in6.c revision 1.32 1 /* $NetBSD: in6.c,v 1.32 2000/04/27 16:44:19 itojun Exp $ */
2 /* $KAME: in6.c,v 1.75 2000/04/12 03:51:29 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)in.c 8.2 (Berkeley) 11/15/93
66 */
67
68 #include "opt_inet.h"
69
70 #include <sys/param.h>
71 #include <sys/ioctl.h>
72 #include <sys/errno.h>
73 #include <sys/malloc.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/sockio.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/time.h>
80 #include <sys/kernel.h>
81 #include <sys/syslog.h>
82
83 #include <net/if.h>
84 #include <net/if_types.h>
85 #include <net/route.h>
86 #include "gif.h"
87 #if NGIF > 0
88 #include <net/if_gif.h>
89 #endif
90 #include <net/if_dl.h>
91
92 #include <netinet/in.h>
93 #include <netinet/in_var.h>
94 #include <net/if_ether.h>
95
96 #include <netinet6/nd6.h>
97 #include <netinet/ip6.h>
98 #include <netinet6/ip6_var.h>
99 #include <netinet6/mld6_var.h>
100 #include <netinet6/ip6_mroute.h>
101 #include <netinet6/in6_ifattach.h>
102
103 #include <net/net_osdep.h>
104
105 /* enable backward compatibility code for obsoleted ioctls */
106 #define COMPAT_IN6IFIOCTL
107
108 /*
109 * Definitions of some costant IP6 addresses.
110 */
111 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
112 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
113 const struct in6_addr in6addr_nodelocal_allnodes =
114 IN6ADDR_NODELOCAL_ALLNODES_INIT;
115 const struct in6_addr in6addr_linklocal_allnodes =
116 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
117 const struct in6_addr in6addr_linklocal_allrouters =
118 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
119
120 const struct in6_addr in6mask0 = IN6MASK0;
121 const struct in6_addr in6mask32 = IN6MASK32;
122 const struct in6_addr in6mask64 = IN6MASK64;
123 const struct in6_addr in6mask96 = IN6MASK96;
124 const struct in6_addr in6mask128 = IN6MASK128;
125
126 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
127 struct ifnet *, struct proc *));
128
129 /*
130 * This structure is used to keep track of in6_multi chains which belong to
131 * deleted interface addresses.
132 */
133 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */
134
135 struct multi6_kludge {
136 LIST_ENTRY(multi6_kludge) mk_entry;
137 struct ifnet *mk_ifp;
138 struct in6_multihead mk_head;
139 };
140
141 /*
142 * Check if the loopback entry will be automatically generated.
143 * if 0 returned, will not be automatically generated.
144 * if 1 returned, will be automatically generated.
145 */
146 static int
147 in6_is_ifloop_auto(struct ifaddr *ifa)
148 {
149 #define SIN6(s) ((struct sockaddr_in6 *)s)
150 /*
151 * If RTF_CLONING is unset, or (IFF_LOOPBACK | IFF_POINTOPOINT),
152 * or netmask is all0 or all1, then cloning will not happen,
153 * then we can't rely on its loopback entry generation.
154 */
155 if ((ifa->ifa_flags & RTF_CLONING) == 0 ||
156 (ifa->ifa_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) ||
157 (SIN6(ifa->ifa_netmask)->sin6_len == sizeof(struct sockaddr_in6)
158 &&
159 IN6_ARE_ADDR_EQUAL(&SIN6(ifa->ifa_netmask)->sin6_addr,
160 &in6mask128)) ||
161 ((struct sockaddr_in6 *)ifa->ifa_netmask)->sin6_len == 0)
162 return 0;
163 else
164 return 1;
165 #undef SIN6
166 }
167
168 /*
169 * Subroutine for in6_ifaddloop() and in6_ifremloop().
170 * This routine does actual work.
171 */
172 static void
173 in6_ifloop_request(int cmd, struct ifaddr *ifa)
174 {
175 struct sockaddr_in6 lo_sa;
176 struct sockaddr_in6 all1_sa;
177 struct rtentry *nrt = NULL;
178
179 bzero(&lo_sa, sizeof(lo_sa));
180 bzero(&all1_sa, sizeof(all1_sa));
181 lo_sa.sin6_family = AF_INET6;
182 lo_sa.sin6_len = sizeof(struct sockaddr_in6);
183 all1_sa = lo_sa;
184 lo_sa.sin6_addr = in6addr_loopback;
185 all1_sa.sin6_addr = in6mask128;
186
187 /* So we add or remove static loopback entry, here. */
188 rtrequest(cmd, ifa->ifa_addr,
189 (struct sockaddr *)&lo_sa,
190 (struct sockaddr *)&all1_sa,
191 RTF_UP|RTF_HOST, &nrt);
192
193 /*
194 * Make sure rt_ifa be equal to IFA, the second argument of the
195 * function.
196 * We need this because when we refer rt_ifa->ia6_flags in ip6_input,
197 * we assume that the rt_ifa points to the address instead of the
198 * loopback address.
199 */
200 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
201 IFAFREE(nrt->rt_ifa);
202 IFAREF(ifa);
203 nrt->rt_ifa = ifa;
204 }
205 if (nrt)
206 nrt->rt_refcnt--;
207 }
208
209 /*
210 * Add ownaddr as loopback rtentry, if necessary(ex. on p2p link).
211 * Because, KAME needs loopback rtentry for ownaddr check in
212 * ip6_input().
213 */
214 static void
215 in6_ifaddloop(struct ifaddr *ifa)
216 {
217 if (!in6_is_ifloop_auto(ifa)) {
218 struct rtentry *rt;
219
220 /* If there is no loopback entry, allocate one. */
221 rt = rtalloc1(ifa->ifa_addr, 0);
222 if (rt == 0 || (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
223 in6_ifloop_request(RTM_ADD, ifa);
224 if (rt)
225 rt->rt_refcnt--;
226 }
227 }
228
229 /*
230 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
231 * if it exists.
232 */
233 static void
234 in6_ifremloop(struct ifaddr *ifa)
235 {
236 if (!in6_is_ifloop_auto(ifa)) {
237 struct in6_ifaddr *ia;
238 int ia_count = 0;
239
240 /* If only one ifa for the loopback entry, delete it. */
241 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
242 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa),
243 &ia->ia_addr.sin6_addr)) {
244 ia_count++;
245 if (ia_count > 1)
246 break;
247 }
248 }
249 if (ia_count == 1)
250 in6_ifloop_request(RTM_DELETE, ifa);
251 }
252 }
253
254 int
255 in6_ifindex2scopeid(idx)
256 int idx;
257 {
258 struct ifnet *ifp;
259 struct ifaddr *ifa;
260 struct sockaddr_in6 *sin6;
261
262 if (idx < 0 || if_index < idx)
263 return -1;
264 ifp = ifindex2ifnet[idx];
265
266 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
267 {
268 if (ifa->ifa_addr->sa_family != AF_INET6)
269 continue;
270 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
271 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
272 return sin6->sin6_scope_id & 0xffff;
273 }
274
275 return -1;
276 }
277
278 int
279 in6_mask2len(mask)
280 struct in6_addr *mask;
281 {
282 int x, y;
283
284 for (x = 0; x < sizeof(*mask); x++) {
285 if (mask->s6_addr8[x] != 0xff)
286 break;
287 }
288 y = 0;
289 if (x < sizeof(*mask)) {
290 for (y = 0; y < 8; y++) {
291 if ((mask->s6_addr8[x] & (0x80 >> y)) == 0)
292 break;
293 }
294 }
295 return x * 8 + y;
296 }
297
298 void
299 in6_len2mask(mask, len)
300 struct in6_addr *mask;
301 int len;
302 {
303 int i;
304
305 bzero(mask, sizeof(*mask));
306 for (i = 0; i < len / 8; i++)
307 mask->s6_addr8[i] = 0xff;
308 if (len % 8)
309 mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
310 }
311
312 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
313 #define ia62ifa(ia6) (&((ia6)->ia_ifa))
314
315 int
316 in6_control(so, cmd, data, ifp, p)
317 struct socket *so;
318 u_long cmd;
319 caddr_t data;
320 struct ifnet *ifp;
321 struct proc *p;
322 {
323 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
324 struct in6_ifaddr *ia, *oia;
325 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
326 struct sockaddr_in6 oldaddr;
327 #ifdef COMPAT_IN6IFIOCTL
328 struct sockaddr_in6 net;
329 #endif
330 int error = 0, hostIsNew, prefixIsNew;
331 int newifaddr;
332 time_t time_second = (time_t)time.tv_sec;
333 int privileged;
334
335 privileged = 0;
336 if (p && !suser(p->p_ucred, &p->p_acflag))
337 privileged++;
338
339 /*
340 * xxx should prevent processes for link-local addresses?
341 */
342 #if NGIF > 0
343 if (ifp && ifp->if_type == IFT_GIF) {
344 switch (cmd) {
345 case SIOCSIFPHYADDR_IN6:
346 if (!privileged)
347 return(EPERM);
348 /*fall through*/
349 case SIOCGIFPSRCADDR_IN6:
350 case SIOCGIFPDSTADDR_IN6:
351 return gif_ioctl(ifp, cmd, data);
352 }
353 }
354 #endif
355 switch (cmd) {
356 case SIOCGETSGCNT_IN6:
357 case SIOCGETMIFCNT_IN6:
358 return (mrt6_ioctl(cmd, data));
359 }
360
361 if (ifp == NULL)
362 return(EOPNOTSUPP);
363
364 switch (cmd) {
365 case SIOCSNDFLUSH_IN6:
366 case SIOCSPFXFLUSH_IN6:
367 case SIOCSRTRFLUSH_IN6:
368 case SIOCSDEFIFACE_IN6:
369 case SIOCSIFINFO_FLAGS:
370 if (!privileged)
371 return(EPERM);
372 /*fall through*/
373 case SIOCGIFINFO_IN6:
374 case SIOCGDRLST_IN6:
375 case SIOCGPRLST_IN6:
376 case SIOCGNBRINFO_IN6:
377 case SIOCGDEFIFACE_IN6:
378 return(nd6_ioctl(cmd, data, ifp));
379 }
380
381 switch (cmd) {
382 case SIOCSIFPREFIX_IN6:
383 case SIOCDIFPREFIX_IN6:
384 case SIOCAIFPREFIX_IN6:
385 case SIOCCIFPREFIX_IN6:
386 case SIOCSGIFPREFIX_IN6:
387 if (!privileged)
388 return(EPERM);
389 /*fall through*/
390 case SIOCGIFPREFIX_IN6:
391 return(in6_prefix_ioctl(so, cmd, data, ifp));
392 }
393
394 switch (cmd) {
395 case SIOCALIFADDR:
396 case SIOCDLIFADDR:
397 if (!privileged)
398 return(EPERM);
399 /*fall through*/
400 case SIOCGLIFADDR:
401 return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
402 }
403
404 /*
405 * Find address for this interface, if it exists.
406 */
407 if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
408 struct sockaddr_in6 *sa6 =
409 (struct sockaddr_in6 *)&ifra->ifra_addr;
410
411 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
412 if (sa6->sin6_addr.s6_addr16[1] == 0) {
413 /* interface ID is not embedded by the user */
414 sa6->sin6_addr.s6_addr16[1] =
415 htons(ifp->if_index);
416 } else if (sa6->sin6_addr.s6_addr16[1] !=
417 htons(ifp->if_index)) {
418 return(EINVAL); /* ifid is contradict */
419 }
420 if (sa6->sin6_scope_id) {
421 if (sa6->sin6_scope_id !=
422 (u_int32_t)ifp->if_index)
423 return(EINVAL);
424 sa6->sin6_scope_id = 0; /* XXX: good way? */
425 }
426 }
427 ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
428 }
429
430 switch (cmd) {
431
432 case SIOCDIFADDR_IN6:
433 /*
434 * for IPv4, we look for existing in6_ifaddr here to allow
435 * "ifconfig if0 delete" to remove first IPv4 address on the
436 * interface. For IPv6, as the spec allow multiple interface
437 * address from the day one, we consider "remove the first one"
438 * semantics to be not preferrable.
439 */
440 if (ia == NULL)
441 return(EADDRNOTAVAIL);
442 /* FALLTHROUGH */
443 case SIOCAIFADDR_IN6:
444 case SIOCSIFADDR_IN6:
445 #ifdef COMPAT_IN6IFIOCTL
446 case SIOCSIFDSTADDR_IN6:
447 case SIOCSIFNETMASK_IN6:
448 /*
449 * Since IPv6 allows a node to assign multiple addresses
450 * on a single interface, SIOCSIFxxx ioctls are not suitable
451 * and should be unused.
452 */
453 #endif
454 if (ifra->ifra_addr.sin6_family != AF_INET6)
455 return(EAFNOSUPPORT);
456 if (!privileged)
457 return(EPERM);
458 if (ia == NULL) {
459 ia = (struct in6_ifaddr *)
460 malloc(sizeof(*ia), M_IFADDR, M_WAITOK);
461 if (ia == NULL)
462 return (ENOBUFS);
463 bzero((caddr_t)ia, sizeof(*ia));
464 /* Initialize the address and masks */
465 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
466 ia->ia_addr.sin6_family = AF_INET6;
467 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
468 if (ifp->if_flags & IFF_POINTOPOINT) {
469 ia->ia_ifa.ifa_dstaddr
470 = (struct sockaddr *)&ia->ia_dstaddr;
471 ia->ia_dstaddr.sin6_family = AF_INET6;
472 ia->ia_dstaddr.sin6_len = sizeof(ia->ia_dstaddr);
473 } else {
474 ia->ia_ifa.ifa_dstaddr = NULL;
475 bzero(&ia->ia_dstaddr, sizeof(ia->ia_dstaddr));
476 }
477 ia->ia_ifa.ifa_netmask
478 = (struct sockaddr *)&ia->ia_prefixmask;
479
480 ia->ia_ifp = ifp;
481 if ((oia = in6_ifaddr) != NULL) {
482 for ( ; oia->ia_next; oia = oia->ia_next)
483 continue;
484 oia->ia_next = ia;
485 } else
486 in6_ifaddr = ia;
487 IFAREF(&ia->ia_ifa);
488
489 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
490 ifa_list);
491 IFAREF(&ia->ia_ifa);
492
493 newifaddr = 1;
494 } else
495 newifaddr = 0;
496
497 if (cmd == SIOCAIFADDR_IN6) {
498 /* sanity for overflow - beware unsigned */
499 struct in6_addrlifetime *lt;
500 lt = &ifra->ifra_lifetime;
501 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
502 && lt->ia6t_vltime + time_second < time_second) {
503 return EINVAL;
504 }
505 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
506 && lt->ia6t_pltime + time_second < time_second) {
507 return EINVAL;
508 }
509 }
510 break;
511
512 case SIOCGIFADDR_IN6:
513 /* This interface is basically deprecated. use SIOCGIFCONF. */
514 /* fall through */
515 case SIOCGIFAFLAG_IN6:
516 case SIOCGIFNETMASK_IN6:
517 case SIOCGIFDSTADDR_IN6:
518 case SIOCGIFALIFETIME_IN6:
519 /* must think again about its semantics */
520 if (ia == NULL)
521 return(EADDRNOTAVAIL);
522 break;
523 case SIOCSIFALIFETIME_IN6:
524 {
525 struct in6_addrlifetime *lt;
526
527 if (!privileged)
528 return(EPERM);
529 if (ia == NULL)
530 return(EADDRNOTAVAIL);
531 /* sanity for overflow - beware unsigned */
532 lt = &ifr->ifr_ifru.ifru_lifetime;
533 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
534 && lt->ia6t_vltime + time_second < time_second) {
535 return EINVAL;
536 }
537 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
538 && lt->ia6t_pltime + time_second < time_second) {
539 return EINVAL;
540 }
541 break;
542 }
543 }
544
545 switch (cmd) {
546
547 case SIOCGIFADDR_IN6:
548 ifr->ifr_addr = ia->ia_addr;
549 break;
550
551 case SIOCGIFDSTADDR_IN6:
552 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
553 return(EINVAL);
554 ifr->ifr_dstaddr = ia->ia_dstaddr;
555 break;
556
557 case SIOCGIFNETMASK_IN6:
558 ifr->ifr_addr = ia->ia_prefixmask;
559 break;
560
561 case SIOCGIFAFLAG_IN6:
562 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
563 break;
564
565 case SIOCGIFSTAT_IN6:
566 if (ifp == NULL)
567 return EINVAL;
568 if (in6_ifstat == NULL || ifp->if_index >= in6_ifstatmax
569 || in6_ifstat[ifp->if_index] == NULL) {
570 /* return EAFNOSUPPORT? */
571 bzero(&ifr->ifr_ifru.ifru_stat,
572 sizeof(ifr->ifr_ifru.ifru_stat));
573 } else
574 ifr->ifr_ifru.ifru_stat = *in6_ifstat[ifp->if_index];
575 break;
576
577 case SIOCGIFSTAT_ICMP6:
578 if (ifp == NULL)
579 return EINVAL;
580 if (icmp6_ifstat == NULL || ifp->if_index >= icmp6_ifstatmax ||
581 icmp6_ifstat[ifp->if_index] == NULL) {
582 /* return EAFNOSUPPORT? */
583 bzero(&ifr->ifr_ifru.ifru_stat,
584 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
585 } else
586 ifr->ifr_ifru.ifru_icmp6stat =
587 *icmp6_ifstat[ifp->if_index];
588 break;
589
590 #ifdef COMPAT_IN6IFIOCTL /* should be unused */
591 case SIOCSIFDSTADDR_IN6:
592 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
593 return(EINVAL);
594 oldaddr = ia->ia_dstaddr;
595 ia->ia_dstaddr = ifr->ifr_dstaddr;
596
597 /* link-local index check */
598 if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_dstaddr.sin6_addr)) {
599 if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] == 0) {
600 /* interface ID is not embedded by the user */
601 ia->ia_dstaddr.sin6_addr.s6_addr16[1]
602 = htons(ifp->if_index);
603 } else if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] !=
604 htons(ifp->if_index)) {
605 ia->ia_dstaddr = oldaddr;
606 return(EINVAL); /* ifid is contradict */
607 }
608 }
609
610 if (ifp->if_ioctl && (error = (ifp->if_ioctl)
611 (ifp, SIOCSIFDSTADDR, (caddr_t)ia))) {
612 ia->ia_dstaddr = oldaddr;
613 return(error);
614 }
615 if (ia->ia_flags & IFA_ROUTE) {
616 ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr;
617 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
618 ia->ia_ifa.ifa_dstaddr =
619 (struct sockaddr *)&ia->ia_dstaddr;
620 rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
621 }
622 break;
623
624 #endif
625 case SIOCGIFALIFETIME_IN6:
626 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
627 break;
628
629 case SIOCSIFALIFETIME_IN6:
630 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
631 /* for sanity */
632 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
633 ia->ia6_lifetime.ia6t_expire =
634 time_second + ia->ia6_lifetime.ia6t_vltime;
635 } else
636 ia->ia6_lifetime.ia6t_expire = 0;
637 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
638 ia->ia6_lifetime.ia6t_preferred =
639 time_second + ia->ia6_lifetime.ia6t_pltime;
640 } else
641 ia->ia6_lifetime.ia6t_preferred = 0;
642 break;
643
644 case SIOCSIFADDR_IN6:
645 error = in6_ifinit(ifp, ia, &ifr->ifr_addr, 1);
646 #if 0
647 /*
648 * the code chokes if we are to assign multiple addresses with
649 * the same address prefix (rtinit() will return EEXIST, which
650 * is not fatal actually). we will get memory leak if we
651 * don't do it.
652 * -> we may want to hide EEXIST from rtinit().
653 */
654 undo:
655 if (error && newifaddr) {
656 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
657 IFAFREE(&ia->ia_ifa);
658
659 oia = ia;
660 if (oia == (ia = in6_ifaddr))
661 in6_ifaddr = ia->ia_next;
662 else {
663 while (ia->ia_next && (ia->ia_next != oia))
664 ia = ia->ia_next;
665 if (ia->ia_next)
666 ia->ia_next = oia->ia_next;
667 else {
668 printf("Didn't unlink in6_ifaddr "
669 "from list\n");
670 }
671 }
672 IFAFREE(&oia->ia_ifa);
673 }
674 #endif
675 return error;
676
677 #ifdef COMPAT_IN6IFIOCTL /* XXX should be unused */
678 case SIOCSIFNETMASK_IN6:
679 ia->ia_prefixmask = ifr->ifr_addr;
680 bzero(&net, sizeof(net));
681 net.sin6_len = sizeof(struct sockaddr_in6);
682 net.sin6_family = AF_INET6;
683 net.sin6_port = htons(0);
684 net.sin6_flowinfo = htonl(0);
685 net.sin6_addr.s6_addr32[0]
686 = ia->ia_addr.sin6_addr.s6_addr32[0] &
687 ia->ia_prefixmask.sin6_addr.s6_addr32[0];
688 net.sin6_addr.s6_addr32[1]
689 = ia->ia_addr.sin6_addr.s6_addr32[1] &
690 ia->ia_prefixmask.sin6_addr.s6_addr32[1];
691 net.sin6_addr.s6_addr32[2]
692 = ia->ia_addr.sin6_addr.s6_addr32[2] &
693 ia->ia_prefixmask.sin6_addr.s6_addr32[2];
694 net.sin6_addr.s6_addr32[3]
695 = ia->ia_addr.sin6_addr.s6_addr32[3] &
696 ia->ia_prefixmask.sin6_addr.s6_addr32[3];
697 ia->ia_net = net;
698 break;
699 #endif
700
701 case SIOCAIFADDR_IN6:
702 prefixIsNew = 0;
703 hostIsNew = 1;
704
705 if (ifra->ifra_addr.sin6_len == 0) {
706 ifra->ifra_addr = ia->ia_addr;
707 hostIsNew = 0;
708 } else if (IN6_ARE_ADDR_EQUAL(&ifra->ifra_addr.sin6_addr,
709 &ia->ia_addr.sin6_addr))
710 hostIsNew = 0;
711
712 /* Validate address families: */
713 /*
714 * The destination address for a p2p link must have a family
715 * of AF_UNSPEC or AF_INET6.
716 */
717 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
718 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
719 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
720 return(EAFNOSUPPORT);
721 /*
722 * The prefixmask must have a family of AF_UNSPEC or AF_INET6.
723 */
724 if (ifra->ifra_prefixmask.sin6_family != AF_INET6 &&
725 ifra->ifra_prefixmask.sin6_family != AF_UNSPEC)
726 return(EAFNOSUPPORT);
727
728 if (ifra->ifra_prefixmask.sin6_len) {
729 in6_ifscrub(ifp, ia);
730 ia->ia_prefixmask = ifra->ifra_prefixmask;
731 prefixIsNew = 1;
732 }
733 if ((ifp->if_flags & IFF_POINTOPOINT) &&
734 (ifra->ifra_dstaddr.sin6_family == AF_INET6)) {
735 in6_ifscrub(ifp, ia);
736 oldaddr = ia->ia_dstaddr;
737 ia->ia_dstaddr = ifra->ifra_dstaddr;
738 /* link-local index check: should be a separate function? */
739 if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_dstaddr.sin6_addr)) {
740 if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] == 0) {
741 /*
742 * interface ID is not embedded by
743 * the user
744 */
745 ia->ia_dstaddr.sin6_addr.s6_addr16[1]
746 = htons(ifp->if_index);
747 } else if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] !=
748 htons(ifp->if_index)) {
749 ia->ia_dstaddr = oldaddr;
750 return(EINVAL); /* ifid is contradict */
751 }
752 }
753 prefixIsNew = 1; /* We lie; but effect's the same */
754 }
755 if (hostIsNew || prefixIsNew) {
756 error = in6_ifinit(ifp, ia, &ifra->ifra_addr, 0);
757 #if 0
758 if (error)
759 goto undo;
760 #endif
761 }
762 if (hostIsNew && (ifp->if_flags & IFF_MULTICAST)) {
763 int error_local = 0;
764
765 /*
766 * join solicited multicast addr for new host id
767 */
768 struct in6_addr llsol;
769 bzero(&llsol, sizeof(struct in6_addr));
770 llsol.s6_addr16[0] = htons(0xff02);
771 llsol.s6_addr16[1] = htons(ifp->if_index);
772 llsol.s6_addr32[1] = 0;
773 llsol.s6_addr32[2] = htonl(1);
774 llsol.s6_addr32[3] =
775 ifra->ifra_addr.sin6_addr.s6_addr32[3];
776 llsol.s6_addr8[12] = 0xff;
777 (void)in6_addmulti(&llsol, ifp, &error_local);
778 if (error == 0)
779 error = error_local;
780 }
781
782 ia->ia6_flags = ifra->ifra_flags;
783 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /*safety*/
784
785 ia->ia6_lifetime = ifra->ifra_lifetime;
786 /* for sanity */
787 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
788 ia->ia6_lifetime.ia6t_expire =
789 time_second + ia->ia6_lifetime.ia6t_vltime;
790 } else
791 ia->ia6_lifetime.ia6t_expire = 0;
792 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
793 ia->ia6_lifetime.ia6t_preferred =
794 time_second + ia->ia6_lifetime.ia6t_pltime;
795 } else
796 ia->ia6_lifetime.ia6t_preferred = 0;
797
798 /*
799 * Perform DAD, if needed.
800 * XXX It may be of use, if we can administratively
801 * disable DAD.
802 */
803 switch (ifp->if_type) {
804 case IFT_ARCNET:
805 case IFT_ETHER:
806 case IFT_FDDI:
807 #if 0
808 case IFT_ATM:
809 case IFT_SLIP:
810 case IFT_PPP:
811 #endif
812 ia->ia6_flags |= IN6_IFF_TENTATIVE;
813 nd6_dad_start(&ia->ia_ifa, NULL);
814 break;
815 case IFT_FAITH:
816 case IFT_GIF:
817 case IFT_LOOP:
818 default:
819 break;
820 }
821
822 if (hostIsNew) {
823 int iilen;
824 int error_local = 0;
825
826 iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) -
827 in6_mask2len(&ia->ia_prefixmask.sin6_addr);
828 error_local = in6_prefix_add_ifid(iilen, ia);
829 if (error == 0)
830 error = error_local;
831 }
832
833 return(error);
834
835 case SIOCDIFADDR_IN6:
836 in6_purgeaddr(&ia->ia_ifa, ifp);
837 break;
838
839 default:
840 if (ifp == NULL || ifp->if_ioctl == 0)
841 return(EOPNOTSUPP);
842 return((*ifp->if_ioctl)(ifp, cmd, data));
843 }
844 return(0);
845 }
846
847 void
848 in6_purgeaddr(ifa, ifp)
849 struct ifaddr *ifa;
850 struct ifnet *ifp;
851 {
852 struct in6_ifaddr *oia, *ia = (void *) ifa;
853
854 in6_ifscrub(ifp, ia);
855
856 if (ifp->if_flags & IFF_MULTICAST) {
857 /*
858 * delete solicited multicast addr for deleting host id
859 */
860 struct in6_multi *in6m;
861 struct in6_addr llsol;
862 bzero(&llsol, sizeof(struct in6_addr));
863 llsol.s6_addr16[0] = htons(0xff02);
864 llsol.s6_addr16[1] = htons(ifp->if_index);
865 llsol.s6_addr32[1] = 0;
866 llsol.s6_addr32[2] = htonl(1);
867 llsol.s6_addr32[3] =
868 ia->ia_addr.sin6_addr.s6_addr32[3];
869 llsol.s6_addr8[12] = 0xff;
870
871 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
872 if (in6m)
873 in6_delmulti(in6m);
874 }
875
876 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
877 IFAFREE(&ia->ia_ifa);
878
879 oia = ia;
880 if (oia == (ia = in6_ifaddr))
881 in6_ifaddr = ia->ia_next;
882 else {
883 while (ia->ia_next && (ia->ia_next != oia))
884 ia = ia->ia_next;
885 if (ia->ia_next)
886 ia->ia_next = oia->ia_next;
887 else
888 printf("Didn't unlink in6_ifaddr from list\n");
889 }
890 {
891 int iilen;
892
893 iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) -
894 in6_mask2len(&oia->ia_prefixmask.sin6_addr);
895 in6_prefix_remove_ifid(iilen, oia);
896 }
897 if (oia->ia6_multiaddrs.lh_first != NULL) {
898 /*
899 * XXX thorpej (at) netbsd.org -- if the interface is going
900 * XXX away, don't save the multicast entries, delete them!
901 */
902 if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
903 struct in6_multi *in6m;
904
905 while ((in6m =
906 LIST_FIRST(&oia->ia6_multiaddrs)) != NULL)
907 in6_delmulti(in6m);
908 } else
909 in6_savemkludge(oia);
910 }
911
912 IFAFREE(&oia->ia_ifa);
913 }
914
915 void
916 in6_purgeif(ifp)
917 struct ifnet *ifp;
918 {
919 struct ifaddr *ifa, *nifa;
920
921 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa) {
922 nifa = TAILQ_NEXT(ifa, ifa_list);
923 if (ifa->ifa_addr->sa_family != AF_INET6)
924 continue;
925 in6_purgeaddr(ifa, ifp);
926 }
927
928 in6_ifdetach(ifp);
929 }
930
931 /*
932 * SIOC[GAD]LIFADDR.
933 * SIOCGLIFADDR: get first address. (???)
934 * SIOCGLIFADDR with IFLR_PREFIX:
935 * get first address that matches the specified prefix.
936 * SIOCALIFADDR: add the specified address.
937 * SIOCALIFADDR with IFLR_PREFIX:
938 * add the specified prefix, filling hostid part from
939 * the first link-local address. prefixlen must be <= 64.
940 * SIOCDLIFADDR: delete the specified address.
941 * SIOCDLIFADDR with IFLR_PREFIX:
942 * delete the first address that matches the specified prefix.
943 * return values:
944 * EINVAL on invalid parameters
945 * EADDRNOTAVAIL on prefix match failed/specified address not found
946 * other values may be returned from in6_ioctl()
947 *
948 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
949 * this is to accomodate address naming scheme other than RFC2374,
950 * in the future.
951 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
952 * address encoding scheme. (see figure on page 8)
953 */
954 static int
955 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
956 struct socket *so;
957 u_long cmd;
958 caddr_t data;
959 struct ifnet *ifp;
960 struct proc *p;
961 {
962 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
963 struct ifaddr *ifa;
964 struct sockaddr *sa;
965
966 /* sanity checks */
967 if (!data || !ifp) {
968 panic("invalid argument to in6_lifaddr_ioctl");
969 /*NOTRECHED*/
970 }
971
972 switch (cmd) {
973 case SIOCGLIFADDR:
974 /* address must be specified on GET with IFLR_PREFIX */
975 if ((iflr->flags & IFLR_PREFIX) == 0)
976 break;
977 /*FALLTHROUGH*/
978 case SIOCALIFADDR:
979 case SIOCDLIFADDR:
980 /* address must be specified on ADD and DELETE */
981 sa = (struct sockaddr *)&iflr->addr;
982 if (sa->sa_family != AF_INET6)
983 return EINVAL;
984 if (sa->sa_len != sizeof(struct sockaddr_in6))
985 return EINVAL;
986 /* XXX need improvement */
987 sa = (struct sockaddr *)&iflr->dstaddr;
988 if (sa->sa_family && sa->sa_family != AF_INET6)
989 return EINVAL;
990 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
991 return EINVAL;
992 break;
993 default: /*shouldn't happen*/
994 #if 0
995 panic("invalid cmd to in6_lifaddr_ioctl");
996 /*NOTREACHED*/
997 #else
998 return EOPNOTSUPP;
999 #endif
1000 }
1001 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1002 return EINVAL;
1003
1004 switch (cmd) {
1005 case SIOCALIFADDR:
1006 {
1007 struct in6_aliasreq ifra;
1008 struct in6_addr *hostid = NULL;
1009 int prefixlen;
1010
1011 if ((iflr->flags & IFLR_PREFIX) != 0) {
1012 struct sockaddr_in6 *sin6;
1013
1014 /*
1015 * hostid is to fill in the hostid part of the
1016 * address. hostid points to the first link-local
1017 * address attached to the interface.
1018 */
1019 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1020 if (!ifa)
1021 return EADDRNOTAVAIL;
1022 hostid = IFA_IN6(ifa);
1023
1024 /* prefixlen must be <= 64. */
1025 if (64 < iflr->prefixlen)
1026 return EINVAL;
1027 prefixlen = iflr->prefixlen;
1028
1029 /* hostid part must be zero. */
1030 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1031 if (sin6->sin6_addr.s6_addr32[2] != 0
1032 || sin6->sin6_addr.s6_addr32[3] != 0) {
1033 return EINVAL;
1034 }
1035 } else
1036 prefixlen = iflr->prefixlen;
1037
1038 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1039 bzero(&ifra, sizeof(ifra));
1040 bcopy(iflr->iflr_name, ifra.ifra_name,
1041 sizeof(ifra.ifra_name));
1042
1043 bcopy(&iflr->addr, &ifra.ifra_addr,
1044 ((struct sockaddr *)&iflr->addr)->sa_len);
1045 if (hostid) {
1046 /* fill in hostid part */
1047 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1048 hostid->s6_addr32[2];
1049 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1050 hostid->s6_addr32[3];
1051 }
1052
1053 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /*XXX*/
1054 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1055 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1056 if (hostid) {
1057 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1058 hostid->s6_addr32[2];
1059 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1060 hostid->s6_addr32[3];
1061 }
1062 }
1063
1064 ifra.ifra_prefixmask.sin6_family = AF_INET6;
1065 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1066 in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1067
1068 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1069 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
1070 }
1071 case SIOCGLIFADDR:
1072 case SIOCDLIFADDR:
1073 {
1074 struct in6_ifaddr *ia;
1075 struct in6_addr mask, candidate, match;
1076 struct sockaddr_in6 *sin6;
1077 int cmp;
1078
1079 bzero(&mask, sizeof(mask));
1080 if (iflr->flags & IFLR_PREFIX) {
1081 /* lookup a prefix rather than address. */
1082 in6_len2mask(&mask, iflr->prefixlen);
1083
1084 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1085 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1086 match.s6_addr32[0] &= mask.s6_addr32[0];
1087 match.s6_addr32[1] &= mask.s6_addr32[1];
1088 match.s6_addr32[2] &= mask.s6_addr32[2];
1089 match.s6_addr32[3] &= mask.s6_addr32[3];
1090
1091 /* if you set extra bits, that's wrong */
1092 if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1093 return EINVAL;
1094
1095 cmp = 1;
1096 } else {
1097 if (cmd == SIOCGLIFADDR) {
1098 /* on getting an address, take the 1st match */
1099 cmp = 0; /*XXX*/
1100 } else {
1101 /* on deleting an address, do exact match */
1102 in6_len2mask(&mask, 128);
1103 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1104 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1105
1106 cmp = 1;
1107 }
1108 }
1109
1110 for (ifa = ifp->if_addrlist.tqh_first;
1111 ifa;
1112 ifa = ifa->ifa_list.tqe_next)
1113 {
1114 if (ifa->ifa_addr->sa_family != AF_INET6)
1115 continue;
1116 if (!cmp)
1117 break;
1118 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1119 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1120 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1121 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1122 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1123 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1124 break;
1125 }
1126 if (!ifa)
1127 return EADDRNOTAVAIL;
1128 ia = ifa2ia6(ifa);
1129
1130 if (cmd == SIOCGLIFADDR) {
1131 /* fill in the if_laddrreq structure */
1132 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1133
1134 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1135 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1136 ia->ia_dstaddr.sin6_len);
1137 } else
1138 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1139
1140 iflr->prefixlen =
1141 in6_mask2len(&ia->ia_prefixmask.sin6_addr);
1142
1143 iflr->flags = ia->ia6_flags; /*XXX*/
1144
1145 return 0;
1146 } else {
1147 struct in6_aliasreq ifra;
1148
1149 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1150 bzero(&ifra, sizeof(ifra));
1151 bcopy(iflr->iflr_name, ifra.ifra_name,
1152 sizeof(ifra.ifra_name));
1153
1154 bcopy(&ia->ia_addr, &ifra.ifra_addr,
1155 ia->ia_addr.sin6_len);
1156 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1157 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1158 ia->ia_dstaddr.sin6_len);
1159 } else {
1160 bzero(&ifra.ifra_dstaddr,
1161 sizeof(ifra.ifra_dstaddr));
1162 }
1163 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1164 ia->ia_prefixmask.sin6_len);
1165
1166 ifra.ifra_flags = ia->ia6_flags;
1167 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1168 ifp, p);
1169 }
1170 }
1171 }
1172
1173 return EOPNOTSUPP; /*just for safety*/
1174 }
1175
1176 /*
1177 * Delete any existing route for an interface.
1178 */
1179 void
1180 in6_ifscrub(ifp, ia)
1181 register struct ifnet *ifp;
1182 register struct in6_ifaddr *ia;
1183 {
1184 if ((ia->ia_flags & IFA_ROUTE) == 0)
1185 return;
1186 if (ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
1187 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
1188 else
1189 rtinit(&(ia->ia_ifa), (int)RTM_DELETE, 0);
1190 ia->ia_flags &= ~IFA_ROUTE;
1191
1192 /* Remove ownaddr's loopback rtentry, if it exists. */
1193 in6_ifremloop(&(ia->ia_ifa));
1194 }
1195
1196 /*
1197 * Initialize an interface's intetnet6 address
1198 * and routing table entry.
1199 */
1200 int
1201 in6_ifinit(ifp, ia, sin6, scrub)
1202 struct ifnet *ifp;
1203 struct in6_ifaddr *ia;
1204 struct sockaddr_in6 *sin6;
1205 int scrub;
1206 {
1207 struct sockaddr_in6 oldaddr;
1208 int error, flags = RTF_UP;
1209 int s = splimp();
1210
1211 oldaddr = ia->ia_addr;
1212 ia->ia_addr = *sin6;
1213 /*
1214 * Give the interface a chance to initialize
1215 * if this is its first address,
1216 * and to validate the address if necessary.
1217 */
1218 if (ifp->if_ioctl &&
1219 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
1220 splx(s);
1221 ia->ia_addr = oldaddr;
1222 return(error);
1223 }
1224
1225 switch (ifp->if_type) {
1226 case IFT_ARCNET:
1227 case IFT_ETHER:
1228 case IFT_FDDI:
1229 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1230 ia->ia_ifa.ifa_flags |= RTF_CLONING;
1231 break;
1232 case IFT_PPP:
1233 ia->ia_ifa.ifa_rtrequest = nd6_p2p_rtrequest;
1234 ia->ia_ifa.ifa_flags |= RTF_CLONING;
1235 break;
1236 }
1237
1238 splx(s);
1239 if (scrub) {
1240 ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr;
1241 in6_ifscrub(ifp, ia);
1242 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
1243 }
1244 /* xxx
1245 * in_socktrim
1246 */
1247 /*
1248 * Add route for the network.
1249 */
1250 ia->ia_ifa.ifa_metric = ifp->if_metric;
1251 if (ifp->if_flags & IFF_LOOPBACK) {
1252 ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
1253 flags |= RTF_HOST;
1254 } else if (ifp->if_flags & IFF_POINTOPOINT) {
1255 if (ia->ia_dstaddr.sin6_family != AF_INET6)
1256 return(0);
1257 flags |= RTF_HOST;
1258 }
1259 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, flags)) == 0)
1260 ia->ia_flags |= IFA_ROUTE;
1261
1262 /* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */
1263 in6_ifaddloop(&(ia->ia_ifa));
1264
1265 if (ifp->if_flags & IFF_MULTICAST)
1266 in6_restoremkludge(ia, ifp);
1267
1268 return(error);
1269 }
1270
1271 /*
1272 * Multicast address kludge:
1273 * If there were any multicast addresses attached to this interface address,
1274 * either move them to another address on this interface, or save them until
1275 * such time as this interface is reconfigured for IPv6.
1276 */
1277 void
1278 in6_savemkludge(oia)
1279 struct in6_ifaddr *oia;
1280 {
1281 struct in6_ifaddr *ia;
1282 struct in6_multi *in6m, *next;
1283
1284 IFP_TO_IA6(oia->ia_ifp, ia);
1285 if (ia) { /* there is another address */
1286 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1287 next = in6m->in6m_entry.le_next;
1288 IFAFREE(&in6m->in6m_ia->ia_ifa);
1289 IFAREF(&ia->ia_ifa);
1290 in6m->in6m_ia = ia;
1291 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1292 }
1293 } else { /* last address on this if deleted, save */
1294 struct multi6_kludge *mk;
1295
1296 mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK);
1297
1298 LIST_INIT(&mk->mk_head);
1299 mk->mk_ifp = oia->ia_ifp;
1300
1301 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1302 next = in6m->in6m_entry.le_next;
1303 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1304 in6m->in6m_ia = NULL;
1305 LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry);
1306 }
1307
1308 if (mk->mk_head.lh_first != NULL) {
1309 LIST_INSERT_HEAD(&in6_mk, mk, mk_entry);
1310 } else {
1311 FREE(mk, M_IPMADDR);
1312 }
1313 }
1314 }
1315
1316 /*
1317 * Continuation of multicast address hack:
1318 * If there was a multicast group list previously saved for this interface,
1319 * then we re-attach it to the first address configured on the i/f.
1320 */
1321 void
1322 in6_restoremkludge(ia, ifp)
1323 struct in6_ifaddr *ia;
1324 struct ifnet *ifp;
1325 {
1326 struct multi6_kludge *mk;
1327
1328 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1329 if (mk->mk_ifp == ifp) {
1330 struct in6_multi *in6m, *next;
1331
1332 for (in6m = mk->mk_head.lh_first; in6m; in6m = next){
1333 next = in6m->in6m_entry.le_next;
1334 in6m->in6m_ia = ia;
1335 IFAREF(&ia->ia_ifa);
1336 LIST_INSERT_HEAD(&ia->ia6_multiaddrs,
1337 in6m, in6m_entry);
1338 }
1339 LIST_REMOVE(mk, mk_entry);
1340 free(mk, M_IPMADDR);
1341 break;
1342 }
1343 }
1344 }
1345
1346 void
1347 in6_purgemkludge(ifp)
1348 struct ifnet *ifp;
1349 {
1350 struct multi6_kludge *mk;
1351 struct in6_multi *in6m;
1352
1353 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1354 if (mk->mk_ifp != ifp)
1355 continue;
1356
1357 /* leave from all multicast groups joined */
1358 while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL)
1359 in6_delmulti(in6m);
1360 LIST_REMOVE(mk, mk_entry);
1361 free(mk, M_IPMADDR);
1362 break;
1363 }
1364 }
1365
1366 /*
1367 * Add an address to the list of IP6 multicast addresses for a
1368 * given interface.
1369 */
1370 struct in6_multi *
1371 in6_addmulti(maddr6, ifp, errorp)
1372 register struct in6_addr *maddr6;
1373 register struct ifnet *ifp;
1374 int *errorp;
1375 {
1376 struct in6_ifaddr *ia;
1377 struct in6_ifreq ifr;
1378 struct in6_multi *in6m;
1379 int s = splsoftnet();
1380
1381 *errorp = 0;
1382 /*
1383 * See if address already in list.
1384 */
1385 IN6_LOOKUP_MULTI(*maddr6, ifp, in6m);
1386 if (in6m != NULL) {
1387 /*
1388 * Found it; just increment the refrence count.
1389 */
1390 in6m->in6m_refcount++;
1391 } else {
1392 /*
1393 * New address; allocate a new multicast record
1394 * and link it into the interface's multicast list.
1395 */
1396 in6m = (struct in6_multi *)
1397 malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1398 if (in6m == NULL) {
1399 splx(s);
1400 *errorp = ENOBUFS;
1401 return(NULL);
1402 }
1403 in6m->in6m_addr = *maddr6;
1404 in6m->in6m_ifp = ifp;
1405 in6m->in6m_refcount = 1;
1406 IFP_TO_IA6(ifp, ia);
1407 if (ia == NULL) {
1408 free(in6m, M_IPMADDR);
1409 splx(s);
1410 *errorp = EADDRNOTAVAIL; /* appropriate? */
1411 return(NULL);
1412 }
1413 in6m->in6m_ia = ia;
1414 IFAREF(&ia->ia_ifa); /* gain a reference */
1415 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1416
1417 /*
1418 * Ask the network driver to update its multicast reception
1419 * filter appropriately for the new address.
1420 */
1421 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1422 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1423 ifr.ifr_addr.sin6_family = AF_INET6;
1424 ifr.ifr_addr.sin6_addr = *maddr6;
1425 if (ifp->if_ioctl == NULL)
1426 *errorp = ENXIO; /* XXX: appropriate? */
1427 else
1428 *errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI,
1429 (caddr_t)&ifr);
1430 if (*errorp) {
1431 LIST_REMOVE(in6m, in6m_entry);
1432 free(in6m, M_IPMADDR);
1433 splx(s);
1434 return(NULL);
1435 }
1436 /*
1437 * Let MLD6 know that we have joined a new IP6 multicast
1438 * group.
1439 */
1440 mld6_start_listening(in6m);
1441 }
1442 splx(s);
1443 return(in6m);
1444 }
1445
1446 /*
1447 * Delete a multicast address record.
1448 */
1449 void
1450 in6_delmulti(in6m)
1451 struct in6_multi *in6m;
1452 {
1453 struct in6_ifreq ifr;
1454 int s = splsoftnet();
1455
1456 if (--in6m->in6m_refcount == 0) {
1457 /*
1458 * No remaining claims to this record; let MLD6 know
1459 * that we are leaving the multicast group.
1460 */
1461 mld6_stop_listening(in6m);
1462
1463 /*
1464 * Unlink from list.
1465 */
1466 LIST_REMOVE(in6m, in6m_entry);
1467 if (in6m->in6m_ia)
1468 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1469
1470 /*
1471 * Notify the network driver to update its multicast
1472 * reception filter.
1473 */
1474 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1475 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1476 ifr.ifr_addr.sin6_family = AF_INET6;
1477 ifr.ifr_addr.sin6_addr = in6m->in6m_addr;
1478 (*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp,
1479 SIOCDELMULTI, (caddr_t)&ifr);
1480 free(in6m, M_IPMADDR);
1481 }
1482 splx(s);
1483 }
1484
1485 /*
1486 * Find an IPv6 interface link-local address specific to an interface.
1487 */
1488 struct in6_ifaddr *
1489 in6ifa_ifpforlinklocal(ifp, ignoreflags)
1490 struct ifnet *ifp;
1491 int ignoreflags;
1492 {
1493 register struct ifaddr *ifa;
1494
1495 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
1496 {
1497 if (ifa->ifa_addr == NULL)
1498 continue; /* just for safety */
1499 if (ifa->ifa_addr->sa_family != AF_INET6)
1500 continue;
1501 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1502 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1503 ignoreflags) != 0)
1504 continue;
1505 break;
1506 }
1507 }
1508
1509 return((struct in6_ifaddr *)ifa);
1510 }
1511
1512
1513 /*
1514 * find the internet address corresponding to a given interface and address.
1515 */
1516 struct in6_ifaddr *
1517 in6ifa_ifpwithaddr(ifp, addr)
1518 struct ifnet *ifp;
1519 struct in6_addr *addr;
1520 {
1521 register struct ifaddr *ifa;
1522
1523 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
1524 {
1525 if (ifa->ifa_addr == NULL)
1526 continue; /* just for safety */
1527 if (ifa->ifa_addr->sa_family != AF_INET6)
1528 continue;
1529 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
1530 break;
1531 }
1532
1533 return((struct in6_ifaddr *)ifa);
1534 }
1535
1536 /*
1537 * Convert IP6 address to printable (loggable) representation.
1538 */
1539 static char digits[] = "0123456789abcdef";
1540 static int ip6round = 0;
1541 char *
1542 ip6_sprintf(addr)
1543 register struct in6_addr *addr;
1544 {
1545 static char ip6buf[8][48];
1546 register int i;
1547 register char *cp;
1548 register u_short *a = (u_short *)addr;
1549 register u_char *d;
1550 int dcolon = 0;
1551
1552 ip6round = (ip6round + 1) & 7;
1553 cp = ip6buf[ip6round];
1554
1555 for (i = 0; i < 8; i++) {
1556 if (dcolon == 1) {
1557 if (*a == 0) {
1558 if (i == 7)
1559 *cp++ = ':';
1560 a++;
1561 continue;
1562 } else
1563 dcolon = 2;
1564 }
1565 if (*a == 0) {
1566 if (dcolon == 0 && *(a + 1) == 0) {
1567 if (i == 0)
1568 *cp++ = ':';
1569 *cp++ = ':';
1570 dcolon = 1;
1571 } else {
1572 *cp++ = '0';
1573 *cp++ = ':';
1574 }
1575 a++;
1576 continue;
1577 }
1578 d = (u_char *)a;
1579 *cp++ = digits[*d >> 4];
1580 *cp++ = digits[*d++ & 0xf];
1581 *cp++ = digits[*d >> 4];
1582 *cp++ = digits[*d & 0xf];
1583 *cp++ = ':';
1584 a++;
1585 }
1586 *--cp = 0;
1587 return(ip6buf[ip6round]);
1588 }
1589
1590 int
1591 in6_localaddr(in6)
1592 struct in6_addr *in6;
1593 {
1594 struct in6_ifaddr *ia;
1595
1596 if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
1597 return 1;
1598
1599 for (ia = in6_ifaddr; ia; ia = ia->ia_next)
1600 if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
1601 &ia->ia_prefixmask.sin6_addr))
1602 return 1;
1603
1604 return (0);
1605 }
1606
1607 /*
1608 * Get a scope of the address. Node-local, link-local, site-local or global.
1609 */
1610 int
1611 in6_addrscope (addr)
1612 struct in6_addr *addr;
1613 {
1614 int scope;
1615
1616 if (addr->s6_addr8[0] == 0xfe) {
1617 scope = addr->s6_addr8[1] & 0xc0;
1618
1619 switch (scope) {
1620 case 0x80:
1621 return IPV6_ADDR_SCOPE_LINKLOCAL;
1622 break;
1623 case 0xc0:
1624 return IPV6_ADDR_SCOPE_SITELOCAL;
1625 break;
1626 default:
1627 return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
1628 break;
1629 }
1630 }
1631
1632
1633 if (addr->s6_addr8[0] == 0xff) {
1634 scope = addr->s6_addr8[1] & 0x0f;
1635
1636 /*
1637 * due to other scope such as reserved,
1638 * return scope doesn't work.
1639 */
1640 switch (scope) {
1641 case IPV6_ADDR_SCOPE_NODELOCAL:
1642 return IPV6_ADDR_SCOPE_NODELOCAL;
1643 break;
1644 case IPV6_ADDR_SCOPE_LINKLOCAL:
1645 return IPV6_ADDR_SCOPE_LINKLOCAL;
1646 break;
1647 case IPV6_ADDR_SCOPE_SITELOCAL:
1648 return IPV6_ADDR_SCOPE_SITELOCAL;
1649 break;
1650 default:
1651 return IPV6_ADDR_SCOPE_GLOBAL;
1652 break;
1653 }
1654 }
1655
1656 if (bcmp(&in6addr_loopback, addr, sizeof(addr) - 1) == 0) {
1657 if (addr->s6_addr8[15] == 1) /* loopback */
1658 return IPV6_ADDR_SCOPE_NODELOCAL;
1659 if (addr->s6_addr8[15] == 0) /* unspecified */
1660 return IPV6_ADDR_SCOPE_LINKLOCAL;
1661 }
1662
1663 return IPV6_ADDR_SCOPE_GLOBAL;
1664 }
1665
1666 int
1667 in6_addr2scopeid(ifp, addr)
1668 struct ifnet *ifp; /* must not be NULL */
1669 struct in6_addr *addr; /* must not be NULL */
1670 {
1671 int scope = in6_addrscope(addr);
1672
1673 switch(scope) {
1674 case IPV6_ADDR_SCOPE_NODELOCAL:
1675 return(-1); /* XXX: is this an appropriate value? */
1676
1677 case IPV6_ADDR_SCOPE_LINKLOCAL:
1678 /* XXX: we do not distinguish between a link and an I/F. */
1679 return(ifp->if_index);
1680
1681 case IPV6_ADDR_SCOPE_SITELOCAL:
1682 return(0); /* XXX: invalid. */
1683
1684 default:
1685 return(0); /* XXX: treat as global. */
1686 }
1687 }
1688
1689 /*
1690 * return length of part which dst and src are equal
1691 * hard coding...
1692 */
1693
1694 int
1695 in6_matchlen(src, dst)
1696 struct in6_addr *src, *dst;
1697 {
1698 int match = 0;
1699 u_char *s = (u_char *)src, *d = (u_char *)dst;
1700 u_char *lim = s + 16, r;
1701
1702 while (s < lim)
1703 if ((r = (*d++ ^ *s++)) != 0) {
1704 while (r < 128) {
1705 match++;
1706 r <<= 1;
1707 }
1708 break;
1709 } else
1710 match += 8;
1711 return match;
1712 }
1713
1714 int
1715 in6_are_prefix_equal(p1, p2, len)
1716 struct in6_addr *p1, *p2;
1717 int len;
1718 {
1719 int bytelen, bitlen;
1720
1721 /* sanity check */
1722 if (0 > len || len > 128) {
1723 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
1724 len);
1725 return(0);
1726 }
1727
1728 bytelen = len / 8;
1729 bitlen = len % 8;
1730
1731 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
1732 return(0);
1733 if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
1734 p2->s6_addr[bytelen] >> (8 - bitlen))
1735 return(0);
1736
1737 return(1);
1738 }
1739
1740 void
1741 in6_prefixlen2mask(maskp, len)
1742 struct in6_addr *maskp;
1743 int len;
1744 {
1745 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
1746 int bytelen, bitlen, i;
1747
1748 /* sanity check */
1749 if (0 > len || len > 128) {
1750 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
1751 len);
1752 return;
1753 }
1754
1755 bzero(maskp, sizeof(*maskp));
1756 bytelen = len / 8;
1757 bitlen = len % 8;
1758 for (i = 0; i < bytelen; i++)
1759 maskp->s6_addr[i] = 0xff;
1760 if (bitlen)
1761 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
1762 }
1763
1764 /*
1765 * return the best address out of the same scope
1766 */
1767 struct in6_ifaddr *
1768 in6_ifawithscope(oifp, dst)
1769 register struct ifnet *oifp;
1770 register struct in6_addr *dst;
1771 {
1772 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
1773 int blen = -1;
1774 struct ifaddr *ifa;
1775 struct ifnet *ifp;
1776 struct in6_ifaddr *ifa_best = NULL;
1777
1778 if (oifp == NULL) {
1779 printf("in6_ifawithscope: output interface is not specified\n");
1780 return(NULL);
1781 }
1782
1783 /*
1784 * We search for all addresses on all interfaces from the beginning.
1785 * Comparing an interface with the outgoing interface will be done
1786 * only at the final stage of tiebreaking.
1787 */
1788 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1789 {
1790 /*
1791 * We can never take an address that breaks the scope zone
1792 * of the destination.
1793 */
1794 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
1795 continue;
1796
1797 for (ifa = ifp->if_addrlist.tqh_first; ifa;
1798 ifa = ifa->ifa_list.tqe_next)
1799 {
1800 int tlen = -1, dscopecmp, bscopecmp, matchcmp;
1801
1802 if (ifa->ifa_addr->sa_family != AF_INET6)
1803 continue;
1804
1805 src_scope = in6_addrscope(IFA_IN6(ifa));
1806
1807 #ifdef ADDRSELECT_DEBUG /* should be removed after stabilization */
1808 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
1809 printf("in6_ifawithscope: dst=%s bestaddr=%s, "
1810 "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, "
1811 "matchlen=%d, flgs=%x\n",
1812 ip6_sprintf(dst),
1813 ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none",
1814 ip6_sprintf(IFA_IN6(ifa)), src_scope,
1815 dscopecmp,
1816 ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1,
1817 in6_matchlen(IFA_IN6(ifa), dst),
1818 ((struct in6_ifaddr *)ifa)->ia6_flags);
1819 #endif
1820
1821 /*
1822 * Don't use an address before completing DAD
1823 * nor a duplicated address.
1824 */
1825 if (((struct in6_ifaddr *)ifa)->ia6_flags &
1826 IN6_IFF_NOTREADY)
1827 continue;
1828
1829 /* XXX: is there any case to allow anycasts? */
1830 if (((struct in6_ifaddr *)ifa)->ia6_flags &
1831 IN6_IFF_ANYCAST)
1832 continue;
1833
1834 if (((struct in6_ifaddr *)ifa)->ia6_flags &
1835 IN6_IFF_DETACHED)
1836 continue;
1837
1838 /*
1839 * If this is the first address we find,
1840 * keep it anyway.
1841 */
1842 if (ifa_best == NULL)
1843 goto replace;
1844
1845 /*
1846 * ifa_best is never NULL beyond this line except
1847 * within the block labeled "replace".
1848 */
1849
1850 /*
1851 * If ifa_best has a smaller scope than dst and
1852 * the current address has a larger one than
1853 * (or equal to) dst, always replace ifa_best.
1854 * Also, if the current address has a smaller scope
1855 * than dst, ignore it unless ifa_best also has a
1856 * smaller scope.
1857 */
1858 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
1859 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
1860 goto replace;
1861 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
1862 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
1863 continue;
1864
1865 /*
1866 * A deprecated address SHOULD NOT be used in new
1867 * communications if an alternate (non-deprecated)
1868 * address is available and has sufficient scope.
1869 * RFC 2462, Section 5.5.4.
1870 */
1871 if (((struct in6_ifaddr *)ifa)->ia6_flags &
1872 IN6_IFF_DEPRECATED) {
1873 /*
1874 * Ignore any deprecated addresses if
1875 * specified by configuration.
1876 */
1877 if (!ip6_use_deprecated)
1878 continue;
1879
1880 /*
1881 * If we have already found a non-deprecated
1882 * candidate, just ignore deprecated addresses.
1883 */
1884 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
1885 == 0)
1886 continue;
1887 }
1888
1889 /*
1890 * A non-deprecated address is always preferred
1891 * to a deprecated one regardless of scopes and
1892 * address matching.
1893 */
1894 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
1895 (((struct in6_ifaddr *)ifa)->ia6_flags &
1896 IN6_IFF_DEPRECATED) == 0)
1897 goto replace;
1898
1899 /*
1900 * At this point, we have two cases:
1901 * 1. we are looking at a non-deprecated address,
1902 * and ifa_best is also non-deprecated.
1903 * 2. we are looking at a deprecated address,
1904 * and ifa_best is also deprecated.
1905 * Also, we do not have to consider a case where
1906 * the scope of if_best is larger(smaller) than dst and
1907 * the scope of the current address is smaller(larger)
1908 * than dst. Such a case has already been covered.
1909 * Tiebreaking is done according to the following
1910 * items:
1911 * - the scope comparison between the address and
1912 * dst (dscopecmp)
1913 * - the scope comparison between the address and
1914 * ifa_best (bscopecmp)
1915 * - if the address match dst longer than ifa_best
1916 * (matchcmp)
1917 * - if the address is on the outgoing I/F (outI/F)
1918 *
1919 * Roughly speaking, the selection policy is
1920 * - the most important item is scope. The same scope
1921 * is best. Then search for a larger scope.
1922 * Smaller scopes are the last resort.
1923 * - A deprecated address is chosen only when we have
1924 * no address that has an enough scope, but is
1925 * prefered to any addresses of smaller scopes.
1926 * - Longest address match against dst is considered
1927 * only for addresses that has the same scope of dst.
1928 * - If there is no other reasons to choose one,
1929 * addresses on the outgoing I/F are preferred.
1930 *
1931 * The precise decision table is as follows:
1932 * dscopecmp bscopecmp matchcmp outI/F | replace?
1933 * !equal equal N/A Yes | Yes (1)
1934 * !equal equal N/A No | No (2)
1935 * larger larger N/A N/A | No (3)
1936 * larger smaller N/A N/A | Yes (4)
1937 * smaller larger N/A N/A | Yes (5)
1938 * smaller smaller N/A N/A | No (6)
1939 * equal smaller N/A N/A | Yes (7)
1940 * equal larger (already done)
1941 * equal equal larger N/A | Yes (8)
1942 * equal equal smaller N/A | No (9)
1943 * equal equal equal Yes | Yes (a)
1944 * eaual eqaul equal No | No (b)
1945 */
1946 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
1947 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
1948
1949 if (dscopecmp && bscopecmp == 0) {
1950 if (oifp == ifp) /* (1) */
1951 goto replace;
1952 continue; /* (2) */
1953 }
1954 if (dscopecmp > 0) {
1955 if (bscopecmp > 0) /* (3) */
1956 continue;
1957 goto replace; /* (4) */
1958 }
1959 if (dscopecmp < 0) {
1960 if (bscopecmp > 0) /* (5) */
1961 goto replace;
1962 continue; /* (6) */
1963 }
1964
1965 /* now dscopecmp must be 0 */
1966 if (bscopecmp < 0)
1967 goto replace; /* (7) */
1968
1969 /*
1970 * At last both dscopecmp and bscopecmp must be 0.
1971 * We need address matching against dst for
1972 * tiebreaking.
1973 */
1974 tlen = in6_matchlen(IFA_IN6(ifa), dst);
1975 matchcmp = tlen - blen;
1976 if (matchcmp > 0) /* (8) */
1977 goto replace;
1978 if (matchcmp < 0) /* (9) */
1979 continue;
1980 if (oifp == ifp) /* (a) */
1981 goto replace;
1982 continue; /* (b) */
1983
1984 replace:
1985 ifa_best = (struct in6_ifaddr *)ifa;
1986 blen = tlen >= 0 ? tlen :
1987 in6_matchlen(IFA_IN6(ifa), dst);
1988 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
1989 }
1990 }
1991
1992 /* count statistics for future improvements */
1993 if (ifa_best == NULL)
1994 ip6stat.ip6s_sources_none++;
1995 else {
1996 if (oifp == ifa_best->ia_ifp)
1997 ip6stat.ip6s_sources_sameif[best_scope]++;
1998 else
1999 ip6stat.ip6s_sources_otherif[best_scope]++;
2000
2001 if (best_scope == dst_scope)
2002 ip6stat.ip6s_sources_samescope[best_scope]++;
2003 else
2004 ip6stat.ip6s_sources_otherscope[best_scope]++;
2005
2006 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2007 ip6stat.ip6s_sources_deprecated[best_scope]++;
2008 }
2009
2010 return(ifa_best);
2011 }
2012
2013 /*
2014 * return the best address out of the same scope. if no address was
2015 * found, return the first valid address from designated IF.
2016 */
2017
2018 struct in6_ifaddr *
2019 in6_ifawithifp(ifp, dst)
2020 register struct ifnet *ifp;
2021 register struct in6_addr *dst;
2022 {
2023 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2024 struct ifaddr *ifa;
2025 struct in6_ifaddr *besta = 0;
2026 struct in6_ifaddr *dep[2]; /*last-resort: deprecated*/
2027
2028 dep[0] = dep[1] = NULL;
2029
2030 /*
2031 * We first look for addresses in the same scope.
2032 * If there is one, return it.
2033 * If two or more, return one which matches the dst longest.
2034 * If none, return one of global addresses assigned other ifs.
2035 */
2036 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2037 {
2038 if (ifa->ifa_addr->sa_family != AF_INET6)
2039 continue;
2040 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2041 continue; /* XXX: is there any case to allow anycast? */
2042 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2043 continue; /* don't use this interface */
2044 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2045 continue;
2046 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2047 if (ip6_use_deprecated)
2048 dep[0] = (struct in6_ifaddr *)ifa;
2049 continue;
2050 }
2051
2052 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2053 /*
2054 * call in6_matchlen() as few as possible
2055 */
2056 if (besta) {
2057 if (blen == -1)
2058 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2059 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2060 if (tlen > blen) {
2061 blen = tlen;
2062 besta = (struct in6_ifaddr *)ifa;
2063 }
2064 } else
2065 besta = (struct in6_ifaddr *)ifa;
2066 }
2067 }
2068 if (besta)
2069 return(besta);
2070
2071 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2072 {
2073 if (ifa->ifa_addr->sa_family != AF_INET6)
2074 continue;
2075 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2076 continue; /* XXX: is there any case to allow anycast? */
2077 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2078 continue; /* don't use this interface */
2079 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2080 continue;
2081 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2082 if (ip6_use_deprecated)
2083 dep[1] = (struct in6_ifaddr *)ifa;
2084 continue;
2085 }
2086
2087 return (struct in6_ifaddr *)ifa;
2088 }
2089
2090 /* use the last-resort values, that are, deprecated addresses */
2091 if (dep[0])
2092 return dep[0];
2093 if (dep[1])
2094 return dep[1];
2095
2096 return NULL;
2097 }
2098
2099 /*
2100 * perform DAD when interface becomes IFF_UP.
2101 */
2102 void
2103 in6_if_up(ifp)
2104 struct ifnet *ifp;
2105 {
2106 struct ifaddr *ifa;
2107 struct in6_ifaddr *ia;
2108 int dad_delay; /* delay ticks before DAD output */
2109
2110 /*
2111 * special cases, like 6to4, are handled in in6_ifattach
2112 */
2113 in6_ifattach(ifp, NULL);
2114
2115 dad_delay = 0;
2116 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2117 {
2118 if (ifa->ifa_addr->sa_family != AF_INET6)
2119 continue;
2120 ia = (struct in6_ifaddr *)ifa;
2121 if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2122 nd6_dad_start(ifa, &dad_delay);
2123 }
2124 }
2125
2126 /*
2127 * Calculate max IPv6 MTU through all the interfaces and store it
2128 * to in6_maxmtu.
2129 */
2130 void
2131 in6_setmaxmtu()
2132 {
2133 unsigned long maxmtu = 0;
2134 struct ifnet *ifp;
2135
2136 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2137 {
2138 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2139 nd_ifinfo[ifp->if_index].linkmtu > maxmtu)
2140 maxmtu = nd_ifinfo[ifp->if_index].linkmtu;
2141 }
2142 if (maxmtu) /* update only when maxmtu is positive */
2143 in6_maxmtu = maxmtu;
2144 }
2145