in6.c revision 1.157 1 /* $NetBSD: in6.c,v 1.157 2011/02/06 19:12:55 dyoung Exp $ */
2 /* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)in.c 8.2 (Berkeley) 11/15/93
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.157 2011/02/06 19:12:55 dyoung Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_pfil_hooks.h"
69 #include "opt_compat_netbsd.h"
70
71 #include <sys/param.h>
72 #include <sys/ioctl.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/sockio.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/time.h>
81 #include <sys/kernel.h>
82 #include <sys/syslog.h>
83 #include <sys/kauth.h>
84
85 #include <net/if.h>
86 #include <net/if_types.h>
87 #include <net/route.h>
88 #include <net/if_dl.h>
89
90 #include <netinet/in.h>
91 #include <netinet/in_var.h>
92 #include <net/if_ether.h>
93
94 #include <netinet/ip6.h>
95 #include <netinet6/ip6_var.h>
96 #include <netinet6/nd6.h>
97 #include <netinet6/mld6_var.h>
98 #include <netinet6/ip6_mroute.h>
99 #include <netinet6/in6_ifattach.h>
100 #include <netinet6/scope6_var.h>
101
102 #include <net/net_osdep.h>
103
104 #ifdef PFIL_HOOKS
105 #include <net/pfil.h>
106 #endif
107 #ifdef COMPAT_50
108 #include <compat/netinet6/in6_var.h>
109 #endif
110
111 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options");
112
113 /* enable backward compatibility code for obsoleted ioctls */
114 #define COMPAT_IN6IFIOCTL
115
116 #ifdef IN6_DEBUG
117 #define IN6_DPRINTF(__fmt, ...) printf(__fmt, __VA_ARGS__)
118 #else
119 #define IN6_DPRINTF(__fmt, ...) do { } while (/*CONSTCOND*/0)
120 #endif /* IN6_DEBUG */
121
122 /*
123 * Definitions of some constant IP6 addresses.
124 */
125 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
126 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
127 const struct in6_addr in6addr_nodelocal_allnodes =
128 IN6ADDR_NODELOCAL_ALLNODES_INIT;
129 const struct in6_addr in6addr_linklocal_allnodes =
130 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
131 const struct in6_addr in6addr_linklocal_allrouters =
132 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
133
134 const struct in6_addr in6mask0 = IN6MASK0;
135 const struct in6_addr in6mask32 = IN6MASK32;
136 const struct in6_addr in6mask64 = IN6MASK64;
137 const struct in6_addr in6mask96 = IN6MASK96;
138 const struct in6_addr in6mask128 = IN6MASK128;
139
140 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
141 0, 0, IN6ADDR_ANY_INIT, 0};
142
143 static int in6_lifaddr_ioctl(struct socket *, u_long, void *,
144 struct ifnet *, struct lwp *);
145 static int in6_ifinit(struct ifnet *, struct in6_ifaddr *,
146 const struct sockaddr_in6 *, int);
147 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *);
148
149 /*
150 * Subroutine for in6_ifaddloop() and in6_ifremloop().
151 * This routine does actual work.
152 */
153 static void
154 in6_ifloop_request(int cmd, struct ifaddr *ifa)
155 {
156 struct sockaddr_in6 lo_sa;
157 struct sockaddr_in6 all1_sa;
158 struct rtentry *nrt = NULL;
159 int e;
160
161 sockaddr_in6_init(&all1_sa, &in6mask128, 0, 0, 0);
162 sockaddr_in6_init(&lo_sa, &in6addr_loopback, 0, 0, 0);
163
164 /*
165 * We specify the address itself as the gateway, and set the
166 * RTF_LLINFO flag, so that the corresponding host route would have
167 * the flag, and thus applications that assume traditional behavior
168 * would be happy. Note that we assume the caller of the function
169 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
170 * which changes the outgoing interface to the loopback interface.
171 */
172 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
173 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
174 if (e != 0) {
175 log(LOG_ERR, "in6_ifloop_request: "
176 "%s operation failed for %s (errno=%d)\n",
177 cmd == RTM_ADD ? "ADD" : "DELETE",
178 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
179 e);
180 }
181
182 /*
183 * Make sure rt_ifa be equal to IFA, the second argument of the
184 * function.
185 * We need this because when we refer to rt_ifa->ia6_flags in
186 * ip6_input, we assume that the rt_ifa points to the address instead
187 * of the loopback address.
188 */
189 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa)
190 rt_replace_ifa(nrt, ifa);
191
192 /*
193 * Report the addition/removal of the address to the routing socket.
194 * XXX: since we called rtinit for a p2p interface with a destination,
195 * we end up reporting twice in such a case. Should we rather
196 * omit the second report?
197 */
198 if (nrt) {
199 rt_newaddrmsg(cmd, ifa, e, nrt);
200 if (cmd == RTM_DELETE) {
201 if (nrt->rt_refcnt <= 0) {
202 /* XXX: we should free the entry ourselves. */
203 nrt->rt_refcnt++;
204 rtfree(nrt);
205 }
206 } else {
207 /* the cmd must be RTM_ADD here */
208 nrt->rt_refcnt--;
209 }
210 }
211 }
212
213 /*
214 * Add ownaddr as loopback rtentry. We previously add the route only if
215 * necessary (ex. on a p2p link). However, since we now manage addresses
216 * separately from prefixes, we should always add the route. We can't
217 * rely on the cloning mechanism from the corresponding interface route
218 * any more.
219 */
220 void
221 in6_ifaddloop(struct ifaddr *ifa)
222 {
223 struct rtentry *rt;
224
225 /* If there is no loopback entry, allocate one. */
226 rt = rtalloc1(ifa->ifa_addr, 0);
227 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
228 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
229 in6_ifloop_request(RTM_ADD, ifa);
230 if (rt != NULL)
231 rt->rt_refcnt--;
232 }
233
234 /*
235 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
236 * if it exists.
237 */
238 void
239 in6_ifremloop(struct ifaddr *ifa)
240 {
241 struct in6_ifaddr *alt_ia = NULL, *ia;
242 struct rtentry *rt;
243 int ia_count = 0;
244
245 /*
246 * Some of BSD variants do not remove cloned routes
247 * from an interface direct route, when removing the direct route
248 * (see comments in net/net_osdep.h). Even for variants that do remove
249 * cloned routes, they could fail to remove the cloned routes when
250 * we handle multple addresses that share a common prefix.
251 * So, we should remove the route corresponding to the deleted address.
252 */
253
254 /*
255 * Delete the entry only if exactly one ifaddr matches the
256 * address, ifa->ifa_addr.
257 *
258 * If more than one ifaddr matches, replace the ifaddr in
259 * the routing table, rt_ifa, with a different ifaddr than
260 * the one we are purging, ifa. It is important to do
261 * this, or else the routing table can accumulate dangling
262 * pointers rt->rt_ifa->ifa_ifp to destroyed interfaces,
263 * which will lead to crashes, later. (More than one ifaddr
264 * can match if we assign the same address to multiple---probably
265 * p2p---interfaces.)
266 *
267 * XXX An old comment at this place said, "we should avoid
268 * XXX such a configuration [i.e., interfaces with the same
269 * XXX addressed assigned --ed.] in IPv6...". I do not
270 * XXX agree, especially now that I have fixed the dangling
271 * XXX ifp-pointers bug.
272 */
273 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
274 if (!IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr))
275 continue;
276 if (ia->ia_ifp != ifa->ifa_ifp)
277 alt_ia = ia;
278 if (++ia_count > 1 && alt_ia != NULL)
279 break;
280 }
281
282 if (ia_count == 0)
283 return;
284
285 if ((rt = rtalloc1(ifa->ifa_addr, 0)) == NULL)
286 return;
287 rt->rt_refcnt--;
288
289 /*
290 * Before deleting, check if a corresponding loopbacked
291 * host route surely exists. With this check, we can avoid
292 * deleting an interface direct route whose destination is
293 * the same as the address being removed. This can happen
294 * when removing a subnet-router anycast address on an
295 * interface attached to a shared medium.
296 */
297 if ((rt->rt_flags & RTF_HOST) == 0 ||
298 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
299 return;
300
301 /* If we cannot replace the route's ifaddr with the equivalent
302 * ifaddr of another interface, I believe it is safest to
303 * delete the route.
304 */
305 if (ia_count == 1 || alt_ia == NULL)
306 in6_ifloop_request(RTM_DELETE, ifa);
307 else
308 rt_replace_ifa(rt, &alt_ia->ia_ifa);
309 }
310
311 int
312 in6_mask2len(struct in6_addr *mask, u_char *lim0)
313 {
314 int x = 0, y;
315 u_char *lim = lim0, *p;
316
317 /* ignore the scope_id part */
318 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
319 lim = (u_char *)mask + sizeof(*mask);
320 for (p = (u_char *)mask; p < lim; x++, p++) {
321 if (*p != 0xff)
322 break;
323 }
324 y = 0;
325 if (p < lim) {
326 for (y = 0; y < NBBY; y++) {
327 if ((*p & (0x80 >> y)) == 0)
328 break;
329 }
330 }
331
332 /*
333 * when the limit pointer is given, do a stricter check on the
334 * remaining bits.
335 */
336 if (p < lim) {
337 if (y != 0 && (*p & (0x00ff >> y)) != 0)
338 return -1;
339 for (p = p + 1; p < lim; p++)
340 if (*p != 0)
341 return -1;
342 }
343
344 return x * NBBY + y;
345 }
346
347 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
348 #define ia62ifa(ia6) (&((ia6)->ia_ifa))
349
350 static int
351 in6_control1(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
352 lwp_t *l)
353 {
354 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
355 struct in6_ifaddr *ia = NULL;
356 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
357 struct sockaddr_in6 *sa6;
358 int error;
359
360 switch (cmd) {
361 /*
362 * XXX: Fix me, once we fix SIOCSIFADDR, SIOCIFDSTADDR, etc.
363 */
364 case SIOCSIFADDR:
365 case SIOCSIFDSTADDR:
366 #ifdef SIOCSIFCONF_X25
367 case SIOCSIFCONF_X25:
368 #endif
369 return EOPNOTSUPP;
370 case SIOCGETSGCNT_IN6:
371 case SIOCGETMIFCNT_IN6:
372 return mrt6_ioctl(cmd, data);
373 case SIOCGIFADDRPREF:
374 case SIOCSIFADDRPREF:
375 if (ifp == NULL)
376 return EINVAL;
377 return ifaddrpref_ioctl(so, cmd, data, ifp, l);
378 }
379
380 if (ifp == NULL)
381 return EOPNOTSUPP;
382
383 switch (cmd) {
384 case SIOCSNDFLUSH_IN6:
385 case SIOCSPFXFLUSH_IN6:
386 case SIOCSRTRFLUSH_IN6:
387 case SIOCSDEFIFACE_IN6:
388 case SIOCSIFINFO_FLAGS:
389 case SIOCSIFINFO_IN6:
390 /* Privileged. */
391 /* FALLTHROUGH */
392 case OSIOCGIFINFO_IN6:
393 case SIOCGIFINFO_IN6:
394 case SIOCGDRLST_IN6:
395 case SIOCGPRLST_IN6:
396 case SIOCGNBRINFO_IN6:
397 case SIOCGDEFIFACE_IN6:
398 return nd6_ioctl(cmd, data, ifp);
399 }
400
401 switch (cmd) {
402 case SIOCSIFPREFIX_IN6:
403 case SIOCDIFPREFIX_IN6:
404 case SIOCAIFPREFIX_IN6:
405 case SIOCCIFPREFIX_IN6:
406 case SIOCSGIFPREFIX_IN6:
407 case SIOCGIFPREFIX_IN6:
408 log(LOG_NOTICE,
409 "prefix ioctls are now invalidated. "
410 "please use ifconfig.\n");
411 return EOPNOTSUPP;
412 }
413
414 switch (cmd) {
415 case SIOCALIFADDR:
416 case SIOCDLIFADDR:
417 /* Privileged. */
418 /* FALLTHROUGH */
419 case SIOCGLIFADDR:
420 return in6_lifaddr_ioctl(so, cmd, data, ifp, l);
421 }
422
423 /*
424 * Find address for this interface, if it exists.
425 *
426 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
427 * only, and used the first interface address as the target of other
428 * operations (without checking ifra_addr). This was because netinet
429 * code/API assumed at most 1 interface address per interface.
430 * Since IPv6 allows a node to assign multiple addresses
431 * on a single interface, we almost always look and check the
432 * presence of ifra_addr, and reject invalid ones here.
433 * It also decreases duplicated code among SIOC*_IN6 operations.
434 */
435 switch (cmd) {
436 case SIOCAIFADDR_IN6:
437 #ifdef OSIOCAIFADDR_IN6
438 case OSIOCAIFADDR_IN6:
439 #endif
440 #ifdef OSIOCSIFPHYADDR_IN6
441 case OSIOCSIFPHYADDR_IN6:
442 #endif
443 case SIOCSIFPHYADDR_IN6:
444 sa6 = &ifra->ifra_addr;
445 break;
446 case SIOCSIFADDR_IN6:
447 case SIOCGIFADDR_IN6:
448 case SIOCSIFDSTADDR_IN6:
449 case SIOCSIFNETMASK_IN6:
450 case SIOCGIFDSTADDR_IN6:
451 case SIOCGIFNETMASK_IN6:
452 case SIOCDIFADDR_IN6:
453 case SIOCGIFPSRCADDR_IN6:
454 case SIOCGIFPDSTADDR_IN6:
455 case SIOCGIFAFLAG_IN6:
456 case SIOCSNDFLUSH_IN6:
457 case SIOCSPFXFLUSH_IN6:
458 case SIOCSRTRFLUSH_IN6:
459 case SIOCGIFALIFETIME_IN6:
460 #ifdef OSIOCGIFALIFETIME_IN6
461 case OSIOCGIFALIFETIME_IN6:
462 #endif
463 case SIOCGIFSTAT_IN6:
464 case SIOCGIFSTAT_ICMP6:
465 sa6 = &ifr->ifr_addr;
466 break;
467 default:
468 sa6 = NULL;
469 break;
470 }
471 if (sa6 && sa6->sin6_family == AF_INET6) {
472 if (sa6->sin6_scope_id != 0)
473 error = sa6_embedscope(sa6, 0);
474 else
475 error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
476 if (error != 0)
477 return error;
478 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
479 } else
480 ia = NULL;
481
482 switch (cmd) {
483 case SIOCSIFADDR_IN6:
484 case SIOCSIFDSTADDR_IN6:
485 case SIOCSIFNETMASK_IN6:
486 /*
487 * Since IPv6 allows a node to assign multiple addresses
488 * on a single interface, SIOCSIFxxx ioctls are deprecated.
489 */
490 return EINVAL;
491
492 case SIOCDIFADDR_IN6:
493 /*
494 * for IPv4, we look for existing in_ifaddr here to allow
495 * "ifconfig if0 delete" to remove the first IPv4 address on
496 * the interface. For IPv6, as the spec allows multiple
497 * interface address from the day one, we consider "remove the
498 * first one" semantics to be not preferable.
499 */
500 if (ia == NULL)
501 return EADDRNOTAVAIL;
502 /* FALLTHROUGH */
503 #ifdef OSIOCAIFADDR_IN6
504 case OSIOCAIFADDR_IN6:
505 #endif
506 case SIOCAIFADDR_IN6:
507 /*
508 * We always require users to specify a valid IPv6 address for
509 * the corresponding operation.
510 */
511 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
512 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
513 return EAFNOSUPPORT;
514 /* Privileged. */
515
516 break;
517
518 case SIOCGIFADDR_IN6:
519 /* This interface is basically deprecated. use SIOCGIFCONF. */
520 /* FALLTHROUGH */
521 case SIOCGIFAFLAG_IN6:
522 case SIOCGIFNETMASK_IN6:
523 case SIOCGIFDSTADDR_IN6:
524 case SIOCGIFALIFETIME_IN6:
525 #ifdef OSIOCGIFALIFETIME_IN6
526 case OSIOCGIFALIFETIME_IN6:
527 #endif
528 /* must think again about its semantics */
529 if (ia == NULL)
530 return EADDRNOTAVAIL;
531 break;
532 }
533
534 switch (cmd) {
535
536 case SIOCGIFADDR_IN6:
537 ifr->ifr_addr = ia->ia_addr;
538 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
539 return error;
540 break;
541
542 case SIOCGIFDSTADDR_IN6:
543 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
544 return EINVAL;
545 /*
546 * XXX: should we check if ifa_dstaddr is NULL and return
547 * an error?
548 */
549 ifr->ifr_dstaddr = ia->ia_dstaddr;
550 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
551 return error;
552 break;
553
554 case SIOCGIFNETMASK_IN6:
555 ifr->ifr_addr = ia->ia_prefixmask;
556 break;
557
558 case SIOCGIFAFLAG_IN6:
559 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
560 break;
561
562 case SIOCGIFSTAT_IN6:
563 if (ifp == NULL)
564 return EINVAL;
565 memset(&ifr->ifr_ifru.ifru_stat, 0,
566 sizeof(ifr->ifr_ifru.ifru_stat));
567 ifr->ifr_ifru.ifru_stat =
568 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
569 break;
570
571 case SIOCGIFSTAT_ICMP6:
572 if (ifp == NULL)
573 return EINVAL;
574 memset(&ifr->ifr_ifru.ifru_icmp6stat, 0,
575 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
576 ifr->ifr_ifru.ifru_icmp6stat =
577 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
578 break;
579
580 #ifdef OSIOCGIFALIFETIME_IN6
581 case OSIOCGIFALIFETIME_IN6:
582 #endif
583 case SIOCGIFALIFETIME_IN6:
584 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
585 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
586 time_t maxexpire;
587 struct in6_addrlifetime *retlt =
588 &ifr->ifr_ifru.ifru_lifetime;
589
590 /*
591 * XXX: adjust expiration time assuming time_t is
592 * signed.
593 */
594 maxexpire = ((time_t)~0) &
595 ~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1));
596 if (ia->ia6_lifetime.ia6t_vltime <
597 maxexpire - ia->ia6_updatetime) {
598 retlt->ia6t_expire = ia->ia6_updatetime +
599 ia->ia6_lifetime.ia6t_vltime;
600 } else
601 retlt->ia6t_expire = maxexpire;
602 }
603 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
604 time_t maxexpire;
605 struct in6_addrlifetime *retlt =
606 &ifr->ifr_ifru.ifru_lifetime;
607
608 /*
609 * XXX: adjust expiration time assuming time_t is
610 * signed.
611 */
612 maxexpire = ((time_t)~0) &
613 ~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1));
614 if (ia->ia6_lifetime.ia6t_pltime <
615 maxexpire - ia->ia6_updatetime) {
616 retlt->ia6t_preferred = ia->ia6_updatetime +
617 ia->ia6_lifetime.ia6t_pltime;
618 } else
619 retlt->ia6t_preferred = maxexpire;
620 }
621 #ifdef OSIOCFIFALIFETIME_IN6
622 if (cmd == OSIOCFIFALIFETIME_IN6)
623 in6_addrlifetime_to_in6_addrlifetime50(
624 &ifr->ifru.ifru_lifetime);
625 #endif
626 break;
627
628 #ifdef OSIOCAIFADDR_IN6
629 case OSIOCAIFADDR_IN6:
630 in6_aliasreq50_to_in6_aliasreq(ifra);
631 /*FALLTHROUGH*/
632 #endif
633 case SIOCAIFADDR_IN6:
634 {
635 int i;
636 struct nd_prefixctl pr0;
637 struct nd_prefix *pr;
638
639 /* reject read-only flags */
640 if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 ||
641 (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 ||
642 (ifra->ifra_flags & IN6_IFF_NODAD) != 0 ||
643 (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) {
644 return EINVAL;
645 }
646 /*
647 * first, make or update the interface address structure,
648 * and link it to the list.
649 */
650 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
651 return error;
652 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
653 == NULL) {
654 /*
655 * this can happen when the user specify the 0 valid
656 * lifetime.
657 */
658 break;
659 }
660
661 /*
662 * then, make the prefix on-link on the interface.
663 * XXX: we'd rather create the prefix before the address, but
664 * we need at least one address to install the corresponding
665 * interface route, so we configure the address first.
666 */
667
668 /*
669 * convert mask to prefix length (prefixmask has already
670 * been validated in in6_update_ifa().
671 */
672 memset(&pr0, 0, sizeof(pr0));
673 pr0.ndpr_ifp = ifp;
674 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
675 NULL);
676 if (pr0.ndpr_plen == 128) {
677 break; /* we don't need to install a host route. */
678 }
679 pr0.ndpr_prefix = ifra->ifra_addr;
680 /* apply the mask for safety. */
681 for (i = 0; i < 4; i++) {
682 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
683 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
684 }
685 /*
686 * XXX: since we don't have an API to set prefix (not address)
687 * lifetimes, we just use the same lifetimes as addresses.
688 * The (temporarily) installed lifetimes can be overridden by
689 * later advertised RAs (when accept_rtadv is non 0), which is
690 * an intended behavior.
691 */
692 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
693 pr0.ndpr_raf_auto =
694 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
695 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
696 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
697
698 /* add the prefix if not yet. */
699 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
700 /*
701 * nd6_prelist_add will install the corresponding
702 * interface route.
703 */
704 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
705 return error;
706 if (pr == NULL) {
707 log(LOG_ERR, "nd6_prelist_add succeeded but "
708 "no prefix\n");
709 return EINVAL; /* XXX panic here? */
710 }
711 }
712
713 /* relate the address to the prefix */
714 if (ia->ia6_ndpr == NULL) {
715 ia->ia6_ndpr = pr;
716 pr->ndpr_refcnt++;
717
718 /*
719 * If this is the first autoconf address from the
720 * prefix, create a temporary address as well
721 * (when required).
722 */
723 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
724 ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
725 int e;
726 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
727 log(LOG_NOTICE, "in6_control: failed "
728 "to create a temporary address, "
729 "errno=%d\n", e);
730 }
731 }
732 }
733
734 /*
735 * this might affect the status of autoconfigured addresses,
736 * that is, this address might make other addresses detached.
737 */
738 pfxlist_onlink_check();
739
740 #ifdef PFIL_HOOKS
741 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCAIFADDR_IN6,
742 ifp, PFIL_IFADDR);
743 #endif
744
745 break;
746 }
747
748 case SIOCDIFADDR_IN6:
749 {
750 struct nd_prefix *pr;
751
752 /*
753 * If the address being deleted is the only one that owns
754 * the corresponding prefix, expire the prefix as well.
755 * XXX: theoretically, we don't have to worry about such
756 * relationship, since we separate the address management
757 * and the prefix management. We do this, however, to provide
758 * as much backward compatibility as possible in terms of
759 * the ioctl operation.
760 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
761 */
762 pr = ia->ia6_ndpr;
763 in6_purgeaddr(&ia->ia_ifa);
764 if (pr && pr->ndpr_refcnt == 0)
765 prelist_remove(pr);
766 #ifdef PFIL_HOOKS
767 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCDIFADDR_IN6,
768 ifp, PFIL_IFADDR);
769 #endif
770 break;
771 }
772
773 default:
774 return ENOTTY;
775 }
776
777 return 0;
778 }
779
780 int
781 in6_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
782 struct lwp *l)
783 {
784 int error, s;
785
786 switch (cmd) {
787 case SIOCSNDFLUSH_IN6:
788 case SIOCSPFXFLUSH_IN6:
789 case SIOCSRTRFLUSH_IN6:
790 case SIOCSDEFIFACE_IN6:
791 case SIOCSIFINFO_FLAGS:
792 case SIOCSIFINFO_IN6:
793
794 case SIOCALIFADDR:
795 case SIOCDLIFADDR:
796
797 case SIOCDIFADDR_IN6:
798 #ifdef OSIOCAIFADDR_IN6
799 case OSIOCAIFADDR_IN6:
800 #endif
801 case SIOCAIFADDR_IN6:
802 if (l == NULL || kauth_authorize_generic(l->l_cred,
803 KAUTH_GENERIC_ISSUSER, NULL))
804 return EPERM;
805 break;
806 }
807
808 s = splnet();
809 error = in6_control1(so , cmd, data, ifp, l);
810 splx(s);
811 return error;
812 }
813
814 /*
815 * Update parameters of an IPv6 interface address.
816 * If necessary, a new entry is created and linked into address chains.
817 * This function is separated from in6_control().
818 * XXX: should this be performed under splnet()?
819 */
820 static int
821 in6_update_ifa1(struct ifnet *ifp, struct in6_aliasreq *ifra,
822 struct in6_ifaddr *ia, int flags)
823 {
824 int error = 0, hostIsNew = 0, plen = -1;
825 struct in6_ifaddr *oia;
826 struct sockaddr_in6 dst6;
827 struct in6_addrlifetime *lt;
828 struct in6_multi_mship *imm;
829 struct in6_multi *in6m_sol;
830 struct rtentry *rt;
831 int dad_delay;
832
833 in6m_sol = NULL;
834
835 /* Validate parameters */
836 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
837 return EINVAL;
838
839 /*
840 * The destination address for a p2p link must have a family
841 * of AF_UNSPEC or AF_INET6.
842 */
843 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
844 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
845 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
846 return EAFNOSUPPORT;
847 /*
848 * validate ifra_prefixmask. don't check sin6_family, netmask
849 * does not carry fields other than sin6_len.
850 */
851 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
852 return EINVAL;
853 /*
854 * Because the IPv6 address architecture is classless, we require
855 * users to specify a (non 0) prefix length (mask) for a new address.
856 * We also require the prefix (when specified) mask is valid, and thus
857 * reject a non-consecutive mask.
858 */
859 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
860 return EINVAL;
861 if (ifra->ifra_prefixmask.sin6_len != 0) {
862 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
863 (u_char *)&ifra->ifra_prefixmask +
864 ifra->ifra_prefixmask.sin6_len);
865 if (plen <= 0)
866 return EINVAL;
867 } else {
868 /*
869 * In this case, ia must not be NULL. We just use its prefix
870 * length.
871 */
872 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
873 }
874 /*
875 * If the destination address on a p2p interface is specified,
876 * and the address is a scoped one, validate/set the scope
877 * zone identifier.
878 */
879 dst6 = ifra->ifra_dstaddr;
880 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
881 (dst6.sin6_family == AF_INET6)) {
882 struct in6_addr in6_tmp;
883 u_int32_t zoneid;
884
885 in6_tmp = dst6.sin6_addr;
886 if (in6_setscope(&in6_tmp, ifp, &zoneid))
887 return EINVAL; /* XXX: should be impossible */
888
889 if (dst6.sin6_scope_id != 0) {
890 if (dst6.sin6_scope_id != zoneid)
891 return EINVAL;
892 } else /* user omit to specify the ID. */
893 dst6.sin6_scope_id = zoneid;
894
895 /* convert into the internal form */
896 if (sa6_embedscope(&dst6, 0))
897 return EINVAL; /* XXX: should be impossible */
898 }
899 /*
900 * The destination address can be specified only for a p2p or a
901 * loopback interface. If specified, the corresponding prefix length
902 * must be 128.
903 */
904 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
905 #ifdef FORCE_P2PPLEN
906 int i;
907 #endif
908
909 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
910 /* XXX: noisy message */
911 nd6log((LOG_INFO, "in6_update_ifa: a destination can "
912 "be specified for a p2p or a loopback IF only\n"));
913 return EINVAL;
914 }
915 if (plen != 128) {
916 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
917 "be 128 when dstaddr is specified\n"));
918 #ifdef FORCE_P2PPLEN
919 /*
920 * To be compatible with old configurations,
921 * such as ifconfig gif0 inet6 2001::1 2001::2
922 * prefixlen 126, we override the specified
923 * prefixmask as if the prefix length was 128.
924 */
925 ifra->ifra_prefixmask.sin6_len =
926 sizeof(struct sockaddr_in6);
927 for (i = 0; i < 4; i++)
928 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
929 0xffffffff;
930 plen = 128;
931 #else
932 return EINVAL;
933 #endif
934 }
935 }
936 /* lifetime consistency check */
937 lt = &ifra->ifra_lifetime;
938 if (lt->ia6t_pltime > lt->ia6t_vltime)
939 return EINVAL;
940 if (lt->ia6t_vltime == 0) {
941 /*
942 * the following log might be noisy, but this is a typical
943 * configuration mistake or a tool's bug.
944 */
945 nd6log((LOG_INFO,
946 "in6_update_ifa: valid lifetime is 0 for %s\n",
947 ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
948
949 if (ia == NULL)
950 return 0; /* there's nothing to do */
951 }
952
953 /*
954 * If this is a new address, allocate a new ifaddr and link it
955 * into chains.
956 */
957 if (ia == NULL) {
958 hostIsNew = 1;
959 /*
960 * When in6_update_ifa() is called in a process of a received
961 * RA, it is called under an interrupt context. So, we should
962 * call malloc with M_NOWAIT.
963 */
964 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
965 M_NOWAIT);
966 if (ia == NULL)
967 return ENOBUFS;
968 memset(ia, 0, sizeof(*ia));
969 LIST_INIT(&ia->ia6_memberships);
970 /* Initialize the address and masks, and put time stamp */
971 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
972 ia->ia_addr.sin6_family = AF_INET6;
973 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
974 ia->ia6_createtime = time_second;
975 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
976 /*
977 * XXX: some functions expect that ifa_dstaddr is not
978 * NULL for p2p interfaces.
979 */
980 ia->ia_ifa.ifa_dstaddr =
981 (struct sockaddr *)&ia->ia_dstaddr;
982 } else {
983 ia->ia_ifa.ifa_dstaddr = NULL;
984 }
985 ia->ia_ifa.ifa_netmask =
986 (struct sockaddr *)&ia->ia_prefixmask;
987
988 ia->ia_ifp = ifp;
989 if ((oia = in6_ifaddr) != NULL) {
990 for ( ; oia->ia_next; oia = oia->ia_next)
991 continue;
992 oia->ia_next = ia;
993 } else
994 in6_ifaddr = ia;
995 /* gain a refcnt for the link from in6_ifaddr */
996 IFAREF(&ia->ia_ifa);
997
998 ifa_insert(ifp, &ia->ia_ifa);
999 }
1000
1001 /* update timestamp */
1002 ia->ia6_updatetime = time_second;
1003
1004 /* set prefix mask */
1005 if (ifra->ifra_prefixmask.sin6_len) {
1006 /*
1007 * We prohibit changing the prefix length of an existing
1008 * address, because
1009 * + such an operation should be rare in IPv6, and
1010 * + the operation would confuse prefix management.
1011 */
1012 if (ia->ia_prefixmask.sin6_len &&
1013 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
1014 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
1015 " existing (%s) address should not be changed\n",
1016 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1017 error = EINVAL;
1018 goto unlink;
1019 }
1020 ia->ia_prefixmask = ifra->ifra_prefixmask;
1021 }
1022
1023 /*
1024 * If a new destination address is specified, scrub the old one and
1025 * install the new destination. Note that the interface must be
1026 * p2p or loopback (see the check above.)
1027 */
1028 if (dst6.sin6_family == AF_INET6 &&
1029 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
1030 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
1031 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0) {
1032 nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
1033 "a route to the old destination: %s\n",
1034 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1035 /* proceed anyway... */
1036 } else
1037 ia->ia_flags &= ~IFA_ROUTE;
1038 ia->ia_dstaddr = dst6;
1039 }
1040
1041 /*
1042 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
1043 * to see if the address is deprecated or invalidated, but initialize
1044 * these members for applications.
1045 */
1046 ia->ia6_lifetime = ifra->ifra_lifetime;
1047 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1048 ia->ia6_lifetime.ia6t_expire =
1049 time_second + ia->ia6_lifetime.ia6t_vltime;
1050 } else
1051 ia->ia6_lifetime.ia6t_expire = 0;
1052 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1053 ia->ia6_lifetime.ia6t_preferred =
1054 time_second + ia->ia6_lifetime.ia6t_pltime;
1055 } else
1056 ia->ia6_lifetime.ia6t_preferred = 0;
1057
1058 /* reset the interface and routing table appropriately. */
1059 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1060 goto unlink;
1061
1062 /*
1063 * configure address flags.
1064 */
1065 ia->ia6_flags = ifra->ifra_flags;
1066 /*
1067 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1068 * userland, make it deprecated.
1069 */
1070 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1071 ia->ia6_lifetime.ia6t_pltime = 0;
1072 ia->ia6_lifetime.ia6t_preferred = time_second;
1073 }
1074
1075 /*
1076 * Make the address tentative before joining multicast addresses,
1077 * so that corresponding MLD responses would not have a tentative
1078 * source address.
1079 */
1080 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
1081 if (hostIsNew && in6if_do_dad(ifp))
1082 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1083
1084 /*
1085 * We are done if we have simply modified an existing address.
1086 */
1087 if (!hostIsNew)
1088 return error;
1089
1090 /*
1091 * Beyond this point, we should call in6_purgeaddr upon an error,
1092 * not just go to unlink.
1093 */
1094
1095 /* join necessary multicast groups */
1096 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1097 struct sockaddr_in6 mltaddr, mltmask;
1098 struct in6_addr llsol;
1099
1100 /* join solicited multicast addr for new host id */
1101 memset(&llsol, 0, sizeof(struct in6_addr));
1102 llsol.s6_addr16[0] = htons(0xff02);
1103 llsol.s6_addr32[1] = 0;
1104 llsol.s6_addr32[2] = htonl(1);
1105 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
1106 llsol.s6_addr8[12] = 0xff;
1107 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1108 /* XXX: should not happen */
1109 log(LOG_ERR, "in6_update_ifa: "
1110 "in6_setscope failed\n");
1111 goto cleanup;
1112 }
1113 dad_delay = 0;
1114 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1115 /*
1116 * We need a random delay for DAD on the address
1117 * being configured. It also means delaying
1118 * transmission of the corresponding MLD report to
1119 * avoid report collision.
1120 * [draft-ietf-ipv6-rfc2462bis-02.txt]
1121 */
1122 dad_delay = arc4random() %
1123 (MAX_RTR_SOLICITATION_DELAY * hz);
1124 }
1125
1126 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */
1127 /* join solicited multicast addr for new host id */
1128 imm = in6_joingroup(ifp, &llsol, &error, dad_delay);
1129 if (!imm) {
1130 nd6log((LOG_ERR,
1131 "in6_update_ifa: addmulti "
1132 "failed for %s on %s (errno=%d)\n",
1133 ip6_sprintf(&llsol), if_name(ifp), error));
1134 goto cleanup;
1135 }
1136 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1137 in6m_sol = imm->i6mm_maddr;
1138
1139 sockaddr_in6_init(&mltmask, &in6mask32, 0, 0, 0);
1140
1141 /*
1142 * join link-local all-nodes address
1143 */
1144 sockaddr_in6_init(&mltaddr, &in6addr_linklocal_allnodes,
1145 0, 0, 0);
1146 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1147 goto cleanup; /* XXX: should not fail */
1148
1149 /*
1150 * XXX: do we really need this automatic routes?
1151 * We should probably reconsider this stuff. Most applications
1152 * actually do not need the routes, since they usually specify
1153 * the outgoing interface.
1154 */
1155 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1156 if (rt) {
1157 if (memcmp(&mltaddr.sin6_addr,
1158 &satocsin6(rt_getkey(rt))->sin6_addr,
1159 MLTMASK_LEN)) {
1160 RTFREE(rt);
1161 rt = NULL;
1162 } else if (rt->rt_ifp != ifp) {
1163 IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) "
1164 "network %04x:%04x::/32 = %04x:%04x::/32\n",
1165 __func__, rt->rt_ifp, ifp, ifp->if_xname,
1166 ntohs(mltaddr.sin6_addr.s6_addr16[0]),
1167 ntohs(mltaddr.sin6_addr.s6_addr16[1]),
1168 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0],
1169 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]);
1170 rt_replace_ifa(rt, &ia->ia_ifa);
1171 rt->rt_ifp = ifp;
1172 }
1173 }
1174 if (!rt) {
1175 struct rt_addrinfo info;
1176
1177 memset(&info, 0, sizeof(info));
1178 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1179 info.rti_info[RTAX_GATEWAY] =
1180 (struct sockaddr *)&ia->ia_addr;
1181 info.rti_info[RTAX_NETMASK] =
1182 (struct sockaddr *)&mltmask;
1183 info.rti_info[RTAX_IFA] =
1184 (struct sockaddr *)&ia->ia_addr;
1185 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1186 info.rti_flags = RTF_UP | RTF_CLONING;
1187 error = rtrequest1(RTM_ADD, &info, NULL);
1188 if (error)
1189 goto cleanup;
1190 } else {
1191 RTFREE(rt);
1192 }
1193 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1194 if (!imm) {
1195 nd6log((LOG_WARNING,
1196 "in6_update_ifa: addmulti failed for "
1197 "%s on %s (errno=%d)\n",
1198 ip6_sprintf(&mltaddr.sin6_addr),
1199 if_name(ifp), error));
1200 goto cleanup;
1201 }
1202 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1203
1204 /*
1205 * join node information group address
1206 */
1207 dad_delay = 0;
1208 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1209 /*
1210 * The spec doesn't say anything about delay for this
1211 * group, but the same logic should apply.
1212 */
1213 dad_delay = arc4random() %
1214 (MAX_RTR_SOLICITATION_DELAY * hz);
1215 }
1216 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) != 0)
1217 ;
1218 else if ((imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1219 dad_delay)) == NULL) { /* XXX jinmei */
1220 nd6log((LOG_WARNING, "in6_update_ifa: "
1221 "addmulti failed for %s on %s (errno=%d)\n",
1222 ip6_sprintf(&mltaddr.sin6_addr),
1223 if_name(ifp), error));
1224 /* XXX not very fatal, go on... */
1225 } else {
1226 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1227 }
1228
1229
1230 /*
1231 * join interface-local all-nodes address.
1232 * (ff01::1%ifN, and ff01::%ifN/32)
1233 */
1234 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1235 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1236 goto cleanup; /* XXX: should not fail */
1237
1238 /* XXX: again, do we really need the route? */
1239 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1240 if (rt) {
1241 /* 32bit came from "mltmask" */
1242 if (memcmp(&mltaddr.sin6_addr,
1243 &satocsin6(rt_getkey(rt))->sin6_addr,
1244 32 / NBBY)) {
1245 RTFREE(rt);
1246 rt = NULL;
1247 } else if (rt->rt_ifp != ifp) {
1248 IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) "
1249 "network %04x:%04x::/32 = %04x:%04x::/32\n",
1250 __func__, rt->rt_ifp, ifp, ifp->if_xname,
1251 ntohs(mltaddr.sin6_addr.s6_addr16[0]),
1252 ntohs(mltaddr.sin6_addr.s6_addr16[1]),
1253 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0],
1254 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]);
1255 rt_replace_ifa(rt, &ia->ia_ifa);
1256 rt->rt_ifp = ifp;
1257 }
1258 }
1259 if (!rt) {
1260 struct rt_addrinfo info;
1261
1262 memset(&info, 0, sizeof(info));
1263 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1264 info.rti_info[RTAX_GATEWAY] =
1265 (struct sockaddr *)&ia->ia_addr;
1266 info.rti_info[RTAX_NETMASK] =
1267 (struct sockaddr *)&mltmask;
1268 info.rti_info[RTAX_IFA] =
1269 (struct sockaddr *)&ia->ia_addr;
1270 info.rti_flags = RTF_UP | RTF_CLONING;
1271 error = rtrequest1(RTM_ADD, &info, NULL);
1272 if (error)
1273 goto cleanup;
1274 #undef MLTMASK_LEN
1275 } else {
1276 RTFREE(rt);
1277 }
1278 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1279 if (!imm) {
1280 nd6log((LOG_WARNING, "in6_update_ifa: "
1281 "addmulti failed for %s on %s (errno=%d)\n",
1282 ip6_sprintf(&mltaddr.sin6_addr),
1283 if_name(ifp), error));
1284 goto cleanup;
1285 } else {
1286 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1287 }
1288 }
1289
1290 /*
1291 * Perform DAD, if needed.
1292 * XXX It may be of use, if we can administratively
1293 * disable DAD.
1294 */
1295 if (hostIsNew && in6if_do_dad(ifp) &&
1296 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1297 (ia->ia6_flags & IN6_IFF_TENTATIVE))
1298 {
1299 int mindelay, maxdelay;
1300
1301 dad_delay = 0;
1302 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1303 /*
1304 * We need to impose a delay before sending an NS
1305 * for DAD. Check if we also needed a delay for the
1306 * corresponding MLD message. If we did, the delay
1307 * should be larger than the MLD delay (this could be
1308 * relaxed a bit, but this simple logic is at least
1309 * safe).
1310 */
1311 mindelay = 0;
1312 if (in6m_sol != NULL &&
1313 in6m_sol->in6m_state == MLD_REPORTPENDING) {
1314 mindelay = in6m_sol->in6m_timer;
1315 }
1316 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1317 if (maxdelay - mindelay == 0)
1318 dad_delay = 0;
1319 else {
1320 dad_delay =
1321 (arc4random() % (maxdelay - mindelay)) +
1322 mindelay;
1323 }
1324 }
1325 nd6_dad_start(&ia->ia_ifa, dad_delay);
1326 }
1327
1328 return error;
1329
1330 unlink:
1331 /*
1332 * XXX: if a change of an existing address failed, keep the entry
1333 * anyway.
1334 */
1335 if (hostIsNew)
1336 in6_unlink_ifa(ia, ifp);
1337 return error;
1338
1339 cleanup:
1340 in6_purgeaddr(&ia->ia_ifa);
1341 return error;
1342 }
1343
1344 int
1345 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra,
1346 struct in6_ifaddr *ia, int flags)
1347 {
1348 int rc, s;
1349
1350 s = splnet();
1351 rc = in6_update_ifa1(ifp, ifra, ia, flags);
1352 splx(s);
1353 return rc;
1354 }
1355
1356 void
1357 in6_purgeaddr(struct ifaddr *ifa)
1358 {
1359 struct ifnet *ifp = ifa->ifa_ifp;
1360 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1361 struct in6_multi_mship *imm;
1362
1363 /* stop DAD processing */
1364 nd6_dad_stop(ifa);
1365
1366 /*
1367 * delete route to the destination of the address being purged.
1368 * The interface must be p2p or loopback in this case.
1369 */
1370 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1371 int e;
1372
1373 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1374 != 0) {
1375 log(LOG_ERR, "in6_purgeaddr: failed to remove "
1376 "a route to the p2p destination: %s on %s, "
1377 "errno=%d\n",
1378 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1379 e);
1380 /* proceed anyway... */
1381 } else
1382 ia->ia_flags &= ~IFA_ROUTE;
1383 }
1384
1385 /* Remove ownaddr's loopback rtentry, if it exists. */
1386 in6_ifremloop(&(ia->ia_ifa));
1387
1388 /*
1389 * leave from multicast groups we have joined for the interface
1390 */
1391 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) {
1392 LIST_REMOVE(imm, i6mm_chain);
1393 in6_leavegroup(imm);
1394 }
1395
1396 in6_unlink_ifa(ia, ifp);
1397 }
1398
1399 static void
1400 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
1401 {
1402 struct in6_ifaddr *oia;
1403 int s = splnet();
1404
1405 ifa_remove(ifp, &ia->ia_ifa);
1406
1407 oia = ia;
1408 if (oia == (ia = in6_ifaddr))
1409 in6_ifaddr = ia->ia_next;
1410 else {
1411 while (ia->ia_next && (ia->ia_next != oia))
1412 ia = ia->ia_next;
1413 if (ia->ia_next)
1414 ia->ia_next = oia->ia_next;
1415 else {
1416 /* search failed */
1417 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1418 }
1419 }
1420
1421 /*
1422 * XXX thorpej (at) NetBSD.org -- if the interface is going
1423 * XXX away, don't save the multicast entries, delete them!
1424 */
1425 if (LIST_EMPTY(&oia->ia6_multiaddrs))
1426 ;
1427 else if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
1428 struct in6_multi *in6m, *next;
1429
1430 for (in6m = LIST_FIRST(&oia->ia6_multiaddrs); in6m != NULL;
1431 in6m = next) {
1432 next = LIST_NEXT(in6m, in6m_entry);
1433 in6_delmulti(in6m);
1434 }
1435 } else
1436 in6_savemkludge(oia);
1437
1438 /*
1439 * Release the reference to the base prefix. There should be a
1440 * positive reference.
1441 */
1442 if (oia->ia6_ndpr == NULL) {
1443 nd6log((LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1444 "%p has no prefix\n", oia));
1445 } else {
1446 oia->ia6_ndpr->ndpr_refcnt--;
1447 oia->ia6_ndpr = NULL;
1448 }
1449
1450 /*
1451 * Also, if the address being removed is autoconf'ed, call
1452 * pfxlist_onlink_check() since the release might affect the status of
1453 * other (detached) addresses.
1454 */
1455 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0)
1456 pfxlist_onlink_check();
1457
1458 /*
1459 * release another refcnt for the link from in6_ifaddr.
1460 * Note that we should decrement the refcnt at least once for all *BSD.
1461 */
1462 IFAFREE(&oia->ia_ifa);
1463
1464 splx(s);
1465 }
1466
1467 void
1468 in6_purgeif(struct ifnet *ifp)
1469 {
1470 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr);
1471
1472 in6_ifdetach(ifp);
1473 }
1474
1475 /*
1476 * SIOC[GAD]LIFADDR.
1477 * SIOCGLIFADDR: get first address. (?)
1478 * SIOCGLIFADDR with IFLR_PREFIX:
1479 * get first address that matches the specified prefix.
1480 * SIOCALIFADDR: add the specified address.
1481 * SIOCALIFADDR with IFLR_PREFIX:
1482 * add the specified prefix, filling hostid part from
1483 * the first link-local address. prefixlen must be <= 64.
1484 * SIOCDLIFADDR: delete the specified address.
1485 * SIOCDLIFADDR with IFLR_PREFIX:
1486 * delete the first address that matches the specified prefix.
1487 * return values:
1488 * EINVAL on invalid parameters
1489 * EADDRNOTAVAIL on prefix match failed/specified address not found
1490 * other values may be returned from in6_ioctl()
1491 *
1492 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1493 * this is to accommodate address naming scheme other than RFC2374,
1494 * in the future.
1495 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1496 * address encoding scheme. (see figure on page 8)
1497 */
1498 static int
1499 in6_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
1500 struct ifnet *ifp, struct lwp *l)
1501 {
1502 struct in6_ifaddr *ia;
1503 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1504 struct ifaddr *ifa;
1505 struct sockaddr *sa;
1506
1507 /* sanity checks */
1508 if (!data || !ifp) {
1509 panic("invalid argument to in6_lifaddr_ioctl");
1510 /* NOTREACHED */
1511 }
1512
1513 switch (cmd) {
1514 case SIOCGLIFADDR:
1515 /* address must be specified on GET with IFLR_PREFIX */
1516 if ((iflr->flags & IFLR_PREFIX) == 0)
1517 break;
1518 /* FALLTHROUGH */
1519 case SIOCALIFADDR:
1520 case SIOCDLIFADDR:
1521 /* address must be specified on ADD and DELETE */
1522 sa = (struct sockaddr *)&iflr->addr;
1523 if (sa->sa_family != AF_INET6)
1524 return EINVAL;
1525 if (sa->sa_len != sizeof(struct sockaddr_in6))
1526 return EINVAL;
1527 /* XXX need improvement */
1528 sa = (struct sockaddr *)&iflr->dstaddr;
1529 if (sa->sa_family && sa->sa_family != AF_INET6)
1530 return EINVAL;
1531 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1532 return EINVAL;
1533 break;
1534 default: /* shouldn't happen */
1535 #if 0
1536 panic("invalid cmd to in6_lifaddr_ioctl");
1537 /* NOTREACHED */
1538 #else
1539 return EOPNOTSUPP;
1540 #endif
1541 }
1542 if (sizeof(struct in6_addr) * NBBY < iflr->prefixlen)
1543 return EINVAL;
1544
1545 switch (cmd) {
1546 case SIOCALIFADDR:
1547 {
1548 struct in6_aliasreq ifra;
1549 struct in6_addr *xhostid = NULL;
1550 int prefixlen;
1551
1552 if ((iflr->flags & IFLR_PREFIX) != 0) {
1553 struct sockaddr_in6 *sin6;
1554
1555 /*
1556 * xhostid is to fill in the hostid part of the
1557 * address. xhostid points to the first link-local
1558 * address attached to the interface.
1559 */
1560 ia = in6ifa_ifpforlinklocal(ifp, 0);
1561 if (ia == NULL)
1562 return EADDRNOTAVAIL;
1563 xhostid = IFA_IN6(&ia->ia_ifa);
1564
1565 /* prefixlen must be <= 64. */
1566 if (64 < iflr->prefixlen)
1567 return EINVAL;
1568 prefixlen = iflr->prefixlen;
1569
1570 /* hostid part must be zero. */
1571 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1572 if (sin6->sin6_addr.s6_addr32[2] != 0
1573 || sin6->sin6_addr.s6_addr32[3] != 0) {
1574 return EINVAL;
1575 }
1576 } else
1577 prefixlen = iflr->prefixlen;
1578
1579 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1580 memset(&ifra, 0, sizeof(ifra));
1581 memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name));
1582
1583 memcpy(&ifra.ifra_addr, &iflr->addr,
1584 ((struct sockaddr *)&iflr->addr)->sa_len);
1585 if (xhostid) {
1586 /* fill in hostid part */
1587 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1588 xhostid->s6_addr32[2];
1589 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1590 xhostid->s6_addr32[3];
1591 }
1592
1593 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1594 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
1595 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1596 if (xhostid) {
1597 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1598 xhostid->s6_addr32[2];
1599 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1600 xhostid->s6_addr32[3];
1601 }
1602 }
1603
1604 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1605 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1606
1607 ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME;
1608 ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME;
1609 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1610 return in6_control(so, SIOCAIFADDR_IN6, &ifra, ifp, l);
1611 }
1612 case SIOCGLIFADDR:
1613 case SIOCDLIFADDR:
1614 {
1615 struct in6_addr mask, candidate, match;
1616 struct sockaddr_in6 *sin6;
1617 int cmp;
1618
1619 memset(&mask, 0, sizeof(mask));
1620 if (iflr->flags & IFLR_PREFIX) {
1621 /* lookup a prefix rather than address. */
1622 in6_prefixlen2mask(&mask, iflr->prefixlen);
1623
1624 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1625 memcpy(&match, &sin6->sin6_addr, sizeof(match));
1626 match.s6_addr32[0] &= mask.s6_addr32[0];
1627 match.s6_addr32[1] &= mask.s6_addr32[1];
1628 match.s6_addr32[2] &= mask.s6_addr32[2];
1629 match.s6_addr32[3] &= mask.s6_addr32[3];
1630
1631 /* if you set extra bits, that's wrong */
1632 if (memcmp(&match, &sin6->sin6_addr, sizeof(match)))
1633 return EINVAL;
1634
1635 cmp = 1;
1636 } else {
1637 if (cmd == SIOCGLIFADDR) {
1638 /* on getting an address, take the 1st match */
1639 cmp = 0; /* XXX */
1640 } else {
1641 /* on deleting an address, do exact match */
1642 in6_prefixlen2mask(&mask, 128);
1643 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1644 memcpy(&match, &sin6->sin6_addr, sizeof(match));
1645
1646 cmp = 1;
1647 }
1648 }
1649
1650 IFADDR_FOREACH(ifa, ifp) {
1651 if (ifa->ifa_addr->sa_family != AF_INET6)
1652 continue;
1653 if (!cmp)
1654 break;
1655
1656 /*
1657 * XXX: this is adhoc, but is necessary to allow
1658 * a user to specify fe80::/64 (not /10) for a
1659 * link-local address.
1660 */
1661 memcpy(&candidate, IFA_IN6(ifa), sizeof(candidate));
1662 in6_clearscope(&candidate);
1663 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1664 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1665 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1666 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1667 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1668 break;
1669 }
1670 if (!ifa)
1671 return EADDRNOTAVAIL;
1672 ia = ifa2ia6(ifa);
1673
1674 if (cmd == SIOCGLIFADDR) {
1675 int error;
1676
1677 /* fill in the if_laddrreq structure */
1678 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin6_len);
1679 error = sa6_recoverscope(
1680 (struct sockaddr_in6 *)&iflr->addr);
1681 if (error != 0)
1682 return error;
1683
1684 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1685 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1686 ia->ia_dstaddr.sin6_len);
1687 error = sa6_recoverscope(
1688 (struct sockaddr_in6 *)&iflr->dstaddr);
1689 if (error != 0)
1690 return error;
1691 } else
1692 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1693
1694 iflr->prefixlen =
1695 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1696
1697 iflr->flags = ia->ia6_flags; /* XXX */
1698
1699 return 0;
1700 } else {
1701 struct in6_aliasreq ifra;
1702
1703 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1704 memset(&ifra, 0, sizeof(ifra));
1705 memcpy(ifra.ifra_name, iflr->iflr_name,
1706 sizeof(ifra.ifra_name));
1707
1708 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1709 ia->ia_addr.sin6_len);
1710 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1711 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1712 ia->ia_dstaddr.sin6_len);
1713 } else {
1714 memset(&ifra.ifra_dstaddr, 0,
1715 sizeof(ifra.ifra_dstaddr));
1716 }
1717 memcpy(&ifra.ifra_dstaddr, &ia->ia_prefixmask,
1718 ia->ia_prefixmask.sin6_len);
1719
1720 ifra.ifra_flags = ia->ia6_flags;
1721 return in6_control(so, SIOCDIFADDR_IN6, &ifra, ifp, l);
1722 }
1723 }
1724 }
1725
1726 return EOPNOTSUPP; /* just for safety */
1727 }
1728
1729 /*
1730 * Initialize an interface's internet6 address
1731 * and routing table entry.
1732 */
1733 static int
1734 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia,
1735 const struct sockaddr_in6 *sin6, int newhost)
1736 {
1737 int error = 0, plen, ifacount = 0;
1738 int s = splnet();
1739 struct ifaddr *ifa;
1740
1741 /*
1742 * Give the interface a chance to initialize
1743 * if this is its first address,
1744 * and to validate the address if necessary.
1745 */
1746 IFADDR_FOREACH(ifa, ifp) {
1747 if (ifa->ifa_addr == NULL)
1748 continue; /* just for safety */
1749 if (ifa->ifa_addr->sa_family != AF_INET6)
1750 continue;
1751 ifacount++;
1752 }
1753
1754 ia->ia_addr = *sin6;
1755
1756 if (ifacount <= 1 &&
1757 (error = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ia)) != 0) {
1758 splx(s);
1759 return error;
1760 }
1761 splx(s);
1762
1763 ia->ia_ifa.ifa_metric = ifp->if_metric;
1764
1765 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1766
1767 /*
1768 * Special case:
1769 * If the destination address is specified for a point-to-point
1770 * interface, install a route to the destination as an interface
1771 * direct route.
1772 */
1773 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1774 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1775 if ((error = rtinit(&ia->ia_ifa, RTM_ADD,
1776 RTF_UP | RTF_HOST)) != 0)
1777 return error;
1778 ia->ia_flags |= IFA_ROUTE;
1779 }
1780
1781 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1782 if (newhost) {
1783 /* set the rtrequest function to create llinfo */
1784 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1785 in6_ifaddloop(&ia->ia_ifa);
1786 }
1787
1788 if (ifp->if_flags & IFF_MULTICAST)
1789 in6_restoremkludge(ia, ifp);
1790
1791 return error;
1792 }
1793
1794 static struct ifaddr *
1795 bestifa(struct ifaddr *best_ifa, struct ifaddr *ifa)
1796 {
1797 if (best_ifa == NULL || best_ifa->ifa_preference < ifa->ifa_preference)
1798 return ifa;
1799 return best_ifa;
1800 }
1801
1802 /*
1803 * Find an IPv6 interface link-local address specific to an interface.
1804 */
1805 struct in6_ifaddr *
1806 in6ifa_ifpforlinklocal(const struct ifnet *ifp, const int ignoreflags)
1807 {
1808 struct ifaddr *best_ifa = NULL, *ifa;
1809
1810 IFADDR_FOREACH(ifa, ifp) {
1811 if (ifa->ifa_addr == NULL)
1812 continue; /* just for safety */
1813 if (ifa->ifa_addr->sa_family != AF_INET6)
1814 continue;
1815 if (!IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa)))
1816 continue;
1817 if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0)
1818 continue;
1819 best_ifa = bestifa(best_ifa, ifa);
1820 }
1821
1822 return (struct in6_ifaddr *)best_ifa;
1823 }
1824
1825
1826 /*
1827 * find the internet address corresponding to a given interface and address.
1828 */
1829 struct in6_ifaddr *
1830 in6ifa_ifpwithaddr(const struct ifnet *ifp, const struct in6_addr *addr)
1831 {
1832 struct ifaddr *best_ifa = NULL, *ifa;
1833
1834 IFADDR_FOREACH(ifa, ifp) {
1835 if (ifa->ifa_addr == NULL)
1836 continue; /* just for safety */
1837 if (ifa->ifa_addr->sa_family != AF_INET6)
1838 continue;
1839 if (!IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1840 continue;
1841 best_ifa = bestifa(best_ifa, ifa);
1842 }
1843
1844 return (struct in6_ifaddr *)best_ifa;
1845 }
1846
1847 static struct in6_ifaddr *
1848 bestia(struct in6_ifaddr *best_ia, struct in6_ifaddr *ia)
1849 {
1850 if (best_ia == NULL ||
1851 best_ia->ia_ifa.ifa_preference < ia->ia_ifa.ifa_preference)
1852 return ia;
1853 return best_ia;
1854 }
1855
1856 /*
1857 * find the internet address on a given interface corresponding to a neighbor's
1858 * address.
1859 */
1860 struct in6_ifaddr *
1861 in6ifa_ifplocaladdr(const struct ifnet *ifp, const struct in6_addr *addr)
1862 {
1863 struct ifaddr *ifa;
1864 struct in6_ifaddr *best_ia = NULL, *ia;
1865
1866 IFADDR_FOREACH(ifa, ifp) {
1867 if (ifa->ifa_addr == NULL)
1868 continue; /* just for safety */
1869 if (ifa->ifa_addr->sa_family != AF_INET6)
1870 continue;
1871 ia = (struct in6_ifaddr *)ifa;
1872 if (!IN6_ARE_MASKED_ADDR_EQUAL(addr,
1873 &ia->ia_addr.sin6_addr,
1874 &ia->ia_prefixmask.sin6_addr))
1875 continue;
1876 best_ia = bestia(best_ia, ia);
1877 }
1878
1879 return best_ia;
1880 }
1881
1882 /*
1883 * Convert IP6 address to printable (loggable) representation.
1884 */
1885 static int ip6round = 0;
1886 char *
1887 ip6_sprintf(const struct in6_addr *addr)
1888 {
1889 static char ip6buf[8][48];
1890 int i;
1891 char *bp;
1892 char *cp;
1893 const u_int16_t *a = (const u_int16_t *)addr;
1894 const u_int8_t *d;
1895 int dcolon = 0;
1896
1897 ip6round = (ip6round + 1) & 7;
1898 cp = ip6buf[ip6round];
1899
1900 for (i = 0; i < 8; i++) {
1901 if (dcolon == 1) {
1902 if (*a == 0) {
1903 if (i == 7)
1904 *cp++ = ':';
1905 a++;
1906 continue;
1907 } else
1908 dcolon = 2;
1909 }
1910 if (*a == 0) {
1911 if (dcolon == 0 && *(a + 1) == 0) {
1912 if (i == 0)
1913 *cp++ = ':';
1914 *cp++ = ':';
1915 dcolon = 1;
1916 } else {
1917 *cp++ = '0';
1918 *cp++ = ':';
1919 }
1920 a++;
1921 continue;
1922 }
1923 d = (const u_char *)a;
1924 bp = cp;
1925 *cp = hexdigits[*d >> 4];
1926 if (*cp != '0')
1927 cp++;
1928 *cp = hexdigits[*d++ & 0xf];
1929 if (cp != bp || *cp != '0')
1930 cp++;
1931 *cp = hexdigits[*d >> 4];
1932 if (cp != bp || *cp != '0')
1933 cp++;
1934 *cp++ = hexdigits[*d & 0xf];
1935 *cp++ = ':';
1936 a++;
1937 }
1938 *--cp = 0;
1939 return ip6buf[ip6round];
1940 }
1941
1942 /*
1943 * Determine if an address is on a local network.
1944 */
1945 int
1946 in6_localaddr(const struct in6_addr *in6)
1947 {
1948 struct in6_ifaddr *ia;
1949
1950 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1951 return 1;
1952
1953 for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1954 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1955 &ia->ia_prefixmask.sin6_addr))
1956 return 1;
1957
1958 return 0;
1959 }
1960
1961 int
1962 in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
1963 {
1964 struct in6_ifaddr *ia;
1965
1966 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1967 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1968 &sa6->sin6_addr) &&
1969 #ifdef SCOPEDROUTING
1970 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
1971 #endif
1972 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1973 return 1; /* true */
1974
1975 /* XXX: do we still have to go thru the rest of the list? */
1976 }
1977
1978 return 0; /* false */
1979 }
1980
1981 /*
1982 * return length of part which dst and src are equal
1983 * hard coding...
1984 */
1985 int
1986 in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
1987 {
1988 int match = 0;
1989 u_char *s = (u_char *)src, *d = (u_char *)dst;
1990 u_char *lim = s + 16, r;
1991
1992 while (s < lim)
1993 if ((r = (*d++ ^ *s++)) != 0) {
1994 while (r < 128) {
1995 match++;
1996 r <<= 1;
1997 }
1998 break;
1999 } else
2000 match += NBBY;
2001 return match;
2002 }
2003
2004 /* XXX: to be scope conscious */
2005 int
2006 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len)
2007 {
2008 int bytelen, bitlen;
2009
2010 /* sanity check */
2011 if (len < 0 || len > 128) {
2012 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2013 len);
2014 return 0;
2015 }
2016
2017 bytelen = len / NBBY;
2018 bitlen = len % NBBY;
2019
2020 if (memcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2021 return 0;
2022 if (bitlen != 0 &&
2023 p1->s6_addr[bytelen] >> (NBBY - bitlen) !=
2024 p2->s6_addr[bytelen] >> (NBBY - bitlen))
2025 return 0;
2026
2027 return 1;
2028 }
2029
2030 void
2031 in6_prefixlen2mask(struct in6_addr *maskp, int len)
2032 {
2033 static const u_char maskarray[NBBY] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2034 int bytelen, bitlen, i;
2035
2036 /* sanity check */
2037 if (len < 0 || len > 128) {
2038 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2039 len);
2040 return;
2041 }
2042
2043 memset(maskp, 0, sizeof(*maskp));
2044 bytelen = len / NBBY;
2045 bitlen = len % NBBY;
2046 for (i = 0; i < bytelen; i++)
2047 maskp->s6_addr[i] = 0xff;
2048 if (bitlen)
2049 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2050 }
2051
2052 /*
2053 * return the best address out of the same scope. if no address was
2054 * found, return the first valid address from designated IF.
2055 */
2056 struct in6_ifaddr *
2057 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
2058 {
2059 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2060 struct ifaddr *ifa;
2061 struct in6_ifaddr *best_ia = NULL, *ia;
2062 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
2063
2064 dep[0] = dep[1] = NULL;
2065
2066 /*
2067 * We first look for addresses in the same scope.
2068 * If there is one, return it.
2069 * If two or more, return one which matches the dst longest.
2070 * If none, return one of global addresses assigned other ifs.
2071 */
2072 IFADDR_FOREACH(ifa, ifp) {
2073 if (ifa->ifa_addr->sa_family != AF_INET6)
2074 continue;
2075 ia = (struct in6_ifaddr *)ifa;
2076 if (ia->ia6_flags & IN6_IFF_ANYCAST)
2077 continue; /* XXX: is there any case to allow anycast? */
2078 if (ia->ia6_flags & IN6_IFF_NOTREADY)
2079 continue; /* don't use this interface */
2080 if (ia->ia6_flags & IN6_IFF_DETACHED)
2081 continue;
2082 if (ia->ia6_flags & IN6_IFF_DEPRECATED) {
2083 if (ip6_use_deprecated)
2084 dep[0] = ia;
2085 continue;
2086 }
2087
2088 if (dst_scope != in6_addrscope(IFA_IN6(ifa)))
2089 continue;
2090 /*
2091 * call in6_matchlen() as few as possible
2092 */
2093 if (best_ia == NULL) {
2094 best_ia = ia;
2095 continue;
2096 }
2097 if (blen == -1)
2098 blen = in6_matchlen(&best_ia->ia_addr.sin6_addr, dst);
2099 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2100 if (tlen > blen) {
2101 blen = tlen;
2102 best_ia = ia;
2103 } else if (tlen == blen)
2104 best_ia = bestia(best_ia, ia);
2105 }
2106 if (best_ia != NULL)
2107 return best_ia;
2108
2109 IFADDR_FOREACH(ifa, ifp) {
2110 if (ifa->ifa_addr->sa_family != AF_INET6)
2111 continue;
2112 ia = (struct in6_ifaddr *)ifa;
2113 if (ia->ia6_flags & IN6_IFF_ANYCAST)
2114 continue; /* XXX: is there any case to allow anycast? */
2115 if (ia->ia6_flags & IN6_IFF_NOTREADY)
2116 continue; /* don't use this interface */
2117 if (ia->ia6_flags & IN6_IFF_DETACHED)
2118 continue;
2119 if (ia->ia6_flags & IN6_IFF_DEPRECATED) {
2120 if (ip6_use_deprecated)
2121 dep[1] = (struct in6_ifaddr *)ifa;
2122 continue;
2123 }
2124
2125 best_ia = bestia(best_ia, ia);
2126 }
2127 if (best_ia != NULL)
2128 return best_ia;
2129
2130 /* use the last-resort values, that are, deprecated addresses */
2131 if (dep[0])
2132 return dep[0];
2133 if (dep[1])
2134 return dep[1];
2135
2136 return NULL;
2137 }
2138
2139 /*
2140 * perform DAD when interface becomes IFF_UP.
2141 */
2142 void
2143 in6_if_up(struct ifnet *ifp)
2144 {
2145 struct ifaddr *ifa;
2146 struct in6_ifaddr *ia;
2147
2148 IFADDR_FOREACH(ifa, ifp) {
2149 if (ifa->ifa_addr->sa_family != AF_INET6)
2150 continue;
2151 ia = (struct in6_ifaddr *)ifa;
2152 if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2153 /*
2154 * The TENTATIVE flag was likely set by hand
2155 * beforehand, implicitly indicating the need for DAD.
2156 * We may be able to skip the random delay in this
2157 * case, but we impose delays just in case.
2158 */
2159 nd6_dad_start(ifa,
2160 arc4random() % (MAX_RTR_SOLICITATION_DELAY * hz));
2161 }
2162 }
2163
2164 /*
2165 * special cases, like 6to4, are handled in in6_ifattach
2166 */
2167 in6_ifattach(ifp, NULL);
2168 }
2169
2170 int
2171 in6if_do_dad(struct ifnet *ifp)
2172 {
2173 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2174 return 0;
2175
2176 switch (ifp->if_type) {
2177 case IFT_FAITH:
2178 /*
2179 * These interfaces do not have the IFF_LOOPBACK flag,
2180 * but loop packets back. We do not have to do DAD on such
2181 * interfaces. We should even omit it, because loop-backed
2182 * NS would confuse the DAD procedure.
2183 */
2184 return 0;
2185 default:
2186 /*
2187 * Our DAD routine requires the interface up and running.
2188 * However, some interfaces can be up before the RUNNING
2189 * status. Additionaly, users may try to assign addresses
2190 * before the interface becomes up (or running).
2191 * We simply skip DAD in such a case as a work around.
2192 * XXX: we should rather mark "tentative" on such addresses,
2193 * and do DAD after the interface becomes ready.
2194 */
2195 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2196 (IFF_UP|IFF_RUNNING))
2197 return 0;
2198
2199 return 1;
2200 }
2201 }
2202
2203 /*
2204 * Calculate max IPv6 MTU through all the interfaces and store it
2205 * to in6_maxmtu.
2206 */
2207 void
2208 in6_setmaxmtu(void)
2209 {
2210 unsigned long maxmtu = 0;
2211 struct ifnet *ifp;
2212
2213 TAILQ_FOREACH(ifp, &ifnet, if_list) {
2214 /* this function can be called during ifnet initialization */
2215 if (!ifp->if_afdata[AF_INET6])
2216 continue;
2217 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2218 IN6_LINKMTU(ifp) > maxmtu)
2219 maxmtu = IN6_LINKMTU(ifp);
2220 }
2221 if (maxmtu) /* update only when maxmtu is positive */
2222 in6_maxmtu = maxmtu;
2223 }
2224
2225 /*
2226 * Provide the length of interface identifiers to be used for the link attached
2227 * to the given interface. The length should be defined in "IPv6 over
2228 * xxx-link" document. Note that address architecture might also define
2229 * the length for a particular set of address prefixes, regardless of the
2230 * link type. As clarified in rfc2462bis, those two definitions should be
2231 * consistent, and those really are as of August 2004.
2232 */
2233 int
2234 in6_if2idlen(struct ifnet *ifp)
2235 {
2236 switch (ifp->if_type) {
2237 case IFT_ETHER: /* RFC2464 */
2238 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */
2239 case IFT_L2VLAN: /* ditto */
2240 case IFT_IEEE80211: /* ditto */
2241 case IFT_FDDI: /* RFC2467 */
2242 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */
2243 case IFT_PPP: /* RFC2472 */
2244 case IFT_ARCNET: /* RFC2497 */
2245 case IFT_FRELAY: /* RFC2590 */
2246 case IFT_IEEE1394: /* RFC3146 */
2247 case IFT_GIF: /* draft-ietf-v6ops-mech-v2-07 */
2248 case IFT_LOOP: /* XXX: is this really correct? */
2249 return 64;
2250 default:
2251 /*
2252 * Unknown link type:
2253 * It might be controversial to use the today's common constant
2254 * of 64 for these cases unconditionally. For full compliance,
2255 * we should return an error in this case. On the other hand,
2256 * if we simply miss the standard for the link type or a new
2257 * standard is defined for a new link type, the IFID length
2258 * is very likely to be the common constant. As a compromise,
2259 * we always use the constant, but make an explicit notice
2260 * indicating the "unknown" case.
2261 */
2262 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2263 return 64;
2264 }
2265 }
2266
2267 void *
2268 in6_domifattach(struct ifnet *ifp)
2269 {
2270 struct in6_ifextra *ext;
2271
2272 ext = malloc(sizeof(*ext), M_IFADDR, M_WAITOK|M_ZERO);
2273
2274 ext->in6_ifstat = malloc(sizeof(struct in6_ifstat),
2275 M_IFADDR, M_WAITOK|M_ZERO);
2276
2277 ext->icmp6_ifstat = malloc(sizeof(struct icmp6_ifstat),
2278 M_IFADDR, M_WAITOK|M_ZERO);
2279
2280 ext->nd_ifinfo = nd6_ifattach(ifp);
2281 ext->scope6_id = scope6_ifattach(ifp);
2282 return ext;
2283 }
2284
2285 void
2286 in6_domifdetach(struct ifnet *ifp, void *aux)
2287 {
2288 struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2289
2290 nd6_ifdetach(ext->nd_ifinfo);
2291 free(ext->in6_ifstat, M_IFADDR);
2292 free(ext->icmp6_ifstat, M_IFADDR);
2293 scope6_ifdetach(ext->scope6_id);
2294 free(ext, M_IFADDR);
2295 }
2296
2297 /*
2298 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
2299 * v4 mapped addr or v4 compat addr
2300 */
2301 void
2302 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2303 {
2304 memset(sin, 0, sizeof(*sin));
2305 sin->sin_len = sizeof(struct sockaddr_in);
2306 sin->sin_family = AF_INET;
2307 sin->sin_port = sin6->sin6_port;
2308 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2309 }
2310
2311 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2312 void
2313 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2314 {
2315 memset(sin6, 0, sizeof(*sin6));
2316 sin6->sin6_len = sizeof(struct sockaddr_in6);
2317 sin6->sin6_family = AF_INET6;
2318 sin6->sin6_port = sin->sin_port;
2319 sin6->sin6_addr.s6_addr32[0] = 0;
2320 sin6->sin6_addr.s6_addr32[1] = 0;
2321 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2322 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2323 }
2324
2325 /* Convert sockaddr_in6 into sockaddr_in. */
2326 void
2327 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2328 {
2329 struct sockaddr_in *sin_p;
2330 struct sockaddr_in6 sin6;
2331
2332 /*
2333 * Save original sockaddr_in6 addr and convert it
2334 * to sockaddr_in.
2335 */
2336 sin6 = *(struct sockaddr_in6 *)nam;
2337 sin_p = (struct sockaddr_in *)nam;
2338 in6_sin6_2_sin(sin_p, &sin6);
2339 }
2340
2341 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2342 void
2343 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2344 {
2345 struct sockaddr_in *sin_p;
2346 struct sockaddr_in6 *sin6_p;
2347
2348 sin6_p = malloc(sizeof(*sin6_p), M_SONAME, M_WAITOK);
2349 sin_p = (struct sockaddr_in *)*nam;
2350 in6_sin_2_v4mapsin6(sin_p, sin6_p);
2351 free(*nam, M_SONAME);
2352 *nam = (struct sockaddr *)sin6_p;
2353 }
2354