Home | History | Annotate | Line # | Download | only in netinet6
in6.c revision 1.58
      1 /*	$NetBSD: in6.c,v 1.58 2002/05/29 02:58:29 itojun Exp $	*/
      2 /*	$KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1991, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. All advertising materials mentioning features or use of this software
     46  *    must display the following acknowledgement:
     47  *	This product includes software developed by the University of
     48  *	California, Berkeley and its contributors.
     49  * 4. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)in.c	8.2 (Berkeley) 11/15/93
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.58 2002/05/29 02:58:29 itojun Exp $");
     70 
     71 #include "opt_inet.h"
     72 
     73 #include <sys/param.h>
     74 #include <sys/ioctl.h>
     75 #include <sys/errno.h>
     76 #include <sys/malloc.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/sockio.h>
     80 #include <sys/systm.h>
     81 #include <sys/proc.h>
     82 #include <sys/time.h>
     83 #include <sys/kernel.h>
     84 #include <sys/syslog.h>
     85 
     86 #include <net/if.h>
     87 #include <net/if_types.h>
     88 #include <net/route.h>
     89 #include <net/if_dl.h>
     90 
     91 #include <netinet/in.h>
     92 #include <netinet/in_var.h>
     93 #include <net/if_ether.h>
     94 
     95 #include <netinet/ip6.h>
     96 #include <netinet6/ip6_var.h>
     97 #include <netinet6/nd6.h>
     98 #include <netinet6/mld6_var.h>
     99 #include <netinet6/ip6_mroute.h>
    100 #include <netinet6/in6_ifattach.h>
    101 
    102 #include <net/net_osdep.h>
    103 
    104 /* enable backward compatibility code for obsoleted ioctls */
    105 #define COMPAT_IN6IFIOCTL
    106 
    107 /*
    108  * Definitions of some costant IP6 addresses.
    109  */
    110 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
    111 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
    112 const struct in6_addr in6addr_nodelocal_allnodes =
    113 	IN6ADDR_NODELOCAL_ALLNODES_INIT;
    114 const struct in6_addr in6addr_linklocal_allnodes =
    115 	IN6ADDR_LINKLOCAL_ALLNODES_INIT;
    116 const struct in6_addr in6addr_linklocal_allrouters =
    117 	IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
    118 
    119 const struct in6_addr in6mask0 = IN6MASK0;
    120 const struct in6_addr in6mask32 = IN6MASK32;
    121 const struct in6_addr in6mask64 = IN6MASK64;
    122 const struct in6_addr in6mask96 = IN6MASK96;
    123 const struct in6_addr in6mask128 = IN6MASK128;
    124 
    125 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
    126 				     0, 0, IN6ADDR_ANY_INIT, 0};
    127 
    128 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
    129 	struct ifnet *, struct proc *));
    130 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
    131 			   struct sockaddr_in6 *, int));
    132 
    133 /*
    134  * This structure is used to keep track of in6_multi chains which belong to
    135  * deleted interface addresses.
    136  */
    137 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */
    138 
    139 struct multi6_kludge {
    140 	LIST_ENTRY(multi6_kludge) mk_entry;
    141 	struct ifnet *mk_ifp;
    142 	struct in6_multihead mk_head;
    143 };
    144 
    145 /*
    146  * Check if the loopback entry will be automatically generated.
    147  *   if 0 returned, will not be automatically generated.
    148  *   if 1 returned, will be automatically generated.
    149  */
    150 static int
    151 in6_is_ifloop_auto(struct ifaddr *ifa)
    152 {
    153 #define SIN6(s) ((struct sockaddr_in6 *)s)
    154 	/*
    155 	 * If RTF_CLONING is unset, or (IFF_LOOPBACK | IFF_POINTOPOINT),
    156 	 * or netmask is all0 or all1, then cloning will not happen,
    157 	 * then we can't rely on its loopback entry generation.
    158 	 */
    159 	if ((ifa->ifa_flags & RTF_CLONING) == 0 ||
    160 	    (ifa->ifa_ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT)) ||
    161 	    (SIN6(ifa->ifa_netmask)->sin6_len == sizeof(struct sockaddr_in6)
    162 	     &&
    163 	     IN6_ARE_ADDR_EQUAL(&SIN6(ifa->ifa_netmask)->sin6_addr,
    164 				&in6mask128)) ||
    165 	    ((struct sockaddr_in6 *)ifa->ifa_netmask)->sin6_len == 0)
    166 		return 0;
    167 	else
    168 		return 1;
    169 #undef SIN6
    170 }
    171 
    172 /*
    173  * Subroutine for in6_ifaddloop() and in6_ifremloop().
    174  * This routine does actual work.
    175  */
    176 static void
    177 in6_ifloop_request(int cmd, struct ifaddr *ifa)
    178 {
    179 	struct sockaddr_in6 lo_sa;
    180 	struct sockaddr_in6 all1_sa;
    181 	struct rtentry *nrt = NULL, **nrtp = NULL;
    182 
    183 	bzero(&lo_sa, sizeof(lo_sa));
    184 	bzero(&all1_sa, sizeof(all1_sa));
    185 	lo_sa.sin6_family = AF_INET6;
    186 	lo_sa.sin6_len = sizeof(struct sockaddr_in6);
    187 	all1_sa = lo_sa;
    188 	lo_sa.sin6_addr = in6addr_loopback;
    189 	all1_sa.sin6_addr = in6mask128;
    190 
    191 	/*
    192 	 * So we add or remove static loopback entry, here.
    193 	 * This request for deletion could fail, e.g. when we remove
    194 	 * an address right after adding it.
    195 	 */
    196 	if (cmd == RTM_ADD)
    197 		nrtp = &nrt;
    198 	rtrequest(cmd, ifa->ifa_addr,
    199 		  (struct sockaddr *)&lo_sa,
    200 		  (struct sockaddr *)&all1_sa,
    201 		  RTF_UP|RTF_HOST, nrtp);
    202 
    203 	/*
    204 	 * Make sure rt_ifa be equal to IFA, the second argument of the
    205 	 * function.
    206 	 * We need this because when we refer to rt_ifa->ia6_flags in
    207 	 * ip6_input, we assume that the rt_ifa points to the address instead
    208 	 * of the loopback address.
    209 	 */
    210 	if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
    211 		IFAFREE(nrt->rt_ifa);
    212 		IFAREF(ifa);
    213 		nrt->rt_ifa = ifa;
    214 	}
    215 	if (nrt)
    216 		nrt->rt_refcnt--;
    217 }
    218 
    219 /*
    220  * Add ownaddr as loopback rtentry, if necessary(ex. on p2p link).
    221  * Because, KAME needs loopback rtentry for ownaddr check in
    222  * ip6_input().
    223  */
    224 static void
    225 in6_ifaddloop(struct ifaddr *ifa)
    226 {
    227 	if (!in6_is_ifloop_auto(ifa)) {
    228 		struct rtentry *rt;
    229 
    230 		/* If there is no loopback entry, allocate one. */
    231 		rt = rtalloc1(ifa->ifa_addr, 0);
    232 		if (rt == 0 || (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
    233 			in6_ifloop_request(RTM_ADD, ifa);
    234 		if (rt)
    235 			rt->rt_refcnt--;
    236 	}
    237 }
    238 
    239 /*
    240  * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
    241  * if it exists.
    242  */
    243 static void
    244 in6_ifremloop(struct ifaddr *ifa)
    245 {
    246 	if (!in6_is_ifloop_auto(ifa)) {
    247 		struct in6_ifaddr *ia;
    248 		int ia_count = 0;
    249 
    250 		/* If only one ifa for the loopback entry, delete it. */
    251 		for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
    252 			if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa),
    253 					       &ia->ia_addr.sin6_addr)) {
    254 				ia_count++;
    255 				if (ia_count > 1)
    256 					break;
    257 			}
    258 		}
    259 		if (ia_count == 1)
    260 			in6_ifloop_request(RTM_DELETE, ifa);
    261 	}
    262 }
    263 
    264 int
    265 in6_ifindex2scopeid(idx)
    266 	int idx;
    267 {
    268 	struct ifnet *ifp;
    269 	struct ifaddr *ifa;
    270 	struct sockaddr_in6 *sin6;
    271 
    272 	if (idx < 0 || if_index < idx)
    273 		return -1;
    274 	ifp = ifindex2ifnet[idx];
    275 	if (!ifp)
    276 		return -1;
    277 
    278 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
    279 	{
    280 		if (ifa->ifa_addr->sa_family != AF_INET6)
    281 			continue;
    282 		sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
    283 		if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
    284 			return sin6->sin6_scope_id & 0xffff;
    285 	}
    286 
    287 	return -1;
    288 }
    289 
    290 int
    291 in6_mask2len(mask)
    292 	struct in6_addr *mask;
    293 {
    294 	int x, y;
    295 
    296 	for (x = 0; x < sizeof(*mask); x++) {
    297 		if (mask->s6_addr8[x] != 0xff)
    298 			break;
    299 	}
    300 	y = 0;
    301 	if (x < sizeof(*mask)) {
    302 		for (y = 0; y < 8; y++) {
    303 			if ((mask->s6_addr8[x] & (0x80 >> y)) == 0)
    304 				break;
    305 		}
    306 	}
    307 	return x * 8 + y;
    308 }
    309 
    310 void
    311 in6_len2mask(mask, len)
    312 	struct in6_addr *mask;
    313 	int len;
    314 {
    315 	int i;
    316 
    317 	bzero(mask, sizeof(*mask));
    318 	for (i = 0; i < len / 8; i++)
    319 		mask->s6_addr8[i] = 0xff;
    320 	if (len % 8)
    321 		mask->s6_addr8[i] = (0xff00 >> (len % 8)) & 0xff;
    322 }
    323 
    324 #define ifa2ia6(ifa)	((struct in6_ifaddr *)(ifa))
    325 #define ia62ifa(ia6)	(&((ia6)->ia_ifa))
    326 
    327 int
    328 in6_control(so, cmd, data, ifp, p)
    329 	struct	socket *so;
    330 	u_long cmd;
    331 	caddr_t	data;
    332 	struct ifnet *ifp;
    333 	struct proc *p;
    334 {
    335 	struct	in6_ifreq *ifr = (struct in6_ifreq *)data;
    336 	struct	in6_ifaddr *ia, *oia;
    337 	struct	in6_aliasreq *ifra = (struct in6_aliasreq *)data;
    338 	struct	sockaddr_in6 oldaddr;
    339 #ifdef COMPAT_IN6IFIOCTL
    340 	struct	sockaddr_in6 net;
    341 #endif
    342 	int error = 0, hostIsNew, prefixIsNew;
    343 	int newifaddr;
    344 	time_t time_second = (time_t)time.tv_sec;
    345 	int privileged;
    346 
    347 	privileged = 0;
    348 	if (p && !suser(p->p_ucred, &p->p_acflag))
    349 		privileged++;
    350 
    351 	switch (cmd) {
    352 	case SIOCGETSGCNT_IN6:
    353 	case SIOCGETMIFCNT_IN6:
    354 		return (mrt6_ioctl(cmd, data));
    355 	}
    356 
    357 	if (ifp == NULL)
    358 		return(EOPNOTSUPP);
    359 
    360 	switch (cmd) {
    361 	case SIOCSNDFLUSH_IN6:
    362 	case SIOCSPFXFLUSH_IN6:
    363 	case SIOCSRTRFLUSH_IN6:
    364 	case SIOCSDEFIFACE_IN6:
    365 	case SIOCSIFINFO_FLAGS:
    366 		if (!privileged)
    367 			return(EPERM);
    368 		/* fall through */
    369 	case SIOCGIFINFO_IN6:
    370 	case SIOCGDRLST_IN6:
    371 	case SIOCGPRLST_IN6:
    372 	case SIOCGNBRINFO_IN6:
    373 	case SIOCGDEFIFACE_IN6:
    374 		return(nd6_ioctl(cmd, data, ifp));
    375 	}
    376 
    377 	switch (cmd) {
    378 	case SIOCSIFPREFIX_IN6:
    379 	case SIOCDIFPREFIX_IN6:
    380 	case SIOCAIFPREFIX_IN6:
    381 	case SIOCCIFPREFIX_IN6:
    382 	case SIOCSGIFPREFIX_IN6:
    383 		if (!privileged)
    384 			return(EPERM);
    385 		/* fall through */
    386 	case SIOCGIFPREFIX_IN6:
    387 		return(in6_prefix_ioctl(so, cmd, data, ifp));
    388 	}
    389 
    390 	switch (cmd) {
    391 	case SIOCALIFADDR:
    392 	case SIOCDLIFADDR:
    393 		if (!privileged)
    394 			return(EPERM);
    395 		/* fall through */
    396 	case SIOCGLIFADDR:
    397 		return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
    398 	}
    399 
    400 	/*
    401 	 * Find address for this interface, if it exists.
    402 	 */
    403 	if (ifra->ifra_addr.sin6_family == AF_INET6) { /* XXX */
    404 		struct sockaddr_in6 *sa6 =
    405 			(struct sockaddr_in6 *)&ifra->ifra_addr;
    406 
    407 		if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
    408 			if (sa6->sin6_addr.s6_addr16[1] == 0) {
    409 				/* interface ID is not embedded by the user */
    410 				sa6->sin6_addr.s6_addr16[1] =
    411 					htons(ifp->if_index);
    412 			} else if (sa6->sin6_addr.s6_addr16[1] !=
    413 				    htons(ifp->if_index)) {
    414 				return(EINVAL);	/* link ID contradicts */
    415 			}
    416 			if (sa6->sin6_scope_id) {
    417 				if (sa6->sin6_scope_id !=
    418 				    (u_int32_t)ifp->if_index)
    419 					return(EINVAL);
    420 				sa6->sin6_scope_id = 0; /* XXX: good way? */
    421 			}
    422 		}
    423 		ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr);
    424 	} else
    425 		ia = NULL;
    426 
    427 	switch (cmd) {
    428 
    429 	case SIOCDIFADDR_IN6:
    430 		/*
    431 		 * for IPv4, we look for existing in_ifaddr here to allow
    432 		 * "ifconfig if0 delete" to remove the first IPv4 address on
    433 		 * the interface.  For IPv6, as the spec allows multiple
    434 		 * interface address from the day one, we consider "remove the
    435 		 * first one" semantics to be not preferable.
    436 		 */
    437 		if (ia == NULL)
    438 			return(EADDRNOTAVAIL);
    439 		/* FALLTHROUGH */
    440 	case SIOCAIFADDR_IN6:
    441 	case SIOCSIFADDR_IN6:
    442 #ifdef COMPAT_IN6IFIOCTL
    443 	case SIOCSIFDSTADDR_IN6:
    444 	case SIOCSIFNETMASK_IN6:
    445 		/*
    446 		 * Since IPv6 allows a node to assign multiple addresses
    447 		 * on a single interface, SIOCSIFxxx ioctls are not suitable
    448 		 * and should be unused.
    449 		 */
    450 #endif
    451 		if (ifra->ifra_addr.sin6_family != AF_INET6)
    452 			return(EAFNOSUPPORT);
    453 		if (!privileged)
    454 			return(EPERM);
    455 		if (ia == NULL) {
    456 			ia = (struct in6_ifaddr *)
    457 				malloc(sizeof(*ia), M_IFADDR, M_WAITOK);
    458 			if (ia == NULL)
    459 				return (ENOBUFS);
    460 			bzero((caddr_t)ia, sizeof(*ia));
    461 			/* Initialize the address and masks */
    462 			ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
    463 			ia->ia_addr.sin6_family = AF_INET6;
    464 			ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
    465 			if (ifp->if_flags & IFF_POINTOPOINT) {
    466 				ia->ia_ifa.ifa_dstaddr
    467 					= (struct sockaddr *)&ia->ia_dstaddr;
    468 				ia->ia_dstaddr.sin6_family = AF_INET6;
    469 				ia->ia_dstaddr.sin6_len = sizeof(ia->ia_dstaddr);
    470 			} else {
    471 				ia->ia_ifa.ifa_dstaddr = NULL;
    472 				bzero(&ia->ia_dstaddr, sizeof(ia->ia_dstaddr));
    473 			}
    474 			ia->ia_ifa.ifa_netmask
    475 				= (struct sockaddr *)&ia->ia_prefixmask;
    476 
    477 			ia->ia_ifp = ifp;
    478 			if ((oia = in6_ifaddr) != NULL) {
    479 				for ( ; oia->ia_next; oia = oia->ia_next)
    480 					continue;
    481 				oia->ia_next = ia;
    482 			} else
    483 				in6_ifaddr = ia;
    484 			IFAREF(&ia->ia_ifa);
    485 
    486 			TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
    487 			    ifa_list);
    488 			IFAREF(&ia->ia_ifa);
    489 
    490 			newifaddr = 1;
    491 		} else
    492 			newifaddr = 0;
    493 
    494 		if (cmd == SIOCAIFADDR_IN6) {
    495 			/* sanity for overflow - beware unsigned */
    496 			struct in6_addrlifetime *lt;
    497 			lt = &ifra->ifra_lifetime;
    498 			if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
    499 			 && lt->ia6t_vltime + time_second < time_second) {
    500 				return EINVAL;
    501 			}
    502 			if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
    503 			 && lt->ia6t_pltime + time_second < time_second) {
    504 				return EINVAL;
    505 			}
    506 		}
    507 		break;
    508 
    509 	case SIOCGIFADDR_IN6:
    510 		/* This interface is basically deprecated. use SIOCGIFCONF. */
    511 		/* fall through */
    512 	case SIOCGIFAFLAG_IN6:
    513 	case SIOCGIFNETMASK_IN6:
    514 	case SIOCGIFDSTADDR_IN6:
    515 	case SIOCGIFALIFETIME_IN6:
    516 		/* must think again about its semantics */
    517 		if (ia == NULL)
    518 			return(EADDRNOTAVAIL);
    519 		break;
    520 	case SIOCSIFALIFETIME_IN6:
    521 	    {
    522 		struct in6_addrlifetime *lt;
    523 
    524 		if (!privileged)
    525 			return(EPERM);
    526 		if (ia == NULL)
    527 			return(EADDRNOTAVAIL);
    528 		/* sanity for overflow - beware unsigned */
    529 		lt = &ifr->ifr_ifru.ifru_lifetime;
    530 		if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
    531 		 && lt->ia6t_vltime + time_second < time_second) {
    532 			return EINVAL;
    533 		}
    534 		if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
    535 		 && lt->ia6t_pltime + time_second < time_second) {
    536 			return EINVAL;
    537 		}
    538 		break;
    539 	    }
    540 	}
    541 
    542 	switch (cmd) {
    543 
    544 	case SIOCGIFADDR_IN6:
    545 		ifr->ifr_addr = ia->ia_addr;
    546 		break;
    547 
    548 	case SIOCGIFDSTADDR_IN6:
    549 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
    550 			return(EINVAL);
    551 		/*
    552 		 * XXX: should we check if ifa_dstaddr is NULL and return
    553 		 * an error?
    554 		 */
    555 		ifr->ifr_dstaddr = ia->ia_dstaddr;
    556 		break;
    557 
    558 	case SIOCGIFNETMASK_IN6:
    559 		ifr->ifr_addr = ia->ia_prefixmask;
    560 		break;
    561 
    562 	case SIOCGIFAFLAG_IN6:
    563 		ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
    564 		break;
    565 
    566 	case SIOCGIFSTAT_IN6:
    567 		if (ifp == NULL)
    568 			return EINVAL;
    569 		bzero(&ifr->ifr_ifru.ifru_stat,
    570 		    sizeof(ifr->ifr_ifru.ifru_stat));
    571 		ifr->ifr_ifru.ifru_stat =
    572 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
    573 		break;
    574 
    575 	case SIOCGIFSTAT_ICMP6:
    576 		if (ifp == NULL)
    577 			return EINVAL;
    578 		bzero(&ifr->ifr_ifru.ifru_stat,
    579 		    sizeof(ifr->ifr_ifru.ifru_icmp6stat));
    580 		ifr->ifr_ifru.ifru_icmp6stat =
    581 		    *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
    582 		break;
    583 
    584 #ifdef COMPAT_IN6IFIOCTL		/* should be unused */
    585 	case SIOCSIFDSTADDR_IN6:
    586 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
    587 			return(EINVAL);
    588 		oldaddr = ia->ia_dstaddr;
    589 		ia->ia_dstaddr = ifr->ifr_dstaddr;
    590 
    591 		/* link-local index check */
    592 		if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_dstaddr.sin6_addr)) {
    593 			if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] == 0) {
    594 				/* interface ID is not embedded by the user */
    595 				ia->ia_dstaddr.sin6_addr.s6_addr16[1]
    596 					= htons(ifp->if_index);
    597 			} else if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] !=
    598 				    htons(ifp->if_index)) {
    599 				ia->ia_dstaddr = oldaddr;
    600 				return(EINVAL);	/* ifid contradicts */
    601 			}
    602 		}
    603 
    604 		if (ifp->if_ioctl && (error = (ifp->if_ioctl)
    605 				      (ifp, SIOCSIFDSTADDR, (caddr_t)ia))) {
    606 			ia->ia_dstaddr = oldaddr;
    607 			return(error);
    608 		}
    609 		if (ia->ia_flags & IFA_ROUTE) {
    610 			ia->ia_ifa.ifa_dstaddr = (struct sockaddr *)&oldaddr;
    611 			rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
    612 			ia->ia_ifa.ifa_dstaddr =
    613 				(struct sockaddr *)&ia->ia_dstaddr;
    614 			rtinit(&(ia->ia_ifa), (int)RTM_ADD, RTF_HOST|RTF_UP);
    615 		}
    616 		break;
    617 
    618 #endif
    619 	case SIOCGIFALIFETIME_IN6:
    620 		ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
    621 		break;
    622 
    623 	case SIOCSIFALIFETIME_IN6:
    624 		ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
    625 		/* for sanity */
    626 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
    627 			ia->ia6_lifetime.ia6t_expire =
    628 				time_second + ia->ia6_lifetime.ia6t_vltime;
    629 		} else
    630 			ia->ia6_lifetime.ia6t_expire = 0;
    631 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
    632 			ia->ia6_lifetime.ia6t_preferred =
    633 				time_second + ia->ia6_lifetime.ia6t_pltime;
    634 		} else
    635 			ia->ia6_lifetime.ia6t_preferred = 0;
    636 		break;
    637 
    638 	case SIOCSIFADDR_IN6:
    639 		error = in6_ifinit(ifp, ia, &ifr->ifr_addr, 1);
    640 #if 0
    641 		/*
    642 		 * the code chokes if we are to assign multiple addresses with
    643 		 * the same address prefix (rtinit() will return EEXIST, which
    644 		 * is not fatal actually).  we will get memory leak if we
    645 		 * don't do it.
    646 		 * -> we may want to hide EEXIST from rtinit().
    647 		 */
    648   undo:
    649 		if (error && newifaddr) {
    650 			TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
    651 			IFAFREE(&ia->ia_ifa);
    652 
    653 			oia = ia;
    654 			if (oia == (ia = in6_ifaddr))
    655 				in6_ifaddr = ia->ia_next;
    656 			else {
    657 				while (ia->ia_next && (ia->ia_next != oia))
    658 					ia = ia->ia_next;
    659 				if (ia->ia_next)
    660 					ia->ia_next = oia->ia_next;
    661 				else {
    662 					printf("Didn't unlink in6_ifaddr "
    663 					    "from list\n");
    664 				}
    665 			}
    666 			IFAFREE(&oia->ia_ifa);
    667 		}
    668 #endif
    669 		return error;
    670 
    671 #ifdef COMPAT_IN6IFIOCTL		/* XXX should be unused */
    672 	case SIOCSIFNETMASK_IN6:
    673 		ia->ia_prefixmask = ifr->ifr_addr;
    674 		bzero(&net, sizeof(net));
    675 		net.sin6_len = sizeof(struct sockaddr_in6);
    676 		net.sin6_family = AF_INET6;
    677 		net.sin6_port = htons(0);
    678 		net.sin6_flowinfo = htonl(0);
    679 		net.sin6_addr.s6_addr32[0]
    680 			= ia->ia_addr.sin6_addr.s6_addr32[0] &
    681 				ia->ia_prefixmask.sin6_addr.s6_addr32[0];
    682 		net.sin6_addr.s6_addr32[1]
    683 			= ia->ia_addr.sin6_addr.s6_addr32[1] &
    684 				ia->ia_prefixmask.sin6_addr.s6_addr32[1];
    685 		net.sin6_addr.s6_addr32[2]
    686 			= ia->ia_addr.sin6_addr.s6_addr32[2] &
    687 				ia->ia_prefixmask.sin6_addr.s6_addr32[2];
    688 		net.sin6_addr.s6_addr32[3]
    689 			= ia->ia_addr.sin6_addr.s6_addr32[3] &
    690 				ia->ia_prefixmask.sin6_addr.s6_addr32[3];
    691 		ia->ia_net = net;
    692 		break;
    693 #endif
    694 
    695 	case SIOCAIFADDR_IN6:
    696 		prefixIsNew = 0;
    697 		hostIsNew = 1;
    698 
    699 		if (ifra->ifra_addr.sin6_len == 0) {
    700 			ifra->ifra_addr = ia->ia_addr;
    701 			hostIsNew = 0;
    702 		} else if (IN6_ARE_ADDR_EQUAL(&ifra->ifra_addr.sin6_addr,
    703 					      &ia->ia_addr.sin6_addr))
    704 			hostIsNew = 0;
    705 
    706 		/* Validate address families: */
    707 		/*
    708 		 * The destination address for a p2p link must have a family
    709 		 * of AF_UNSPEC or AF_INET6.
    710 		 */
    711 		if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
    712 		    ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
    713 		    ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
    714 			return(EAFNOSUPPORT);
    715 		/*
    716 		 * The prefixmask must have a family of AF_UNSPEC or AF_INET6.
    717 		 */
    718 		if (ifra->ifra_prefixmask.sin6_family != AF_INET6 &&
    719 		    ifra->ifra_prefixmask.sin6_family != AF_UNSPEC)
    720 			return(EAFNOSUPPORT);
    721 
    722 		if (ifra->ifra_prefixmask.sin6_len) {
    723 			in6_ifscrub(ifp, ia);
    724 			ia->ia_prefixmask = ifra->ifra_prefixmask;
    725 			prefixIsNew = 1;
    726 		}
    727 		if ((ifp->if_flags & IFF_POINTOPOINT) &&
    728 		    (ifra->ifra_dstaddr.sin6_family == AF_INET6)) {
    729 			in6_ifscrub(ifp, ia);
    730 			oldaddr = ia->ia_dstaddr;
    731 			ia->ia_dstaddr = ifra->ifra_dstaddr;
    732 			/* link-local index check: should be a separate function? */
    733 			if (IN6_IS_ADDR_LINKLOCAL(&ia->ia_dstaddr.sin6_addr)) {
    734 				if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] == 0) {
    735 					/*
    736 					 * interface ID is not embedded by
    737 					 * the user
    738 					 */
    739 					ia->ia_dstaddr.sin6_addr.s6_addr16[1]
    740 						= htons(ifp->if_index);
    741 				} else if (ia->ia_dstaddr.sin6_addr.s6_addr16[1] !=
    742 					    htons(ifp->if_index)) {
    743 					ia->ia_dstaddr = oldaddr;
    744 					return(EINVAL);	/* ifid contradicts */
    745 				}
    746 			}
    747 			prefixIsNew = 1; /* We lie; but effect's the same */
    748 		}
    749 		if (hostIsNew || prefixIsNew) {
    750 			error = in6_ifinit(ifp, ia, &ifra->ifra_addr, 0);
    751 #if 0
    752 			if (error)
    753 				goto undo;
    754 #endif
    755 		}
    756 		if (hostIsNew && (ifp->if_flags & IFF_MULTICAST)) {
    757 			int error_local = 0;
    758 
    759 			/*
    760 			 * join solicited multicast addr for new host id
    761 			 */
    762 			struct in6_addr llsol;
    763 			bzero(&llsol, sizeof(struct in6_addr));
    764 			llsol.s6_addr16[0] = htons(0xff02);
    765 			llsol.s6_addr16[1] = htons(ifp->if_index);
    766 			llsol.s6_addr32[1] = 0;
    767 			llsol.s6_addr32[2] = htonl(1);
    768 			llsol.s6_addr32[3] =
    769 				ifra->ifra_addr.sin6_addr.s6_addr32[3];
    770 			llsol.s6_addr8[12] = 0xff;
    771 			(void)in6_addmulti(&llsol, ifp, &error_local);
    772 			if (error == 0)
    773 				error = error_local;
    774 		}
    775 
    776 		ia->ia6_flags = ifra->ifra_flags;
    777 		ia->ia6_flags &= ~IN6_IFF_DUPLICATED;	/*safety*/
    778 
    779 		ia->ia6_lifetime = ifra->ifra_lifetime;
    780 		/* for sanity */
    781 		if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
    782 			ia->ia6_lifetime.ia6t_expire =
    783 				time_second + ia->ia6_lifetime.ia6t_vltime;
    784 		} else
    785 			ia->ia6_lifetime.ia6t_expire = 0;
    786 		if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
    787 			ia->ia6_lifetime.ia6t_preferred =
    788 				time_second + ia->ia6_lifetime.ia6t_pltime;
    789 		} else
    790 			ia->ia6_lifetime.ia6t_preferred = 0;
    791 
    792 		/*
    793 		 * make sure to initialize ND6 information.  this is to
    794 		 * workaround issues with interfaces with IPv6 addresses,
    795 		 * which have never brought # up.  we are assuming that it is
    796 		 * safe to nd6_ifattach multiple times.
    797 		 */
    798 		nd6_ifattach(ifp);
    799 
    800 		/*
    801 		 * Perform DAD, if needed.
    802 		 */
    803 		if (in6if_do_dad(ifp)) {
    804 			ia->ia6_flags |= IN6_IFF_TENTATIVE;
    805 			nd6_dad_start(&ia->ia_ifa, NULL);
    806 		}
    807 
    808 		if (hostIsNew) {
    809 			int iilen;
    810 			int error_local = 0;
    811 
    812 			iilen = (sizeof(ia->ia_prefixmask.sin6_addr) << 3) -
    813 				in6_mask2len(&ia->ia_prefixmask.sin6_addr);
    814 			error_local = in6_prefix_add_ifid(iilen, ia);
    815 			if (error == 0)
    816 				error = error_local;
    817 		}
    818 
    819 		return(error);
    820 
    821 	case SIOCDIFADDR_IN6:
    822 		in6_purgeaddr(&ia->ia_ifa, ifp);
    823 		break;
    824 
    825 	default:
    826 		if (ifp == NULL || ifp->if_ioctl == 0)
    827 			return(EOPNOTSUPP);
    828 		return((*ifp->if_ioctl)(ifp, cmd, data));
    829 	}
    830 
    831 	return(0);
    832 }
    833 
    834 void
    835 in6_purgeaddr(ifa, ifp)
    836 	struct ifaddr *ifa;
    837 	struct ifnet *ifp;
    838 {
    839 	struct in6_ifaddr *oia, *ia = (void *) ifa;
    840 
    841 	/* stop DAD processing */
    842 	nd6_dad_stop(ifa);
    843 
    844 	in6_ifscrub(ifp, ia);
    845 
    846 	if (ifp->if_flags & IFF_MULTICAST) {
    847 		/*
    848 		 * delete solicited multicast addr for deleting host id
    849 		 */
    850 		struct in6_multi *in6m;
    851 		struct in6_addr llsol;
    852 		bzero(&llsol, sizeof(struct in6_addr));
    853 		llsol.s6_addr16[0] = htons(0xff02);
    854 		llsol.s6_addr16[1] = htons(ifp->if_index);
    855 		llsol.s6_addr32[1] = 0;
    856 		llsol.s6_addr32[2] = htonl(1);
    857 		llsol.s6_addr32[3] =
    858 			ia->ia_addr.sin6_addr.s6_addr32[3];
    859 		llsol.s6_addr8[12] = 0xff;
    860 
    861 		IN6_LOOKUP_MULTI(llsol, ifp, in6m);
    862 		if (in6m)
    863 			in6_delmulti(in6m);
    864 	}
    865 
    866 	TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
    867 	IFAFREE(&ia->ia_ifa);
    868 
    869 	oia = ia;
    870 	if (oia == (ia = in6_ifaddr))
    871 		in6_ifaddr = ia->ia_next;
    872 	else {
    873 		while (ia->ia_next && (ia->ia_next != oia))
    874 			ia = ia->ia_next;
    875 		if (ia->ia_next)
    876 			ia->ia_next = oia->ia_next;
    877 		else
    878 			printf("Didn't unlink in6_ifaddr from list\n");
    879 	}
    880 	{
    881 		int iilen;
    882 
    883 		iilen = (sizeof(oia->ia_prefixmask.sin6_addr) << 3) -
    884 			in6_mask2len(&oia->ia_prefixmask.sin6_addr);
    885 		in6_prefix_remove_ifid(iilen, oia);
    886 	}
    887 	if (oia->ia6_multiaddrs.lh_first != NULL) {
    888 		/*
    889 		 * XXX thorpej (at) netbsd.org -- if the interface is going
    890 		 * XXX away, don't save the multicast entries, delete them!
    891 		 */
    892 		if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
    893 			struct in6_multi *in6m;
    894 
    895 			while ((in6m =
    896 			    LIST_FIRST(&oia->ia6_multiaddrs)) != NULL)
    897 				in6_delmulti(in6m);
    898 		} else
    899 			in6_savemkludge(oia);
    900 	}
    901 
    902 	IFAFREE(&oia->ia_ifa);
    903 }
    904 
    905 void
    906 in6_purgeif(ifp)
    907 	struct ifnet *ifp;
    908 {
    909 	struct ifaddr *ifa, *nifa;
    910 
    911 	for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
    912 	{
    913 		nifa = TAILQ_NEXT(ifa, ifa_list);
    914 		if (ifa->ifa_addr->sa_family != AF_INET6)
    915 			continue;
    916 		in6_purgeaddr(ifa, ifp);
    917 	}
    918 
    919 	in6_ifdetach(ifp);
    920 }
    921 
    922 /*
    923  * SIOC[GAD]LIFADDR.
    924  *	SIOCGLIFADDR: get first address. (?)
    925  *	SIOCGLIFADDR with IFLR_PREFIX:
    926  *		get first address that matches the specified prefix.
    927  *	SIOCALIFADDR: add the specified address.
    928  *	SIOCALIFADDR with IFLR_PREFIX:
    929  *		add the specified prefix, filling hostid part from
    930  *		the first link-local address.  prefixlen must be <= 64.
    931  *	SIOCDLIFADDR: delete the specified address.
    932  *	SIOCDLIFADDR with IFLR_PREFIX:
    933  *		delete the first address that matches the specified prefix.
    934  * return values:
    935  *	EINVAL on invalid parameters
    936  *	EADDRNOTAVAIL on prefix match failed/specified address not found
    937  *	other values may be returned from in6_ioctl()
    938  *
    939  * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
    940  * this is to accomodate address naming scheme other than RFC2374,
    941  * in the future.
    942  * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
    943  * address encoding scheme. (see figure on page 8)
    944  */
    945 static int
    946 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
    947 	struct socket *so;
    948 	u_long cmd;
    949 	caddr_t	data;
    950 	struct ifnet *ifp;
    951 	struct proc *p;
    952 {
    953 	struct if_laddrreq *iflr = (struct if_laddrreq *)data;
    954 	struct ifaddr *ifa;
    955 	struct sockaddr *sa;
    956 
    957 	/* sanity checks */
    958 	if (!data || !ifp) {
    959 		panic("invalid argument to in6_lifaddr_ioctl");
    960 		/* NOTREACHED */
    961 	}
    962 
    963 	switch (cmd) {
    964 	case SIOCGLIFADDR:
    965 		/* address must be specified on GET with IFLR_PREFIX */
    966 		if ((iflr->flags & IFLR_PREFIX) == 0)
    967 			break;
    968 		/* FALLTHROUGH */
    969 	case SIOCALIFADDR:
    970 	case SIOCDLIFADDR:
    971 		/* address must be specified on ADD and DELETE */
    972 		sa = (struct sockaddr *)&iflr->addr;
    973 		if (sa->sa_family != AF_INET6)
    974 			return EINVAL;
    975 		if (sa->sa_len != sizeof(struct sockaddr_in6))
    976 			return EINVAL;
    977 		/* XXX need improvement */
    978 		sa = (struct sockaddr *)&iflr->dstaddr;
    979 		if (sa->sa_family && sa->sa_family != AF_INET6)
    980 			return EINVAL;
    981 		if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
    982 			return EINVAL;
    983 		break;
    984 	default: /* shouldn't happen */
    985 #if 0
    986 		panic("invalid cmd to in6_lifaddr_ioctl");
    987 		/* NOTREACHED */
    988 #else
    989 		return EOPNOTSUPP;
    990 #endif
    991 	}
    992 	if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
    993 		return EINVAL;
    994 
    995 	switch (cmd) {
    996 	case SIOCALIFADDR:
    997 	    {
    998 		struct in6_aliasreq ifra;
    999 		struct in6_addr *hostid = NULL;
   1000 		int prefixlen;
   1001 
   1002 		if ((iflr->flags & IFLR_PREFIX) != 0) {
   1003 			struct sockaddr_in6 *sin6;
   1004 
   1005 			/*
   1006 			 * hostid is to fill in the hostid part of the
   1007 			 * address.  hostid points to the first link-local
   1008 			 * address attached to the interface.
   1009 			 */
   1010 			ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
   1011 			if (!ifa)
   1012 				return EADDRNOTAVAIL;
   1013 			hostid = IFA_IN6(ifa);
   1014 
   1015 		 	/* prefixlen must be <= 64. */
   1016 			if (64 < iflr->prefixlen)
   1017 				return EINVAL;
   1018 			prefixlen = iflr->prefixlen;
   1019 
   1020 			/* hostid part must be zero. */
   1021 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1022 			if (sin6->sin6_addr.s6_addr32[2] != 0
   1023 			 || sin6->sin6_addr.s6_addr32[3] != 0) {
   1024 				return EINVAL;
   1025 			}
   1026 		} else
   1027 			prefixlen = iflr->prefixlen;
   1028 
   1029 		/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
   1030 		bzero(&ifra, sizeof(ifra));
   1031 		bcopy(iflr->iflr_name, ifra.ifra_name,
   1032 			sizeof(ifra.ifra_name));
   1033 
   1034 		bcopy(&iflr->addr, &ifra.ifra_addr,
   1035 			((struct sockaddr *)&iflr->addr)->sa_len);
   1036 		if (hostid) {
   1037 			/* fill in hostid part */
   1038 			ifra.ifra_addr.sin6_addr.s6_addr32[2] =
   1039 				hostid->s6_addr32[2];
   1040 			ifra.ifra_addr.sin6_addr.s6_addr32[3] =
   1041 				hostid->s6_addr32[3];
   1042 		}
   1043 
   1044 		if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
   1045 			bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
   1046 				((struct sockaddr *)&iflr->dstaddr)->sa_len);
   1047 			if (hostid) {
   1048 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
   1049 					hostid->s6_addr32[2];
   1050 				ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
   1051 					hostid->s6_addr32[3];
   1052 			}
   1053 		}
   1054 
   1055 		ifra.ifra_prefixmask.sin6_family = AF_INET6;
   1056 		ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
   1057 		in6_len2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
   1058 
   1059 		ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
   1060 		return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
   1061 	    }
   1062 	case SIOCGLIFADDR:
   1063 	case SIOCDLIFADDR:
   1064 	    {
   1065 		struct in6_ifaddr *ia;
   1066 		struct in6_addr mask, candidate, match;
   1067 		struct sockaddr_in6 *sin6;
   1068 		int cmp;
   1069 
   1070 		bzero(&mask, sizeof(mask));
   1071 		if (iflr->flags & IFLR_PREFIX) {
   1072 			/* lookup a prefix rather than address. */
   1073 			in6_len2mask(&mask, iflr->prefixlen);
   1074 
   1075 			sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1076 			bcopy(&sin6->sin6_addr, &match, sizeof(match));
   1077 			match.s6_addr32[0] &= mask.s6_addr32[0];
   1078 			match.s6_addr32[1] &= mask.s6_addr32[1];
   1079 			match.s6_addr32[2] &= mask.s6_addr32[2];
   1080 			match.s6_addr32[3] &= mask.s6_addr32[3];
   1081 
   1082 			/* if you set extra bits, that's wrong */
   1083 			if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
   1084 				return EINVAL;
   1085 
   1086 			cmp = 1;
   1087 		} else {
   1088 			if (cmd == SIOCGLIFADDR) {
   1089 				/* on getting an address, take the 1st match */
   1090 				cmp = 0;	/* XXX */
   1091 			} else {
   1092 				/* on deleting an address, do exact match */
   1093 				in6_len2mask(&mask, 128);
   1094 				sin6 = (struct sockaddr_in6 *)&iflr->addr;
   1095 				bcopy(&sin6->sin6_addr, &match, sizeof(match));
   1096 
   1097 				cmp = 1;
   1098 			}
   1099 		}
   1100 
   1101 		for (ifa = ifp->if_addrlist.tqh_first;
   1102 		     ifa;
   1103 		     ifa = ifa->ifa_list.tqe_next)
   1104 		{
   1105 			if (ifa->ifa_addr->sa_family != AF_INET6)
   1106 				continue;
   1107 			if (!cmp)
   1108 				break;
   1109 			bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
   1110 			candidate.s6_addr32[0] &= mask.s6_addr32[0];
   1111 			candidate.s6_addr32[1] &= mask.s6_addr32[1];
   1112 			candidate.s6_addr32[2] &= mask.s6_addr32[2];
   1113 			candidate.s6_addr32[3] &= mask.s6_addr32[3];
   1114 			if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
   1115 				break;
   1116 		}
   1117 		if (!ifa)
   1118 			return EADDRNOTAVAIL;
   1119 		ia = ifa2ia6(ifa);
   1120 
   1121 		if (cmd == SIOCGLIFADDR) {
   1122 			/* fill in the if_laddrreq structure */
   1123 			bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
   1124 
   1125 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
   1126 				bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
   1127 					ia->ia_dstaddr.sin6_len);
   1128 			} else
   1129 				bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
   1130 
   1131 			iflr->prefixlen =
   1132 				in6_mask2len(&ia->ia_prefixmask.sin6_addr);
   1133 
   1134 			iflr->flags = ia->ia6_flags;	/* XXX */
   1135 
   1136 			return 0;
   1137 		} else {
   1138 			struct in6_aliasreq ifra;
   1139 
   1140 			/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
   1141 			bzero(&ifra, sizeof(ifra));
   1142 			bcopy(iflr->iflr_name, ifra.ifra_name,
   1143 				sizeof(ifra.ifra_name));
   1144 
   1145 			bcopy(&ia->ia_addr, &ifra.ifra_addr,
   1146 				ia->ia_addr.sin6_len);
   1147 			if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
   1148 				bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
   1149 					ia->ia_dstaddr.sin6_len);
   1150 			} else {
   1151 				bzero(&ifra.ifra_dstaddr,
   1152 				    sizeof(ifra.ifra_dstaddr));
   1153 			}
   1154 			bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
   1155 				ia->ia_prefixmask.sin6_len);
   1156 
   1157 			ifra.ifra_flags = ia->ia6_flags;
   1158 			return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
   1159 				ifp, p);
   1160 		}
   1161 	    }
   1162 	}
   1163 
   1164 	return EOPNOTSUPP;	/* just for safety */
   1165 }
   1166 
   1167 /*
   1168  * Delete any existing route for an interface.
   1169  */
   1170 void
   1171 in6_ifscrub(ifp, ia)
   1172 	struct ifnet *ifp;
   1173 	struct in6_ifaddr *ia;
   1174 {
   1175 	if ((ia->ia_flags & IFA_ROUTE) == 0)
   1176 		return;
   1177 
   1178 	/*
   1179 	 * We should check the existence of dstaddr, because link-local
   1180 	 * addresses can be configured without particular destinations
   1181 	 * even on point-to-point or loopback interfaces.
   1182 	 * In this case, kernel would panic in rtinit()...
   1183 	 */
   1184 	if (ifp->if_flags & (IFF_LOOPBACK | IFF_POINTOPOINT) &&
   1185 	    (ia->ia_ifa.ifa_dstaddr != NULL))
   1186 		rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST);
   1187 	else
   1188 		rtinit(&(ia->ia_ifa), (int)RTM_DELETE, 0);
   1189 	ia->ia_flags &= ~IFA_ROUTE;
   1190 
   1191 	/* Remove ownaddr's loopback rtentry, if it exists. */
   1192 	in6_ifremloop(&(ia->ia_ifa));
   1193 }
   1194 
   1195 /*
   1196  * Initialize an interface's intetnet6 address
   1197  * and routing table entry.
   1198  */
   1199 static int
   1200 in6_ifinit(ifp, ia, sin6, scrub)
   1201 	struct ifnet *ifp;
   1202 	struct in6_ifaddr *ia;
   1203 	struct sockaddr_in6 *sin6;
   1204 	int scrub;
   1205 {
   1206 	struct	sockaddr_in6 oldaddr;
   1207 	int	error, flags = RTF_UP;
   1208 	int	s = splnet();
   1209 
   1210 	oldaddr = ia->ia_addr;
   1211 	ia->ia_addr = *sin6;
   1212 	/*
   1213 	 * Give the interface a chance to initialize
   1214 	 * if this is its first address,
   1215 	 * and to validate the address if necessary.
   1216 	 */
   1217 	if (ifp->if_ioctl &&
   1218 	   (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
   1219 		splx(s);
   1220 		ia->ia_addr = oldaddr;
   1221 		return(error);
   1222 	}
   1223 
   1224 	switch (ifp->if_type) {
   1225 	case IFT_ARCNET:
   1226 	case IFT_ETHER:
   1227 	case IFT_FDDI:
   1228 	case IFT_IEEE1394:
   1229 		ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
   1230 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
   1231 		break;
   1232 	case IFT_PPP:
   1233 		ia->ia_ifa.ifa_rtrequest = nd6_p2p_rtrequest;
   1234 		ia->ia_ifa.ifa_flags |= RTF_CLONING;
   1235 		break;
   1236 	}
   1237 
   1238 	splx(s);
   1239 	if (scrub) {
   1240 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&oldaddr;
   1241 		in6_ifscrub(ifp, ia);
   1242 		ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
   1243 	}
   1244 	/* xxx
   1245 	 * in_socktrim
   1246 	 */
   1247 	/*
   1248 	 * Add route for the network.
   1249 	 */
   1250 	ia->ia_ifa.ifa_metric = ifp->if_metric;
   1251 	if (ifp->if_flags & IFF_LOOPBACK) {
   1252 		ia->ia_ifa.ifa_dstaddr = ia->ia_ifa.ifa_addr;
   1253 		flags |= RTF_HOST;
   1254 	} else if (ifp->if_flags & IFF_POINTOPOINT) {
   1255 		if (ia->ia_dstaddr.sin6_family != AF_INET6)
   1256 			return(0);
   1257 		flags |= RTF_HOST;
   1258 	}
   1259 	if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD, flags)) == 0)
   1260 		ia->ia_flags |= IFA_ROUTE;
   1261 	/* XXX check if the subnet route points to the same interface */
   1262 	if (error == EEXIST)
   1263 		error = 0;
   1264 
   1265 	/* Add ownaddr as loopback rtentry, if necessary(ex. on p2p link). */
   1266 	in6_ifaddloop(&(ia->ia_ifa));
   1267 
   1268 	if (ifp->if_flags & IFF_MULTICAST)
   1269 		in6_restoremkludge(ia, ifp);
   1270 
   1271 	return(error);
   1272 }
   1273 
   1274 /*
   1275  * Multicast address kludge:
   1276  * If there were any multicast addresses attached to this interface address,
   1277  * either move them to another address on this interface, or save them until
   1278  * such time as this interface is reconfigured for IPv6.
   1279  */
   1280 void
   1281 in6_savemkludge(oia)
   1282 	struct in6_ifaddr *oia;
   1283 {
   1284 	struct in6_ifaddr *ia;
   1285 	struct in6_multi *in6m, *next;
   1286 
   1287 	IFP_TO_IA6(oia->ia_ifp, ia);
   1288 	if (ia) {	/* there is another address */
   1289 		for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
   1290 			next = in6m->in6m_entry.le_next;
   1291 			IFAFREE(&in6m->in6m_ia->ia_ifa);
   1292 			IFAREF(&ia->ia_ifa);
   1293 			in6m->in6m_ia = ia;
   1294 			LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
   1295 		}
   1296 	} else {	/* last address on this if deleted, save */
   1297 		struct multi6_kludge *mk;
   1298 
   1299 		for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1300 			if (mk->mk_ifp == oia->ia_ifp)
   1301 				break;
   1302 		}
   1303 		if (mk == NULL) /* this should not happen! */
   1304 			panic("in6_savemkludge: no kludge space");
   1305 
   1306 		for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
   1307 			next = in6m->in6m_entry.le_next;
   1308 			IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
   1309 			in6m->in6m_ia = NULL;
   1310 			LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry);
   1311 		}
   1312 	}
   1313 }
   1314 
   1315 /*
   1316  * Continuation of multicast address hack:
   1317  * If there was a multicast group list previously saved for this interface,
   1318  * then we re-attach it to the first address configured on the i/f.
   1319  */
   1320 void
   1321 in6_restoremkludge(ia, ifp)
   1322 	struct in6_ifaddr *ia;
   1323 	struct ifnet *ifp;
   1324 {
   1325 	struct multi6_kludge *mk;
   1326 
   1327 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1328 		if (mk->mk_ifp == ifp) {
   1329 			struct in6_multi *in6m, *next;
   1330 
   1331 			for (in6m = mk->mk_head.lh_first; in6m; in6m = next) {
   1332 				next = in6m->in6m_entry.le_next;
   1333 				in6m->in6m_ia = ia;
   1334 				IFAREF(&ia->ia_ifa);
   1335 				LIST_INSERT_HEAD(&ia->ia6_multiaddrs,
   1336 						 in6m, in6m_entry);
   1337 			}
   1338 			LIST_INIT(&mk->mk_head);
   1339 			break;
   1340 		}
   1341 	}
   1342 }
   1343 
   1344 /*
   1345  * Allocate space for the kludge at interface initialization time.
   1346  * Formerly, we dynamically allocated the space in in6_savemkludge() with
   1347  * malloc(M_WAITOK).  However, it was wrong since the function could be called
   1348  * under an interrupt context (software timer on address lifetime expiration).
   1349  * Also, we cannot just give up allocating the strucutre, since the group
   1350  * membership structure is very complex and we need to keep it anyway.
   1351  * Of course, this function MUST NOT be called under an interrupt context.
   1352  * Specifically, it is expected to be called only from in6_ifattach(), though
   1353  * it is a global function.
   1354  */
   1355 void
   1356 in6_createmkludge(ifp)
   1357 	struct ifnet *ifp;
   1358 {
   1359 	struct multi6_kludge *mk;
   1360 
   1361 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1362 		/* If we've already had one, do not allocate. */
   1363 		if (mk->mk_ifp == ifp)
   1364 			return;
   1365 	}
   1366 
   1367 	mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK);
   1368 
   1369 	bzero(mk, sizeof(*mk));
   1370 	LIST_INIT(&mk->mk_head);
   1371 	mk->mk_ifp = ifp;
   1372 	LIST_INSERT_HEAD(&in6_mk, mk, mk_entry);
   1373 }
   1374 
   1375 void
   1376 in6_purgemkludge(ifp)
   1377 	struct ifnet *ifp;
   1378 {
   1379 	struct multi6_kludge *mk;
   1380 	struct in6_multi *in6m;
   1381 
   1382 	for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
   1383 		if (mk->mk_ifp != ifp)
   1384 			continue;
   1385 
   1386 		/* leave from all multicast groups joined */
   1387 		while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL)
   1388 			in6_delmulti(in6m);
   1389 		LIST_REMOVE(mk, mk_entry);
   1390 		free(mk, M_IPMADDR);
   1391 		break;
   1392 	}
   1393 }
   1394 
   1395 /*
   1396  * Add an address to the list of IP6 multicast addresses for a
   1397  * given interface.
   1398  */
   1399 struct	in6_multi *
   1400 in6_addmulti(maddr6, ifp, errorp)
   1401 	struct in6_addr *maddr6;
   1402 	struct ifnet *ifp;
   1403 	int *errorp;
   1404 {
   1405 	struct	in6_ifaddr *ia;
   1406 	struct	in6_ifreq ifr;
   1407 	struct	in6_multi *in6m;
   1408 	int	s = splsoftnet();
   1409 
   1410 	*errorp = 0;
   1411 	/*
   1412 	 * See if address already in list.
   1413 	 */
   1414 	IN6_LOOKUP_MULTI(*maddr6, ifp, in6m);
   1415 	if (in6m != NULL) {
   1416 		/*
   1417 		 * Found it; just increment the refrence count.
   1418 		 */
   1419 		in6m->in6m_refcount++;
   1420 	} else {
   1421 		/*
   1422 		 * New address; allocate a new multicast record
   1423 		 * and link it into the interface's multicast list.
   1424 		 */
   1425 		in6m = (struct in6_multi *)
   1426 			malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
   1427 		if (in6m == NULL) {
   1428 			splx(s);
   1429 			*errorp = ENOBUFS;
   1430 			return(NULL);
   1431 		}
   1432 		in6m->in6m_addr = *maddr6;
   1433 		in6m->in6m_ifp = ifp;
   1434 		in6m->in6m_refcount = 1;
   1435 		IFP_TO_IA6(ifp, ia);
   1436 		if (ia == NULL) {
   1437 			free(in6m, M_IPMADDR);
   1438 			splx(s);
   1439 			*errorp = EADDRNOTAVAIL; /* appropriate? */
   1440 			return(NULL);
   1441 		}
   1442 		in6m->in6m_ia = ia;
   1443 		IFAREF(&ia->ia_ifa); /* gain a reference */
   1444 		LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
   1445 
   1446 		/*
   1447 		 * Ask the network driver to update its multicast reception
   1448 		 * filter appropriately for the new address.
   1449 		 */
   1450 		bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
   1451 		ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
   1452 		ifr.ifr_addr.sin6_family = AF_INET6;
   1453 		ifr.ifr_addr.sin6_addr = *maddr6;
   1454 		if (ifp->if_ioctl == NULL)
   1455 			*errorp = ENXIO; /* XXX: appropriate? */
   1456 		else
   1457 			*errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI,
   1458 						    (caddr_t)&ifr);
   1459 		if (*errorp) {
   1460 			LIST_REMOVE(in6m, in6m_entry);
   1461 			free(in6m, M_IPMADDR);
   1462 			IFAFREE(&ia->ia_ifa);
   1463 			splx(s);
   1464 			return(NULL);
   1465 		}
   1466 		/*
   1467 		 * Let MLD6 know that we have joined a new IP6 multicast
   1468 		 * group.
   1469 		 */
   1470 		mld6_start_listening(in6m);
   1471 	}
   1472 	splx(s);
   1473 	return(in6m);
   1474 }
   1475 
   1476 /*
   1477  * Delete a multicast address record.
   1478  */
   1479 void
   1480 in6_delmulti(in6m)
   1481 	struct in6_multi *in6m;
   1482 {
   1483 	struct	in6_ifreq ifr;
   1484 	int	s = splsoftnet();
   1485 
   1486 	if (--in6m->in6m_refcount == 0) {
   1487 		/*
   1488 		 * No remaining claims to this record; let MLD6 know
   1489 		 * that we are leaving the multicast group.
   1490 		 */
   1491 		mld6_stop_listening(in6m);
   1492 
   1493 		/*
   1494 		 * Unlink from list.
   1495 		 */
   1496 		LIST_REMOVE(in6m, in6m_entry);
   1497 		if (in6m->in6m_ia) {
   1498 			IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
   1499 		}
   1500 
   1501 		/*
   1502 		 * Notify the network driver to update its multicast
   1503 		 * reception filter.
   1504 		 */
   1505 		bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
   1506 		ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
   1507 		ifr.ifr_addr.sin6_family = AF_INET6;
   1508 		ifr.ifr_addr.sin6_addr = in6m->in6m_addr;
   1509 		(*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp,
   1510 					    SIOCDELMULTI, (caddr_t)&ifr);
   1511 		free(in6m, M_IPMADDR);
   1512 	}
   1513 	splx(s);
   1514 }
   1515 
   1516 struct in6_multi_mship *
   1517 in6_joingroup(ifp, addr, errorp)
   1518 	struct ifnet *ifp;
   1519 	struct in6_addr *addr;
   1520 	int *errorp;
   1521 {
   1522 	struct in6_multi_mship *imm;
   1523 
   1524 	imm = malloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
   1525 	if (!imm) {
   1526 		*errorp = ENOBUFS;
   1527 		return NULL;
   1528 	}
   1529 	imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
   1530 	if (!imm->i6mm_maddr) {
   1531 		/* *errorp is alrady set */
   1532 		free(imm, M_IPMADDR);
   1533 		return NULL;
   1534 	}
   1535 	return imm;
   1536 }
   1537 
   1538 int
   1539 in6_leavegroup(imm)
   1540 	struct in6_multi_mship *imm;
   1541 {
   1542 
   1543 	if (imm->i6mm_maddr)
   1544 		in6_delmulti(imm->i6mm_maddr);
   1545 	free(imm,  M_IPMADDR);
   1546 	return 0;
   1547 }
   1548 
   1549 /*
   1550  * Find an IPv6 interface link-local address specific to an interface.
   1551  */
   1552 struct in6_ifaddr *
   1553 in6ifa_ifpforlinklocal(ifp, ignoreflags)
   1554 	struct ifnet *ifp;
   1555 	int ignoreflags;
   1556 {
   1557 	struct ifaddr *ifa;
   1558 
   1559 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   1560 	{
   1561 		if (ifa->ifa_addr == NULL)
   1562 			continue;	/* just for safety */
   1563 		if (ifa->ifa_addr->sa_family != AF_INET6)
   1564 			continue;
   1565 		if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
   1566 			if ((((struct in6_ifaddr *)ifa)->ia6_flags &
   1567 			     ignoreflags) != 0)
   1568 				continue;
   1569 			break;
   1570 		}
   1571 	}
   1572 
   1573 	return((struct in6_ifaddr *)ifa);
   1574 }
   1575 
   1576 
   1577 /*
   1578  * find the internet address corresponding to a given interface and address.
   1579  */
   1580 struct in6_ifaddr *
   1581 in6ifa_ifpwithaddr(ifp, addr)
   1582 	struct ifnet *ifp;
   1583 	struct in6_addr *addr;
   1584 {
   1585 	struct ifaddr *ifa;
   1586 
   1587 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   1588 	{
   1589 		if (ifa->ifa_addr == NULL)
   1590 			continue;	/* just for safety */
   1591 		if (ifa->ifa_addr->sa_family != AF_INET6)
   1592 			continue;
   1593 		if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
   1594 			break;
   1595 	}
   1596 
   1597 	return((struct in6_ifaddr *)ifa);
   1598 }
   1599 
   1600 /*
   1601  * Convert IP6 address to printable (loggable) representation.
   1602  */
   1603 static char digits[] = "0123456789abcdef";
   1604 static int ip6round = 0;
   1605 char *
   1606 ip6_sprintf(addr)
   1607 	const struct in6_addr *addr;
   1608 {
   1609 	static char ip6buf[8][48];
   1610 	int i;
   1611 	char *cp;
   1612 	const u_short *a = (u_short *)addr;
   1613 	const u_char *d;
   1614 	int dcolon = 0;
   1615 
   1616 	ip6round = (ip6round + 1) & 7;
   1617 	cp = ip6buf[ip6round];
   1618 
   1619 	for (i = 0; i < 8; i++) {
   1620 		if (dcolon == 1) {
   1621 			if (*a == 0) {
   1622 				if (i == 7)
   1623 					*cp++ = ':';
   1624 				a++;
   1625 				continue;
   1626 			} else
   1627 				dcolon = 2;
   1628 		}
   1629 		if (*a == 0) {
   1630 			if (dcolon == 0 && *(a + 1) == 0) {
   1631 				if (i == 0)
   1632 					*cp++ = ':';
   1633 				*cp++ = ':';
   1634 				dcolon = 1;
   1635 			} else {
   1636 				*cp++ = '0';
   1637 				*cp++ = ':';
   1638 			}
   1639 			a++;
   1640 			continue;
   1641 		}
   1642 		d = (const u_char *)a;
   1643 		*cp++ = digits[*d >> 4];
   1644 		*cp++ = digits[*d++ & 0xf];
   1645 		*cp++ = digits[*d >> 4];
   1646 		*cp++ = digits[*d & 0xf];
   1647 		*cp++ = ':';
   1648 		a++;
   1649 	}
   1650 	*--cp = 0;
   1651 	return(ip6buf[ip6round]);
   1652 }
   1653 
   1654 int
   1655 in6_localaddr(in6)
   1656 	struct in6_addr *in6;
   1657 {
   1658 	struct in6_ifaddr *ia;
   1659 
   1660 	if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
   1661 		return 1;
   1662 
   1663 	for (ia = in6_ifaddr; ia; ia = ia->ia_next)
   1664 		if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
   1665 					      &ia->ia_prefixmask.sin6_addr))
   1666 			return 1;
   1667 
   1668 	return (0);
   1669 }
   1670 
   1671 /*
   1672  * Get a scope of the address. Node-local, link-local, site-local or global.
   1673  */
   1674 int
   1675 in6_addrscope (addr)
   1676 struct in6_addr *addr;
   1677 {
   1678 	int scope;
   1679 
   1680 	if (addr->s6_addr8[0] == 0xfe) {
   1681 		scope = addr->s6_addr8[1] & 0xc0;
   1682 
   1683 		switch (scope) {
   1684 		case 0x80:
   1685 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   1686 			break;
   1687 		case 0xc0:
   1688 			return IPV6_ADDR_SCOPE_SITELOCAL;
   1689 			break;
   1690 		default:
   1691 			return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
   1692 			break;
   1693 		}
   1694 	}
   1695 
   1696 
   1697 	if (addr->s6_addr8[0] == 0xff) {
   1698 		scope = addr->s6_addr8[1] & 0x0f;
   1699 
   1700 		/*
   1701 		 * due to other scope such as reserved,
   1702 		 * return scope doesn't work.
   1703 		 */
   1704 		switch (scope) {
   1705 		case IPV6_ADDR_SCOPE_NODELOCAL:
   1706 			return IPV6_ADDR_SCOPE_NODELOCAL;
   1707 			break;
   1708 		case IPV6_ADDR_SCOPE_LINKLOCAL:
   1709 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   1710 			break;
   1711 		case IPV6_ADDR_SCOPE_SITELOCAL:
   1712 			return IPV6_ADDR_SCOPE_SITELOCAL;
   1713 			break;
   1714 		default:
   1715 			return IPV6_ADDR_SCOPE_GLOBAL;
   1716 			break;
   1717 		}
   1718 	}
   1719 
   1720 	if (bcmp(&in6addr_loopback, addr, sizeof(*addr) - 1) == 0) {
   1721 		if (addr->s6_addr8[15] == 1) /* loopback */
   1722 			return IPV6_ADDR_SCOPE_NODELOCAL;
   1723 		if (addr->s6_addr8[15] == 0) /* unspecified */
   1724 			return IPV6_ADDR_SCOPE_LINKLOCAL;
   1725 	}
   1726 
   1727 	return IPV6_ADDR_SCOPE_GLOBAL;
   1728 }
   1729 
   1730 int
   1731 in6_addr2scopeid(ifp, addr)
   1732 	struct ifnet *ifp;	/* must not be NULL */
   1733 	struct in6_addr *addr;	/* must not be NULL */
   1734 {
   1735 	int scope = in6_addrscope(addr);
   1736 
   1737 	switch (scope) {
   1738 	case IPV6_ADDR_SCOPE_NODELOCAL:
   1739 		return(-1);	/* XXX: is this an appropriate value? */
   1740 
   1741 	case IPV6_ADDR_SCOPE_LINKLOCAL:
   1742 		/* XXX: we do not distinguish between a link and an I/F. */
   1743 		return(ifp->if_index);
   1744 
   1745 	case IPV6_ADDR_SCOPE_SITELOCAL:
   1746 		return(0);	/* XXX: invalid. */
   1747 
   1748 	default:
   1749 		return(0);	/* XXX: treat as global. */
   1750 	}
   1751 }
   1752 
   1753 /*
   1754  * return length of part which dst and src are equal
   1755  * hard coding...
   1756  */
   1757 int
   1758 in6_matchlen(src, dst)
   1759 struct in6_addr *src, *dst;
   1760 {
   1761 	int match = 0;
   1762 	u_char *s = (u_char *)src, *d = (u_char *)dst;
   1763 	u_char *lim = s + 16, r;
   1764 
   1765 	while (s < lim)
   1766 		if ((r = (*d++ ^ *s++)) != 0) {
   1767 			while (r < 128) {
   1768 				match++;
   1769 				r <<= 1;
   1770 			}
   1771 			break;
   1772 		} else
   1773 			match += 8;
   1774 	return match;
   1775 }
   1776 
   1777 /* XXX: to be scope conscious */
   1778 int
   1779 in6_are_prefix_equal(p1, p2, len)
   1780 	struct in6_addr *p1, *p2;
   1781 	int len;
   1782 {
   1783 	int bytelen, bitlen;
   1784 
   1785 	/* sanity check */
   1786 	if (0 > len || len > 128) {
   1787 		log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
   1788 		    len);
   1789 		return(0);
   1790 	}
   1791 
   1792 	bytelen = len / 8;
   1793 	bitlen = len % 8;
   1794 
   1795 	if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
   1796 		return(0);
   1797 	if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
   1798 	    p2->s6_addr[bytelen] >> (8 - bitlen))
   1799 		return(0);
   1800 
   1801 	return(1);
   1802 }
   1803 
   1804 void
   1805 in6_prefixlen2mask(maskp, len)
   1806 	struct in6_addr *maskp;
   1807 	int len;
   1808 {
   1809 	u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
   1810 	int bytelen, bitlen, i;
   1811 
   1812 	/* sanity check */
   1813 	if (0 > len || len > 128) {
   1814 		log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
   1815 		    len);
   1816 		return;
   1817 	}
   1818 
   1819 	bzero(maskp, sizeof(*maskp));
   1820 	bytelen = len / 8;
   1821 	bitlen = len % 8;
   1822 	for (i = 0; i < bytelen; i++)
   1823 		maskp->s6_addr[i] = 0xff;
   1824 	if (bitlen)
   1825 		maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
   1826 }
   1827 
   1828 /*
   1829  * return the best address out of the same scope
   1830  */
   1831 struct in6_ifaddr *
   1832 in6_ifawithscope(oifp, dst)
   1833 	struct ifnet *oifp;
   1834 	struct in6_addr *dst;
   1835 {
   1836 	int dst_scope =	in6_addrscope(dst), src_scope, best_scope = 0;
   1837 	int blen = -1;
   1838 	struct ifaddr *ifa;
   1839 	struct ifnet *ifp;
   1840 	struct in6_ifaddr *ifa_best = NULL;
   1841 
   1842 	if (oifp == NULL) {
   1843 		printf("in6_ifawithscope: output interface is not specified\n");
   1844 		return(NULL);
   1845 	}
   1846 
   1847 	/*
   1848 	 * We search for all addresses on all interfaces from the beginning.
   1849 	 * Comparing an interface with the outgoing interface will be done
   1850 	 * only at the final stage of tiebreaking.
   1851 	 */
   1852 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   1853 	{
   1854 		/*
   1855 		 * We can never take an address that breaks the scope zone
   1856 		 * of the destination.
   1857 		 */
   1858 		if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
   1859 			continue;
   1860 
   1861 		for (ifa = ifp->if_addrlist.tqh_first; ifa;
   1862 		     ifa = ifa->ifa_list.tqe_next)
   1863 		{
   1864 			int tlen = -1, dscopecmp, bscopecmp, matchcmp;
   1865 
   1866 			if (ifa->ifa_addr->sa_family != AF_INET6)
   1867 				continue;
   1868 
   1869 			src_scope = in6_addrscope(IFA_IN6(ifa));
   1870 
   1871 #ifdef ADDRSELECT_DEBUG		/* should be removed after stabilization */
   1872 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
   1873 			printf("in6_ifawithscope: dst=%s bestaddr=%s, "
   1874 			       "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, "
   1875 			       "matchlen=%d, flgs=%x\n",
   1876 			       ip6_sprintf(dst),
   1877 			       ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none",
   1878 			       ip6_sprintf(IFA_IN6(ifa)), src_scope,
   1879 			       dscopecmp,
   1880 			       ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1,
   1881 			       in6_matchlen(IFA_IN6(ifa), dst),
   1882 			       ((struct in6_ifaddr *)ifa)->ia6_flags);
   1883 #endif
   1884 
   1885 			/*
   1886 			 * Don't use an address before completing DAD
   1887 			 * nor a duplicated address.
   1888 			 */
   1889 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   1890 			    IN6_IFF_NOTREADY)
   1891 				continue;
   1892 
   1893 			/* XXX: is there any case to allow anycasts? */
   1894 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   1895 			    IN6_IFF_ANYCAST)
   1896 				continue;
   1897 
   1898 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   1899 			    IN6_IFF_DETACHED)
   1900 				continue;
   1901 
   1902 			/*
   1903 			 * If this is the first address we find,
   1904 			 * keep it anyway.
   1905 			 */
   1906 			if (ifa_best == NULL)
   1907 				goto replace;
   1908 
   1909 			/*
   1910 			 * ifa_best is never NULL beyond this line except
   1911 			 * within the block labeled "replace".
   1912 			 */
   1913 
   1914 			/*
   1915 			 * If ifa_best has a smaller scope than dst and
   1916 			 * the current address has a larger one than
   1917 			 * (or equal to) dst, always replace ifa_best.
   1918 			 * Also, if the current address has a smaller scope
   1919 			 * than dst, ignore it unless ifa_best also has a
   1920 			 * smaller scope.
   1921 			 */
   1922 			if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
   1923 			    IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
   1924 				goto replace;
   1925 			if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
   1926 			    IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
   1927 				continue;
   1928 
   1929 			/*
   1930 			 * A deprecated address SHOULD NOT be used in new
   1931 			 * communications if an alternate (non-deprecated)
   1932 			 * address is available and has sufficient scope.
   1933 			 * RFC 2462, Section 5.5.4.
   1934 			 */
   1935 			if (((struct in6_ifaddr *)ifa)->ia6_flags &
   1936 			    IN6_IFF_DEPRECATED) {
   1937 				/*
   1938 				 * Ignore any deprecated addresses if
   1939 				 * specified by configuration.
   1940 				 */
   1941 				if (!ip6_use_deprecated)
   1942 					continue;
   1943 
   1944 				/*
   1945 				 * If we have already found a non-deprecated
   1946 				 * candidate, just ignore deprecated addresses.
   1947 				 */
   1948 				if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
   1949 				    == 0)
   1950 					continue;
   1951 			}
   1952 
   1953 			/*
   1954 			 * A non-deprecated address is always preferred
   1955 			 * to a deprecated one regardless of scopes and
   1956 			 * address matching.
   1957 			 */
   1958 			if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
   1959 			    (((struct in6_ifaddr *)ifa)->ia6_flags &
   1960 			     IN6_IFF_DEPRECATED) == 0)
   1961 				goto replace;
   1962 
   1963 			/*
   1964 			 * At this point, we have two cases:
   1965 			 * 1. we are looking at a non-deprecated address,
   1966 			 *    and ifa_best is also non-deprecated.
   1967 			 * 2. we are looking at a deprecated address,
   1968 			 *    and ifa_best is also deprecated.
   1969 			 * Also, we do not have to consider a case where
   1970 			 * the scope of if_best is larger(smaller) than dst and
   1971 			 * the scope of the current address is smaller(larger)
   1972 			 * than dst. Such a case has already been covered.
   1973 			 * Tiebreaking is done according to the following
   1974 			 * items:
   1975 			 * - the scope comparison between the address and
   1976 			 *   dst (dscopecmp)
   1977 			 * - the scope comparison between the address and
   1978 			 *   ifa_best (bscopecmp)
   1979 			 * - if the address match dst longer than ifa_best
   1980 			 *   (matchcmp)
   1981 			 * - if the address is on the outgoing I/F (outI/F)
   1982 			 *
   1983 			 * Roughly speaking, the selection policy is
   1984 			 * - the most important item is scope. The same scope
   1985 			 *   is best. Then search for a larger scope.
   1986 			 *   Smaller scopes are the last resort.
   1987 			 * - A deprecated address is chosen only when we have
   1988 			 *   no address that has an enough scope, but is
   1989 			 *   prefered to any addresses of smaller scopes.
   1990 			 * - Longest address match against dst is considered
   1991 			 *   only for addresses that has the same scope of dst.
   1992 			 * - If there is no other reasons to choose one,
   1993 			 *   addresses on the outgoing I/F are preferred.
   1994 			 *
   1995 			 * The precise decision table is as follows:
   1996 			 * dscopecmp bscopecmp matchcmp outI/F | replace?
   1997 			 *    !equal     equal      N/A    Yes |      Yes (1)
   1998 			 *    !equal     equal      N/A     No |       No (2)
   1999 			 *    larger    larger      N/A    N/A |       No (3)
   2000 			 *    larger   smaller      N/A    N/A |      Yes (4)
   2001 			 *   smaller    larger      N/A    N/A |      Yes (5)
   2002 			 *   smaller   smaller      N/A    N/A |       No (6)
   2003 			 *     equal   smaller      N/A    N/A |      Yes (7)
   2004 			 *     equal    larger       (already done)
   2005 			 *     equal     equal   larger    N/A |      Yes (8)
   2006 			 *     equal     equal  smaller    N/A |       No (9)
   2007 			 *     equal     equal    equal    Yes |      Yes (a)
   2008 			 *     eaual     eqaul    equal     No |       No (b)
   2009 			 */
   2010 			dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
   2011 			bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
   2012 
   2013 			if (dscopecmp && bscopecmp == 0) {
   2014 				if (oifp == ifp) /* (1) */
   2015 					goto replace;
   2016 				continue; /* (2) */
   2017 			}
   2018 			if (dscopecmp > 0) {
   2019 				if (bscopecmp > 0) /* (3) */
   2020 					continue;
   2021 				goto replace; /* (4) */
   2022 			}
   2023 			if (dscopecmp < 0) {
   2024 				if (bscopecmp > 0) /* (5) */
   2025 					goto replace;
   2026 				continue; /* (6) */
   2027 			}
   2028 
   2029 			/* now dscopecmp must be 0 */
   2030 			if (bscopecmp < 0)
   2031 				goto replace; /* (7) */
   2032 
   2033 			/*
   2034 			 * At last both dscopecmp and bscopecmp must be 0.
   2035 			 * We need address matching against dst for
   2036 			 * tiebreaking.
   2037 			 */
   2038 			tlen = in6_matchlen(IFA_IN6(ifa), dst);
   2039 			matchcmp = tlen - blen;
   2040 			if (matchcmp > 0) /* (8) */
   2041 				goto replace;
   2042 			if (matchcmp < 0) /* (9) */
   2043 				continue;
   2044 			if (oifp == ifp) /* (a) */
   2045 				goto replace;
   2046 			continue; /* (b) */
   2047 
   2048 		  replace:
   2049 			ifa_best = (struct in6_ifaddr *)ifa;
   2050 			blen = tlen >= 0 ? tlen :
   2051 				in6_matchlen(IFA_IN6(ifa), dst);
   2052 			best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
   2053 		}
   2054 	}
   2055 
   2056 	/* count statistics for future improvements */
   2057 	if (ifa_best == NULL)
   2058 		ip6stat.ip6s_sources_none++;
   2059 	else {
   2060 		if (oifp == ifa_best->ia_ifp)
   2061 			ip6stat.ip6s_sources_sameif[best_scope]++;
   2062 		else
   2063 			ip6stat.ip6s_sources_otherif[best_scope]++;
   2064 
   2065 		if (best_scope == dst_scope)
   2066 			ip6stat.ip6s_sources_samescope[best_scope]++;
   2067 		else
   2068 			ip6stat.ip6s_sources_otherscope[best_scope]++;
   2069 
   2070 		if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
   2071 			ip6stat.ip6s_sources_deprecated[best_scope]++;
   2072 	}
   2073 
   2074 	return(ifa_best);
   2075 }
   2076 
   2077 /*
   2078  * return the best address out of the same scope. if no address was
   2079  * found, return the first valid address from designated IF.
   2080  */
   2081 struct in6_ifaddr *
   2082 in6_ifawithifp(ifp, dst)
   2083 	struct ifnet *ifp;
   2084 	struct in6_addr *dst;
   2085 {
   2086 	int dst_scope =	in6_addrscope(dst), blen = -1, tlen;
   2087 	struct ifaddr *ifa;
   2088 	struct in6_ifaddr *besta = 0;
   2089 	struct in6_ifaddr *dep[2];	/* last-resort: deprecated */
   2090 
   2091 	dep[0] = dep[1] = NULL;
   2092 
   2093 	/*
   2094 	 * We first look for addresses in the same scope.
   2095 	 * If there is one, return it.
   2096 	 * If two or more, return one which matches the dst longest.
   2097 	 * If none, return one of global addresses assigned other ifs.
   2098 	 */
   2099 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2100 	{
   2101 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2102 			continue;
   2103 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
   2104 			continue; /* XXX: is there any case to allow anycast? */
   2105 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
   2106 			continue; /* don't use this interface */
   2107 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
   2108 			continue;
   2109 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
   2110 			if (ip6_use_deprecated)
   2111 				dep[0] = (struct in6_ifaddr *)ifa;
   2112 			continue;
   2113 		}
   2114 
   2115 		if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
   2116 			/*
   2117 			 * call in6_matchlen() as few as possible
   2118 			 */
   2119 			if (besta) {
   2120 				if (blen == -1)
   2121 					blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
   2122 				tlen = in6_matchlen(IFA_IN6(ifa), dst);
   2123 				if (tlen > blen) {
   2124 					blen = tlen;
   2125 					besta = (struct in6_ifaddr *)ifa;
   2126 				}
   2127 			} else
   2128 				besta = (struct in6_ifaddr *)ifa;
   2129 		}
   2130 	}
   2131 	if (besta)
   2132 		return(besta);
   2133 
   2134 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2135 	{
   2136 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2137 			continue;
   2138 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
   2139 			continue; /* XXX: is there any case to allow anycast? */
   2140 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
   2141 			continue; /* don't use this interface */
   2142 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
   2143 			continue;
   2144 		if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
   2145 			if (ip6_use_deprecated)
   2146 				dep[1] = (struct in6_ifaddr *)ifa;
   2147 			continue;
   2148 		}
   2149 
   2150 		return (struct in6_ifaddr *)ifa;
   2151 	}
   2152 
   2153 	/* use the last-resort values, that are, deprecated addresses */
   2154 	if (dep[0])
   2155 		return dep[0];
   2156 	if (dep[1])
   2157 		return dep[1];
   2158 
   2159 	return NULL;
   2160 }
   2161 
   2162 /*
   2163  * perform DAD when interface becomes IFF_UP.
   2164  */
   2165 void
   2166 in6_if_up(ifp)
   2167 	struct ifnet *ifp;
   2168 {
   2169 	struct ifaddr *ifa;
   2170 	struct in6_ifaddr *ia;
   2171 	int dad_delay;		/* delay ticks before DAD output */
   2172 
   2173 	/*
   2174 	 * special cases, like 6to4, are handled in in6_ifattach
   2175 	 */
   2176 	in6_ifattach(ifp, NULL);
   2177 
   2178 	dad_delay = 0;
   2179 	for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
   2180 	{
   2181 		if (ifa->ifa_addr->sa_family != AF_INET6)
   2182 			continue;
   2183 		ia = (struct in6_ifaddr *)ifa;
   2184 		if (ia->ia6_flags & IN6_IFF_TENTATIVE)
   2185 			nd6_dad_start(ifa, &dad_delay);
   2186 	}
   2187 }
   2188 
   2189 int
   2190 in6if_do_dad(ifp)
   2191 	struct ifnet *ifp;
   2192 {
   2193 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2194 		return(0);
   2195 
   2196 	switch (ifp->if_type) {
   2197 	case IFT_FAITH:
   2198 		/*
   2199 		 * These interfaces do not have the IFF_LOOPBACK flag,
   2200 		 * but loop packets back.  We do not have to do DAD on such
   2201 		 * interfaces.  We should even omit it, because loop-backed
   2202 		 * NS would confuse the DAD procedure.
   2203 		 */
   2204 		return(0);
   2205 	default:
   2206 		/*
   2207 		 * Our DAD routine requires the interface up and running.
   2208 		 * However, some interfaces can be up before the RUNNING
   2209 		 * status.  Additionaly, users may try to assign addresses
   2210 		 * before the interface becomes up (or running).
   2211 		 * We simply skip DAD in such a case as a work around.
   2212 		 * XXX: we should rather mark "tentative" on such addresses,
   2213 		 * and do DAD after the interface becomes ready.
   2214 		 */
   2215 		if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
   2216 		    (IFF_UP|IFF_RUNNING))
   2217 			return(0);
   2218 
   2219 		return(1);
   2220 	}
   2221 }
   2222 
   2223 /*
   2224  * Calculate max IPv6 MTU through all the interfaces and store it
   2225  * to in6_maxmtu.
   2226  */
   2227 void
   2228 in6_setmaxmtu()
   2229 {
   2230 	unsigned long maxmtu = 0;
   2231 	struct ifnet *ifp;
   2232 
   2233 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   2234 	{
   2235 		if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
   2236 		    nd_ifinfo[ifp->if_index].linkmtu > maxmtu)
   2237 			maxmtu =  nd_ifinfo[ifp->if_index].linkmtu;
   2238 	}
   2239 	if (maxmtu)	/* update only when maxmtu is positive */
   2240 		in6_maxmtu = maxmtu;
   2241 }
   2242 
   2243 void *
   2244 in6_domifattach(ifp)
   2245 	struct ifnet *ifp;
   2246 {
   2247 	struct in6_ifextra *ext;
   2248 
   2249 	ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
   2250 	bzero(ext, sizeof(*ext));
   2251 
   2252 	ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
   2253 	    M_IFADDR, M_WAITOK);
   2254 	bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
   2255 
   2256 	ext->icmp6_ifstat =
   2257 	    (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
   2258 	    M_IFADDR, M_WAITOK);
   2259 	bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
   2260 
   2261 #if 0
   2262 	ext->nd_ifinfo = nd6_ifattach(ifp);
   2263 #endif
   2264 	return ext;
   2265 }
   2266 
   2267 void
   2268 in6_domifdetach(ifp, aux)
   2269 	struct ifnet *ifp;
   2270 	void *aux;
   2271 {
   2272 	struct in6_ifextra *ext = (struct in6_ifextra *)aux;
   2273 
   2274 #if 0
   2275 	nd6_ifdetach(ext->nd_ifinfo);
   2276 #endif
   2277 	free(ext->in6_ifstat, M_IFADDR);
   2278 	free(ext->icmp6_ifstat, M_IFADDR);
   2279 	free(ext, M_IFADDR);
   2280 }
   2281