frag6.c revision 1.73 1 /* $NetBSD: frag6.c,v 1.73 2018/05/03 07:25:49 maxv Exp $ */
2 /* $KAME: frag6.c,v 1.40 2002/05/27 21:40:31 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: frag6.c,v 1.73 2018/05/03 07:25:49 maxv Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/mbuf.h>
43 #include <sys/errno.h>
44 #include <sys/time.h>
45 #include <sys/kmem.h>
46 #include <sys/kernel.h>
47 #include <sys/syslog.h>
48
49 #include <net/if.h>
50 #include <net/route.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip6.h>
55 #include <netinet6/ip6_var.h>
56 #include <netinet6/ip6_private.h>
57 #include <netinet/icmp6.h>
58
59 /*
60 * IPv6 reassembly queue structure. Each fragment being reassembled is
61 * attached to one of these structures.
62 *
63 * XXX: Would be better to use TAILQ.
64 */
65 struct ip6q {
66 u_int32_t ip6q_head;
67 u_int16_t ip6q_len;
68 u_int8_t ip6q_nxt; /* ip6f_nxt in first fragment */
69 u_int8_t ip6q_hlim;
70 struct ip6asfrag *ip6q_down;
71 struct ip6asfrag *ip6q_up;
72 u_int32_t ip6q_ident;
73 u_int8_t ip6q_ttl;
74 struct in6_addr ip6q_src, ip6q_dst;
75 struct ip6q *ip6q_next;
76 struct ip6q *ip6q_prev;
77 int ip6q_unfrglen; /* len of unfragmentable part */
78 int ip6q_nfrag; /* # of fragments */
79 };
80
81 struct ip6asfrag {
82 u_int32_t ip6af_head;
83 u_int16_t ip6af_len;
84 u_int8_t ip6af_nxt;
85 u_int8_t ip6af_hlim;
86 /* must not override the above members during reassembling */
87 struct ip6asfrag *ip6af_down;
88 struct ip6asfrag *ip6af_up;
89 struct mbuf *ip6af_m;
90 int ip6af_offset; /* offset in ip6af_m to next header */
91 int ip6af_frglen; /* fragmentable part length */
92 int ip6af_off; /* fragment offset */
93 bool ip6af_mff; /* more fragment bit in frag off */
94 };
95
96 static void frag6_enq(struct ip6asfrag *, struct ip6asfrag *);
97 static void frag6_deq(struct ip6asfrag *);
98 static void frag6_insque(struct ip6q *, struct ip6q *);
99 static void frag6_remque(struct ip6q *);
100 static void frag6_freef(struct ip6q *);
101
102 static int frag6_drainwanted;
103
104 static u_int frag6_nfragpackets;
105 static u_int frag6_nfrags;
106 static struct ip6q ip6q; /* ip6 reassembly queue */
107
108 /* Protects ip6q */
109 static kmutex_t frag6_lock __cacheline_aligned;
110
111 /*
112 * Initialise reassembly queue and fragment identifier.
113 */
114 void
115 frag6_init(void)
116 {
117
118 ip6q.ip6q_next = ip6q.ip6q_prev = &ip6q;
119 mutex_init(&frag6_lock, MUTEX_DEFAULT, IPL_NET);
120 }
121
122 /*
123 * IPv6 fragment input.
124 *
125 * In RFC2460, fragment and reassembly rule do not agree with each other,
126 * in terms of next header field handling in fragment header.
127 * While the sender will use the same value for all of the fragmented packets,
128 * receiver is suggested not to check the consistency.
129 *
130 * fragment rule (p20):
131 * (2) A Fragment header containing:
132 * The Next Header value that identifies the first header of
133 * the Fragmentable Part of the original packet.
134 * -> next header field is same for all fragments
135 *
136 * reassembly rule (p21):
137 * The Next Header field of the last header of the Unfragmentable
138 * Part is obtained from the Next Header field of the first
139 * fragment's Fragment header.
140 * -> should grab it from the first fragment only
141 *
142 * The following note also contradicts with fragment rule - noone is going to
143 * send different fragment with different next header field.
144 *
145 * additional note (p22):
146 * The Next Header values in the Fragment headers of different
147 * fragments of the same original packet may differ. Only the value
148 * from the Offset zero fragment packet is used for reassembly.
149 * -> should grab it from the first fragment only
150 *
151 * There is no explicit reason given in the RFC. Historical reason maybe?
152 *
153 * XXX: It would be better to use a pool, rather than kmem.
154 */
155 int
156 frag6_input(struct mbuf **mp, int *offp, int proto)
157 {
158 struct rtentry *rt;
159 struct mbuf *m = *mp, *t;
160 struct ip6_hdr *ip6;
161 struct ip6_frag *ip6f;
162 struct ip6q *q6;
163 struct ip6asfrag *af6, *ip6af, *af6dwn;
164 int offset = *offp, nxt, i, next;
165 int first_frag = 0;
166 int fragoff, frgpartlen; /* must be larger than u_int16_t */
167 struct ifnet *dstifp;
168 static struct route ro;
169 union {
170 struct sockaddr dst;
171 struct sockaddr_in6 dst6;
172 } u;
173
174 ip6 = mtod(m, struct ip6_hdr *);
175 IP6_EXTHDR_GET(ip6f, struct ip6_frag *, m, offset, sizeof(*ip6f));
176 if (ip6f == NULL)
177 return IPPROTO_DONE;
178
179 dstifp = NULL;
180 /* find the destination interface of the packet. */
181 sockaddr_in6_init(&u.dst6, &ip6->ip6_dst, 0, 0, 0);
182 if ((rt = rtcache_lookup(&ro, &u.dst)) != NULL && rt->rt_ifa != NULL)
183 dstifp = ((struct in6_ifaddr *)rt->rt_ifa)->ia_ifp;
184
185 /* jumbo payload can't contain a fragment header */
186 if (ip6->ip6_plen == 0) {
187 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER, offset);
188 in6_ifstat_inc(dstifp, ifs6_reass_fail);
189 goto done;
190 }
191
192 /*
193 * Check whether fragment packet's fragment length is non-zero and
194 * multiple of 8 octets.
195 * sizeof(struct ip6_frag) == 8
196 * sizeof(struct ip6_hdr) = 40
197 */
198 if ((ip6f->ip6f_offlg & IP6F_MORE_FRAG) &&
199 (((ntohs(ip6->ip6_plen) - offset) == 0) ||
200 ((ntohs(ip6->ip6_plen) - offset) & 0x7) != 0)) {
201 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
202 offsetof(struct ip6_hdr, ip6_plen));
203 in6_ifstat_inc(dstifp, ifs6_reass_fail);
204 goto done;
205 }
206
207 IP6_STATINC(IP6_STAT_FRAGMENTS);
208 in6_ifstat_inc(dstifp, ifs6_reass_reqd);
209
210 /* offset now points to data portion */
211 offset += sizeof(struct ip6_frag);
212
213 /*
214 * RFC6946: A host that receives an IPv6 packet which includes
215 * a Fragment Header with the "Fragment Offset" equal to 0 and
216 * the "M" bit equal to 0 MUST process such packet in isolation
217 * from any other packets/fragments.
218 *
219 * XXX: Would be better to remove this fragment header entirely,
220 * for us not to get confused later when looking back at the
221 * previous headers in the chain.
222 */
223 fragoff = ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK);
224 if (fragoff == 0 && !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
225 IP6_STATINC(IP6_STAT_REASSEMBLED);
226 in6_ifstat_inc(dstifp, ifs6_reass_ok);
227 *offp = offset;
228 rtcache_unref(rt, &ro);
229 return ip6f->ip6f_nxt;
230 }
231
232 mutex_enter(&frag6_lock);
233
234 /*
235 * Enforce upper bound on number of fragments.
236 * If maxfrag is 0, never accept fragments.
237 * If maxfrag is -1, accept all fragments without limitation.
238 */
239 if (ip6_maxfrags < 0)
240 ;
241 else if (frag6_nfrags >= (u_int)ip6_maxfrags)
242 goto dropfrag;
243
244 for (q6 = ip6q.ip6q_next; q6 != &ip6q; q6 = q6->ip6q_next)
245 if (ip6f->ip6f_ident == q6->ip6q_ident &&
246 IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &q6->ip6q_src) &&
247 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &q6->ip6q_dst))
248 break;
249
250 if (q6 == &ip6q) {
251 /*
252 * the first fragment to arrive, create a reassembly queue.
253 */
254 first_frag = 1;
255
256 /*
257 * Enforce upper bound on number of fragmented packets
258 * for which we attempt reassembly;
259 * If maxfragpackets is 0, never accept fragments.
260 * If maxfragpackets is -1, accept all fragments without
261 * limitation.
262 */
263 if (ip6_maxfragpackets < 0)
264 ;
265 else if (frag6_nfragpackets >= (u_int)ip6_maxfragpackets)
266 goto dropfrag;
267 frag6_nfragpackets++;
268
269 q6 = kmem_intr_zalloc(sizeof(struct ip6q), KM_NOSLEEP);
270 if (q6 == NULL) {
271 goto dropfrag;
272 }
273 frag6_insque(q6, &ip6q);
274
275 /* ip6q_nxt will be filled afterwards, from 1st fragment */
276 q6->ip6q_down = q6->ip6q_up = (struct ip6asfrag *)q6;
277 q6->ip6q_ident = ip6f->ip6f_ident;
278 q6->ip6q_ttl = IPV6_FRAGTTL;
279 q6->ip6q_src = ip6->ip6_src;
280 q6->ip6q_dst = ip6->ip6_dst;
281 q6->ip6q_unfrglen = -1; /* The 1st fragment has not arrived. */
282
283 q6->ip6q_nfrag = 0;
284 }
285
286 /*
287 * If it's the 1st fragment, record the length of the
288 * unfragmentable part and the next header of the fragment header.
289 */
290 if (fragoff == 0) {
291 q6->ip6q_unfrglen = offset - sizeof(struct ip6_hdr) -
292 sizeof(struct ip6_frag);
293 q6->ip6q_nxt = ip6f->ip6f_nxt;
294 }
295
296 /*
297 * Check that the reassembled packet would not exceed 65535 bytes
298 * in size. If it would exceed, discard the fragment and return an
299 * ICMP error.
300 */
301 frgpartlen = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - offset;
302 if (q6->ip6q_unfrglen >= 0) {
303 /* The 1st fragment has already arrived. */
304 if (q6->ip6q_unfrglen + fragoff + frgpartlen > IPV6_MAXPACKET) {
305 mutex_exit(&frag6_lock);
306 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
307 offset - sizeof(struct ip6_frag) +
308 offsetof(struct ip6_frag, ip6f_offlg));
309 goto done;
310 }
311 } else if (fragoff + frgpartlen > IPV6_MAXPACKET) {
312 mutex_exit(&frag6_lock);
313 icmp6_error(m, ICMP6_PARAM_PROB, ICMP6_PARAMPROB_HEADER,
314 offset - sizeof(struct ip6_frag) +
315 offsetof(struct ip6_frag, ip6f_offlg));
316 goto done;
317 }
318
319 /*
320 * If it's the first fragment, do the above check for each
321 * fragment already stored in the reassembly queue.
322 */
323 if (fragoff == 0) {
324 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
325 af6 = af6dwn) {
326 af6dwn = af6->ip6af_down;
327
328 if (q6->ip6q_unfrglen + af6->ip6af_off + af6->ip6af_frglen >
329 IPV6_MAXPACKET) {
330 struct mbuf *merr = af6->ip6af_m;
331 struct ip6_hdr *ip6err;
332 int erroff = af6->ip6af_offset;
333
334 /* dequeue the fragment. */
335 frag6_deq(af6);
336 kmem_intr_free(af6, sizeof(struct ip6asfrag));
337
338 /* adjust pointer. */
339 ip6err = mtod(merr, struct ip6_hdr *);
340
341 /*
342 * Restore source and destination addresses
343 * in the erroneous IPv6 header.
344 */
345 ip6err->ip6_src = q6->ip6q_src;
346 ip6err->ip6_dst = q6->ip6q_dst;
347
348 icmp6_error(merr, ICMP6_PARAM_PROB,
349 ICMP6_PARAMPROB_HEADER,
350 erroff - sizeof(struct ip6_frag) +
351 offsetof(struct ip6_frag, ip6f_offlg));
352 }
353 }
354 }
355
356 ip6af = kmem_intr_zalloc(sizeof(struct ip6asfrag), KM_NOSLEEP);
357 if (ip6af == NULL) {
358 goto dropfrag;
359 }
360 ip6af->ip6af_head = ip6->ip6_flow;
361 ip6af->ip6af_len = ip6->ip6_plen;
362 ip6af->ip6af_nxt = ip6->ip6_nxt;
363 ip6af->ip6af_hlim = ip6->ip6_hlim;
364 ip6af->ip6af_mff = (ip6f->ip6f_offlg & IP6F_MORE_FRAG) != 0;
365 ip6af->ip6af_off = fragoff;
366 ip6af->ip6af_frglen = frgpartlen;
367 ip6af->ip6af_offset = offset;
368 ip6af->ip6af_m = m;
369
370 if (first_frag) {
371 af6 = (struct ip6asfrag *)q6;
372 goto insert;
373 }
374
375 /*
376 * Find a segment which begins after this one does.
377 */
378 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
379 af6 = af6->ip6af_down)
380 if (af6->ip6af_off > ip6af->ip6af_off)
381 break;
382
383 /*
384 * If the incoming fragment overlaps some existing fragments in
385 * the reassembly queue - drop it as per RFC 5722.
386 */
387 if (af6->ip6af_up != (struct ip6asfrag *)q6) {
388 i = af6->ip6af_up->ip6af_off + af6->ip6af_up->ip6af_frglen
389 - ip6af->ip6af_off;
390 if (i > 0) {
391 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
392 goto dropfrag;
393 }
394 }
395 if (af6 != (struct ip6asfrag *)q6) {
396 i = (ip6af->ip6af_off + ip6af->ip6af_frglen) - af6->ip6af_off;
397 if (i > 0) {
398 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
399 goto dropfrag;
400 }
401 }
402
403 insert:
404 /*
405 * Stick new segment in its place.
406 */
407 frag6_enq(ip6af, af6->ip6af_up);
408 frag6_nfrags++;
409 q6->ip6q_nfrag++;
410
411 /*
412 * Check for complete reassembly.
413 */
414 next = 0;
415 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
416 af6 = af6->ip6af_down) {
417 if (af6->ip6af_off != next) {
418 mutex_exit(&frag6_lock);
419 goto done;
420 }
421 next += af6->ip6af_frglen;
422 }
423 if (af6->ip6af_up->ip6af_mff) {
424 mutex_exit(&frag6_lock);
425 goto done;
426 }
427
428 /*
429 * Reassembly is complete; concatenate fragments.
430 */
431 ip6af = q6->ip6q_down;
432 t = m = ip6af->ip6af_m;
433 af6 = ip6af->ip6af_down;
434 frag6_deq(ip6af);
435 while (af6 != (struct ip6asfrag *)q6) {
436 af6dwn = af6->ip6af_down;
437 frag6_deq(af6);
438 while (t->m_next)
439 t = t->m_next;
440 t->m_next = af6->ip6af_m;
441 m_adj(t->m_next, af6->ip6af_offset);
442 m_remove_pkthdr(t->m_next);
443 kmem_intr_free(af6, sizeof(struct ip6asfrag));
444 af6 = af6dwn;
445 }
446
447 /* adjust offset to point where the original next header starts */
448 offset = ip6af->ip6af_offset - sizeof(struct ip6_frag);
449 kmem_intr_free(ip6af, sizeof(struct ip6asfrag));
450 ip6 = mtod(m, struct ip6_hdr *);
451 ip6->ip6_plen = htons(next + offset - sizeof(struct ip6_hdr));
452 ip6->ip6_src = q6->ip6q_src;
453 ip6->ip6_dst = q6->ip6q_dst;
454 nxt = q6->ip6q_nxt;
455
456 /*
457 * Delete frag6 header.
458 */
459 if (m->m_len >= offset + sizeof(struct ip6_frag)) {
460 memmove((char *)ip6 + sizeof(struct ip6_frag), ip6, offset);
461 m->m_data += sizeof(struct ip6_frag);
462 m->m_len -= sizeof(struct ip6_frag);
463 } else {
464 /* this comes with no copy if the boundary is on cluster */
465 if ((t = m_split(m, offset, M_DONTWAIT)) == NULL) {
466 frag6_remque(q6);
467 frag6_nfrags -= q6->ip6q_nfrag;
468 kmem_intr_free(q6, sizeof(struct ip6q));
469 frag6_nfragpackets--;
470 goto dropfrag;
471 }
472 m_adj(t, sizeof(struct ip6_frag));
473 m_cat(m, t);
474 }
475
476 frag6_remque(q6);
477 frag6_nfrags -= q6->ip6q_nfrag;
478 kmem_intr_free(q6, sizeof(struct ip6q));
479 frag6_nfragpackets--;
480
481 {
482 KASSERT(m->m_flags & M_PKTHDR);
483 int plen = 0;
484 for (t = m; t; t = t->m_next) {
485 plen += t->m_len;
486 }
487 m->m_pkthdr.len = plen;
488 /* XXX XXX: clear csum_flags? */
489 }
490
491 /*
492 * Restore NXT to the original.
493 */
494 {
495 const int prvnxt = ip6_get_prevhdr(m, offset);
496 uint8_t *prvnxtp;
497
498 IP6_EXTHDR_GET(prvnxtp, uint8_t *, m, prvnxt,
499 sizeof(*prvnxtp));
500 if (prvnxtp == NULL) {
501 goto dropfrag;
502 }
503 *prvnxtp = nxt;
504 }
505
506 IP6_STATINC(IP6_STAT_REASSEMBLED);
507 in6_ifstat_inc(dstifp, ifs6_reass_ok);
508 rtcache_unref(rt, &ro);
509 mutex_exit(&frag6_lock);
510
511 /*
512 * Tell launch routine the next header.
513 */
514 *mp = m;
515 *offp = offset;
516 return nxt;
517
518 dropfrag:
519 mutex_exit(&frag6_lock);
520 in6_ifstat_inc(dstifp, ifs6_reass_fail);
521 IP6_STATINC(IP6_STAT_FRAGDROPPED);
522 m_freem(m);
523 done:
524 rtcache_unref(rt, &ro);
525 return IPPROTO_DONE;
526 }
527
528 int
529 ip6_reass_packet(struct mbuf **mp, int offset)
530 {
531
532 if (frag6_input(mp, &offset, IPPROTO_IPV6) == IPPROTO_DONE) {
533 *mp = NULL;
534 return EINVAL;
535 }
536 return 0;
537 }
538
539 /*
540 * Free a fragment reassembly header and all
541 * associated datagrams.
542 */
543 static void
544 frag6_freef(struct ip6q *q6)
545 {
546 struct ip6asfrag *af6, *down6;
547
548 KASSERT(mutex_owned(&frag6_lock));
549
550 for (af6 = q6->ip6q_down; af6 != (struct ip6asfrag *)q6;
551 af6 = down6) {
552 struct mbuf *m = af6->ip6af_m;
553
554 down6 = af6->ip6af_down;
555 frag6_deq(af6);
556
557 /*
558 * Return ICMP time exceeded error for the 1st fragment.
559 * Just free other fragments.
560 */
561 if (af6->ip6af_off == 0) {
562 struct ip6_hdr *ip6;
563
564 /* adjust pointer */
565 ip6 = mtod(m, struct ip6_hdr *);
566
567 /* restore source and destination addresses */
568 ip6->ip6_src = q6->ip6q_src;
569 ip6->ip6_dst = q6->ip6q_dst;
570
571 icmp6_error(m, ICMP6_TIME_EXCEEDED,
572 ICMP6_TIME_EXCEED_REASSEMBLY, 0);
573 } else {
574 m_freem(m);
575 }
576 kmem_intr_free(af6, sizeof(struct ip6asfrag));
577 }
578
579 frag6_remque(q6);
580 frag6_nfrags -= q6->ip6q_nfrag;
581 kmem_intr_free(q6, sizeof(struct ip6q));
582 frag6_nfragpackets--;
583 }
584
585 /*
586 * Put an ip fragment on a reassembly chain.
587 * Like insque, but pointers in middle of structure.
588 */
589 void
590 frag6_enq(struct ip6asfrag *af6, struct ip6asfrag *up6)
591 {
592
593 KASSERT(mutex_owned(&frag6_lock));
594
595 af6->ip6af_up = up6;
596 af6->ip6af_down = up6->ip6af_down;
597 up6->ip6af_down->ip6af_up = af6;
598 up6->ip6af_down = af6;
599 }
600
601 /*
602 * To frag6_enq as remque is to insque.
603 */
604 void
605 frag6_deq(struct ip6asfrag *af6)
606 {
607
608 KASSERT(mutex_owned(&frag6_lock));
609
610 af6->ip6af_up->ip6af_down = af6->ip6af_down;
611 af6->ip6af_down->ip6af_up = af6->ip6af_up;
612 }
613
614 /*
615 * Insert newq after oldq.
616 */
617 void
618 frag6_insque(struct ip6q *newq, struct ip6q *oldq)
619 {
620
621 KASSERT(mutex_owned(&frag6_lock));
622
623 newq->ip6q_prev = oldq;
624 newq->ip6q_next = oldq->ip6q_next;
625 oldq->ip6q_next->ip6q_prev = newq;
626 oldq->ip6q_next = newq;
627 }
628
629 /*
630 * Unlink p6.
631 */
632 void
633 frag6_remque(struct ip6q *p6)
634 {
635
636 KASSERT(mutex_owned(&frag6_lock));
637
638 p6->ip6q_prev->ip6q_next = p6->ip6q_next;
639 p6->ip6q_next->ip6q_prev = p6->ip6q_prev;
640 }
641
642 void
643 frag6_fasttimo(void)
644 {
645
646 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
647
648 if (frag6_drainwanted) {
649 frag6_drain();
650 frag6_drainwanted = 0;
651 }
652
653 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
654 }
655
656 /*
657 * IPv6 reassembling timer processing;
658 * if a timer expires on a reassembly
659 * queue, discard it.
660 */
661 void
662 frag6_slowtimo(void)
663 {
664 struct ip6q *q6;
665
666 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
667
668 mutex_enter(&frag6_lock);
669 q6 = ip6q.ip6q_next;
670 if (q6) {
671 while (q6 != &ip6q) {
672 --q6->ip6q_ttl;
673 q6 = q6->ip6q_next;
674 if (q6->ip6q_prev->ip6q_ttl == 0) {
675 IP6_STATINC(IP6_STAT_FRAGTIMEOUT);
676 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
677 frag6_freef(q6->ip6q_prev);
678 }
679 }
680 }
681
682 /*
683 * If we are over the maximum number of fragments
684 * (due to the limit being lowered), drain off
685 * enough to get down to the new limit.
686 */
687 while (frag6_nfragpackets > (u_int)ip6_maxfragpackets &&
688 ip6q.ip6q_prev) {
689 IP6_STATINC(IP6_STAT_FRAGOVERFLOW);
690 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
691 frag6_freef(ip6q.ip6q_prev);
692 }
693 mutex_exit(&frag6_lock);
694
695 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
696
697 #if 0
698 /*
699 * Routing changes might produce a better route than we last used;
700 * make sure we notice eventually, even if forwarding only for one
701 * destination and the cache is never replaced.
702 */
703 rtcache_free(&ip6_forward_rt);
704 rtcache_free(&ipsrcchk_rt);
705 #endif
706 }
707
708 void
709 frag6_drainstub(void)
710 {
711 frag6_drainwanted = 1;
712 }
713
714 /*
715 * Drain off all datagram fragments.
716 */
717 void
718 frag6_drain(void)
719 {
720
721 if (mutex_tryenter(&frag6_lock)) {
722 while (ip6q.ip6q_next != &ip6q) {
723 IP6_STATINC(IP6_STAT_FRAGDROPPED);
724 /* XXX in6_ifstat_inc(ifp, ifs6_reass_fail) */
725 frag6_freef(ip6q.ip6q_next);
726 }
727 mutex_exit(&frag6_lock);
728 }
729 }
730