {
390 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
391 if (i > 0) {
392 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
393 goto dropfrag;
394 }
395 }
396
397 insert:
398 /*
399 * Stick new segment in its place.
400 */
401 frag6_enq(ip6af, af6->ip6af_up);
402 frag6_nfrags++;
403 q6->ip6q_nfrag++;
404
405 /*
406 * Check for complete reassembly.
407 */
408 next = 0;
409 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
410 af6 = af6->ip6af_down) {
411 if (af6->ip6af_off != next) {
412 mutex_exit(&frag6_lock);
413 goto done;
414 }
415 next += af6->ip6af_frglen;
416 }
417 if (af6->ip6af_up->ip6af_more) {
418 mutex_exit(&frag6_lock);
419 goto done;
420 }
421
422 /*
423 * Reassembly is complete; concatenate fragments.
424 */
425 ip6af = q6->ip6q_down;
426 t = m = ip6af->ip6af_m;
427 af6 = ip6af->ip6af_down;
428 frag6_deq(ip6af);
429 while (af6 != (struct ip6asfrag *)q6) {
430 af6dwn = af6->ip6af_down;
431 frag6_deq(af6);
432 while (t->m_next)
433 t = t->m_next;
434 t->m_next = af6->ip6af_m;
435 m_adj(t->m_next, af6->ip6af_offset);
436 kmem_intr_free(af6, sizeof(struct ip6asfrag));
437 af6 = af6dwn;
438 }
439
440 /* adjust offset to point where the original next header starts */
441 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
442 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
443 ip6 = mtod(m, struct ip6_hdr *);
444 ip6->ip6_plen = htons(next + offset - sizeof(struct ip6_hdr));
445 ip6->ip6_src = q6->ip6q_src;
446 ip6->ip6_dst = q6->ip6q_dst;
447 nxt = q6->ip6q_nxt;
448
449 /*
450 * Delete frag6 header.
451 */
452 if (m->m_len >= offset + sizeof(struct ip6_frag)) {
453 memmove((char *)ip6 + sizeof(struct ip6_frag), ip6, offset);
454 m->m_data += sizeof(struct ip6_frag);
455 m->m_len -= sizeof(struct ip6_frag);
456 } else {
457 /* this comes with no copy if the boundary is on cluster */
458 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
459 frag6_remque(q6);
460 frag6_nfrags -= q6->ip6q_nfrag;
461 kmem_intr_free(q6, sizeof(struct ip6q));
462 frag6_nfragpackets--;
463 goto dropfrag;
464 }
465 m_adj(t, sizeof(struct ip6_frag));
466 m_cat(m, t);
467 }
468
469 /*
470 * Store NXT to the original.
471 */
472 {
473 u_int8_t *prvnxtp = ip6_get_prevhdr(m, offset); /* XXX */
474 *prvnxtp = nxt;
475 }
476
477 frag6_remque(q6);
478 frag6_nfrags -= q6->ip6q_nfrag;
479 kmem_intr_free(q6, sizeof(struct ip6q));
480 frag6_nfragpackets--;
481
482 if (m->m_flags & M_PKTHDR) { /* Isn't it always true? */
483 int plen = 0;
484 for (t = m; t; t = t->m_next)
485 plen += t->m_len;
486 m->m_pkthdr.len = plen;
487 }
488
489 IP6_STATINC(IP6_STAT_REASSEMBLED);
490 in6_ifstat_inc(dstifp, ifs6_reass_ok);
491 rtcache_unref(rt, &ro);
492
493 /*
494 * Tell launch routine the next header
495 */
496
497 *mp = m;
498 *offp = offset;
499
500 mutex_exit(&frag6_lock);
501 return nxt;
502
503 dropfrag:
504 mutex_exit(&frag6_lock);
505 in6_ifstat_inc(dstifp, ifs6_reass_fail);
506 IP6_STATINC(IP6_STAT_FRAGDROPPED);
507 m_freem(m);
508 done:
509 rtcache_unref(rt, &ro);
510 return IPPROTO_DONE;
511 }
512
513 int
514 ip6_reass_packet(struct mbuf **mp, int offset)
515 {
516
517 if (frag6_input(mp, &offset, IPPROTO_IPV6) == IPPROTO_DONE) {
518 *mp = NULL;
519 return EINVAL;
520 }
521 return 0;
522 }
523
524 /*
525 * Free a fragment reassembly header and all
526 * associated datagrams.
527 */
528 static void
529 frag6_freef(struct ip6q *q6)
530 {
531 struct ip6asfrag *af6, *down6;
532
533 KASSERT(mutex_owned(&frag6_lock));
534
535 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
536 af6 = down6) {
537 struct mbuf *m = af6->ip6af_m;
538
539 down6 = af6->ip6af_down;
540 frag6_deq(af6);
541
542 /*
543 * Return ICMP time exceeded error for the 1st fragment.
544 * Just free other fragments.
545 */
546 if (af6->ip6af_off == 0) {
547 struct ip6_hdr *ip6;
548
549 /* adjust pointer */
550 ip6 = mtod(m, struct ip6_hdr *);
551
552 /* restore source and destination addresses */
553 ip6->ip6_src = q6->ip6q_src;
554 ip6->ip6_dst = q6->ip6q_dst;
555
556 icmp6_error(m, ICMP6_TIME_EXCEEDED,
557 ICMP6_TIME_EXCEED_REASSEMBLY, 0);
558 } else {
559 m_freem(m);
560 }
561 kmem_intr_free(af6, sizeof(struct ip6asfrag));
562 }
563
564 frag6_remque(q6);
565 frag6_nfrags -= q6->ip6q_nfrag;
566 kmem_intr_free(q6, sizeof(struct ip6q));
567 frag6_nfragpackets--;
568 }
569
570 /*
571 * Put an ip fragment on a reassembly chain.
572 * Like insque, but pointers in middle of structure.
573 */
574 void
575 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
576 {
577
578 KASSERT(mutex_owned(&frag6_lock));
579
580 af6->ip6af_up = up6;
581 af6->ip6af_down = up6->ip6af_down;
582 up6->ip6af_down->ip6af_up = af6;
583 up6->ip6af_down = af6;
584 }
585
586 /*
587 * To frag6_enq as remque is to insque.
588 */
589 void
590 frag6_deq(struct ip6asfrag *af6)
591 {
592
593 KASSERT(mutex_owned(&frag6_lock));
594
595 af6->ip6af_up->ip6af_down = af6->ip6af_down;
596 af6->ip6af_down->ip6af_up = af6->ip6af_up;
597 }
598
599 /*
600 * Insert newq after oldq.
601 */
602 void
603 frag6_insque(struct ip6q *newq, struct ip6q *oldq)
604 {
605
606 KASSERT(mutex_owned(&frag6_lock));
607
608 newq->ip6q_prev = oldq;
609 newq->ip6q_next = oldq->ip6q_next;
610 oldq->ip6q_next->ip6q_prev = newq;
611 oldq->ip6q_next = newq;
612 }
613
614 /*
615 * Unlink p6.
616 */
617 void
618 frag6_remque(struct ip6q *p6)
619 {
620
621 KASSERT(mutex_owned(&frag6_lock));
622
623 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
624 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
625 }
626
627 void
628 frag6_fasttimo(void)
629 {
630
631 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
632
633 if (frag6_drainwanted) {
634 frag6_drain();
635 frag6_drainwanted = 0;
636 }
637
638 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
639 }
640
641 /*
642 * IPv6 reassembling timer processing;
643 * if a timer expires on a reassembly
644 * queue, discard it.
645 */
646 void
647 frag6_slowtimo(void)
648 {
649 struct ip6q *q6;
650
651 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
652
653 mutex_enter(&frag6_lock);
654 q6 = ip6q.ip6q_next;
655 if (q6)
656 while (q6 != &ip6q) {
657 --q6->ip6q_ttl;
658 q6 = q6->ip6q_next;
659 if (q6->ip6q_prev->ip6q_ttl == 0) {
660 IP6_STATINC(IP6_STAT_FRAGTIMEOUT);
661 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
662 frag6_freef(q6->ip6q_prev);
663 }
664 }
665 /*
666 * If we are over the maximum number of fragments
667 * (due to the limit being lowered), drain off
668 * enough to get down to the new limit.
669 */
670 while (frag6_nfragpackets > (u_int)ip6_maxfragpackets &&
671 ip6q.ip6q_prev) {
672 IP6_STATINC(IP6_STAT_FRAGOVERFLOW);
673 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
674 frag6_freef(ip6q.ip6q_prev);
675 }
676 mutex_exit(&frag6_lock);
677
678 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
679
680 #if 0
681 /*
682 * Routing changes might produce a better route than we last used;
683 * make sure we notice eventually, even if forwarding only for one
684 * destination and the cache is never replaced.
685 */
686 rtcache_free(&ip6_forward_rt);
687 rtcache_free(&ipsrcchk_rt);
688 #endif
689
690 }
691
692 void
693 frag6_drainstub(void)
694 {
695 frag6_drainwanted = 1;
696 }
697
698 /*
699 * Drain off all datagram fragments.
700 */
701 void
702 frag6_drain(void)
703 {
704
705 if (mutex_tryenter(&frag6_lock)) {
706 while (ip6q.ip6q_next != &ip6q) {
707 IP6_STATINC(IP6_STAT_FRAGDROPPED);
708 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
709 frag6_freef(ip6q.ip6q_next);
710 }
711 mutex_exit(&frag6_lock);
712 }
713 }
714