frag6.c revision 1.71 1 /* $NetBSD: frag6.c,v 1.71 2018/04/13 11:32:44 maxv Exp $ */
2 /* $KAME: frag6.c,v 1.40 2002/05/27 21:40:31 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: frag6.c,v 1.71 2018/04/13 11:32:44 maxv Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/mbuf.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/kmem.h>
46 #include <sys/kernel.h>
47 #include <sys/syslog.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip6.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet6/ip6_private.h>
57 #include <netinet/icmp6.h>
58
59 #include <net/net_osdep.h>
60
61 /*
62 * IPv6 reassembly queue structure. Each fragment being reassembled is
63 * attached to one of these structures.
64 *
65 * XXX: Would be better to use TAILQ.
66 */
67 struct ip6q {
68 u_int32_t ip6q_head;
69 u_int16_t ip6q_len;
70 u_int8_t ip6q_nxt; /* ip6f_nxt in first fragment */
71 u_int8_t ip6q_hlim;
72 struct ip6asfrag *ip6q_down;
73 struct ip6asfrag *ip6q_up;
74 u_int32_t ip6q_ident;
75 u_int8_t ip6q_ttl;
76 struct in6_addr ip6q_src, ip6q_dst;
77 struct ip6q *ip6q_next;
78 struct ip6q *ip6q_prev;
79 int ip6q_unfrglen; /* len of unfragmentable part */
80 int ip6q_nfrag; /* # of fragments */
81 };
82
83 struct ip6asfrag {
84 u_int32_t ip6af_head;
85 u_int16_t ip6af_len;
86 u_int8_t ip6af_nxt;
87 u_int8_t ip6af_hlim;
88 /* must not override the above members during reassembling */
89 struct ip6asfrag *ip6af_down;
90 struct ip6asfrag *ip6af_up;
91 struct mbuf *ip6af_m;
92 int ip6af_offset; /* offset in ip6af_m to next header */
93 int ip6af_frglen; /* fragmentable part length */
94 int ip6af_off; /* fragment offset */
95 bool ip6af_mff; /* more fragment bit in frag off */
96 };
97
98 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
99 static void frag6_deq(struct ip6asfrag *);
100 static void frag6_insque(struct ip6q *, struct ip6q *);
101 static void frag6_remque(struct ip6q *);
102 static void frag6_freef(struct ip6q *);
103
104 static int frag6_drainwanted;
105
106 static u_int frag6_nfragpackets;
107 static u_int frag6_nfrags;
108 static struct ip6q ip6q; /* ip6 reassembly queue */
109
110 /* Protects ip6q */
111 static kmutex_t frag6_lock __cacheline_aligned;
112
113 /*
114 * Initialise reassembly queue and fragment identifier.
115 */
116 void
117 frag6_init(void)
118 {
119
120 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
121 mutex_init(&frag6_lock, MUTEX_DEFAULT, IPL_NET);
122 }
123
124 /*
125 * IPv6 fragment input.
126 *
127 * In RFC2460, fragment and reassembly rule do not agree with each other,
128 * in terms of next header field handling in fragment header.
129 * While the sender will use the same value for all of the fragmented packets,
130 * receiver is suggested not to check the consistency.
131 *
132 * fragment rule (p20):
133 * (2) A Fragment header containing:
134 * The Next Header value that identifies the first header of
135 * the Fragmentable Part of the original packet.
136 * -> next header field is same for all fragments
137 *
138 * reassembly rule (p21):
139 * The Next Header field of the last header of the Unfragmentable
140 * Part is obtained from the Next Header field of the first
141 * fragment's Fragment header.
142 * -> should grab it from the first fragment only
143 *
144 * The following note also contradicts with fragment rule - noone is going to
145 * send different fragment with different next header field.
146 *
147 * additional note (p22):
148 * The Next Header values in the Fragment headers of different
149 * fragments of the same original packet may differ. Only the value
150 * from the Offset zero fragment packet is used for reassembly.
151 * -> should grab it from the first fragment only
152 *
153 * There is no explicit reason given in the RFC. Historical reason maybe?
154 *
155 * XXX: It would be better to use a pool, rather than kmem.
156 */
157 int
158 frag6_input(struct mbuf **mp, int *offp, int proto)
159 {
160 struct rtentry *rt;
161 struct mbuf *m = *mp, *t;
162 struct ip6_hdr *ip6;
163 struct ip6_frag *ip6f;
164 struct ip6q *q6;
165 struct ip6asfrag *af6, *ip6af, *af6dwn;
166 int offset = *offp, nxt, i, next;
167 int first_frag = 0;
168 int fragoff, frgpartlen; /* must be larger than u_int16_t */
169 struct ifnet *dstifp;
170 static struct route ro;
171 union {
172 struct sockaddr dst;
173 struct sockaddr_in6 dst6;
174 } u;
175
176 ip6 = mtod(m, struct ip6_hdr *);
177 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
178 if (ip6f == NULL)
179 return IPPROTO_DONE;
180
181 dstifp = NULL;
182 /* find the destination interface of the packet. */
183 sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0);
184 if ((rt = rtcache_lookup(&ro, &u.dst)) != NULL && rt->rt_ifa != NULL)
185 dstifp = ((struct in6_ifaddr *)rt->rt_ifa)->ia_ifp;
186
187 /* jumbo payload can't contain a fragment header */
188 if (ip6->ip6_plen == 0) {
189 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
190 in6_ifstat_inc(dstifp, ifs6_reass_fail);
191 goto done;
192 }
193
194 /*
195 * Check whether fragment packet's fragment length is non-zero and
196 * multiple of 8 octets.
197 * sizeof(struct ip6_frag) == 8
198 * sizeof(struct ip6_hdr) = 40
199 */
200 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
201 (((ntohs(ip6->ip6_plen) - offset) == 0) ||
202 ((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
203 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
204 offsetof(struct ip6_hdr, ip6_plen));
205 in6_ifstat_inc(dstifp, ifs6_reass_fail);
206 goto done;
207 }
208
209 IP6_STATINC(IP6_STAT_FRAGMENTS);
210 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
211
212 /* offset now points to data portion */
213 offset += sizeof(struct ip6_frag);
214
215 /*
216 * RFC6946: A host that receives an IPv6 packet which includes
217 * a Fragment Header with the "Fragment Offset" equal to 0 and
218 * the "M" bit equal to 0 MUST process such packet in isolation
219 * from any other packets/fragments.
220 *
221 * XXX: Would be better to remove this fragment header entirely,
222 * for us not to get confused later when looking back at the
223 * previous headers in the chain.
224 */
225 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
226 if (fragoff == 0 && !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
227 IP6_STATINC(IP6_STAT_REASSEMBLED);
228 in6_ifstat_inc(dstifp, ifs6_reass_ok);
229 *offp = offset;
230 rtcache_unref(rt, &ro);
231 return ip6f->ip6f_nxt;
232 }
233
234 mutex_enter(&frag6_lock);
235
236 /*
237 * Enforce upper bound on number of fragments.
238 * If maxfrag is 0, never accept fragments.
239 * If maxfrag is -1, accept all fragments without limitation.
240 */
241 if (ip6_maxfrags < 0)
242 ;
243 else if (frag6_nfrags >= (u_int)ip6_maxfrags)
244 goto dropfrag;
245
246 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
247 if (ip6f->ip6f_ident == q6->ip6q_ident &&
248 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
249 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
250 break;
251
252 if (q6 == &ip6q) {
253 /*
254 * the first fragment to arrive, create a reassembly queue.
255 */
256 first_frag = 1;
257
258 /*
259 * Enforce upper bound on number of fragmented packets
260 * for which we attempt reassembly;
261 * If maxfragpackets is 0, never accept fragments.
262 * If maxfragpackets is -1, accept all fragments without
263 * limitation.
264 */
265 if (ip6_maxfragpackets < 0)
266 ;
267 else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets)
268 goto dropfrag;
269 frag6_nfragpackets++;
270
271 q6 = kmem_intr_zalloc(sizeof(struct ip6q), KM_NOSLEEP);
272 if (q6 == NULL) {
273 goto dropfrag;
274 }
275 frag6_insque(q6, &ip6q);
276
277 /* ip6q_nxt will be filled afterwards, from 1st fragment */
278 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
279 q6->ip6q_ident = ip6f->ip6f_ident;
280 q6->ip6q_ttl = IPV6_FRAGTTL;
281 q6->ip6q_src = ip6->ip6_src;
282 q6->ip6q_dst = ip6->ip6_dst;
283 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
284
285 q6->ip6q_nfrag = 0;
286 }
287
288 /*
289 * If it's the 1st fragment, record the length of the
290 * unfragmentable part and the next header of the fragment header.
291 */
292 if (fragoff == 0) {
293 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
294 sizeof(struct ip6_frag);
295 q6->ip6q_nxt = ip6f->ip6f_nxt;
296 }
297
298 /*
299 * Check that the reassembled packet would not exceed 65535 bytes
300 * in size. If it would exceed, discard the fragment and return an
301 * ICMP error.
302 */
303 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
304 if (q6->ip6q_unfrglen >= 0) {
305 /* The 1st fragment has already arrived. */
306 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
307 mutex_exit(&frag6_lock);
308 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
309 offset - sizeof(struct ip6_frag) +
310 offsetof(struct ip6_frag, ip6f_offlg));
311 goto done;
312 }
313 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
314 mutex_exit(&frag6_lock);
315 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
316 offset - sizeof(struct ip6_frag) +
317 offsetof(struct ip6_frag, ip6f_offlg));
318 goto done;
319 }
320
321 /*
322 * If it's the first fragment, do the above check for each
323 * fragment already stored in the reassembly queue.
324 */
325 if (fragoff == 0) {
326 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
327 af6 = af6dwn) {
328 af6dwn = af6->ip6af_down;
329
330 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
331 IPV6_MAXPACKET) {
332 struct mbuf *merr = af6->ip6af_m;
333 struct ip6_hdr *ip6err;
334 int erroff = af6->ip6af_offset;
335
336 /* dequeue the fragment. */
337 frag6_deq(af6);
338 kmem_intr_free(af6, sizeof(struct ip6asfrag));
339
340 /* adjust pointer. */
341 ip6err = mtod(merr, struct ip6_hdr *);
342
343 /*
344 * Restore source and destination addresses
345 * in the erroneous IPv6 header.
346 */
347 ip6err->ip6_src = q6->ip6q_src;
348 ip6err->ip6_dst = q6->ip6q_dst;
349
350 icmp6_error(merr, ICMP6_PARAM_PROB,
351 ICMP6_PARAMPROB_HEADER,
352 erroff - sizeof(struct ip6_frag) +
353 offsetof(struct ip6_frag, ip6f_offlg));
354 }
355 }
356 }
357
358 ip6af = kmem_intr_zalloc(sizeof(struct ip6asfrag), KM_NOSLEEP);
359 if (ip6af == NULL) {
360 goto dropfrag;
361 }
362 ip6af->ip6af_head = ip6->ip6_flow;
363 ip6af->ip6af_len = ip6->ip6_plen;
364 ip6af->ip6af_nxt = ip6->ip6_nxt;
365 ip6af->ip6af_hlim = ip6->ip6_hlim;
366 ip6af->ip6af_mff = (ip6f->ip6f_offlg & IP6F_MORE_FRAG) != 0;
367 ip6af->ip6af_off = fragoff;
368 ip6af->ip6af_frglen = frgpartlen;
369 ip6af->ip6af_offset = offset;
370 ip6af->ip6af_m = m;
371
372 if (first_frag) {
373 af6 = (struct ip6asfrag *)q6;
374 goto insert;
375 }
376
377 /*
378 * Find a segment which begins after this one does.
379 */
380 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
381 af6 = af6->ip6af_down)
382 if (af6->ip6af_off > ip6af->ip6af_off)
383 break;
384
385 /*
386 * If the incoming fragment overlaps some existing fragments in
387 * the reassembly queue - drop it as per RFC 5722.
388 */
389 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
390 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
391 - ip6af->ip6af_off;
392 if (i > 0) {
393 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
394 goto dropfrag;
395 }
396 }
397 if (af6 != (struct ip6asfrag *)q6) {
398 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
399 if (i > 0) {
400 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
401 goto dropfrag;
402 }
403 }
404
405 insert:
406 /*
407 * Stick new segment in its place.
408 */
409 frag6_enq(ip6af, af6->ip6af_up);
410 frag6_nfrags++;
411 q6->ip6q_nfrag++;
412
413 /*
414 * Check for complete reassembly.
415 */
416 next = 0;
417 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
418 af6 = af6->ip6af_down) {
419 if (af6->ip6af_off != next) {
420 mutex_exit(&frag6_lock);
421 goto done;
422 }
423 next += af6->ip6af_frglen;
424 }
425 if (af6->ip6af_up->ip6af_mff) {
426 mutex_exit(&frag6_lock);
427 goto done;
428 }
429
430 /*
431 * Reassembly is complete; concatenate fragments.
432 */
433 ip6af = q6->ip6q_down;
434 t = m = ip6af->ip6af_m;
435 af6 = ip6af->ip6af_down;
436 frag6_deq(ip6af);
437 while (af6 != (struct ip6asfrag *)q6) {
438 af6dwn = af6->ip6af_down;
439 frag6_deq(af6);
440 while (t->m_next)
441 t = t->m_next;
442 t->m_next = af6->ip6af_m;
443 m_adj(t->m_next, af6->ip6af_offset);
444 m_pkthdr_remove(t->m_next);
445 kmem_intr_free(af6, sizeof(struct ip6asfrag));
446 af6 = af6dwn;
447 }
448
449 /* adjust offset to point where the original next header starts */
450 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
451 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
452 ip6 = mtod(m, struct ip6_hdr *);
453 ip6->ip6_plen = htons(next + offset - sizeof(struct ip6_hdr));
454 ip6->ip6_src = q6->ip6q_src;
455 ip6->ip6_dst = q6->ip6q_dst;
456 nxt = q6->ip6q_nxt;
457
458 /*
459 * Delete frag6 header.
460 */
461 if (m->m_len >= offset + sizeof(struct ip6_frag)) {
462 memmove((char *)ip6 + sizeof(struct ip6_frag), ip6, offset);
463 m->m_data += sizeof(struct ip6_frag);
464 m->m_len -= sizeof(struct ip6_frag);
465 } else {
466 /* this comes with no copy if the boundary is on cluster */
467 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
468 frag6_remque(q6);
469 frag6_nfrags -= q6->ip6q_nfrag;
470 kmem_intr_free(q6, sizeof(struct ip6q));
471 frag6_nfragpackets--;
472 goto dropfrag;
473 }
474 m_adj(t, sizeof(struct ip6_frag));
475 m_cat(m, t);
476 }
477
478 frag6_remque(q6);
479 frag6_nfrags -= q6->ip6q_nfrag;
480 kmem_intr_free(q6, sizeof(struct ip6q));
481 frag6_nfragpackets--;
482
483 {
484 KASSERT(m->m_flags & M_PKTHDR);
485 int plen = 0;
486 for (t = m; t; t = t->m_next) {
487 plen += t->m_len;
488 }
489 m->m_pkthdr.len = plen;
490 /* XXX XXX: clear csum_flags? */
491 }
492
493 /*
494 * Restore NXT to the original.
495 */
496 {
497 const int prvnxt = ip6_get_prevhdr(m, offset);
498 uint8_t *prvnxtp;
499
500 IP6_EXTHDR_GET(prvnxtp, uint8_t *, m, prvnxt,
501 sizeof(*prvnxtp));
502 if (prvnxtp == NULL) {
503 goto dropfrag;
504 }
505 *prvnxtp = nxt;
506 }
507
508 IP6_STATINC(IP6_STAT_REASSEMBLED);
509 in6_ifstat_inc(dstifp, ifs6_reass_ok);
510 rtcache_unref(rt, &ro);
511 mutex_exit(&frag6_lock);
512
513 /*
514 * Tell launch routine the next header.
515 */
516 *mp = m;
517 *offp = offset;
518 return nxt;
519
520 dropfrag:
521 mutex_exit(&frag6_lock);
522 in6_ifstat_inc(dstifp, ifs6_reass_fail);
523 IP6_STATINC(IP6_STAT_FRAGDROPPED);
524 m_freem(m);
525 done:
526 rtcache_unref(rt, &ro);
527 return IPPROTO_DONE;
528 }
529
530 int
531 ip6_reass_packet(struct mbuf **mp, int offset)
532 {
533
534 if (frag6_input(mp, &offset, IPPROTO_IPV6) == IPPROTO_DONE) {
535 *mp = NULL;
536 return EINVAL;
537 }
538 return 0;
539 }
540
541 /*
542 * Free a fragment reassembly header and all
543 * associated datagrams.
544 */
545 static void
546 frag6_freef(struct ip6q *q6)
547 {
548 struct ip6asfrag *af6, *down6;
549
550 KASSERT(mutex_owned(&frag6_lock));
551
552 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
553 af6 = down6) {
554 struct mbuf *m = af6->ip6af_m;
555
556 down6 = af6->ip6af_down;
557 frag6_deq(af6);
558
559 /*
560 * Return ICMP time exceeded error for the 1st fragment.
561 * Just free other fragments.
562 */
563 if (af6->ip6af_off == 0) {
564 struct ip6_hdr *ip6;
565
566 /* adjust pointer */
567 ip6 = mtod(m, struct ip6_hdr *);
568
569 /* restore source and destination addresses */
570 ip6->ip6_src = q6->ip6q_src;
571 ip6->ip6_dst = q6->ip6q_dst;
572
573 icmp6_error(m, ICMP6_TIME_EXCEEDED,
574 ICMP6_TIME_EXCEED_REASSEMBLY, 0);
575 } else {
576 m_freem(m);
577 }
578 kmem_intr_free(af6, sizeof(struct ip6asfrag));
579 }
580
581 frag6_remque(q6);
582 frag6_nfrags -= q6->ip6q_nfrag;
583 kmem_intr_free(q6, sizeof(struct ip6q));
584 frag6_nfragpackets--;
585 }
586
587 /*
588 * Put an ip fragment on a reassembly chain.
589 * Like insque, but pointers in middle of structure.
590 */
591 void
592 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
593 {
594
595 KASSERT(mutex_owned(&frag6_lock));
596
597 af6->ip6af_up = up6;
598 af6->ip6af_down = up6->ip6af_down;
599 up6->ip6af_down->ip6af_up = af6;
600 up6->ip6af_down = af6;
601 }
602
603 /*
604 * To frag6_enq as remque is to insque.
605 */
606 void
607 frag6_deq(struct ip6asfrag *af6)
608 {
609
610 KASSERT(mutex_owned(&frag6_lock));
611
612 af6->ip6af_up->ip6af_down = af6->ip6af_down;
613 af6->ip6af_down->ip6af_up = af6->ip6af_up;
614 }
615
616 /*
617 * Insert newq after oldq.
618 */
619 void
620 frag6_insque(struct ip6q *newq, struct ip6q *oldq)
621 {
622
623 KASSERT(mutex_owned(&frag6_lock));
624
625 newq->ip6q_prev = oldq;
626 newq->ip6q_next = oldq->ip6q_next;
627 oldq->ip6q_next->ip6q_prev = newq;
628 oldq->ip6q_next = newq;
629 }
630
631 /*
632 * Unlink p6.
633 */
634 void
635 frag6_remque(struct ip6q *p6)
636 {
637
638 KASSERT(mutex_owned(&frag6_lock));
639
640 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
641 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
642 }
643
644 void
645 frag6_fasttimo(void)
646 {
647
648 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
649
650 if (frag6_drainwanted) {
651 frag6_drain();
652 frag6_drainwanted = 0;
653 }
654
655 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
656 }
657
658 /*
659 * IPv6 reassembling timer processing;
660 * if a timer expires on a reassembly
661 * queue, discard it.
662 */
663 void
664 frag6_slowtimo(void)
665 {
666 struct ip6q *q6;
667
668 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
669
670 mutex_enter(&frag6_lock);
671 q6 = ip6q.ip6q_next;
672 if (q6) {
673 while (q6 != &ip6q) {
674 --q6->ip6q_ttl;
675 q6 = q6->ip6q_next;
676 if (q6->ip6q_prev->ip6q_ttl == 0) {
677 IP6_STATINC(IP6_STAT_FRAGTIMEOUT);
678 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
679 frag6_freef(q6->ip6q_prev);
680 }
681 }
682 }
683
684 /*
685 * If we are over the maximum number of fragments
686 * (due to the limit being lowered), drain off
687 * enough to get down to the new limit.
688 */
689 while (frag6_nfragpackets > (u_int)ip6_maxfragpackets &&
690 ip6q.ip6q_prev) {
691 IP6_STATINC(IP6_STAT_FRAGOVERFLOW);
692 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
693 frag6_freef(ip6q.ip6q_prev);
694 }
695 mutex_exit(&frag6_lock);
696
697 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
698
699 #if 0
700 /*
701 * Routing changes might produce a better route than we last used;
702 * make sure we notice eventually, even if forwarding only for one
703 * destination and the cache is never replaced.
704 */
705 rtcache_free(&ip6_forward_rt);
706 rtcache_free(&ipsrcchk_rt);
707 #endif
708 }
709
710 void
711 frag6_drainstub(void)
712 {
713 frag6_drainwanted = 1;
714 }
715
716 /*
717 * Drain off all datagram fragments.
718 */
719 void
720 frag6_drain(void)
721 {
722
723 if (mutex_tryenter(&frag6_lock)) {
724 while (ip6q.ip6q_next != &ip6q) {
725 IP6_STATINC(IP6_STAT_FRAGDROPPED);
726 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
727 frag6_freef(ip6q.ip6q_next);
728 }
729 mutex_exit(&frag6_lock);
730 }
731 }
732