in6.c revision 1.159 1 /* $NetBSD: in6.c,v 1.159 2011/11/19 22:51:26 tls Exp $ */
2 /* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)in.c 8.2 (Berkeley) 11/15/93
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.159 2011/11/19 22:51:26 tls Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_pfil_hooks.h"
69 #include "opt_compat_netbsd.h"
70
71 #include <sys/param.h>
72 #include <sys/ioctl.h>
73 #include <sys/errno.h>
74 #include <sys/malloc.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <sys/sockio.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/time.h>
81 #include <sys/kernel.h>
82 #include <sys/syslog.h>
83 #include <sys/kauth.h>
84 #include <sys/cprng.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88 #include <net/route.h>
89 #include <net/if_dl.h>
90
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <net/if_ether.h>
94
95 #include <netinet/ip6.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet6/mld6_var.h>
99 #include <netinet6/ip6_mroute.h>
100 #include <netinet6/in6_ifattach.h>
101 #include <netinet6/scope6_var.h>
102
103 #include <net/net_osdep.h>
104
105 #ifdef PFIL_HOOKS
106 #include <net/pfil.h>
107 #endif
108 #ifdef COMPAT_50
109 #include <compat/netinet6/in6_var.h>
110 #endif
111
112 MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options");
113
114 /* enable backward compatibility code for obsoleted ioctls */
115 #define COMPAT_IN6IFIOCTL
116
117 #ifdef IN6_DEBUG
118 #define IN6_DPRINTF(__fmt, ...) printf(__fmt, __VA_ARGS__)
119 #else
120 #define IN6_DPRINTF(__fmt, ...) do { } while (/*CONSTCOND*/0)
121 #endif /* IN6_DEBUG */
122
123 /*
124 * Definitions of some constant IP6 addresses.
125 */
126 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
127 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
128 const struct in6_addr in6addr_nodelocal_allnodes =
129 IN6ADDR_NODELOCAL_ALLNODES_INIT;
130 const struct in6_addr in6addr_linklocal_allnodes =
131 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
132 const struct in6_addr in6addr_linklocal_allrouters =
133 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
134
135 const struct in6_addr in6mask0 = IN6MASK0;
136 const struct in6_addr in6mask32 = IN6MASK32;
137 const struct in6_addr in6mask64 = IN6MASK64;
138 const struct in6_addr in6mask96 = IN6MASK96;
139 const struct in6_addr in6mask128 = IN6MASK128;
140
141 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
142 0, 0, IN6ADDR_ANY_INIT, 0};
143
144 static int in6_lifaddr_ioctl(struct socket *, u_long, void *,
145 struct ifnet *, struct lwp *);
146 static int in6_ifinit(struct ifnet *, struct in6_ifaddr *,
147 const struct sockaddr_in6 *, int);
148 static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *);
149
150 /*
151 * Subroutine for in6_ifaddloop() and in6_ifremloop().
152 * This routine does actual work.
153 */
154 static void
155 in6_ifloop_request(int cmd, struct ifaddr *ifa)
156 {
157 struct sockaddr_in6 lo_sa;
158 struct sockaddr_in6 all1_sa;
159 struct rtentry *nrt = NULL;
160 int e;
161
162 sockaddr_in6_init(&all1_sa, &in6mask128, 0, 0, 0);
163 sockaddr_in6_init(&lo_sa, &in6addr_loopback, 0, 0, 0);
164
165 /*
166 * We specify the address itself as the gateway, and set the
167 * RTF_LLINFO flag, so that the corresponding host route would have
168 * the flag, and thus applications that assume traditional behavior
169 * would be happy. Note that we assume the caller of the function
170 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
171 * which changes the outgoing interface to the loopback interface.
172 */
173 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
174 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
175 if (e != 0) {
176 log(LOG_ERR, "in6_ifloop_request: "
177 "%s operation failed for %s (errno=%d)\n",
178 cmd == RTM_ADD ? "ADD" : "DELETE",
179 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
180 e);
181 }
182
183 /*
184 * Make sure rt_ifa be equal to IFA, the second argument of the
185 * function.
186 * We need this because when we refer to rt_ifa->ia6_flags in
187 * ip6_input, we assume that the rt_ifa points to the address instead
188 * of the loopback address.
189 */
190 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa)
191 rt_replace_ifa(nrt, ifa);
192
193 /*
194 * Report the addition/removal of the address to the routing socket.
195 * XXX: since we called rtinit for a p2p interface with a destination,
196 * we end up reporting twice in such a case. Should we rather
197 * omit the second report?
198 */
199 if (nrt) {
200 rt_newaddrmsg(cmd, ifa, e, nrt);
201 if (cmd == RTM_DELETE) {
202 if (nrt->rt_refcnt <= 0) {
203 /* XXX: we should free the entry ourselves. */
204 nrt->rt_refcnt++;
205 rtfree(nrt);
206 }
207 } else {
208 /* the cmd must be RTM_ADD here */
209 nrt->rt_refcnt--;
210 }
211 }
212 }
213
214 /*
215 * Add ownaddr as loopback rtentry. We previously add the route only if
216 * necessary (ex. on a p2p link). However, since we now manage addresses
217 * separately from prefixes, we should always add the route. We can't
218 * rely on the cloning mechanism from the corresponding interface route
219 * any more.
220 */
221 void
222 in6_ifaddloop(struct ifaddr *ifa)
223 {
224 struct rtentry *rt;
225
226 /* If there is no loopback entry, allocate one. */
227 rt = rtalloc1(ifa->ifa_addr, 0);
228 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
229 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
230 in6_ifloop_request(RTM_ADD, ifa);
231 if (rt != NULL)
232 rt->rt_refcnt--;
233 }
234
235 /*
236 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
237 * if it exists.
238 */
239 void
240 in6_ifremloop(struct ifaddr *ifa)
241 {
242 struct in6_ifaddr *alt_ia = NULL, *ia;
243 struct rtentry *rt;
244 int ia_count = 0;
245
246 /*
247 * Some of BSD variants do not remove cloned routes
248 * from an interface direct route, when removing the direct route
249 * (see comments in net/net_osdep.h). Even for variants that do remove
250 * cloned routes, they could fail to remove the cloned routes when
251 * we handle multple addresses that share a common prefix.
252 * So, we should remove the route corresponding to the deleted address.
253 */
254
255 /*
256 * Delete the entry only if exactly one ifaddr matches the
257 * address, ifa->ifa_addr.
258 *
259 * If more than one ifaddr matches, replace the ifaddr in
260 * the routing table, rt_ifa, with a different ifaddr than
261 * the one we are purging, ifa. It is important to do
262 * this, or else the routing table can accumulate dangling
263 * pointers rt->rt_ifa->ifa_ifp to destroyed interfaces,
264 * which will lead to crashes, later. (More than one ifaddr
265 * can match if we assign the same address to multiple---probably
266 * p2p---interfaces.)
267 *
268 * XXX An old comment at this place said, "we should avoid
269 * XXX such a configuration [i.e., interfaces with the same
270 * XXX addressed assigned --ed.] in IPv6...". I do not
271 * XXX agree, especially now that I have fixed the dangling
272 * XXX ifp-pointers bug.
273 */
274 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
275 if (!IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr))
276 continue;
277 if (ia->ia_ifp != ifa->ifa_ifp)
278 alt_ia = ia;
279 if (++ia_count > 1 && alt_ia != NULL)
280 break;
281 }
282
283 if (ia_count == 0)
284 return;
285
286 if ((rt = rtalloc1(ifa->ifa_addr, 0)) == NULL)
287 return;
288 rt->rt_refcnt--;
289
290 /*
291 * Before deleting, check if a corresponding loopbacked
292 * host route surely exists. With this check, we can avoid
293 * deleting an interface direct route whose destination is
294 * the same as the address being removed. This can happen
295 * when removing a subnet-router anycast address on an
296 * interface attached to a shared medium.
297 */
298 if ((rt->rt_flags & RTF_HOST) == 0 ||
299 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
300 return;
301
302 /* If we cannot replace the route's ifaddr with the equivalent
303 * ifaddr of another interface, I believe it is safest to
304 * delete the route.
305 */
306 if (ia_count == 1 || alt_ia == NULL)
307 in6_ifloop_request(RTM_DELETE, ifa);
308 else
309 rt_replace_ifa(rt, &alt_ia->ia_ifa);
310 }
311
312 int
313 in6_mask2len(struct in6_addr *mask, u_char *lim0)
314 {
315 int x = 0, y;
316 u_char *lim = lim0, *p;
317
318 /* ignore the scope_id part */
319 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
320 lim = (u_char *)mask + sizeof(*mask);
321 for (p = (u_char *)mask; p < lim; x++, p++) {
322 if (*p != 0xff)
323 break;
324 }
325 y = 0;
326 if (p < lim) {
327 for (y = 0; y < NBBY; y++) {
328 if ((*p & (0x80 >> y)) == 0)
329 break;
330 }
331 }
332
333 /*
334 * when the limit pointer is given, do a stricter check on the
335 * remaining bits.
336 */
337 if (p < lim) {
338 if (y != 0 && (*p & (0x00ff >> y)) != 0)
339 return -1;
340 for (p = p + 1; p < lim; p++)
341 if (*p != 0)
342 return -1;
343 }
344
345 return x * NBBY + y;
346 }
347
348 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
349 #define ia62ifa(ia6) (&((ia6)->ia_ifa))
350
351 static int
352 in6_control1(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
353 lwp_t *l)
354 {
355 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
356 struct in6_ifaddr *ia = NULL;
357 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
358 struct sockaddr_in6 *sa6;
359 int error;
360
361 switch (cmd) {
362 /*
363 * XXX: Fix me, once we fix SIOCSIFADDR, SIOCIFDSTADDR, etc.
364 */
365 case SIOCSIFADDR:
366 case SIOCSIFDSTADDR:
367 #ifdef SIOCSIFCONF_X25
368 case SIOCSIFCONF_X25:
369 #endif
370 return EOPNOTSUPP;
371 case SIOCGETSGCNT_IN6:
372 case SIOCGETMIFCNT_IN6:
373 return mrt6_ioctl(cmd, data);
374 case SIOCGIFADDRPREF:
375 case SIOCSIFADDRPREF:
376 if (ifp == NULL)
377 return EINVAL;
378 return ifaddrpref_ioctl(so, cmd, data, ifp, l);
379 }
380
381 if (ifp == NULL)
382 return EOPNOTSUPP;
383
384 switch (cmd) {
385 case SIOCSNDFLUSH_IN6:
386 case SIOCSPFXFLUSH_IN6:
387 case SIOCSRTRFLUSH_IN6:
388 case SIOCSDEFIFACE_IN6:
389 case SIOCSIFINFO_FLAGS:
390 case SIOCSIFINFO_IN6:
391 /* Privileged. */
392 /* FALLTHROUGH */
393 case OSIOCGIFINFO_IN6:
394 case SIOCGIFINFO_IN6:
395 case SIOCGDRLST_IN6:
396 case SIOCGPRLST_IN6:
397 case SIOCGNBRINFO_IN6:
398 case SIOCGDEFIFACE_IN6:
399 return nd6_ioctl(cmd, data, ifp);
400 }
401
402 switch (cmd) {
403 case SIOCSIFPREFIX_IN6:
404 case SIOCDIFPREFIX_IN6:
405 case SIOCAIFPREFIX_IN6:
406 case SIOCCIFPREFIX_IN6:
407 case SIOCSGIFPREFIX_IN6:
408 case SIOCGIFPREFIX_IN6:
409 log(LOG_NOTICE,
410 "prefix ioctls are now invalidated. "
411 "please use ifconfig.\n");
412 return EOPNOTSUPP;
413 }
414
415 switch (cmd) {
416 case SIOCALIFADDR:
417 case SIOCDLIFADDR:
418 /* Privileged. */
419 /* FALLTHROUGH */
420 case SIOCGLIFADDR:
421 return in6_lifaddr_ioctl(so, cmd, data, ifp, l);
422 }
423
424 /*
425 * Find address for this interface, if it exists.
426 *
427 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
428 * only, and used the first interface address as the target of other
429 * operations (without checking ifra_addr). This was because netinet
430 * code/API assumed at most 1 interface address per interface.
431 * Since IPv6 allows a node to assign multiple addresses
432 * on a single interface, we almost always look and check the
433 * presence of ifra_addr, and reject invalid ones here.
434 * It also decreases duplicated code among SIOC*_IN6 operations.
435 */
436 switch (cmd) {
437 case SIOCAIFADDR_IN6:
438 #ifdef OSIOCAIFADDR_IN6
439 case OSIOCAIFADDR_IN6:
440 #endif
441 #ifdef OSIOCSIFPHYADDR_IN6
442 case OSIOCSIFPHYADDR_IN6:
443 #endif
444 case SIOCSIFPHYADDR_IN6:
445 sa6 = &ifra->ifra_addr;
446 break;
447 case SIOCSIFADDR_IN6:
448 case SIOCGIFADDR_IN6:
449 case SIOCSIFDSTADDR_IN6:
450 case SIOCSIFNETMASK_IN6:
451 case SIOCGIFDSTADDR_IN6:
452 case SIOCGIFNETMASK_IN6:
453 case SIOCDIFADDR_IN6:
454 case SIOCGIFPSRCADDR_IN6:
455 case SIOCGIFPDSTADDR_IN6:
456 case SIOCGIFAFLAG_IN6:
457 case SIOCSNDFLUSH_IN6:
458 case SIOCSPFXFLUSH_IN6:
459 case SIOCSRTRFLUSH_IN6:
460 case SIOCGIFALIFETIME_IN6:
461 #ifdef OSIOCGIFALIFETIME_IN6
462 case OSIOCGIFALIFETIME_IN6:
463 #endif
464 case SIOCGIFSTAT_IN6:
465 case SIOCGIFSTAT_ICMP6:
466 sa6 = &ifr->ifr_addr;
467 break;
468 default:
469 sa6 = NULL;
470 break;
471 }
472 if (sa6 && sa6->sin6_family == AF_INET6) {
473 if (sa6->sin6_scope_id != 0)
474 error = sa6_embedscope(sa6, 0);
475 else
476 error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
477 if (error != 0)
478 return error;
479 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
480 } else
481 ia = NULL;
482
483 switch (cmd) {
484 case SIOCSIFADDR_IN6:
485 case SIOCSIFDSTADDR_IN6:
486 case SIOCSIFNETMASK_IN6:
487 /*
488 * Since IPv6 allows a node to assign multiple addresses
489 * on a single interface, SIOCSIFxxx ioctls are deprecated.
490 */
491 return EINVAL;
492
493 case SIOCDIFADDR_IN6:
494 /*
495 * for IPv4, we look for existing in_ifaddr here to allow
496 * "ifconfig if0 delete" to remove the first IPv4 address on
497 * the interface. For IPv6, as the spec allows multiple
498 * interface address from the day one, we consider "remove the
499 * first one" semantics to be not preferable.
500 */
501 if (ia == NULL)
502 return EADDRNOTAVAIL;
503 /* FALLTHROUGH */
504 #ifdef OSIOCAIFADDR_IN6
505 case OSIOCAIFADDR_IN6:
506 #endif
507 case SIOCAIFADDR_IN6:
508 /*
509 * We always require users to specify a valid IPv6 address for
510 * the corresponding operation.
511 */
512 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
513 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
514 return EAFNOSUPPORT;
515 /* Privileged. */
516
517 break;
518
519 case SIOCGIFADDR_IN6:
520 /* This interface is basically deprecated. use SIOCGIFCONF. */
521 /* FALLTHROUGH */
522 case SIOCGIFAFLAG_IN6:
523 case SIOCGIFNETMASK_IN6:
524 case SIOCGIFDSTADDR_IN6:
525 case SIOCGIFALIFETIME_IN6:
526 #ifdef OSIOCGIFALIFETIME_IN6
527 case OSIOCGIFALIFETIME_IN6:
528 #endif
529 /* must think again about its semantics */
530 if (ia == NULL)
531 return EADDRNOTAVAIL;
532 break;
533 }
534
535 switch (cmd) {
536
537 case SIOCGIFADDR_IN6:
538 ifr->ifr_addr = ia->ia_addr;
539 if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
540 return error;
541 break;
542
543 case SIOCGIFDSTADDR_IN6:
544 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
545 return EINVAL;
546 /*
547 * XXX: should we check if ifa_dstaddr is NULL and return
548 * an error?
549 */
550 ifr->ifr_dstaddr = ia->ia_dstaddr;
551 if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
552 return error;
553 break;
554
555 case SIOCGIFNETMASK_IN6:
556 ifr->ifr_addr = ia->ia_prefixmask;
557 break;
558
559 case SIOCGIFAFLAG_IN6:
560 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
561 break;
562
563 case SIOCGIFSTAT_IN6:
564 if (ifp == NULL)
565 return EINVAL;
566 memset(&ifr->ifr_ifru.ifru_stat, 0,
567 sizeof(ifr->ifr_ifru.ifru_stat));
568 ifr->ifr_ifru.ifru_stat =
569 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
570 break;
571
572 case SIOCGIFSTAT_ICMP6:
573 if (ifp == NULL)
574 return EINVAL;
575 memset(&ifr->ifr_ifru.ifru_icmp6stat, 0,
576 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
577 ifr->ifr_ifru.ifru_icmp6stat =
578 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
579 break;
580
581 #ifdef OSIOCGIFALIFETIME_IN6
582 case OSIOCGIFALIFETIME_IN6:
583 #endif
584 case SIOCGIFALIFETIME_IN6:
585 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
586 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
587 time_t maxexpire;
588 struct in6_addrlifetime *retlt =
589 &ifr->ifr_ifru.ifru_lifetime;
590
591 /*
592 * XXX: adjust expiration time assuming time_t is
593 * signed.
594 */
595 maxexpire = ((time_t)~0) &
596 ~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1));
597 if (ia->ia6_lifetime.ia6t_vltime <
598 maxexpire - ia->ia6_updatetime) {
599 retlt->ia6t_expire = ia->ia6_updatetime +
600 ia->ia6_lifetime.ia6t_vltime;
601 } else
602 retlt->ia6t_expire = maxexpire;
603 }
604 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
605 time_t maxexpire;
606 struct in6_addrlifetime *retlt =
607 &ifr->ifr_ifru.ifru_lifetime;
608
609 /*
610 * XXX: adjust expiration time assuming time_t is
611 * signed.
612 */
613 maxexpire = ((time_t)~0) &
614 ~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1));
615 if (ia->ia6_lifetime.ia6t_pltime <
616 maxexpire - ia->ia6_updatetime) {
617 retlt->ia6t_preferred = ia->ia6_updatetime +
618 ia->ia6_lifetime.ia6t_pltime;
619 } else
620 retlt->ia6t_preferred = maxexpire;
621 }
622 #ifdef OSIOCFIFALIFETIME_IN6
623 if (cmd == OSIOCFIFALIFETIME_IN6)
624 in6_addrlifetime_to_in6_addrlifetime50(
625 &ifr->ifru.ifru_lifetime);
626 #endif
627 break;
628
629 #ifdef OSIOCAIFADDR_IN6
630 case OSIOCAIFADDR_IN6:
631 in6_aliasreq50_to_in6_aliasreq(ifra);
632 /*FALLTHROUGH*/
633 #endif
634 case SIOCAIFADDR_IN6:
635 {
636 int i;
637 struct nd_prefixctl pr0;
638 struct nd_prefix *pr;
639
640 /* reject read-only flags */
641 if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 ||
642 (ifra->ifra_flags & IN6_IFF_DETACHED) != 0 ||
643 (ifra->ifra_flags & IN6_IFF_NODAD) != 0 ||
644 (ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) {
645 return EINVAL;
646 }
647 /*
648 * first, make or update the interface address structure,
649 * and link it to the list.
650 */
651 if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
652 return error;
653 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
654 == NULL) {
655 /*
656 * this can happen when the user specify the 0 valid
657 * lifetime.
658 */
659 break;
660 }
661
662 /*
663 * then, make the prefix on-link on the interface.
664 * XXX: we'd rather create the prefix before the address, but
665 * we need at least one address to install the corresponding
666 * interface route, so we configure the address first.
667 */
668
669 /*
670 * convert mask to prefix length (prefixmask has already
671 * been validated in in6_update_ifa().
672 */
673 memset(&pr0, 0, sizeof(pr0));
674 pr0.ndpr_ifp = ifp;
675 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
676 NULL);
677 if (pr0.ndpr_plen == 128) {
678 break; /* we don't need to install a host route. */
679 }
680 pr0.ndpr_prefix = ifra->ifra_addr;
681 /* apply the mask for safety. */
682 for (i = 0; i < 4; i++) {
683 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
684 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
685 }
686 /*
687 * XXX: since we don't have an API to set prefix (not address)
688 * lifetimes, we just use the same lifetimes as addresses.
689 * The (temporarily) installed lifetimes can be overridden by
690 * later advertised RAs (when accept_rtadv is non 0), which is
691 * an intended behavior.
692 */
693 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
694 pr0.ndpr_raf_auto =
695 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
696 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
697 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
698
699 /* add the prefix if not yet. */
700 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
701 /*
702 * nd6_prelist_add will install the corresponding
703 * interface route.
704 */
705 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
706 return error;
707 if (pr == NULL) {
708 log(LOG_ERR, "nd6_prelist_add succeeded but "
709 "no prefix\n");
710 return EINVAL; /* XXX panic here? */
711 }
712 }
713
714 /* relate the address to the prefix */
715 if (ia->ia6_ndpr == NULL) {
716 ia->ia6_ndpr = pr;
717 pr->ndpr_refcnt++;
718
719 /*
720 * If this is the first autoconf address from the
721 * prefix, create a temporary address as well
722 * (when required).
723 */
724 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
725 ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
726 int e;
727 if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
728 log(LOG_NOTICE, "in6_control: failed "
729 "to create a temporary address, "
730 "errno=%d\n", e);
731 }
732 }
733 }
734
735 /*
736 * this might affect the status of autoconfigured addresses,
737 * that is, this address might make other addresses detached.
738 */
739 pfxlist_onlink_check();
740
741 #ifdef PFIL_HOOKS
742 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCAIFADDR_IN6,
743 ifp, PFIL_IFADDR);
744 #endif
745
746 break;
747 }
748
749 case SIOCDIFADDR_IN6:
750 {
751 struct nd_prefix *pr;
752
753 /*
754 * If the address being deleted is the only one that owns
755 * the corresponding prefix, expire the prefix as well.
756 * XXX: theoretically, we don't have to worry about such
757 * relationship, since we separate the address management
758 * and the prefix management. We do this, however, to provide
759 * as much backward compatibility as possible in terms of
760 * the ioctl operation.
761 * Note that in6_purgeaddr() will decrement ndpr_refcnt.
762 */
763 pr = ia->ia6_ndpr;
764 in6_purgeaddr(&ia->ia_ifa);
765 if (pr && pr->ndpr_refcnt == 0)
766 prelist_remove(pr);
767 #ifdef PFIL_HOOKS
768 (void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCDIFADDR_IN6,
769 ifp, PFIL_IFADDR);
770 #endif
771 break;
772 }
773
774 default:
775 return ENOTTY;
776 }
777
778 return 0;
779 }
780
781 int
782 in6_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
783 struct lwp *l)
784 {
785 int error, s;
786
787 switch (cmd) {
788 case SIOCSNDFLUSH_IN6:
789 case SIOCSPFXFLUSH_IN6:
790 case SIOCSRTRFLUSH_IN6:
791 case SIOCSDEFIFACE_IN6:
792 case SIOCSIFINFO_FLAGS:
793 case SIOCSIFINFO_IN6:
794
795 case SIOCALIFADDR:
796 case SIOCDLIFADDR:
797
798 case SIOCDIFADDR_IN6:
799 #ifdef OSIOCAIFADDR_IN6
800 case OSIOCAIFADDR_IN6:
801 #endif
802 case SIOCAIFADDR_IN6:
803 if (l == NULL || kauth_authorize_generic(l->l_cred,
804 KAUTH_GENERIC_ISSUSER, NULL))
805 return EPERM;
806 break;
807 }
808
809 s = splnet();
810 error = in6_control1(so , cmd, data, ifp, l);
811 splx(s);
812 return error;
813 }
814
815 /*
816 * Update parameters of an IPv6 interface address.
817 * If necessary, a new entry is created and linked into address chains.
818 * This function is separated from in6_control().
819 * XXX: should this be performed under splnet()?
820 */
821 static int
822 in6_update_ifa1(struct ifnet *ifp, struct in6_aliasreq *ifra,
823 struct in6_ifaddr *ia, int flags)
824 {
825 int error = 0, hostIsNew = 0, plen = -1;
826 struct in6_ifaddr *oia;
827 struct sockaddr_in6 dst6;
828 struct in6_addrlifetime *lt;
829 struct in6_multi_mship *imm;
830 struct in6_multi *in6m_sol;
831 struct rtentry *rt;
832 int dad_delay;
833
834 in6m_sol = NULL;
835
836 /* Validate parameters */
837 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
838 return EINVAL;
839
840 /*
841 * The destination address for a p2p link must have a family
842 * of AF_UNSPEC or AF_INET6.
843 */
844 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
845 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
846 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
847 return EAFNOSUPPORT;
848 /*
849 * validate ifra_prefixmask. don't check sin6_family, netmask
850 * does not carry fields other than sin6_len.
851 */
852 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
853 return EINVAL;
854 /*
855 * Because the IPv6 address architecture is classless, we require
856 * users to specify a (non 0) prefix length (mask) for a new address.
857 * We also require the prefix (when specified) mask is valid, and thus
858 * reject a non-consecutive mask.
859 */
860 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
861 return EINVAL;
862 if (ifra->ifra_prefixmask.sin6_len != 0) {
863 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
864 (u_char *)&ifra->ifra_prefixmask +
865 ifra->ifra_prefixmask.sin6_len);
866 if (plen <= 0)
867 return EINVAL;
868 } else {
869 /*
870 * In this case, ia must not be NULL. We just use its prefix
871 * length.
872 */
873 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
874 }
875 /*
876 * If the destination address on a p2p interface is specified,
877 * and the address is a scoped one, validate/set the scope
878 * zone identifier.
879 */
880 dst6 = ifra->ifra_dstaddr;
881 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
882 (dst6.sin6_family == AF_INET6)) {
883 struct in6_addr in6_tmp;
884 u_int32_t zoneid;
885
886 in6_tmp = dst6.sin6_addr;
887 if (in6_setscope(&in6_tmp, ifp, &zoneid))
888 return EINVAL; /* XXX: should be impossible */
889
890 if (dst6.sin6_scope_id != 0) {
891 if (dst6.sin6_scope_id != zoneid)
892 return EINVAL;
893 } else /* user omit to specify the ID. */
894 dst6.sin6_scope_id = zoneid;
895
896 /* convert into the internal form */
897 if (sa6_embedscope(&dst6, 0))
898 return EINVAL; /* XXX: should be impossible */
899 }
900 /*
901 * The destination address can be specified only for a p2p or a
902 * loopback interface. If specified, the corresponding prefix length
903 * must be 128.
904 */
905 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
906 #ifdef FORCE_P2PPLEN
907 int i;
908 #endif
909
910 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
911 /* XXX: noisy message */
912 nd6log((LOG_INFO, "in6_update_ifa: a destination can "
913 "be specified for a p2p or a loopback IF only\n"));
914 return EINVAL;
915 }
916 if (plen != 128) {
917 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
918 "be 128 when dstaddr is specified\n"));
919 #ifdef FORCE_P2PPLEN
920 /*
921 * To be compatible with old configurations,
922 * such as ifconfig gif0 inet6 2001::1 2001::2
923 * prefixlen 126, we override the specified
924 * prefixmask as if the prefix length was 128.
925 */
926 ifra->ifra_prefixmask.sin6_len =
927 sizeof(struct sockaddr_in6);
928 for (i = 0; i < 4; i++)
929 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
930 0xffffffff;
931 plen = 128;
932 #else
933 return EINVAL;
934 #endif
935 }
936 }
937 /* lifetime consistency check */
938 lt = &ifra->ifra_lifetime;
939 if (lt->ia6t_pltime > lt->ia6t_vltime)
940 return EINVAL;
941 if (lt->ia6t_vltime == 0) {
942 /*
943 * the following log might be noisy, but this is a typical
944 * configuration mistake or a tool's bug.
945 */
946 nd6log((LOG_INFO,
947 "in6_update_ifa: valid lifetime is 0 for %s\n",
948 ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
949
950 if (ia == NULL)
951 return 0; /* there's nothing to do */
952 }
953
954 /*
955 * If this is a new address, allocate a new ifaddr and link it
956 * into chains.
957 */
958 if (ia == NULL) {
959 hostIsNew = 1;
960 /*
961 * When in6_update_ifa() is called in a process of a received
962 * RA, it is called under an interrupt context. So, we should
963 * call malloc with M_NOWAIT.
964 */
965 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
966 M_NOWAIT);
967 if (ia == NULL)
968 return ENOBUFS;
969 memset(ia, 0, sizeof(*ia));
970 LIST_INIT(&ia->ia6_memberships);
971 /* Initialize the address and masks, and put time stamp */
972 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
973 ia->ia_addr.sin6_family = AF_INET6;
974 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
975 ia->ia6_createtime = time_second;
976 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
977 /*
978 * XXX: some functions expect that ifa_dstaddr is not
979 * NULL for p2p interfaces.
980 */
981 ia->ia_ifa.ifa_dstaddr =
982 (struct sockaddr *)&ia->ia_dstaddr;
983 } else {
984 ia->ia_ifa.ifa_dstaddr = NULL;
985 }
986 ia->ia_ifa.ifa_netmask =
987 (struct sockaddr *)&ia->ia_prefixmask;
988
989 ia->ia_ifp = ifp;
990 if ((oia = in6_ifaddr) != NULL) {
991 for ( ; oia->ia_next; oia = oia->ia_next)
992 continue;
993 oia->ia_next = ia;
994 } else
995 in6_ifaddr = ia;
996 /* gain a refcnt for the link from in6_ifaddr */
997 IFAREF(&ia->ia_ifa);
998
999 ifa_insert(ifp, &ia->ia_ifa);
1000 }
1001
1002 /* update timestamp */
1003 ia->ia6_updatetime = time_second;
1004
1005 /* set prefix mask */
1006 if (ifra->ifra_prefixmask.sin6_len) {
1007 /*
1008 * We prohibit changing the prefix length of an existing
1009 * address, because
1010 * + such an operation should be rare in IPv6, and
1011 * + the operation would confuse prefix management.
1012 */
1013 if (ia->ia_prefixmask.sin6_len &&
1014 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
1015 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
1016 " existing (%s) address should not be changed\n",
1017 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1018 error = EINVAL;
1019 goto unlink;
1020 }
1021 ia->ia_prefixmask = ifra->ifra_prefixmask;
1022 }
1023
1024 /*
1025 * If a new destination address is specified, scrub the old one and
1026 * install the new destination. Note that the interface must be
1027 * p2p or loopback (see the check above.)
1028 */
1029 if (dst6.sin6_family == AF_INET6 &&
1030 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
1031 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
1032 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0) {
1033 nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
1034 "a route to the old destination: %s\n",
1035 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1036 /* proceed anyway... */
1037 } else
1038 ia->ia_flags &= ~IFA_ROUTE;
1039 ia->ia_dstaddr = dst6;
1040 }
1041
1042 /*
1043 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
1044 * to see if the address is deprecated or invalidated, but initialize
1045 * these members for applications.
1046 */
1047 ia->ia6_lifetime = ifra->ifra_lifetime;
1048 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1049 ia->ia6_lifetime.ia6t_expire =
1050 time_second + ia->ia6_lifetime.ia6t_vltime;
1051 } else
1052 ia->ia6_lifetime.ia6t_expire = 0;
1053 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1054 ia->ia6_lifetime.ia6t_preferred =
1055 time_second + ia->ia6_lifetime.ia6t_pltime;
1056 } else
1057 ia->ia6_lifetime.ia6t_preferred = 0;
1058
1059 /* reset the interface and routing table appropriately. */
1060 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1061 goto unlink;
1062
1063 /*
1064 * configure address flags.
1065 */
1066 ia->ia6_flags = ifra->ifra_flags;
1067 /*
1068 * backward compatibility - if IN6_IFF_DEPRECATED is set from the
1069 * userland, make it deprecated.
1070 */
1071 if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
1072 ia->ia6_lifetime.ia6t_pltime = 0;
1073 ia->ia6_lifetime.ia6t_preferred = time_second;
1074 }
1075
1076 /*
1077 * Make the address tentative before joining multicast addresses,
1078 * so that corresponding MLD responses would not have a tentative
1079 * source address.
1080 */
1081 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
1082 if (hostIsNew && in6if_do_dad(ifp))
1083 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1084
1085 /*
1086 * We are done if we have simply modified an existing address.
1087 */
1088 if (!hostIsNew)
1089 return error;
1090
1091 /*
1092 * Beyond this point, we should call in6_purgeaddr upon an error,
1093 * not just go to unlink.
1094 */
1095
1096 /* join necessary multicast groups */
1097 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1098 struct sockaddr_in6 mltaddr, mltmask;
1099 struct in6_addr llsol;
1100
1101 /* join solicited multicast addr for new host id */
1102 memset(&llsol, 0, sizeof(struct in6_addr));
1103 llsol.s6_addr16[0] = htons(0xff02);
1104 llsol.s6_addr32[1] = 0;
1105 llsol.s6_addr32[2] = htonl(1);
1106 llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
1107 llsol.s6_addr8[12] = 0xff;
1108 if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
1109 /* XXX: should not happen */
1110 log(LOG_ERR, "in6_update_ifa: "
1111 "in6_setscope failed\n");
1112 goto cleanup;
1113 }
1114 dad_delay = 0;
1115 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1116 /*
1117 * We need a random delay for DAD on the address
1118 * being configured. It also means delaying
1119 * transmission of the corresponding MLD report to
1120 * avoid report collision.
1121 * [draft-ietf-ipv6-rfc2462bis-02.txt]
1122 */
1123 dad_delay = cprng_fast32() %
1124 (MAX_RTR_SOLICITATION_DELAY * hz);
1125 }
1126
1127 #define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */
1128 /* join solicited multicast addr for new host id */
1129 imm = in6_joingroup(ifp, &llsol, &error, dad_delay);
1130 if (!imm) {
1131 nd6log((LOG_ERR,
1132 "in6_update_ifa: addmulti "
1133 "failed for %s on %s (errno=%d)\n",
1134 ip6_sprintf(&llsol), if_name(ifp), error));
1135 goto cleanup;
1136 }
1137 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1138 in6m_sol = imm->i6mm_maddr;
1139
1140 sockaddr_in6_init(&mltmask, &in6mask32, 0, 0, 0);
1141
1142 /*
1143 * join link-local all-nodes address
1144 */
1145 sockaddr_in6_init(&mltaddr, &in6addr_linklocal_allnodes,
1146 0, 0, 0);
1147 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1148 goto cleanup; /* XXX: should not fail */
1149
1150 /*
1151 * XXX: do we really need this automatic routes?
1152 * We should probably reconsider this stuff. Most applications
1153 * actually do not need the routes, since they usually specify
1154 * the outgoing interface.
1155 */
1156 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1157 if (rt) {
1158 if (memcmp(&mltaddr.sin6_addr,
1159 &satocsin6(rt_getkey(rt))->sin6_addr,
1160 MLTMASK_LEN)) {
1161 RTFREE(rt);
1162 rt = NULL;
1163 } else if (rt->rt_ifp != ifp) {
1164 IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) "
1165 "network %04x:%04x::/32 = %04x:%04x::/32\n",
1166 __func__, rt->rt_ifp, ifp, ifp->if_xname,
1167 ntohs(mltaddr.sin6_addr.s6_addr16[0]),
1168 ntohs(mltaddr.sin6_addr.s6_addr16[1]),
1169 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0],
1170 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]);
1171 rt_replace_ifa(rt, &ia->ia_ifa);
1172 rt->rt_ifp = ifp;
1173 }
1174 }
1175 if (!rt) {
1176 struct rt_addrinfo info;
1177
1178 memset(&info, 0, sizeof(info));
1179 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1180 info.rti_info[RTAX_GATEWAY] =
1181 (struct sockaddr *)&ia->ia_addr;
1182 info.rti_info[RTAX_NETMASK] =
1183 (struct sockaddr *)&mltmask;
1184 info.rti_info[RTAX_IFA] =
1185 (struct sockaddr *)&ia->ia_addr;
1186 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1187 info.rti_flags = RTF_UP | RTF_CLONING;
1188 error = rtrequest1(RTM_ADD, &info, NULL);
1189 if (error)
1190 goto cleanup;
1191 } else {
1192 RTFREE(rt);
1193 }
1194 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1195 if (!imm) {
1196 nd6log((LOG_WARNING,
1197 "in6_update_ifa: addmulti failed for "
1198 "%s on %s (errno=%d)\n",
1199 ip6_sprintf(&mltaddr.sin6_addr),
1200 if_name(ifp), error));
1201 goto cleanup;
1202 }
1203 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1204
1205 /*
1206 * join node information group address
1207 */
1208 dad_delay = 0;
1209 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1210 /*
1211 * The spec doesn't say anything about delay for this
1212 * group, but the same logic should apply.
1213 */
1214 dad_delay = cprng_fast32() %
1215 (MAX_RTR_SOLICITATION_DELAY * hz);
1216 }
1217 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) != 0)
1218 ;
1219 else if ((imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
1220 dad_delay)) == NULL) { /* XXX jinmei */
1221 nd6log((LOG_WARNING, "in6_update_ifa: "
1222 "addmulti failed for %s on %s (errno=%d)\n",
1223 ip6_sprintf(&mltaddr.sin6_addr),
1224 if_name(ifp), error));
1225 /* XXX not very fatal, go on... */
1226 } else {
1227 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1228 }
1229
1230
1231 /*
1232 * join interface-local all-nodes address.
1233 * (ff01::1%ifN, and ff01::%ifN/32)
1234 */
1235 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1236 if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
1237 goto cleanup; /* XXX: should not fail */
1238
1239 /* XXX: again, do we really need the route? */
1240 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1241 if (rt) {
1242 /* 32bit came from "mltmask" */
1243 if (memcmp(&mltaddr.sin6_addr,
1244 &satocsin6(rt_getkey(rt))->sin6_addr,
1245 32 / NBBY)) {
1246 RTFREE(rt);
1247 rt = NULL;
1248 } else if (rt->rt_ifp != ifp) {
1249 IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) "
1250 "network %04x:%04x::/32 = %04x:%04x::/32\n",
1251 __func__, rt->rt_ifp, ifp, ifp->if_xname,
1252 ntohs(mltaddr.sin6_addr.s6_addr16[0]),
1253 ntohs(mltaddr.sin6_addr.s6_addr16[1]),
1254 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0],
1255 satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]);
1256 rt_replace_ifa(rt, &ia->ia_ifa);
1257 rt->rt_ifp = ifp;
1258 }
1259 }
1260 if (!rt) {
1261 struct rt_addrinfo info;
1262
1263 memset(&info, 0, sizeof(info));
1264 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1265 info.rti_info[RTAX_GATEWAY] =
1266 (struct sockaddr *)&ia->ia_addr;
1267 info.rti_info[RTAX_NETMASK] =
1268 (struct sockaddr *)&mltmask;
1269 info.rti_info[RTAX_IFA] =
1270 (struct sockaddr *)&ia->ia_addr;
1271 info.rti_flags = RTF_UP | RTF_CLONING;
1272 error = rtrequest1(RTM_ADD, &info, NULL);
1273 if (error)
1274 goto cleanup;
1275 #undef MLTMASK_LEN
1276 } else {
1277 RTFREE(rt);
1278 }
1279 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
1280 if (!imm) {
1281 nd6log((LOG_WARNING, "in6_update_ifa: "
1282 "addmulti failed for %s on %s (errno=%d)\n",
1283 ip6_sprintf(&mltaddr.sin6_addr),
1284 if_name(ifp), error));
1285 goto cleanup;
1286 } else {
1287 LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
1288 }
1289 }
1290
1291 /*
1292 * Perform DAD, if needed.
1293 * XXX It may be of use, if we can administratively
1294 * disable DAD.
1295 */
1296 if (hostIsNew && in6if_do_dad(ifp) &&
1297 ((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
1298 (ia->ia6_flags & IN6_IFF_TENTATIVE))
1299 {
1300 int mindelay, maxdelay;
1301
1302 dad_delay = 0;
1303 if ((flags & IN6_IFAUPDATE_DADDELAY)) {
1304 /*
1305 * We need to impose a delay before sending an NS
1306 * for DAD. Check if we also needed a delay for the
1307 * corresponding MLD message. If we did, the delay
1308 * should be larger than the MLD delay (this could be
1309 * relaxed a bit, but this simple logic is at least
1310 * safe).
1311 */
1312 mindelay = 0;
1313 if (in6m_sol != NULL &&
1314 in6m_sol->in6m_state == MLD_REPORTPENDING) {
1315 mindelay = in6m_sol->in6m_timer;
1316 }
1317 maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
1318 if (maxdelay - mindelay == 0)
1319 dad_delay = 0;
1320 else {
1321 dad_delay =
1322 (cprng_fast32() % (maxdelay - mindelay)) +
1323 mindelay;
1324 }
1325 }
1326 nd6_dad_start(&ia->ia_ifa, dad_delay);
1327 }
1328
1329 return error;
1330
1331 unlink:
1332 /*
1333 * XXX: if a change of an existing address failed, keep the entry
1334 * anyway.
1335 */
1336 if (hostIsNew)
1337 in6_unlink_ifa(ia, ifp);
1338 return error;
1339
1340 cleanup:
1341 in6_purgeaddr(&ia->ia_ifa);
1342 return error;
1343 }
1344
1345 int
1346 in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra,
1347 struct in6_ifaddr *ia, int flags)
1348 {
1349 int rc, s;
1350
1351 s = splnet();
1352 rc = in6_update_ifa1(ifp, ifra, ia, flags);
1353 splx(s);
1354 return rc;
1355 }
1356
1357 void
1358 in6_purgeaddr(struct ifaddr *ifa)
1359 {
1360 struct ifnet *ifp = ifa->ifa_ifp;
1361 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1362 struct in6_multi_mship *imm;
1363
1364 /* stop DAD processing */
1365 nd6_dad_stop(ifa);
1366
1367 /*
1368 * delete route to the destination of the address being purged.
1369 * The interface must be p2p or loopback in this case.
1370 */
1371 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1372 int e;
1373
1374 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1375 != 0) {
1376 log(LOG_ERR, "in6_purgeaddr: failed to remove "
1377 "a route to the p2p destination: %s on %s, "
1378 "errno=%d\n",
1379 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1380 e);
1381 /* proceed anyway... */
1382 } else
1383 ia->ia_flags &= ~IFA_ROUTE;
1384 }
1385
1386 /* Remove ownaddr's loopback rtentry, if it exists. */
1387 in6_ifremloop(&(ia->ia_ifa));
1388
1389 /*
1390 * leave from multicast groups we have joined for the interface
1391 */
1392 while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) {
1393 LIST_REMOVE(imm, i6mm_chain);
1394 in6_leavegroup(imm);
1395 }
1396
1397 in6_unlink_ifa(ia, ifp);
1398 }
1399
1400 static void
1401 in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
1402 {
1403 struct in6_ifaddr *oia;
1404 int s = splnet();
1405
1406 ifa_remove(ifp, &ia->ia_ifa);
1407
1408 oia = ia;
1409 if (oia == (ia = in6_ifaddr))
1410 in6_ifaddr = ia->ia_next;
1411 else {
1412 while (ia->ia_next && (ia->ia_next != oia))
1413 ia = ia->ia_next;
1414 if (ia->ia_next)
1415 ia->ia_next = oia->ia_next;
1416 else {
1417 /* search failed */
1418 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1419 }
1420 }
1421
1422 /*
1423 * XXX thorpej (at) NetBSD.org -- if the interface is going
1424 * XXX away, don't save the multicast entries, delete them!
1425 */
1426 if (LIST_EMPTY(&oia->ia6_multiaddrs))
1427 ;
1428 else if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
1429 struct in6_multi *in6m, *next;
1430
1431 for (in6m = LIST_FIRST(&oia->ia6_multiaddrs); in6m != NULL;
1432 in6m = next) {
1433 next = LIST_NEXT(in6m, in6m_entry);
1434 in6_delmulti(in6m);
1435 }
1436 } else
1437 in6_savemkludge(oia);
1438
1439 /*
1440 * Release the reference to the base prefix. There should be a
1441 * positive reference.
1442 */
1443 if (oia->ia6_ndpr == NULL) {
1444 nd6log((LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1445 "%p has no prefix\n", oia));
1446 } else {
1447 oia->ia6_ndpr->ndpr_refcnt--;
1448 oia->ia6_ndpr = NULL;
1449 }
1450
1451 /*
1452 * Also, if the address being removed is autoconf'ed, call
1453 * pfxlist_onlink_check() since the release might affect the status of
1454 * other (detached) addresses.
1455 */
1456 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0)
1457 pfxlist_onlink_check();
1458
1459 /*
1460 * release another refcnt for the link from in6_ifaddr.
1461 * Note that we should decrement the refcnt at least once for all *BSD.
1462 */
1463 IFAFREE(&oia->ia_ifa);
1464
1465 splx(s);
1466 }
1467
1468 void
1469 in6_purgeif(struct ifnet *ifp)
1470 {
1471 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr);
1472
1473 in6_ifdetach(ifp);
1474 }
1475
1476 /*
1477 * SIOC[GAD]LIFADDR.
1478 * SIOCGLIFADDR: get first address. (?)
1479 * SIOCGLIFADDR with IFLR_PREFIX:
1480 * get first address that matches the specified prefix.
1481 * SIOCALIFADDR: add the specified address.
1482 * SIOCALIFADDR with IFLR_PREFIX:
1483 * add the specified prefix, filling hostid part from
1484 * the first link-local address. prefixlen must be <= 64.
1485 * SIOCDLIFADDR: delete the specified address.
1486 * SIOCDLIFADDR with IFLR_PREFIX:
1487 * delete the first address that matches the specified prefix.
1488 * return values:
1489 * EINVAL on invalid parameters
1490 * EADDRNOTAVAIL on prefix match failed/specified address not found
1491 * other values may be returned from in6_ioctl()
1492 *
1493 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1494 * this is to accommodate address naming scheme other than RFC2374,
1495 * in the future.
1496 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1497 * address encoding scheme. (see figure on page 8)
1498 */
1499 static int
1500 in6_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
1501 struct ifnet *ifp, struct lwp *l)
1502 {
1503 struct in6_ifaddr *ia;
1504 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1505 struct ifaddr *ifa;
1506 struct sockaddr *sa;
1507
1508 /* sanity checks */
1509 if (!data || !ifp) {
1510 panic("invalid argument to in6_lifaddr_ioctl");
1511 /* NOTREACHED */
1512 }
1513
1514 switch (cmd) {
1515 case SIOCGLIFADDR:
1516 /* address must be specified on GET with IFLR_PREFIX */
1517 if ((iflr->flags & IFLR_PREFIX) == 0)
1518 break;
1519 /* FALLTHROUGH */
1520 case SIOCALIFADDR:
1521 case SIOCDLIFADDR:
1522 /* address must be specified on ADD and DELETE */
1523 sa = (struct sockaddr *)&iflr->addr;
1524 if (sa->sa_family != AF_INET6)
1525 return EINVAL;
1526 if (sa->sa_len != sizeof(struct sockaddr_in6))
1527 return EINVAL;
1528 /* XXX need improvement */
1529 sa = (struct sockaddr *)&iflr->dstaddr;
1530 if (sa->sa_family && sa->sa_family != AF_INET6)
1531 return EINVAL;
1532 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1533 return EINVAL;
1534 break;
1535 default: /* shouldn't happen */
1536 #if 0
1537 panic("invalid cmd to in6_lifaddr_ioctl");
1538 /* NOTREACHED */
1539 #else
1540 return EOPNOTSUPP;
1541 #endif
1542 }
1543 if (sizeof(struct in6_addr) * NBBY < iflr->prefixlen)
1544 return EINVAL;
1545
1546 switch (cmd) {
1547 case SIOCALIFADDR:
1548 {
1549 struct in6_aliasreq ifra;
1550 struct in6_addr *xhostid = NULL;
1551 int prefixlen;
1552
1553 if ((iflr->flags & IFLR_PREFIX) != 0) {
1554 struct sockaddr_in6 *sin6;
1555
1556 /*
1557 * xhostid is to fill in the hostid part of the
1558 * address. xhostid points to the first link-local
1559 * address attached to the interface.
1560 */
1561 ia = in6ifa_ifpforlinklocal(ifp, 0);
1562 if (ia == NULL)
1563 return EADDRNOTAVAIL;
1564 xhostid = IFA_IN6(&ia->ia_ifa);
1565
1566 /* prefixlen must be <= 64. */
1567 if (64 < iflr->prefixlen)
1568 return EINVAL;
1569 prefixlen = iflr->prefixlen;
1570
1571 /* hostid part must be zero. */
1572 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1573 if (sin6->sin6_addr.s6_addr32[2] != 0
1574 || sin6->sin6_addr.s6_addr32[3] != 0) {
1575 return EINVAL;
1576 }
1577 } else
1578 prefixlen = iflr->prefixlen;
1579
1580 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1581 memset(&ifra, 0, sizeof(ifra));
1582 memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name));
1583
1584 memcpy(&ifra.ifra_addr, &iflr->addr,
1585 ((struct sockaddr *)&iflr->addr)->sa_len);
1586 if (xhostid) {
1587 /* fill in hostid part */
1588 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1589 xhostid->s6_addr32[2];
1590 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1591 xhostid->s6_addr32[3];
1592 }
1593
1594 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1595 memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
1596 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1597 if (xhostid) {
1598 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1599 xhostid->s6_addr32[2];
1600 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1601 xhostid->s6_addr32[3];
1602 }
1603 }
1604
1605 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1606 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1607
1608 ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME;
1609 ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME;
1610 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1611 return in6_control(so, SIOCAIFADDR_IN6, &ifra, ifp, l);
1612 }
1613 case SIOCGLIFADDR:
1614 case SIOCDLIFADDR:
1615 {
1616 struct in6_addr mask, candidate, match;
1617 struct sockaddr_in6 *sin6;
1618 int cmp;
1619
1620 memset(&mask, 0, sizeof(mask));
1621 if (iflr->flags & IFLR_PREFIX) {
1622 /* lookup a prefix rather than address. */
1623 in6_prefixlen2mask(&mask, iflr->prefixlen);
1624
1625 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1626 memcpy(&match, &sin6->sin6_addr, sizeof(match));
1627 match.s6_addr32[0] &= mask.s6_addr32[0];
1628 match.s6_addr32[1] &= mask.s6_addr32[1];
1629 match.s6_addr32[2] &= mask.s6_addr32[2];
1630 match.s6_addr32[3] &= mask.s6_addr32[3];
1631
1632 /* if you set extra bits, that's wrong */
1633 if (memcmp(&match, &sin6->sin6_addr, sizeof(match)))
1634 return EINVAL;
1635
1636 cmp = 1;
1637 } else {
1638 if (cmd == SIOCGLIFADDR) {
1639 /* on getting an address, take the 1st match */
1640 cmp = 0; /* XXX */
1641 } else {
1642 /* on deleting an address, do exact match */
1643 in6_prefixlen2mask(&mask, 128);
1644 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1645 memcpy(&match, &sin6->sin6_addr, sizeof(match));
1646
1647 cmp = 1;
1648 }
1649 }
1650
1651 IFADDR_FOREACH(ifa, ifp) {
1652 if (ifa->ifa_addr->sa_family != AF_INET6)
1653 continue;
1654 if (!cmp)
1655 break;
1656
1657 /*
1658 * XXX: this is adhoc, but is necessary to allow
1659 * a user to specify fe80::/64 (not /10) for a
1660 * link-local address.
1661 */
1662 memcpy(&candidate, IFA_IN6(ifa), sizeof(candidate));
1663 in6_clearscope(&candidate);
1664 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1665 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1666 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1667 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1668 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1669 break;
1670 }
1671 if (!ifa)
1672 return EADDRNOTAVAIL;
1673 ia = ifa2ia6(ifa);
1674
1675 if (cmd == SIOCGLIFADDR) {
1676 int error;
1677
1678 /* fill in the if_laddrreq structure */
1679 memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin6_len);
1680 error = sa6_recoverscope(
1681 (struct sockaddr_in6 *)&iflr->addr);
1682 if (error != 0)
1683 return error;
1684
1685 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1686 memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
1687 ia->ia_dstaddr.sin6_len);
1688 error = sa6_recoverscope(
1689 (struct sockaddr_in6 *)&iflr->dstaddr);
1690 if (error != 0)
1691 return error;
1692 } else
1693 memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
1694
1695 iflr->prefixlen =
1696 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1697
1698 iflr->flags = ia->ia6_flags; /* XXX */
1699
1700 return 0;
1701 } else {
1702 struct in6_aliasreq ifra;
1703
1704 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1705 memset(&ifra, 0, sizeof(ifra));
1706 memcpy(ifra.ifra_name, iflr->iflr_name,
1707 sizeof(ifra.ifra_name));
1708
1709 memcpy(&ifra.ifra_addr, &ia->ia_addr,
1710 ia->ia_addr.sin6_len);
1711 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1712 memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
1713 ia->ia_dstaddr.sin6_len);
1714 } else {
1715 memset(&ifra.ifra_dstaddr, 0,
1716 sizeof(ifra.ifra_dstaddr));
1717 }
1718 memcpy(&ifra.ifra_dstaddr, &ia->ia_prefixmask,
1719 ia->ia_prefixmask.sin6_len);
1720
1721 ifra.ifra_flags = ia->ia6_flags;
1722 return in6_control(so, SIOCDIFADDR_IN6, &ifra, ifp, l);
1723 }
1724 }
1725 }
1726
1727 return EOPNOTSUPP; /* just for safety */
1728 }
1729
1730 /*
1731 * Initialize an interface's internet6 address
1732 * and routing table entry.
1733 */
1734 static int
1735 in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia,
1736 const struct sockaddr_in6 *sin6, int newhost)
1737 {
1738 int error = 0, plen, ifacount = 0;
1739 int s = splnet();
1740 struct ifaddr *ifa;
1741
1742 /*
1743 * Give the interface a chance to initialize
1744 * if this is its first address,
1745 * and to validate the address if necessary.
1746 */
1747 IFADDR_FOREACH(ifa, ifp) {
1748 if (ifa->ifa_addr == NULL)
1749 continue; /* just for safety */
1750 if (ifa->ifa_addr->sa_family != AF_INET6)
1751 continue;
1752 ifacount++;
1753 }
1754
1755 ia->ia_addr = *sin6;
1756
1757 if (ifacount <= 1 &&
1758 (error = if_addr_init(ifp, &ia->ia_ifa, true)) != 0) {
1759 splx(s);
1760 return error;
1761 }
1762 splx(s);
1763
1764 ia->ia_ifa.ifa_metric = ifp->if_metric;
1765
1766 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1767
1768 /*
1769 * Special case:
1770 * If the destination address is specified for a point-to-point
1771 * interface, install a route to the destination as an interface
1772 * direct route.
1773 */
1774 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1775 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1776 if ((error = rtinit(&ia->ia_ifa, RTM_ADD,
1777 RTF_UP | RTF_HOST)) != 0)
1778 return error;
1779 ia->ia_flags |= IFA_ROUTE;
1780 }
1781
1782 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1783 if (newhost) {
1784 /* set the rtrequest function to create llinfo */
1785 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1786 in6_ifaddloop(&ia->ia_ifa);
1787 }
1788
1789 if (ifp->if_flags & IFF_MULTICAST)
1790 in6_restoremkludge(ia, ifp);
1791
1792 return error;
1793 }
1794
1795 static struct ifaddr *
1796 bestifa(struct ifaddr *best_ifa, struct ifaddr *ifa)
1797 {
1798 if (best_ifa == NULL || best_ifa->ifa_preference < ifa->ifa_preference)
1799 return ifa;
1800 return best_ifa;
1801 }
1802
1803 /*
1804 * Find an IPv6 interface link-local address specific to an interface.
1805 */
1806 struct in6_ifaddr *
1807 in6ifa_ifpforlinklocal(const struct ifnet *ifp, const int ignoreflags)
1808 {
1809 struct ifaddr *best_ifa = NULL, *ifa;
1810
1811 IFADDR_FOREACH(ifa, ifp) {
1812 if (ifa->ifa_addr == NULL)
1813 continue; /* just for safety */
1814 if (ifa->ifa_addr->sa_family != AF_INET6)
1815 continue;
1816 if (!IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa)))
1817 continue;
1818 if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0)
1819 continue;
1820 best_ifa = bestifa(best_ifa, ifa);
1821 }
1822
1823 return (struct in6_ifaddr *)best_ifa;
1824 }
1825
1826
1827 /*
1828 * find the internet address corresponding to a given interface and address.
1829 */
1830 struct in6_ifaddr *
1831 in6ifa_ifpwithaddr(const struct ifnet *ifp, const struct in6_addr *addr)
1832 {
1833 struct ifaddr *best_ifa = NULL, *ifa;
1834
1835 IFADDR_FOREACH(ifa, ifp) {
1836 if (ifa->ifa_addr == NULL)
1837 continue; /* just for safety */
1838 if (ifa->ifa_addr->sa_family != AF_INET6)
1839 continue;
1840 if (!IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1841 continue;
1842 best_ifa = bestifa(best_ifa, ifa);
1843 }
1844
1845 return (struct in6_ifaddr *)best_ifa;
1846 }
1847
1848 static struct in6_ifaddr *
1849 bestia(struct in6_ifaddr *best_ia, struct in6_ifaddr *ia)
1850 {
1851 if (best_ia == NULL ||
1852 best_ia->ia_ifa.ifa_preference < ia->ia_ifa.ifa_preference)
1853 return ia;
1854 return best_ia;
1855 }
1856
1857 /*
1858 * find the internet address on a given interface corresponding to a neighbor's
1859 * address.
1860 */
1861 struct in6_ifaddr *
1862 in6ifa_ifplocaladdr(const struct ifnet *ifp, const struct in6_addr *addr)
1863 {
1864 struct ifaddr *ifa;
1865 struct in6_ifaddr *best_ia = NULL, *ia;
1866
1867 IFADDR_FOREACH(ifa, ifp) {
1868 if (ifa->ifa_addr == NULL)
1869 continue; /* just for safety */
1870 if (ifa->ifa_addr->sa_family != AF_INET6)
1871 continue;
1872 ia = (struct in6_ifaddr *)ifa;
1873 if (!IN6_ARE_MASKED_ADDR_EQUAL(addr,
1874 &ia->ia_addr.sin6_addr,
1875 &ia->ia_prefixmask.sin6_addr))
1876 continue;
1877 best_ia = bestia(best_ia, ia);
1878 }
1879
1880 return best_ia;
1881 }
1882
1883 /*
1884 * Convert IP6 address to printable (loggable) representation.
1885 */
1886 static int ip6round = 0;
1887 char *
1888 ip6_sprintf(const struct in6_addr *addr)
1889 {
1890 static char ip6buf[8][48];
1891 int i;
1892 char *bp;
1893 char *cp;
1894 const u_int16_t *a = (const u_int16_t *)addr;
1895 const u_int8_t *d;
1896 int dcolon = 0;
1897
1898 ip6round = (ip6round + 1) & 7;
1899 cp = ip6buf[ip6round];
1900
1901 for (i = 0; i < 8; i++) {
1902 if (dcolon == 1) {
1903 if (*a == 0) {
1904 if (i == 7)
1905 *cp++ = ':';
1906 a++;
1907 continue;
1908 } else
1909 dcolon = 2;
1910 }
1911 if (*a == 0) {
1912 if (dcolon == 0 && *(a + 1) == 0) {
1913 if (i == 0)
1914 *cp++ = ':';
1915 *cp++ = ':';
1916 dcolon = 1;
1917 } else {
1918 *cp++ = '0';
1919 *cp++ = ':';
1920 }
1921 a++;
1922 continue;
1923 }
1924 d = (const u_char *)a;
1925 bp = cp;
1926 *cp = hexdigits[*d >> 4];
1927 if (*cp != '0')
1928 cp++;
1929 *cp = hexdigits[*d++ & 0xf];
1930 if (cp != bp || *cp != '0')
1931 cp++;
1932 *cp = hexdigits[*d >> 4];
1933 if (cp != bp || *cp != '0')
1934 cp++;
1935 *cp++ = hexdigits[*d & 0xf];
1936 *cp++ = ':';
1937 a++;
1938 }
1939 *--cp = 0;
1940 return ip6buf[ip6round];
1941 }
1942
1943 /*
1944 * Determine if an address is on a local network.
1945 */
1946 int
1947 in6_localaddr(const struct in6_addr *in6)
1948 {
1949 struct in6_ifaddr *ia;
1950
1951 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1952 return 1;
1953
1954 for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1955 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1956 &ia->ia_prefixmask.sin6_addr))
1957 return 1;
1958
1959 return 0;
1960 }
1961
1962 int
1963 in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
1964 {
1965 struct in6_ifaddr *ia;
1966
1967 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
1968 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
1969 &sa6->sin6_addr) &&
1970 #ifdef SCOPEDROUTING
1971 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
1972 #endif
1973 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
1974 return 1; /* true */
1975
1976 /* XXX: do we still have to go thru the rest of the list? */
1977 }
1978
1979 return 0; /* false */
1980 }
1981
1982 /*
1983 * return length of part which dst and src are equal
1984 * hard coding...
1985 */
1986 int
1987 in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
1988 {
1989 int match = 0;
1990 u_char *s = (u_char *)src, *d = (u_char *)dst;
1991 u_char *lim = s + 16, r;
1992
1993 while (s < lim)
1994 if ((r = (*d++ ^ *s++)) != 0) {
1995 while (r < 128) {
1996 match++;
1997 r <<= 1;
1998 }
1999 break;
2000 } else
2001 match += NBBY;
2002 return match;
2003 }
2004
2005 /* XXX: to be scope conscious */
2006 int
2007 in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len)
2008 {
2009 int bytelen, bitlen;
2010
2011 /* sanity check */
2012 if (len < 0 || len > 128) {
2013 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2014 len);
2015 return 0;
2016 }
2017
2018 bytelen = len / NBBY;
2019 bitlen = len % NBBY;
2020
2021 if (memcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2022 return 0;
2023 if (bitlen != 0 &&
2024 p1->s6_addr[bytelen] >> (NBBY - bitlen) !=
2025 p2->s6_addr[bytelen] >> (NBBY - bitlen))
2026 return 0;
2027
2028 return 1;
2029 }
2030
2031 void
2032 in6_prefixlen2mask(struct in6_addr *maskp, int len)
2033 {
2034 static const u_char maskarray[NBBY] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2035 int bytelen, bitlen, i;
2036
2037 /* sanity check */
2038 if (len < 0 || len > 128) {
2039 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2040 len);
2041 return;
2042 }
2043
2044 memset(maskp, 0, sizeof(*maskp));
2045 bytelen = len / NBBY;
2046 bitlen = len % NBBY;
2047 for (i = 0; i < bytelen; i++)
2048 maskp->s6_addr[i] = 0xff;
2049 if (bitlen)
2050 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2051 }
2052
2053 /*
2054 * return the best address out of the same scope. if no address was
2055 * found, return the first valid address from designated IF.
2056 */
2057 struct in6_ifaddr *
2058 in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
2059 {
2060 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2061 struct ifaddr *ifa;
2062 struct in6_ifaddr *best_ia = NULL, *ia;
2063 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
2064
2065 dep[0] = dep[1] = NULL;
2066
2067 /*
2068 * We first look for addresses in the same scope.
2069 * If there is one, return it.
2070 * If two or more, return one which matches the dst longest.
2071 * If none, return one of global addresses assigned other ifs.
2072 */
2073 IFADDR_FOREACH(ifa, ifp) {
2074 if (ifa->ifa_addr->sa_family != AF_INET6)
2075 continue;
2076 ia = (struct in6_ifaddr *)ifa;
2077 if (ia->ia6_flags & IN6_IFF_ANYCAST)
2078 continue; /* XXX: is there any case to allow anycast? */
2079 if (ia->ia6_flags & IN6_IFF_NOTREADY)
2080 continue; /* don't use this interface */
2081 if (ia->ia6_flags & IN6_IFF_DETACHED)
2082 continue;
2083 if (ia->ia6_flags & IN6_IFF_DEPRECATED) {
2084 if (ip6_use_deprecated)
2085 dep[0] = ia;
2086 continue;
2087 }
2088
2089 if (dst_scope != in6_addrscope(IFA_IN6(ifa)))
2090 continue;
2091 /*
2092 * call in6_matchlen() as few as possible
2093 */
2094 if (best_ia == NULL) {
2095 best_ia = ia;
2096 continue;
2097 }
2098 if (blen == -1)
2099 blen = in6_matchlen(&best_ia->ia_addr.sin6_addr, dst);
2100 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2101 if (tlen > blen) {
2102 blen = tlen;
2103 best_ia = ia;
2104 } else if (tlen == blen)
2105 best_ia = bestia(best_ia, ia);
2106 }
2107 if (best_ia != NULL)
2108 return best_ia;
2109
2110 IFADDR_FOREACH(ifa, ifp) {
2111 if (ifa->ifa_addr->sa_family != AF_INET6)
2112 continue;
2113 ia = (struct in6_ifaddr *)ifa;
2114 if (ia->ia6_flags & IN6_IFF_ANYCAST)
2115 continue; /* XXX: is there any case to allow anycast? */
2116 if (ia->ia6_flags & IN6_IFF_NOTREADY)
2117 continue; /* don't use this interface */
2118 if (ia->ia6_flags & IN6_IFF_DETACHED)
2119 continue;
2120 if (ia->ia6_flags & IN6_IFF_DEPRECATED) {
2121 if (ip6_use_deprecated)
2122 dep[1] = (struct in6_ifaddr *)ifa;
2123 continue;
2124 }
2125
2126 best_ia = bestia(best_ia, ia);
2127 }
2128 if (best_ia != NULL)
2129 return best_ia;
2130
2131 /* use the last-resort values, that are, deprecated addresses */
2132 if (dep[0])
2133 return dep[0];
2134 if (dep[1])
2135 return dep[1];
2136
2137 return NULL;
2138 }
2139
2140 /*
2141 * perform DAD when interface becomes IFF_UP.
2142 */
2143 void
2144 in6_if_up(struct ifnet *ifp)
2145 {
2146 struct ifaddr *ifa;
2147 struct in6_ifaddr *ia;
2148
2149 IFADDR_FOREACH(ifa, ifp) {
2150 if (ifa->ifa_addr->sa_family != AF_INET6)
2151 continue;
2152 ia = (struct in6_ifaddr *)ifa;
2153 if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
2154 /*
2155 * The TENTATIVE flag was likely set by hand
2156 * beforehand, implicitly indicating the need for DAD.
2157 * We may be able to skip the random delay in this
2158 * case, but we impose delays just in case.
2159 */
2160 nd6_dad_start(ifa,
2161 cprng_fast32() %
2162 (MAX_RTR_SOLICITATION_DELAY * hz));
2163 }
2164 }
2165
2166 /*
2167 * special cases, like 6to4, are handled in in6_ifattach
2168 */
2169 in6_ifattach(ifp, NULL);
2170 }
2171
2172 int
2173 in6if_do_dad(struct ifnet *ifp)
2174 {
2175 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2176 return 0;
2177
2178 switch (ifp->if_type) {
2179 case IFT_FAITH:
2180 /*
2181 * These interfaces do not have the IFF_LOOPBACK flag,
2182 * but loop packets back. We do not have to do DAD on such
2183 * interfaces. We should even omit it, because loop-backed
2184 * NS would confuse the DAD procedure.
2185 */
2186 return 0;
2187 default:
2188 /*
2189 * Our DAD routine requires the interface up and running.
2190 * However, some interfaces can be up before the RUNNING
2191 * status. Additionaly, users may try to assign addresses
2192 * before the interface becomes up (or running).
2193 * We simply skip DAD in such a case as a work around.
2194 * XXX: we should rather mark "tentative" on such addresses,
2195 * and do DAD after the interface becomes ready.
2196 */
2197 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2198 (IFF_UP|IFF_RUNNING))
2199 return 0;
2200
2201 return 1;
2202 }
2203 }
2204
2205 /*
2206 * Calculate max IPv6 MTU through all the interfaces and store it
2207 * to in6_maxmtu.
2208 */
2209 void
2210 in6_setmaxmtu(void)
2211 {
2212 unsigned long maxmtu = 0;
2213 struct ifnet *ifp;
2214
2215 TAILQ_FOREACH(ifp, &ifnet, if_list) {
2216 /* this function can be called during ifnet initialization */
2217 if (!ifp->if_afdata[AF_INET6])
2218 continue;
2219 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2220 IN6_LINKMTU(ifp) > maxmtu)
2221 maxmtu = IN6_LINKMTU(ifp);
2222 }
2223 if (maxmtu) /* update only when maxmtu is positive */
2224 in6_maxmtu = maxmtu;
2225 }
2226
2227 /*
2228 * Provide the length of interface identifiers to be used for the link attached
2229 * to the given interface. The length should be defined in "IPv6 over
2230 * xxx-link" document. Note that address architecture might also define
2231 * the length for a particular set of address prefixes, regardless of the
2232 * link type. As clarified in rfc2462bis, those two definitions should be
2233 * consistent, and those really are as of August 2004.
2234 */
2235 int
2236 in6_if2idlen(struct ifnet *ifp)
2237 {
2238 switch (ifp->if_type) {
2239 case IFT_ETHER: /* RFC2464 */
2240 case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */
2241 case IFT_L2VLAN: /* ditto */
2242 case IFT_IEEE80211: /* ditto */
2243 case IFT_FDDI: /* RFC2467 */
2244 case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */
2245 case IFT_PPP: /* RFC2472 */
2246 case IFT_ARCNET: /* RFC2497 */
2247 case IFT_FRELAY: /* RFC2590 */
2248 case IFT_IEEE1394: /* RFC3146 */
2249 case IFT_GIF: /* draft-ietf-v6ops-mech-v2-07 */
2250 case IFT_LOOP: /* XXX: is this really correct? */
2251 return 64;
2252 default:
2253 /*
2254 * Unknown link type:
2255 * It might be controversial to use the today's common constant
2256 * of 64 for these cases unconditionally. For full compliance,
2257 * we should return an error in this case. On the other hand,
2258 * if we simply miss the standard for the link type or a new
2259 * standard is defined for a new link type, the IFID length
2260 * is very likely to be the common constant. As a compromise,
2261 * we always use the constant, but make an explicit notice
2262 * indicating the "unknown" case.
2263 */
2264 printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
2265 return 64;
2266 }
2267 }
2268
2269 void *
2270 in6_domifattach(struct ifnet *ifp)
2271 {
2272 struct in6_ifextra *ext;
2273
2274 ext = malloc(sizeof(*ext), M_IFADDR, M_WAITOK|M_ZERO);
2275
2276 ext->in6_ifstat = malloc(sizeof(struct in6_ifstat),
2277 M_IFADDR, M_WAITOK|M_ZERO);
2278
2279 ext->icmp6_ifstat = malloc(sizeof(struct icmp6_ifstat),
2280 M_IFADDR, M_WAITOK|M_ZERO);
2281
2282 ext->nd_ifinfo = nd6_ifattach(ifp);
2283 ext->scope6_id = scope6_ifattach(ifp);
2284 return ext;
2285 }
2286
2287 void
2288 in6_domifdetach(struct ifnet *ifp, void *aux)
2289 {
2290 struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2291
2292 nd6_ifdetach(ext->nd_ifinfo);
2293 free(ext->in6_ifstat, M_IFADDR);
2294 free(ext->icmp6_ifstat, M_IFADDR);
2295 scope6_ifdetach(ext->scope6_id);
2296 free(ext, M_IFADDR);
2297 }
2298
2299 /*
2300 * Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
2301 * v4 mapped addr or v4 compat addr
2302 */
2303 void
2304 in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2305 {
2306 memset(sin, 0, sizeof(*sin));
2307 sin->sin_len = sizeof(struct sockaddr_in);
2308 sin->sin_family = AF_INET;
2309 sin->sin_port = sin6->sin6_port;
2310 sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
2311 }
2312
2313 /* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
2314 void
2315 in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
2316 {
2317 memset(sin6, 0, sizeof(*sin6));
2318 sin6->sin6_len = sizeof(struct sockaddr_in6);
2319 sin6->sin6_family = AF_INET6;
2320 sin6->sin6_port = sin->sin_port;
2321 sin6->sin6_addr.s6_addr32[0] = 0;
2322 sin6->sin6_addr.s6_addr32[1] = 0;
2323 sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
2324 sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
2325 }
2326
2327 /* Convert sockaddr_in6 into sockaddr_in. */
2328 void
2329 in6_sin6_2_sin_in_sock(struct sockaddr *nam)
2330 {
2331 struct sockaddr_in *sin_p;
2332 struct sockaddr_in6 sin6;
2333
2334 /*
2335 * Save original sockaddr_in6 addr and convert it
2336 * to sockaddr_in.
2337 */
2338 sin6 = *(struct sockaddr_in6 *)nam;
2339 sin_p = (struct sockaddr_in *)nam;
2340 in6_sin6_2_sin(sin_p, &sin6);
2341 }
2342
2343 /* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
2344 void
2345 in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
2346 {
2347 struct sockaddr_in *sin_p;
2348 struct sockaddr_in6 *sin6_p;
2349
2350 sin6_p = malloc(sizeof(*sin6_p), M_SONAME, M_WAITOK);
2351 sin_p = (struct sockaddr_in *)*nam;
2352 in6_sin_2_v4mapsin6(sin_p, sin6_p);
2353 free(*nam, M_SONAME);
2354 *nam = (struct sockaddr *)sin6_p;
2355 }
2356