in6.c revision 1.67 1 /* $NetBSD: in6.c,v 1.67 2002/06/11 07:28:05 itojun Exp $ */
2 /* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1991, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)in.c 8.2 (Berkeley) 11/15/93
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.67 2002/06/11 07:28:05 itojun Exp $");
70
71 #include "opt_inet.h"
72
73 #include <sys/param.h>
74 #include <sys/ioctl.h>
75 #include <sys/errno.h>
76 #include <sys/malloc.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/sockio.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/time.h>
83 #include <sys/kernel.h>
84 #include <sys/syslog.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88 #include <net/route.h>
89 #include <net/if_dl.h>
90
91 #include <netinet/in.h>
92 #include <netinet/in_var.h>
93 #include <net/if_ether.h>
94
95 #include <netinet/ip6.h>
96 #include <netinet6/ip6_var.h>
97 #include <netinet6/nd6.h>
98 #include <netinet6/mld6_var.h>
99 #include <netinet6/ip6_mroute.h>
100 #include <netinet6/in6_ifattach.h>
101
102 #include <net/net_osdep.h>
103
104 /* enable backward compatibility code for obsoleted ioctls */
105 #define COMPAT_IN6IFIOCTL
106
107 /*
108 * Definitions of some costant IP6 addresses.
109 */
110 const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
111 const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
112 const struct in6_addr in6addr_nodelocal_allnodes =
113 IN6ADDR_NODELOCAL_ALLNODES_INIT;
114 const struct in6_addr in6addr_linklocal_allnodes =
115 IN6ADDR_LINKLOCAL_ALLNODES_INIT;
116 const struct in6_addr in6addr_linklocal_allrouters =
117 IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
118
119 const struct in6_addr in6mask0 = IN6MASK0;
120 const struct in6_addr in6mask32 = IN6MASK32;
121 const struct in6_addr in6mask64 = IN6MASK64;
122 const struct in6_addr in6mask96 = IN6MASK96;
123 const struct in6_addr in6mask128 = IN6MASK128;
124
125 const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
126 0, 0, IN6ADDR_ANY_INIT, 0};
127
128 static int in6_lifaddr_ioctl __P((struct socket *, u_long, caddr_t,
129 struct ifnet *, struct proc *));
130 static int in6_ifinit __P((struct ifnet *, struct in6_ifaddr *,
131 struct sockaddr_in6 *, int));
132 static void in6_unlink_ifa __P((struct in6_ifaddr *, struct ifnet *));
133
134 /*
135 * This structure is used to keep track of in6_multi chains which belong to
136 * deleted interface addresses.
137 */
138 static LIST_HEAD(, multi6_kludge) in6_mk; /* XXX BSS initialization */
139
140 struct multi6_kludge {
141 LIST_ENTRY(multi6_kludge) mk_entry;
142 struct ifnet *mk_ifp;
143 struct in6_multihead mk_head;
144 };
145
146 /*
147 * Subroutine for in6_ifaddloop() and in6_ifremloop().
148 * This routine does actual work.
149 */
150 static void
151 in6_ifloop_request(int cmd, struct ifaddr *ifa)
152 {
153 struct sockaddr_in6 lo_sa;
154 struct sockaddr_in6 all1_sa;
155 struct rtentry *nrt = NULL;
156 int e;
157
158 bzero(&lo_sa, sizeof(lo_sa));
159 bzero(&all1_sa, sizeof(all1_sa));
160 lo_sa.sin6_family = all1_sa.sin6_family = AF_INET6;
161 lo_sa.sin6_len = all1_sa.sin6_len = sizeof(struct sockaddr_in6);
162 lo_sa.sin6_addr = in6addr_loopback;
163 all1_sa.sin6_addr = in6mask128;
164
165 /*
166 * We specify the address itself as the gateway, and set the
167 * RTF_LLINFO flag, so that the corresponding host route would have
168 * the flag, and thus applications that assume traditional behavior
169 * would be happy. Note that we assume the caller of the function
170 * (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
171 * which changes the outgoing interface to the loopback interface.
172 */
173 e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
174 (struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
175 if (e != 0) {
176 log(LOG_ERR, "in6_ifloop_request: "
177 "%s operation failed for %s (errno=%d)\n",
178 cmd == RTM_ADD ? "ADD" : "DELETE",
179 ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
180 e);
181 }
182
183 /*
184 * Make sure rt_ifa be equal to IFA, the second argument of the
185 * function.
186 * We need this because when we refer to rt_ifa->ia6_flags in
187 * ip6_input, we assume that the rt_ifa points to the address instead
188 * of the loopback address.
189 */
190 if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa) {
191 IFAFREE(nrt->rt_ifa);
192 IFAREF(ifa);
193 nrt->rt_ifa = ifa;
194 }
195
196 /*
197 * Report the addition/removal of the address to the routing socket.
198 * XXX: since we called rtinit for a p2p interface with a destination,
199 * we end up reporting twice in such a case. Should we rather
200 * omit the second report?
201 */
202 if (nrt) {
203 rt_newaddrmsg(cmd, ifa, e, nrt);
204 if (cmd == RTM_DELETE) {
205 if (nrt->rt_refcnt <= 0) {
206 /* XXX: we should free the entry ourselves. */
207 nrt->rt_refcnt++;
208 rtfree(nrt);
209 }
210 } else {
211 /* the cmd must be RTM_ADD here */
212 nrt->rt_refcnt--;
213 }
214 }
215 }
216
217 /*
218 * Add ownaddr as loopback rtentry. We previously add the route only if
219 * necessary (ex. on a p2p link). However, since we now manage addresses
220 * separately from prefixes, we should always add the route. We can't
221 * rely on the cloning mechanism from the corresponding interface route
222 * any more.
223 */
224 static void
225 in6_ifaddloop(struct ifaddr *ifa)
226 {
227 struct rtentry *rt;
228
229 /* If there is no loopback entry, allocate one. */
230 rt = rtalloc1(ifa->ifa_addr, 0);
231 if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
232 (rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
233 in6_ifloop_request(RTM_ADD, ifa);
234 if (rt)
235 rt->rt_refcnt--;
236 }
237
238 /*
239 * Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
240 * if it exists.
241 */
242 static void
243 in6_ifremloop(struct ifaddr *ifa)
244 {
245 struct in6_ifaddr *ia;
246 struct rtentry *rt;
247 int ia_count = 0;
248
249 /*
250 * Some of BSD variants do not remove cloned routes
251 * from an interface direct route, when removing the direct route
252 * (see comments in net/net_osdep.h). Even for variants that do remove
253 * cloned routes, they could fail to remove the cloned routes when
254 * we handle multple addresses that share a common prefix.
255 * So, we should remove the route corresponding to the deleted address.
256 */
257
258 /*
259 * Delete the entry only if exact one ifa exists. More than one ifa
260 * can exist if we assign a same single address to multiple
261 * (probably p2p) interfaces.
262 * XXX: we should avoid such a configuration in IPv6...
263 */
264 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
265 if (IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr)) {
266 ia_count++;
267 if (ia_count > 1)
268 break;
269 }
270 }
271
272 if (ia_count == 1) {
273 /*
274 * Before deleting, check if a corresponding loopbacked host
275 * route surely exists. With this check, we can avoid to
276 * delete an interface direct route whose destination is same
277 * as the address being removed. This can happen when removing
278 * a subnet-router anycast address on an interface attahced
279 * to a shared medium.
280 */
281 rt = rtalloc1(ifa->ifa_addr, 0);
282 if (rt != NULL && (rt->rt_flags & RTF_HOST) != 0 &&
283 (rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
284 rt->rt_refcnt--;
285 in6_ifloop_request(RTM_DELETE, ifa);
286 }
287 }
288 }
289
290 int
291 in6_ifindex2scopeid(idx)
292 int idx;
293 {
294 struct ifnet *ifp;
295 struct ifaddr *ifa;
296 struct sockaddr_in6 *sin6;
297
298 if (idx < 0 || if_index < idx)
299 return -1;
300 ifp = ifindex2ifnet[idx];
301 if (!ifp)
302 return -1;
303
304 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
305 {
306 if (ifa->ifa_addr->sa_family != AF_INET6)
307 continue;
308 sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
309 if (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))
310 return sin6->sin6_scope_id & 0xffff;
311 }
312
313 return -1;
314 }
315
316 int
317 in6_mask2len(mask, lim0)
318 struct in6_addr *mask;
319 u_char *lim0;
320 {
321 int x = 0, y;
322 u_char *lim = lim0, *p;
323
324 /* ignore the scope_id part */
325 if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
326 lim = (u_char *)mask + sizeof(*mask);
327 for (p = (u_char *)mask; p < lim; x++, p++) {
328 if (*p != 0xff)
329 break;
330 }
331 y = 0;
332 if (p < lim) {
333 for (y = 0; y < 8; y++) {
334 if ((*p & (0x80 >> y)) == 0)
335 break;
336 }
337 }
338
339 /*
340 * when the limit pointer is given, do a stricter check on the
341 * remaining bits.
342 */
343 if (p < lim) {
344 if (y != 0 && (*p & (0x00ff >> y)) != 0)
345 return(-1);
346 for (p = p + 1; p < lim; p++)
347 if (*p != 0)
348 return(-1);
349 }
350
351 return x * 8 + y;
352 }
353
354 #define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
355 #define ia62ifa(ia6) (&((ia6)->ia_ifa))
356
357 int
358 in6_control(so, cmd, data, ifp, p)
359 struct socket *so;
360 u_long cmd;
361 caddr_t data;
362 struct ifnet *ifp;
363 struct proc *p;
364 {
365 struct in6_ifreq *ifr = (struct in6_ifreq *)data;
366 struct in6_ifaddr *ia = NULL;
367 struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
368 struct sockaddr_in6 *sa6;
369 time_t time_second = (time_t)time.tv_sec;
370 int privileged;
371
372 privileged = 0;
373 if (p && !suser(p->p_ucred, &p->p_acflag))
374 privileged++;
375
376 switch (cmd) {
377 case SIOCGETSGCNT_IN6:
378 case SIOCGETMIFCNT_IN6:
379 return (mrt6_ioctl(cmd, data));
380 }
381
382 if (ifp == NULL)
383 return(EOPNOTSUPP);
384
385 switch (cmd) {
386 case SIOCSNDFLUSH_IN6:
387 case SIOCSPFXFLUSH_IN6:
388 case SIOCSRTRFLUSH_IN6:
389 case SIOCSDEFIFACE_IN6:
390 case SIOCSIFINFO_FLAGS:
391 if (!privileged)
392 return(EPERM);
393 /* FALLTHROUGH */
394 case OSIOCGIFINFO_IN6:
395 case SIOCGIFINFO_IN6:
396 case SIOCGDRLST_IN6:
397 case SIOCGPRLST_IN6:
398 case SIOCGNBRINFO_IN6:
399 case SIOCGDEFIFACE_IN6:
400 return(nd6_ioctl(cmd, data, ifp));
401 }
402
403 switch (cmd) {
404 case SIOCSIFPREFIX_IN6:
405 case SIOCDIFPREFIX_IN6:
406 case SIOCAIFPREFIX_IN6:
407 case SIOCCIFPREFIX_IN6:
408 case SIOCSGIFPREFIX_IN6:
409 case SIOCGIFPREFIX_IN6:
410 log(LOG_NOTICE,
411 "prefix ioctls are now invalidated. "
412 "please use ifconfig.\n");
413 return(EOPNOTSUPP);
414 }
415
416 switch (cmd) {
417 case SIOCALIFADDR:
418 case SIOCDLIFADDR:
419 if (!privileged)
420 return(EPERM);
421 /* FALLTHROUGH */
422 case SIOCGLIFADDR:
423 return in6_lifaddr_ioctl(so, cmd, data, ifp, p);
424 }
425
426 /*
427 * Find address for this interface, if it exists.
428 *
429 * In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
430 * only, and used the first interface address as the target of other
431 * operations (without checking ifra_addr). This was because netinet
432 * code/API assumed at most 1 interface address per interface.
433 * Since IPv6 allows a node to assign multiple addresses
434 * on a single interface, we almost always look and check the
435 * presence of ifra_addr, and reject invalid ones here.
436 * It also decreases duplicated code among SIOC*_IN6 operations.
437 */
438 switch (cmd) {
439 case SIOCAIFADDR_IN6:
440 case SIOCSIFPHYADDR_IN6:
441 sa6 = &ifra->ifra_addr;
442 break;
443 case SIOCSIFADDR_IN6:
444 case SIOCGIFADDR_IN6:
445 case SIOCSIFDSTADDR_IN6:
446 case SIOCSIFNETMASK_IN6:
447 case SIOCGIFDSTADDR_IN6:
448 case SIOCGIFNETMASK_IN6:
449 case SIOCDIFADDR_IN6:
450 case SIOCGIFPSRCADDR_IN6:
451 case SIOCGIFPDSTADDR_IN6:
452 case SIOCGIFAFLAG_IN6:
453 case SIOCSNDFLUSH_IN6:
454 case SIOCSPFXFLUSH_IN6:
455 case SIOCSRTRFLUSH_IN6:
456 case SIOCGIFALIFETIME_IN6:
457 case SIOCSIFALIFETIME_IN6:
458 case SIOCGIFSTAT_IN6:
459 case SIOCGIFSTAT_ICMP6:
460 sa6 = &ifr->ifr_addr;
461 break;
462 default:
463 sa6 = NULL;
464 break;
465 }
466 if (sa6 && sa6->sin6_family == AF_INET6) {
467 if (IN6_IS_ADDR_LINKLOCAL(&sa6->sin6_addr)) {
468 if (sa6->sin6_addr.s6_addr16[1] == 0) {
469 /* link ID is not embedded by the user */
470 sa6->sin6_addr.s6_addr16[1] =
471 htons(ifp->if_index);
472 } else if (sa6->sin6_addr.s6_addr16[1] !=
473 htons(ifp->if_index)) {
474 return(EINVAL); /* link ID contradicts */
475 }
476 if (sa6->sin6_scope_id) {
477 if (sa6->sin6_scope_id !=
478 (u_int32_t)ifp->if_index)
479 return(EINVAL);
480 sa6->sin6_scope_id = 0; /* XXX: good way? */
481 }
482 }
483 ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
484 } else
485 ia = NULL;
486
487 switch (cmd) {
488 case SIOCSIFADDR_IN6:
489 case SIOCSIFDSTADDR_IN6:
490 case SIOCSIFNETMASK_IN6:
491 /*
492 * Since IPv6 allows a node to assign multiple addresses
493 * on a single interface, SIOCSIFxxx ioctls are deprecated.
494 */
495 return(EINVAL);
496
497 case SIOCDIFADDR_IN6:
498 /*
499 * for IPv4, we look for existing in_ifaddr here to allow
500 * "ifconfig if0 delete" to remove the first IPv4 address on
501 * the interface. For IPv6, as the spec allows multiple
502 * interface address from the day one, we consider "remove the
503 * first one" semantics to be not preferable.
504 */
505 if (ia == NULL)
506 return(EADDRNOTAVAIL);
507 /* FALLTHROUGH */
508 case SIOCAIFADDR_IN6:
509 /*
510 * We always require users to specify a valid IPv6 address for
511 * the corresponding operation.
512 */
513 if (ifra->ifra_addr.sin6_family != AF_INET6 ||
514 ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
515 return(EAFNOSUPPORT);
516 if (!privileged)
517 return(EPERM);
518
519 break;
520
521 case SIOCGIFADDR_IN6:
522 /* This interface is basically deprecated. use SIOCGIFCONF. */
523 /* FALLTHROUGH */
524 case SIOCGIFAFLAG_IN6:
525 case SIOCGIFNETMASK_IN6:
526 case SIOCGIFDSTADDR_IN6:
527 case SIOCGIFALIFETIME_IN6:
528 /* must think again about its semantics */
529 if (ia == NULL)
530 return(EADDRNOTAVAIL);
531 break;
532 case SIOCSIFALIFETIME_IN6:
533 {
534 struct in6_addrlifetime *lt;
535
536 if (!privileged)
537 return(EPERM);
538 if (ia == NULL)
539 return(EADDRNOTAVAIL);
540 /* sanity for overflow - beware unsigned */
541 lt = &ifr->ifr_ifru.ifru_lifetime;
542 if (lt->ia6t_vltime != ND6_INFINITE_LIFETIME
543 && lt->ia6t_vltime + time_second < time_second) {
544 return EINVAL;
545 }
546 if (lt->ia6t_pltime != ND6_INFINITE_LIFETIME
547 && lt->ia6t_pltime + time_second < time_second) {
548 return EINVAL;
549 }
550 break;
551 }
552 }
553
554 switch (cmd) {
555
556 case SIOCGIFADDR_IN6:
557 ifr->ifr_addr = ia->ia_addr;
558 break;
559
560 case SIOCGIFDSTADDR_IN6:
561 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
562 return(EINVAL);
563 /*
564 * XXX: should we check if ifa_dstaddr is NULL and return
565 * an error?
566 */
567 ifr->ifr_dstaddr = ia->ia_dstaddr;
568 break;
569
570 case SIOCGIFNETMASK_IN6:
571 ifr->ifr_addr = ia->ia_prefixmask;
572 break;
573
574 case SIOCGIFAFLAG_IN6:
575 ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
576 break;
577
578 case SIOCGIFSTAT_IN6:
579 if (ifp == NULL)
580 return EINVAL;
581 bzero(&ifr->ifr_ifru.ifru_stat,
582 sizeof(ifr->ifr_ifru.ifru_stat));
583 ifr->ifr_ifru.ifru_stat =
584 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
585 break;
586
587 case SIOCGIFSTAT_ICMP6:
588 if (ifp == NULL)
589 return EINVAL;
590 bzero(&ifr->ifr_ifru.ifru_stat,
591 sizeof(ifr->ifr_ifru.ifru_icmp6stat));
592 ifr->ifr_ifru.ifru_icmp6stat =
593 *((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
594 break;
595
596 case SIOCGIFALIFETIME_IN6:
597 ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
598 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
599 time_t maxexpire;
600 struct in6_addrlifetime *retlt =
601 &ifr->ifr_ifru.ifru_lifetime;
602
603 /*
604 * XXX: adjust expiration time assuming time_t is
605 * signed.
606 */
607 maxexpire = (-1) &
608 ~(1 << ((sizeof(maxexpire) * 8) - 1));
609 if (ia->ia6_lifetime.ia6t_vltime <
610 maxexpire - ia->ia6_updatetime) {
611 retlt->ia6t_expire = ia->ia6_updatetime +
612 ia->ia6_lifetime.ia6t_vltime;
613 } else
614 retlt->ia6t_expire = maxexpire;
615 }
616 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
617 time_t maxexpire;
618 struct in6_addrlifetime *retlt =
619 &ifr->ifr_ifru.ifru_lifetime;
620
621 /*
622 * XXX: adjust expiration time assuming time_t is
623 * signed.
624 */
625 maxexpire = (-1) &
626 ~(1 << ((sizeof(maxexpire) * 8) - 1));
627 if (ia->ia6_lifetime.ia6t_pltime <
628 maxexpire - ia->ia6_updatetime) {
629 retlt->ia6t_preferred = ia->ia6_updatetime +
630 ia->ia6_lifetime.ia6t_pltime;
631 } else
632 retlt->ia6t_preferred = maxexpire;
633 }
634 break;
635
636 case SIOCSIFALIFETIME_IN6:
637 ia->ia6_lifetime = ifr->ifr_ifru.ifru_lifetime;
638 /* for sanity */
639 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
640 ia->ia6_lifetime.ia6t_expire =
641 time_second + ia->ia6_lifetime.ia6t_vltime;
642 } else
643 ia->ia6_lifetime.ia6t_expire = 0;
644 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
645 ia->ia6_lifetime.ia6t_preferred =
646 time_second + ia->ia6_lifetime.ia6t_pltime;
647 } else
648 ia->ia6_lifetime.ia6t_preferred = 0;
649 break;
650
651 case SIOCAIFADDR_IN6:
652 {
653 int i, error = 0;
654 struct nd_prefix pr0, *pr;
655
656 /*
657 * first, make or update the interface address structure,
658 * and link it to the list.
659 */
660 if ((error = in6_update_ifa(ifp, ifra, ia)) != 0)
661 return(error);
662 if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
663 == NULL) {
664 /*
665 * this can happen when the user specify the 0 valid
666 * lifetime.
667 */
668 break;
669 }
670
671 /*
672 * then, make the prefix on-link on the interface.
673 * XXX: we'd rather create the prefix before the address, but
674 * we need at least one address to install the corresponding
675 * interface route, so we configure the address first.
676 */
677
678 /*
679 * convert mask to prefix length (prefixmask has already
680 * been validated in in6_update_ifa().
681 */
682 bzero(&pr0, sizeof(pr0));
683 pr0.ndpr_ifp = ifp;
684 pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
685 NULL);
686 if (pr0.ndpr_plen == 128) {
687 break; /* we don't need to install a host route. */
688 }
689 pr0.ndpr_prefix = ifra->ifra_addr;
690 pr0.ndpr_mask = ifra->ifra_prefixmask.sin6_addr;
691 /* apply the mask for safety. */
692 for (i = 0; i < 4; i++) {
693 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
694 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
695 }
696 /*
697 * XXX: since we don't have an API to set prefix (not address)
698 * lifetimes, we just use the same lifetimes as addresses.
699 * The (temporarily) installed lifetimes can be overridden by
700 * later advertised RAs (when accept_rtadv is non 0), which is
701 * an intended behavior.
702 */
703 pr0.ndpr_raf_onlink = 1; /* should be configurable? */
704 pr0.ndpr_raf_auto =
705 ((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
706 pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
707 pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
708
709 /* add the prefix if there's one. */
710 if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
711 /*
712 * nd6_prelist_add will install the corresponding
713 * interface route.
714 */
715 if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
716 return(error);
717 if (pr == NULL) {
718 log(LOG_ERR, "nd6_prelist_add succeeded but "
719 "no prefix\n");
720 return(EINVAL); /* XXX panic here? */
721 }
722 }
723 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
724 ia->ia6_ndpr == NULL) { /* new autoconfed addr */
725 ia->ia6_ndpr = pr;
726 pr->ndpr_refcnt++;
727 }
728
729 /*
730 * this might affect the status of autoconfigured addresses,
731 * that is, this address might make other addresses detached.
732 */
733 pfxlist_onlink_check();
734
735 break;
736 }
737
738 case SIOCDIFADDR_IN6:
739 {
740 int i = 0, purgeprefix = 0;
741 struct nd_prefix pr0, *pr = NULL;
742
743 /*
744 * If the address being deleted is the only one that owns
745 * the corresponding prefix, expire the prefix as well.
746 * XXX: theoretically, we don't have to worry about such
747 * relationship, since we separate the address management
748 * and the prefix management. We do this, however, to provide
749 * as much backward compatibility as possible in terms of
750 * the ioctl operation.
751 */
752 bzero(&pr0, sizeof(pr0));
753 pr0.ndpr_ifp = ifp;
754 pr0.ndpr_plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr,
755 NULL);
756 if (pr0.ndpr_plen == 128)
757 goto purgeaddr;
758 pr0.ndpr_prefix = ia->ia_addr;
759 pr0.ndpr_mask = ia->ia_prefixmask.sin6_addr;
760 for (i = 0; i < 4; i++) {
761 pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
762 ia->ia_prefixmask.sin6_addr.s6_addr32[i];
763 }
764 /*
765 * The logic of the following condition is a bit complicated.
766 * We expire the prefix when
767 * 1. the address obeys autoconfiguration and it is the
768 * only owner of the associated prefix, or
769 * 2. the address does not obey autoconf and there is no
770 * other owner of the prefix.
771 */
772 if ((pr = nd6_prefix_lookup(&pr0)) != NULL &&
773 (((ia->ia6_flags & IN6_IFF_AUTOCONF) != 0 &&
774 pr->ndpr_refcnt == 1) ||
775 ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0 &&
776 pr->ndpr_refcnt == 0)))
777 purgeprefix = 1;
778
779 purgeaddr:
780 in6_purgeaddr(&ia->ia_ifa);
781 if (pr && purgeprefix)
782 prelist_remove(pr);
783 break;
784 }
785
786 default:
787 if (ifp == NULL || ifp->if_ioctl == 0)
788 return(EOPNOTSUPP);
789 return((*ifp->if_ioctl)(ifp, cmd, data));
790 }
791
792 return(0);
793 }
794
795 /*
796 * Update parameters of an IPv6 interface address.
797 * If necessary, a new entry is created and linked into address chains.
798 * This function is separated from in6_control().
799 * XXX: should this be performed under splnet()?
800 */
801 int
802 in6_update_ifa(ifp, ifra, ia)
803 struct ifnet *ifp;
804 struct in6_aliasreq *ifra;
805 struct in6_ifaddr *ia;
806 {
807 int error = 0, hostIsNew = 0, plen = -1;
808 struct in6_ifaddr *oia;
809 struct sockaddr_in6 dst6;
810 struct in6_addrlifetime *lt;
811 struct in6_multi_mship *imm;
812 time_t time_second = (time_t)time.tv_sec;
813 struct rtentry *rt;
814
815 /* Validate parameters */
816 if (ifp == NULL || ifra == NULL) /* this maybe redundant */
817 return(EINVAL);
818
819 /*
820 * The destination address for a p2p link must have a family
821 * of AF_UNSPEC or AF_INET6.
822 */
823 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
824 ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
825 ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
826 return(EAFNOSUPPORT);
827 /*
828 * validate ifra_prefixmask. don't check sin6_family, netmask
829 * does not carry fields other than sin6_len.
830 */
831 if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
832 return(EINVAL);
833 /*
834 * Because the IPv6 address architecture is classless, we require
835 * users to specify a (non 0) prefix length (mask) for a new address.
836 * We also require the prefix (when specified) mask is valid, and thus
837 * reject a non-consecutive mask.
838 */
839 if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
840 return(EINVAL);
841 if (ifra->ifra_prefixmask.sin6_len != 0) {
842 plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
843 (u_char *)&ifra->ifra_prefixmask +
844 ifra->ifra_prefixmask.sin6_len);
845 if (plen <= 0)
846 return(EINVAL);
847 } else {
848 /*
849 * In this case, ia must not be NULL. We just use its prefix
850 * length.
851 */
852 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
853 }
854 /*
855 * If the destination address on a p2p interface is specified,
856 * and the address is a scoped one, validate/set the scope
857 * zone identifier.
858 */
859 dst6 = ifra->ifra_dstaddr;
860 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
861 (dst6.sin6_family == AF_INET6)) {
862 /* link-local index check: should be a separate function? */
863 if (IN6_IS_ADDR_LINKLOCAL(&dst6.sin6_addr)) {
864 if (dst6.sin6_addr.s6_addr16[1] == 0) {
865 /*
866 * interface ID is not embedded by
867 * the user
868 */
869 dst6.sin6_addr.s6_addr16[1] =
870 htons(ifp->if_index);
871 } else if (dst6.sin6_addr.s6_addr16[1] !=
872 htons(ifp->if_index)) {
873 return(EINVAL); /* ifid contradicts */
874 }
875 }
876 }
877 /*
878 * The destination address can be specified only for a p2p or a
879 * loopback interface. If specified, the corresponding prefix length
880 * must be 128.
881 */
882 if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
883 #ifdef FORCE_P2PPLEN
884 int i;
885 #endif
886
887 if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
888 /* XXX: noisy message */
889 nd6log((LOG_INFO, "in6_update_ifa: a destination can be "
890 "specified for a p2p or a loopback IF only\n"));
891 return(EINVAL);
892 }
893 if (plen != 128) {
894 nd6log((LOG_INFO, "in6_update_ifa: prefixlen should be "
895 "128 when dstaddr is specified\n"));
896 #ifdef FORCE_P2PPLEN
897 /*
898 * To be compatible with old configurations,
899 * such as ifconfig gif0 inet6 2001::1 2001::2
900 * prefixlen 126, we override the specified
901 * prefixmask as if the prefix length was 128.
902 */
903 ifra->ifra_prefixmask.sin6_len =
904 sizeof(struct sockaddr_in6);
905 for (i = 0; i < 4; i++)
906 ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
907 0xffffffff;
908 plen = 128;
909 #else
910 return(EINVAL);
911 #endif
912 }
913 }
914 /* lifetime consistency check */
915 lt = &ifra->ifra_lifetime;
916 if (lt->ia6t_pltime > lt->ia6t_vltime)
917 return(EINVAL);
918 if (lt->ia6t_vltime == 0) {
919 /*
920 * the following log might be noisy, but this is a typical
921 * configuration mistake or a tool's bug.
922 */
923 nd6log((LOG_INFO,
924 "in6_update_ifa: valid lifetime is 0 for %s\n",
925 ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
926
927 if (ia == NULL)
928 return(0); /* there's nothing to do */
929 }
930
931 /*
932 * If this is a new address, allocate a new ifaddr and link it
933 * into chains.
934 */
935 if (ia == NULL) {
936 hostIsNew = 1;
937 /*
938 * When in6_update_ifa() is called in a process of a received
939 * RA, it is called under an interrupt context. So, we should
940 * call malloc with M_NOWAIT.
941 */
942 ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
943 M_NOWAIT);
944 if (ia == NULL)
945 return (ENOBUFS);
946 bzero((caddr_t)ia, sizeof(*ia));
947 LIST_INIT(&ia->ia6_memberships);
948 /* Initialize the address and masks, and put time stamp */
949 ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
950 ia->ia_addr.sin6_family = AF_INET6;
951 ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
952 ia->ia6_createtime = ia->ia6_updatetime = time_second;
953 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
954 /*
955 * XXX: some functions expect that ifa_dstaddr is not
956 * NULL for p2p interfaces.
957 */
958 ia->ia_ifa.ifa_dstaddr =
959 (struct sockaddr *)&ia->ia_dstaddr;
960 } else {
961 ia->ia_ifa.ifa_dstaddr = NULL;
962 }
963 ia->ia_ifa.ifa_netmask =
964 (struct sockaddr *)&ia->ia_prefixmask;
965
966 ia->ia_ifp = ifp;
967 if ((oia = in6_ifaddr) != NULL) {
968 for ( ; oia->ia_next; oia = oia->ia_next)
969 continue;
970 oia->ia_next = ia;
971 } else
972 in6_ifaddr = ia;
973 /* gain a refcnt for the link from in6_ifaddr */
974 IFAREF(&ia->ia_ifa);
975
976 TAILQ_INSERT_TAIL(&ifp->if_addrlist, &ia->ia_ifa,
977 ifa_list);
978 /* gain another refcnt for the link from if_addrlist */
979 IFAREF(&ia->ia_ifa);
980 }
981
982 /* set prefix mask */
983 if (ifra->ifra_prefixmask.sin6_len) {
984 /*
985 * We prohibit changing the prefix length of an existing
986 * address, because
987 * + such an operation should be rare in IPv6, and
988 * + the operation would confuse prefix management.
989 */
990 if (ia->ia_prefixmask.sin6_len &&
991 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
992 nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
993 " existing (%s) address should not be changed\n",
994 ip6_sprintf(&ia->ia_addr.sin6_addr)));
995 error = EINVAL;
996 goto unlink;
997 }
998 ia->ia_prefixmask = ifra->ifra_prefixmask;
999 }
1000
1001 /*
1002 * If a new destination address is specified, scrub the old one and
1003 * install the new destination. Note that the interface must be
1004 * p2p or loopback (see the check above.)
1005 */
1006 if (dst6.sin6_family == AF_INET6 &&
1007 !IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
1008 int e;
1009
1010 if ((ia->ia_flags & IFA_ROUTE) != 0 &&
1011 (e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST)) != 0) {
1012 nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
1013 "a route to the old destination: %s\n",
1014 ip6_sprintf(&ia->ia_addr.sin6_addr)));
1015 /* proceed anyway... */
1016 } else
1017 ia->ia_flags &= ~IFA_ROUTE;
1018 ia->ia_dstaddr = dst6;
1019 }
1020
1021 /*
1022 * Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
1023 * to see if the address is deprecated or invalidated, but initialize
1024 * these members for applications.
1025 */
1026 ia->ia6_lifetime = ifra->ifra_lifetime;
1027 if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
1028 ia->ia6_lifetime.ia6t_expire =
1029 time_second + ia->ia6_lifetime.ia6t_vltime;
1030 } else
1031 ia->ia6_lifetime.ia6t_expire = 0;
1032 if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
1033 ia->ia6_lifetime.ia6t_preferred =
1034 time_second + ia->ia6_lifetime.ia6t_pltime;
1035 } else
1036 ia->ia6_lifetime.ia6t_preferred = 0;
1037
1038 /* reset the interface and routing table appropriately. */
1039 if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
1040 goto unlink;
1041
1042 /*
1043 * Make the address tentative before joining multicast addresses,
1044 * so that corresponding MLD responses would not have a tentative
1045 * source address.
1046 */
1047 ia->ia6_flags = ifra->ifra_flags;
1048 ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
1049 if (hostIsNew && in6if_do_dad(ifp))
1050 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1051
1052 /*
1053 * Beyond this point, we should call in6_purgeaddr upon an error,
1054 * not just go to unlink.
1055 */
1056
1057 if ((ifp->if_flags & IFF_MULTICAST) != 0) {
1058 struct sockaddr_in6 mltaddr, mltmask;
1059 #ifndef SCOPEDROUTING
1060 u_int32_t zoneid = 0;
1061 #endif
1062
1063 if (hostIsNew) {
1064 /* join solicited multicast addr for new host id */
1065 struct sockaddr_in6 llsol;
1066
1067 bzero(&llsol, sizeof(llsol));
1068 llsol.sin6_family = AF_INET6;
1069 llsol.sin6_len = sizeof(llsol);
1070 llsol.sin6_addr.s6_addr16[0] = htons(0xff02);
1071 llsol.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1072 llsol.sin6_addr.s6_addr32[1] = 0;
1073 llsol.sin6_addr.s6_addr32[2] = htonl(1);
1074 llsol.sin6_addr.s6_addr32[3] =
1075 ifra->ifra_addr.sin6_addr.s6_addr32[3];
1076 llsol.sin6_addr.s6_addr8[12] = 0xff;
1077 imm = in6_joingroup(ifp, &llsol.sin6_addr, &error);
1078 if (imm) {
1079 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1080 i6mm_chain);
1081 } else {
1082 nd6log((LOG_ERR, "in6_update_ifa: addmulti "
1083 "failed for %s on %s (errno=%d)\n",
1084 ip6_sprintf(&llsol.sin6_addr),
1085 if_name(ifp), error));
1086 goto cleanup;
1087 }
1088 }
1089
1090 bzero(&mltmask, sizeof(mltmask));
1091 mltmask.sin6_len = sizeof(struct sockaddr_in6);
1092 mltmask.sin6_family = AF_INET6;
1093 mltmask.sin6_addr = in6mask32;
1094
1095 /*
1096 * join link-local all-nodes address
1097 */
1098 bzero(&mltaddr, sizeof(mltaddr));
1099 mltaddr.sin6_len = sizeof(struct sockaddr_in6);
1100 mltaddr.sin6_family = AF_INET6;
1101 mltaddr.sin6_addr = in6addr_linklocal_allnodes;
1102 mltaddr.sin6_addr.s6_addr16[1] = htons(ifp->if_index);
1103
1104 /*
1105 * XXX: do we really need this automatic routes?
1106 * We should probably reconsider this stuff. Most applications
1107 * actually do not need the routes, since they usually specify
1108 * the outgoing interface.
1109 */
1110 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1111 if (rt) {
1112 /*
1113 * 32bit came from "mltmask"
1114 * XXX: only works in !SCOPEDROUTING case.
1115 */
1116 if (memcmp(&mltaddr.sin6_addr,
1117 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1118 32 / 8)) {
1119 RTFREE(rt);
1120 rt = NULL;
1121 }
1122 }
1123 if (!rt) {
1124 struct rt_addrinfo info;
1125
1126 bzero(&info, sizeof(info));
1127 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1128 info.rti_info[RTAX_GATEWAY] =
1129 (struct sockaddr *)&ia->ia_addr;
1130 info.rti_info[RTAX_NETMASK] =
1131 (struct sockaddr *)&mltmask;
1132 info.rti_info[RTAX_IFA] =
1133 (struct sockaddr *)&ia->ia_addr;
1134 /* XXX: we need RTF_CLONING to fake nd6_rtrequest */
1135 info.rti_flags = RTF_UP | RTF_CLONING;
1136 error = rtrequest1(RTM_ADD, &info, NULL);
1137 if (error)
1138 goto cleanup;
1139 } else {
1140 RTFREE(rt);
1141 }
1142 #ifndef SCOPEDROUTING
1143 mltaddr.sin6_scope_id = zoneid; /* XXX */
1144 #endif
1145 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1146 if (imm) {
1147 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1148 i6mm_chain);
1149 } else {
1150 nd6log((LOG_WARNING,
1151 "in6_update_ifa: addmulti failed for "
1152 "%s on %s (errno=%d)\n",
1153 ip6_sprintf(&mltaddr.sin6_addr),
1154 if_name(ifp), error));
1155 goto cleanup;
1156 }
1157
1158 /*
1159 * join node information group address
1160 */
1161 if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) == 0) {
1162 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1163 if (imm) {
1164 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1165 i6mm_chain);
1166 } else {
1167 nd6log((LOG_WARNING, "in6_update_ifa: "
1168 "addmulti failed for %s on %s (errno=%d)\n",
1169 ip6_sprintf(&mltaddr.sin6_addr),
1170 if_name(ifp), error));
1171 /* XXX not very fatal, go on... */
1172 }
1173 }
1174
1175 if (ifp->if_flags & IFF_LOOPBACK) {
1176 /*
1177 * join node-local all-nodes address, on loopback.
1178 * (ff01::1%ifN, and ff01::%ifN/32)
1179 */
1180 mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
1181
1182 /* XXX: again, do we really need the route? */
1183 rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
1184 if (rt) {
1185 /* 32bit came from "mltmask" */
1186 if (memcmp(&mltaddr.sin6_addr,
1187 &((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1188 32 / 8)) {
1189 RTFREE(rt);
1190 rt = NULL;
1191 }
1192 }
1193 if (!rt) {
1194 struct rt_addrinfo info;
1195
1196 bzero(&info, sizeof(info));
1197 info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
1198 info.rti_info[RTAX_GATEWAY] =
1199 (struct sockaddr *)&ia->ia_addr;
1200 info.rti_info[RTAX_NETMASK] =
1201 (struct sockaddr *)&mltmask;
1202 info.rti_info[RTAX_IFA] =
1203 (struct sockaddr *)&ia->ia_addr;
1204 info.rti_flags = RTF_UP | RTF_CLONING;
1205 error = rtrequest1(RTM_ADD, &info, NULL);
1206 if (error)
1207 goto cleanup;
1208 } else {
1209 RTFREE(rt);
1210 }
1211 imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error);
1212 if (imm) {
1213 LIST_INSERT_HEAD(&ia->ia6_memberships, imm,
1214 i6mm_chain);
1215 } else {
1216 nd6log((LOG_WARNING, "in6_update_ifa: "
1217 "addmulti failed for %s on %s "
1218 "(errno=%d)\n",
1219 ip6_sprintf(&mltaddr.sin6_addr),
1220 if_name(ifp), error));
1221 goto cleanup;
1222 }
1223 }
1224 }
1225
1226 /*
1227 * Perform DAD, if needed.
1228 * XXX It may be of use, if we can administratively
1229 * disable DAD.
1230 */
1231 if (hostIsNew && in6if_do_dad(ifp) &&
1232 (ifra->ifra_flags & IN6_IFF_NODAD) == 0)
1233 {
1234 nd6_dad_start((struct ifaddr *)ia, NULL);
1235 }
1236
1237 return(error);
1238
1239 unlink:
1240 /*
1241 * XXX: if a change of an existing address failed, keep the entry
1242 * anyway.
1243 */
1244 if (hostIsNew)
1245 in6_unlink_ifa(ia, ifp);
1246 return(error);
1247
1248 cleanup:
1249 in6_purgeaddr(&ia->ia_ifa);
1250 return error;
1251 }
1252
1253 void
1254 in6_purgeaddr(ifa)
1255 struct ifaddr *ifa;
1256 {
1257 struct ifnet *ifp = ifa->ifa_ifp;
1258 struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
1259 struct in6_multi_mship *imm;
1260
1261 /* stop DAD processing */
1262 nd6_dad_stop(ifa);
1263
1264 /*
1265 * delete route to the destination of the address being purged.
1266 * The interface must be p2p or loopback in this case.
1267 */
1268 if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
1269 int e;
1270
1271 if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
1272 != 0) {
1273 log(LOG_ERR, "in6_purgeaddr: failed to remove "
1274 "a route to the p2p destination: %s on %s, "
1275 "errno=%d\n",
1276 ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
1277 e);
1278 /* proceed anyway... */
1279 } else
1280 ia->ia_flags &= ~IFA_ROUTE;
1281 }
1282
1283 /* Remove ownaddr's loopback rtentry, if it exists. */
1284 in6_ifremloop(&(ia->ia_ifa));
1285
1286 /*
1287 * leave from multicast groups we have joined for the interface
1288 */
1289 while ((imm = ia->ia6_memberships.lh_first) != NULL) {
1290 LIST_REMOVE(imm, i6mm_chain);
1291 in6_leavegroup(imm);
1292 }
1293
1294 in6_unlink_ifa(ia, ifp);
1295 }
1296
1297 static void
1298 in6_unlink_ifa(ia, ifp)
1299 struct in6_ifaddr *ia;
1300 struct ifnet *ifp;
1301 {
1302 struct in6_ifaddr *oia;
1303 int s = splnet();
1304
1305 TAILQ_REMOVE(&ifp->if_addrlist, &ia->ia_ifa, ifa_list);
1306 /* release a refcnt for the link from if_addrlist */
1307 IFAFREE(&ia->ia_ifa);
1308
1309 oia = ia;
1310 if (oia == (ia = in6_ifaddr))
1311 in6_ifaddr = ia->ia_next;
1312 else {
1313 while (ia->ia_next && (ia->ia_next != oia))
1314 ia = ia->ia_next;
1315 if (ia->ia_next)
1316 ia->ia_next = oia->ia_next;
1317 else {
1318 /* search failed */
1319 printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
1320 }
1321 }
1322
1323 if (oia->ia6_multiaddrs.lh_first != NULL) {
1324 /*
1325 * XXX thorpej (at) netbsd.org -- if the interface is going
1326 * XXX away, don't save the multicast entries, delete them!
1327 */
1328 if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
1329 struct in6_multi *in6m;
1330
1331 while ((in6m =
1332 LIST_FIRST(&oia->ia6_multiaddrs)) != NULL)
1333 in6_delmulti(in6m);
1334 } else
1335 in6_savemkludge(oia);
1336 }
1337
1338 /*
1339 * When an autoconfigured address is being removed, release the
1340 * reference to the base prefix. Also, since the release might
1341 * affect the status of other (detached) addresses, call
1342 * pfxlist_onlink_check().
1343 */
1344 if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0) {
1345 if (oia->ia6_ndpr == NULL) {
1346 log(LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
1347 "%p has no prefix\n", oia);
1348 } else {
1349 oia->ia6_ndpr->ndpr_refcnt--;
1350 oia->ia6_flags &= ~IN6_IFF_AUTOCONF;
1351 oia->ia6_ndpr = NULL;
1352 }
1353
1354 pfxlist_onlink_check();
1355 }
1356
1357 /*
1358 * release another refcnt for the link from in6_ifaddr.
1359 * Note that we should decrement the refcnt at least once for all *BSD.
1360 */
1361 IFAFREE(&oia->ia_ifa);
1362
1363 splx(s);
1364 }
1365
1366 void
1367 in6_purgeif(ifp)
1368 struct ifnet *ifp;
1369 {
1370 struct ifaddr *ifa, *nifa;
1371
1372 for (ifa = TAILQ_FIRST(&ifp->if_addrlist); ifa != NULL; ifa = nifa)
1373 {
1374 nifa = TAILQ_NEXT(ifa, ifa_list);
1375 if (ifa->ifa_addr->sa_family != AF_INET6)
1376 continue;
1377 in6_purgeaddr(ifa);
1378 }
1379
1380 in6_ifdetach(ifp);
1381 }
1382
1383 /*
1384 * SIOC[GAD]LIFADDR.
1385 * SIOCGLIFADDR: get first address. (?)
1386 * SIOCGLIFADDR with IFLR_PREFIX:
1387 * get first address that matches the specified prefix.
1388 * SIOCALIFADDR: add the specified address.
1389 * SIOCALIFADDR with IFLR_PREFIX:
1390 * add the specified prefix, filling hostid part from
1391 * the first link-local address. prefixlen must be <= 64.
1392 * SIOCDLIFADDR: delete the specified address.
1393 * SIOCDLIFADDR with IFLR_PREFIX:
1394 * delete the first address that matches the specified prefix.
1395 * return values:
1396 * EINVAL on invalid parameters
1397 * EADDRNOTAVAIL on prefix match failed/specified address not found
1398 * other values may be returned from in6_ioctl()
1399 *
1400 * NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
1401 * this is to accomodate address naming scheme other than RFC2374,
1402 * in the future.
1403 * RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
1404 * address encoding scheme. (see figure on page 8)
1405 */
1406 static int
1407 in6_lifaddr_ioctl(so, cmd, data, ifp, p)
1408 struct socket *so;
1409 u_long cmd;
1410 caddr_t data;
1411 struct ifnet *ifp;
1412 struct proc *p;
1413 {
1414 struct if_laddrreq *iflr = (struct if_laddrreq *)data;
1415 struct ifaddr *ifa;
1416 struct sockaddr *sa;
1417
1418 /* sanity checks */
1419 if (!data || !ifp) {
1420 panic("invalid argument to in6_lifaddr_ioctl");
1421 /* NOTREACHED */
1422 }
1423
1424 switch (cmd) {
1425 case SIOCGLIFADDR:
1426 /* address must be specified on GET with IFLR_PREFIX */
1427 if ((iflr->flags & IFLR_PREFIX) == 0)
1428 break;
1429 /* FALLTHROUGH */
1430 case SIOCALIFADDR:
1431 case SIOCDLIFADDR:
1432 /* address must be specified on ADD and DELETE */
1433 sa = (struct sockaddr *)&iflr->addr;
1434 if (sa->sa_family != AF_INET6)
1435 return EINVAL;
1436 if (sa->sa_len != sizeof(struct sockaddr_in6))
1437 return EINVAL;
1438 /* XXX need improvement */
1439 sa = (struct sockaddr *)&iflr->dstaddr;
1440 if (sa->sa_family && sa->sa_family != AF_INET6)
1441 return EINVAL;
1442 if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
1443 return EINVAL;
1444 break;
1445 default: /* shouldn't happen */
1446 #if 0
1447 panic("invalid cmd to in6_lifaddr_ioctl");
1448 /* NOTREACHED */
1449 #else
1450 return EOPNOTSUPP;
1451 #endif
1452 }
1453 if (sizeof(struct in6_addr) * 8 < iflr->prefixlen)
1454 return EINVAL;
1455
1456 switch (cmd) {
1457 case SIOCALIFADDR:
1458 {
1459 struct in6_aliasreq ifra;
1460 struct in6_addr *hostid = NULL;
1461 int prefixlen;
1462
1463 if ((iflr->flags & IFLR_PREFIX) != 0) {
1464 struct sockaddr_in6 *sin6;
1465
1466 /*
1467 * hostid is to fill in the hostid part of the
1468 * address. hostid points to the first link-local
1469 * address attached to the interface.
1470 */
1471 ifa = (struct ifaddr *)in6ifa_ifpforlinklocal(ifp, 0);
1472 if (!ifa)
1473 return EADDRNOTAVAIL;
1474 hostid = IFA_IN6(ifa);
1475
1476 /* prefixlen must be <= 64. */
1477 if (64 < iflr->prefixlen)
1478 return EINVAL;
1479 prefixlen = iflr->prefixlen;
1480
1481 /* hostid part must be zero. */
1482 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1483 if (sin6->sin6_addr.s6_addr32[2] != 0
1484 || sin6->sin6_addr.s6_addr32[3] != 0) {
1485 return EINVAL;
1486 }
1487 } else
1488 prefixlen = iflr->prefixlen;
1489
1490 /* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
1491 bzero(&ifra, sizeof(ifra));
1492 bcopy(iflr->iflr_name, ifra.ifra_name, sizeof(ifra.ifra_name));
1493
1494 bcopy(&iflr->addr, &ifra.ifra_addr,
1495 ((struct sockaddr *)&iflr->addr)->sa_len);
1496 if (hostid) {
1497 /* fill in hostid part */
1498 ifra.ifra_addr.sin6_addr.s6_addr32[2] =
1499 hostid->s6_addr32[2];
1500 ifra.ifra_addr.sin6_addr.s6_addr32[3] =
1501 hostid->s6_addr32[3];
1502 }
1503
1504 if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
1505 bcopy(&iflr->dstaddr, &ifra.ifra_dstaddr,
1506 ((struct sockaddr *)&iflr->dstaddr)->sa_len);
1507 if (hostid) {
1508 ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
1509 hostid->s6_addr32[2];
1510 ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
1511 hostid->s6_addr32[3];
1512 }
1513 }
1514
1515 ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
1516 in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
1517
1518 ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
1519 return in6_control(so, SIOCAIFADDR_IN6, (caddr_t)&ifra, ifp, p);
1520 }
1521 case SIOCGLIFADDR:
1522 case SIOCDLIFADDR:
1523 {
1524 struct in6_ifaddr *ia;
1525 struct in6_addr mask, candidate, match;
1526 struct sockaddr_in6 *sin6;
1527 int cmp;
1528
1529 bzero(&mask, sizeof(mask));
1530 if (iflr->flags & IFLR_PREFIX) {
1531 /* lookup a prefix rather than address. */
1532 in6_prefixlen2mask(&mask, iflr->prefixlen);
1533
1534 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1535 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1536 match.s6_addr32[0] &= mask.s6_addr32[0];
1537 match.s6_addr32[1] &= mask.s6_addr32[1];
1538 match.s6_addr32[2] &= mask.s6_addr32[2];
1539 match.s6_addr32[3] &= mask.s6_addr32[3];
1540
1541 /* if you set extra bits, that's wrong */
1542 if (bcmp(&match, &sin6->sin6_addr, sizeof(match)))
1543 return EINVAL;
1544
1545 cmp = 1;
1546 } else {
1547 if (cmd == SIOCGLIFADDR) {
1548 /* on getting an address, take the 1st match */
1549 cmp = 0; /* XXX */
1550 } else {
1551 /* on deleting an address, do exact match */
1552 in6_prefixlen2mask(&mask, 128);
1553 sin6 = (struct sockaddr_in6 *)&iflr->addr;
1554 bcopy(&sin6->sin6_addr, &match, sizeof(match));
1555
1556 cmp = 1;
1557 }
1558 }
1559
1560 for (ifa = ifp->if_addrlist.tqh_first;
1561 ifa;
1562 ifa = ifa->ifa_list.tqe_next)
1563 {
1564 if (ifa->ifa_addr->sa_family != AF_INET6)
1565 continue;
1566 if (!cmp)
1567 break;
1568
1569 bcopy(IFA_IN6(ifa), &candidate, sizeof(candidate));
1570 candidate.s6_addr32[0] &= mask.s6_addr32[0];
1571 candidate.s6_addr32[1] &= mask.s6_addr32[1];
1572 candidate.s6_addr32[2] &= mask.s6_addr32[2];
1573 candidate.s6_addr32[3] &= mask.s6_addr32[3];
1574 if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
1575 break;
1576 }
1577 if (!ifa)
1578 return EADDRNOTAVAIL;
1579 ia = ifa2ia6(ifa);
1580
1581 if (cmd == SIOCGLIFADDR) {
1582 /* fill in the if_laddrreq structure */
1583 bcopy(&ia->ia_addr, &iflr->addr, ia->ia_addr.sin6_len);
1584 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1585 bcopy(&ia->ia_dstaddr, &iflr->dstaddr,
1586 ia->ia_dstaddr.sin6_len);
1587 } else
1588 bzero(&iflr->dstaddr, sizeof(iflr->dstaddr));
1589
1590 iflr->prefixlen =
1591 in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
1592
1593 iflr->flags = ia->ia6_flags; /* XXX */
1594
1595 return 0;
1596 } else {
1597 struct in6_aliasreq ifra;
1598
1599 /* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
1600 bzero(&ifra, sizeof(ifra));
1601 bcopy(iflr->iflr_name, ifra.ifra_name,
1602 sizeof(ifra.ifra_name));
1603
1604 bcopy(&ia->ia_addr, &ifra.ifra_addr,
1605 ia->ia_addr.sin6_len);
1606 if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
1607 bcopy(&ia->ia_dstaddr, &ifra.ifra_dstaddr,
1608 ia->ia_dstaddr.sin6_len);
1609 } else {
1610 bzero(&ifra.ifra_dstaddr,
1611 sizeof(ifra.ifra_dstaddr));
1612 }
1613 bcopy(&ia->ia_prefixmask, &ifra.ifra_dstaddr,
1614 ia->ia_prefixmask.sin6_len);
1615
1616 ifra.ifra_flags = ia->ia6_flags;
1617 return in6_control(so, SIOCDIFADDR_IN6, (caddr_t)&ifra,
1618 ifp, p);
1619 }
1620 }
1621 }
1622
1623 return EOPNOTSUPP; /* just for safety */
1624 }
1625
1626 /*
1627 * Initialize an interface's intetnet6 address
1628 * and routing table entry.
1629 */
1630 static int
1631 in6_ifinit(ifp, ia, sin6, newhost)
1632 struct ifnet *ifp;
1633 struct in6_ifaddr *ia;
1634 struct sockaddr_in6 *sin6;
1635 int newhost;
1636 {
1637 int error = 0, plen, ifacount = 0;
1638 int s = splnet();
1639 struct ifaddr *ifa;
1640
1641 /*
1642 * Give the interface a chance to initialize
1643 * if this is its first address,
1644 * and to validate the address if necessary.
1645 */
1646 for (ifa = ifp->if_addrlist.tqh_first; ifa;
1647 ifa = ifa->ifa_list.tqe_next)
1648 {
1649 if (ifa->ifa_addr == NULL)
1650 continue; /* just for safety */
1651 if (ifa->ifa_addr->sa_family != AF_INET6)
1652 continue;
1653 ifacount++;
1654 }
1655
1656 ia->ia_addr = *sin6;
1657
1658 if (ifacount <= 1 && ifp->if_ioctl &&
1659 (error = (*ifp->if_ioctl)(ifp, SIOCSIFADDR, (caddr_t)ia))) {
1660 splx(s);
1661 return(error);
1662 }
1663 splx(s);
1664
1665 ia->ia_ifa.ifa_metric = ifp->if_metric;
1666
1667 /* we could do in(6)_socktrim here, but just omit it at this moment. */
1668
1669 /*
1670 * Special case:
1671 * If the destination address is specified for a point-to-point
1672 * interface, install a route to the destination as an interface
1673 * direct route.
1674 */
1675 plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
1676 if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
1677 if ((error = rtinit(&(ia->ia_ifa), (int)RTM_ADD,
1678 RTF_UP | RTF_HOST)) != 0)
1679 return(error);
1680 ia->ia_flags |= IFA_ROUTE;
1681 }
1682
1683 /* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
1684 if (newhost) {
1685 /* set the rtrequest function to create llinfo */
1686 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
1687 in6_ifaddloop(&(ia->ia_ifa));
1688 }
1689
1690 if (ifp->if_flags & IFF_MULTICAST)
1691 in6_restoremkludge(ia, ifp);
1692
1693 return(error);
1694 }
1695
1696 /*
1697 * Multicast address kludge:
1698 * If there were any multicast addresses attached to this interface address,
1699 * either move them to another address on this interface, or save them until
1700 * such time as this interface is reconfigured for IPv6.
1701 */
1702 void
1703 in6_savemkludge(oia)
1704 struct in6_ifaddr *oia;
1705 {
1706 struct in6_ifaddr *ia;
1707 struct in6_multi *in6m, *next;
1708
1709 IFP_TO_IA6(oia->ia_ifp, ia);
1710 if (ia) { /* there is another address */
1711 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1712 next = in6m->in6m_entry.le_next;
1713 IFAFREE(&in6m->in6m_ia->ia_ifa);
1714 IFAREF(&ia->ia_ifa);
1715 in6m->in6m_ia = ia;
1716 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1717 }
1718 } else { /* last address on this if deleted, save */
1719 struct multi6_kludge *mk;
1720
1721 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1722 if (mk->mk_ifp == oia->ia_ifp)
1723 break;
1724 }
1725 if (mk == NULL) /* this should not happen! */
1726 panic("in6_savemkludge: no kludge space");
1727
1728 for (in6m = oia->ia6_multiaddrs.lh_first; in6m; in6m = next){
1729 next = in6m->in6m_entry.le_next;
1730 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1731 in6m->in6m_ia = NULL;
1732 LIST_INSERT_HEAD(&mk->mk_head, in6m, in6m_entry);
1733 }
1734 }
1735 }
1736
1737 /*
1738 * Continuation of multicast address hack:
1739 * If there was a multicast group list previously saved for this interface,
1740 * then we re-attach it to the first address configured on the i/f.
1741 */
1742 void
1743 in6_restoremkludge(ia, ifp)
1744 struct in6_ifaddr *ia;
1745 struct ifnet *ifp;
1746 {
1747 struct multi6_kludge *mk;
1748
1749 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1750 if (mk->mk_ifp == ifp) {
1751 struct in6_multi *in6m, *next;
1752
1753 for (in6m = mk->mk_head.lh_first; in6m; in6m = next) {
1754 next = in6m->in6m_entry.le_next;
1755 in6m->in6m_ia = ia;
1756 IFAREF(&ia->ia_ifa);
1757 LIST_INSERT_HEAD(&ia->ia6_multiaddrs,
1758 in6m, in6m_entry);
1759 }
1760 LIST_INIT(&mk->mk_head);
1761 break;
1762 }
1763 }
1764 }
1765
1766 /*
1767 * Allocate space for the kludge at interface initialization time.
1768 * Formerly, we dynamically allocated the space in in6_savemkludge() with
1769 * malloc(M_WAITOK). However, it was wrong since the function could be called
1770 * under an interrupt context (software timer on address lifetime expiration).
1771 * Also, we cannot just give up allocating the strucutre, since the group
1772 * membership structure is very complex and we need to keep it anyway.
1773 * Of course, this function MUST NOT be called under an interrupt context.
1774 * Specifically, it is expected to be called only from in6_ifattach(), though
1775 * it is a global function.
1776 */
1777 void
1778 in6_createmkludge(ifp)
1779 struct ifnet *ifp;
1780 {
1781 struct multi6_kludge *mk;
1782
1783 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1784 /* If we've already had one, do not allocate. */
1785 if (mk->mk_ifp == ifp)
1786 return;
1787 }
1788
1789 mk = malloc(sizeof(*mk), M_IPMADDR, M_WAITOK);
1790
1791 bzero(mk, sizeof(*mk));
1792 LIST_INIT(&mk->mk_head);
1793 mk->mk_ifp = ifp;
1794 LIST_INSERT_HEAD(&in6_mk, mk, mk_entry);
1795 }
1796
1797 void
1798 in6_purgemkludge(ifp)
1799 struct ifnet *ifp;
1800 {
1801 struct multi6_kludge *mk;
1802 struct in6_multi *in6m;
1803
1804 for (mk = in6_mk.lh_first; mk; mk = mk->mk_entry.le_next) {
1805 if (mk->mk_ifp != ifp)
1806 continue;
1807
1808 /* leave from all multicast groups joined */
1809 while ((in6m = LIST_FIRST(&mk->mk_head)) != NULL)
1810 in6_delmulti(in6m);
1811 LIST_REMOVE(mk, mk_entry);
1812 free(mk, M_IPMADDR);
1813 break;
1814 }
1815 }
1816
1817 /*
1818 * Add an address to the list of IP6 multicast addresses for a
1819 * given interface.
1820 */
1821 struct in6_multi *
1822 in6_addmulti(maddr6, ifp, errorp)
1823 struct in6_addr *maddr6;
1824 struct ifnet *ifp;
1825 int *errorp;
1826 {
1827 struct in6_ifaddr *ia;
1828 struct in6_ifreq ifr;
1829 struct in6_multi *in6m;
1830 int s = splsoftnet();
1831
1832 *errorp = 0;
1833 /*
1834 * See if address already in list.
1835 */
1836 IN6_LOOKUP_MULTI(*maddr6, ifp, in6m);
1837 if (in6m != NULL) {
1838 /*
1839 * Found it; just increment the refrence count.
1840 */
1841 in6m->in6m_refcount++;
1842 } else {
1843 /*
1844 * New address; allocate a new multicast record
1845 * and link it into the interface's multicast list.
1846 */
1847 in6m = (struct in6_multi *)
1848 malloc(sizeof(*in6m), M_IPMADDR, M_NOWAIT);
1849 if (in6m == NULL) {
1850 splx(s);
1851 *errorp = ENOBUFS;
1852 return(NULL);
1853 }
1854 in6m->in6m_addr = *maddr6;
1855 in6m->in6m_ifp = ifp;
1856 in6m->in6m_refcount = 1;
1857 IFP_TO_IA6(ifp, ia);
1858 if (ia == NULL) {
1859 free(in6m, M_IPMADDR);
1860 splx(s);
1861 *errorp = EADDRNOTAVAIL; /* appropriate? */
1862 return(NULL);
1863 }
1864 in6m->in6m_ia = ia;
1865 IFAREF(&ia->ia_ifa); /* gain a reference */
1866 LIST_INSERT_HEAD(&ia->ia6_multiaddrs, in6m, in6m_entry);
1867
1868 /*
1869 * Ask the network driver to update its multicast reception
1870 * filter appropriately for the new address.
1871 */
1872 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1873 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1874 ifr.ifr_addr.sin6_family = AF_INET6;
1875 ifr.ifr_addr.sin6_addr = *maddr6;
1876 if (ifp->if_ioctl == NULL)
1877 *errorp = ENXIO; /* XXX: appropriate? */
1878 else
1879 *errorp = (*ifp->if_ioctl)(ifp, SIOCADDMULTI,
1880 (caddr_t)&ifr);
1881 if (*errorp) {
1882 LIST_REMOVE(in6m, in6m_entry);
1883 free(in6m, M_IPMADDR);
1884 IFAFREE(&ia->ia_ifa);
1885 splx(s);
1886 return(NULL);
1887 }
1888 /*
1889 * Let MLD6 know that we have joined a new IP6 multicast
1890 * group.
1891 */
1892 mld6_start_listening(in6m);
1893 }
1894 splx(s);
1895 return(in6m);
1896 }
1897
1898 /*
1899 * Delete a multicast address record.
1900 */
1901 void
1902 in6_delmulti(in6m)
1903 struct in6_multi *in6m;
1904 {
1905 struct in6_ifreq ifr;
1906 int s = splsoftnet();
1907
1908 if (--in6m->in6m_refcount == 0) {
1909 /*
1910 * No remaining claims to this record; let MLD6 know
1911 * that we are leaving the multicast group.
1912 */
1913 mld6_stop_listening(in6m);
1914
1915 /*
1916 * Unlink from list.
1917 */
1918 LIST_REMOVE(in6m, in6m_entry);
1919 if (in6m->in6m_ia) {
1920 IFAFREE(&in6m->in6m_ia->ia_ifa); /* release reference */
1921 }
1922
1923 /*
1924 * Notify the network driver to update its multicast
1925 * reception filter.
1926 */
1927 bzero(&ifr.ifr_addr, sizeof(struct sockaddr_in6));
1928 ifr.ifr_addr.sin6_len = sizeof(struct sockaddr_in6);
1929 ifr.ifr_addr.sin6_family = AF_INET6;
1930 ifr.ifr_addr.sin6_addr = in6m->in6m_addr;
1931 (*in6m->in6m_ifp->if_ioctl)(in6m->in6m_ifp,
1932 SIOCDELMULTI, (caddr_t)&ifr);
1933 free(in6m, M_IPMADDR);
1934 }
1935 splx(s);
1936 }
1937
1938 struct in6_multi_mship *
1939 in6_joingroup(ifp, addr, errorp)
1940 struct ifnet *ifp;
1941 struct in6_addr *addr;
1942 int *errorp;
1943 {
1944 struct in6_multi_mship *imm;
1945
1946 imm = malloc(sizeof(*imm), M_IPMADDR, M_NOWAIT);
1947 if (!imm) {
1948 *errorp = ENOBUFS;
1949 return NULL;
1950 }
1951 imm->i6mm_maddr = in6_addmulti(addr, ifp, errorp);
1952 if (!imm->i6mm_maddr) {
1953 /* *errorp is alrady set */
1954 free(imm, M_IPMADDR);
1955 return NULL;
1956 }
1957 return imm;
1958 }
1959
1960 int
1961 in6_leavegroup(imm)
1962 struct in6_multi_mship *imm;
1963 {
1964
1965 if (imm->i6mm_maddr)
1966 in6_delmulti(imm->i6mm_maddr);
1967 free(imm, M_IPMADDR);
1968 return 0;
1969 }
1970
1971 /*
1972 * Find an IPv6 interface link-local address specific to an interface.
1973 */
1974 struct in6_ifaddr *
1975 in6ifa_ifpforlinklocal(ifp, ignoreflags)
1976 struct ifnet *ifp;
1977 int ignoreflags;
1978 {
1979 struct ifaddr *ifa;
1980
1981 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
1982 {
1983 if (ifa->ifa_addr == NULL)
1984 continue; /* just for safety */
1985 if (ifa->ifa_addr->sa_family != AF_INET6)
1986 continue;
1987 if (IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa))) {
1988 if ((((struct in6_ifaddr *)ifa)->ia6_flags &
1989 ignoreflags) != 0)
1990 continue;
1991 break;
1992 }
1993 }
1994
1995 return((struct in6_ifaddr *)ifa);
1996 }
1997
1998
1999 /*
2000 * find the internet address corresponding to a given interface and address.
2001 */
2002 struct in6_ifaddr *
2003 in6ifa_ifpwithaddr(ifp, addr)
2004 struct ifnet *ifp;
2005 struct in6_addr *addr;
2006 {
2007 struct ifaddr *ifa;
2008
2009 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2010 {
2011 if (ifa->ifa_addr == NULL)
2012 continue; /* just for safety */
2013 if (ifa->ifa_addr->sa_family != AF_INET6)
2014 continue;
2015 if (IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
2016 break;
2017 }
2018
2019 return((struct in6_ifaddr *)ifa);
2020 }
2021
2022 /*
2023 * Convert IP6 address to printable (loggable) representation.
2024 */
2025 static char digits[] = "0123456789abcdef";
2026 static int ip6round = 0;
2027 char *
2028 ip6_sprintf(addr)
2029 const struct in6_addr *addr;
2030 {
2031 static char ip6buf[8][48];
2032 int i;
2033 char *cp;
2034 const u_short *a = (const u_short *)addr;
2035 const u_char *d;
2036 int dcolon = 0;
2037
2038 ip6round = (ip6round + 1) & 7;
2039 cp = ip6buf[ip6round];
2040
2041 for (i = 0; i < 8; i++) {
2042 if (dcolon == 1) {
2043 if (*a == 0) {
2044 if (i == 7)
2045 *cp++ = ':';
2046 a++;
2047 continue;
2048 } else
2049 dcolon = 2;
2050 }
2051 if (*a == 0) {
2052 if (dcolon == 0 && *(a + 1) == 0) {
2053 if (i == 0)
2054 *cp++ = ':';
2055 *cp++ = ':';
2056 dcolon = 1;
2057 } else {
2058 *cp++ = '0';
2059 *cp++ = ':';
2060 }
2061 a++;
2062 continue;
2063 }
2064 d = (const u_char *)a;
2065 *cp++ = digits[*d >> 4];
2066 *cp++ = digits[*d++ & 0xf];
2067 *cp++ = digits[*d >> 4];
2068 *cp++ = digits[*d & 0xf];
2069 *cp++ = ':';
2070 a++;
2071 }
2072 *--cp = 0;
2073 return(ip6buf[ip6round]);
2074 }
2075
2076 /*
2077 * Get a scope of the address. Node-local, link-local, site-local or global.
2078 */
2079 int
2080 in6_addrscope (addr)
2081 struct in6_addr *addr;
2082 {
2083 int scope;
2084
2085 if (addr->s6_addr8[0] == 0xfe) {
2086 scope = addr->s6_addr8[1] & 0xc0;
2087
2088 switch (scope) {
2089 case 0x80:
2090 return IPV6_ADDR_SCOPE_LINKLOCAL;
2091 break;
2092 case 0xc0:
2093 return IPV6_ADDR_SCOPE_SITELOCAL;
2094 break;
2095 default:
2096 return IPV6_ADDR_SCOPE_GLOBAL; /* just in case */
2097 break;
2098 }
2099 }
2100
2101
2102 if (addr->s6_addr8[0] == 0xff) {
2103 scope = addr->s6_addr8[1] & 0x0f;
2104
2105 /*
2106 * due to other scope such as reserved,
2107 * return scope doesn't work.
2108 */
2109 switch (scope) {
2110 case IPV6_ADDR_SCOPE_NODELOCAL:
2111 return IPV6_ADDR_SCOPE_NODELOCAL;
2112 break;
2113 case IPV6_ADDR_SCOPE_LINKLOCAL:
2114 return IPV6_ADDR_SCOPE_LINKLOCAL;
2115 break;
2116 case IPV6_ADDR_SCOPE_SITELOCAL:
2117 return IPV6_ADDR_SCOPE_SITELOCAL;
2118 break;
2119 default:
2120 return IPV6_ADDR_SCOPE_GLOBAL;
2121 break;
2122 }
2123 }
2124
2125 if (bcmp(&in6addr_loopback, addr, sizeof(*addr) - 1) == 0) {
2126 if (addr->s6_addr8[15] == 1) /* loopback */
2127 return IPV6_ADDR_SCOPE_NODELOCAL;
2128 if (addr->s6_addr8[15] == 0) /* unspecified */
2129 return IPV6_ADDR_SCOPE_LINKLOCAL;
2130 }
2131
2132 return IPV6_ADDR_SCOPE_GLOBAL;
2133 }
2134
2135 int
2136 in6_addr2scopeid(ifp, addr)
2137 struct ifnet *ifp; /* must not be NULL */
2138 struct in6_addr *addr; /* must not be NULL */
2139 {
2140 int scope = in6_addrscope(addr);
2141
2142 switch (scope) {
2143 case IPV6_ADDR_SCOPE_NODELOCAL:
2144 return(-1); /* XXX: is this an appropriate value? */
2145
2146 case IPV6_ADDR_SCOPE_LINKLOCAL:
2147 /* XXX: we do not distinguish between a link and an I/F. */
2148 return(ifp->if_index);
2149
2150 case IPV6_ADDR_SCOPE_SITELOCAL:
2151 return(0); /* XXX: invalid. */
2152
2153 default:
2154 return(0); /* XXX: treat as global. */
2155 }
2156 }
2157
2158 int
2159 in6_is_addr_deprecated(sa6)
2160 struct sockaddr_in6 *sa6;
2161 {
2162 struct in6_ifaddr *ia;
2163
2164 for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
2165 if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
2166 &sa6->sin6_addr) &&
2167 #ifdef SCOPEDROUTING
2168 ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
2169 #endif
2170 (ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2171 return(1); /* true */
2172
2173 /* XXX: do we still have to go thru the rest of the list? */
2174 }
2175
2176 return(0); /* false */
2177 }
2178
2179 /*
2180 * return length of part which dst and src are equal
2181 * hard coding...
2182 */
2183 int
2184 in6_matchlen(src, dst)
2185 struct in6_addr *src, *dst;
2186 {
2187 int match = 0;
2188 u_char *s = (u_char *)src, *d = (u_char *)dst;
2189 u_char *lim = s + 16, r;
2190
2191 while (s < lim)
2192 if ((r = (*d++ ^ *s++)) != 0) {
2193 while (r < 128) {
2194 match++;
2195 r <<= 1;
2196 }
2197 break;
2198 } else
2199 match += 8;
2200 return match;
2201 }
2202
2203 /* XXX: to be scope conscious */
2204 int
2205 in6_are_prefix_equal(p1, p2, len)
2206 struct in6_addr *p1, *p2;
2207 int len;
2208 {
2209 int bytelen, bitlen;
2210
2211 /* sanity check */
2212 if (0 > len || len > 128) {
2213 log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
2214 len);
2215 return(0);
2216 }
2217
2218 bytelen = len / 8;
2219 bitlen = len % 8;
2220
2221 if (bcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
2222 return(0);
2223 if (p1->s6_addr[bytelen] >> (8 - bitlen) !=
2224 p2->s6_addr[bytelen] >> (8 - bitlen))
2225 return(0);
2226
2227 return(1);
2228 }
2229
2230 void
2231 in6_prefixlen2mask(maskp, len)
2232 struct in6_addr *maskp;
2233 int len;
2234 {
2235 u_char maskarray[8] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
2236 int bytelen, bitlen, i;
2237
2238 /* sanity check */
2239 if (0 > len || len > 128) {
2240 log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
2241 len);
2242 return;
2243 }
2244
2245 bzero(maskp, sizeof(*maskp));
2246 bytelen = len / 8;
2247 bitlen = len % 8;
2248 for (i = 0; i < bytelen; i++)
2249 maskp->s6_addr[i] = 0xff;
2250 if (bitlen)
2251 maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
2252 }
2253
2254 /*
2255 * return the best address out of the same scope
2256 */
2257 struct in6_ifaddr *
2258 in6_ifawithscope(oifp, dst)
2259 struct ifnet *oifp;
2260 struct in6_addr *dst;
2261 {
2262 int dst_scope = in6_addrscope(dst), src_scope, best_scope = 0;
2263 int blen = -1;
2264 struct ifaddr *ifa;
2265 struct ifnet *ifp;
2266 struct in6_ifaddr *ifa_best = NULL;
2267
2268 if (oifp == NULL) {
2269 printf("in6_ifawithscope: output interface is not specified\n");
2270 return(NULL);
2271 }
2272
2273 /*
2274 * We search for all addresses on all interfaces from the beginning.
2275 * Comparing an interface with the outgoing interface will be done
2276 * only at the final stage of tiebreaking.
2277 */
2278 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2279 {
2280 /*
2281 * We can never take an address that breaks the scope zone
2282 * of the destination.
2283 */
2284 if (in6_addr2scopeid(ifp, dst) != in6_addr2scopeid(oifp, dst))
2285 continue;
2286
2287 for (ifa = ifp->if_addrlist.tqh_first; ifa;
2288 ifa = ifa->ifa_list.tqe_next)
2289 {
2290 int tlen = -1, dscopecmp, bscopecmp, matchcmp;
2291
2292 if (ifa->ifa_addr->sa_family != AF_INET6)
2293 continue;
2294
2295 src_scope = in6_addrscope(IFA_IN6(ifa));
2296
2297 #ifdef ADDRSELECT_DEBUG /* should be removed after stabilization */
2298 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2299 printf("in6_ifawithscope: dst=%s bestaddr=%s, "
2300 "newaddr=%s, scope=%x, dcmp=%d, bcmp=%d, "
2301 "matchlen=%d, flgs=%x\n",
2302 ip6_sprintf(dst),
2303 ifa_best ? ip6_sprintf(&ifa_best->ia_addr.sin6_addr) : "none",
2304 ip6_sprintf(IFA_IN6(ifa)), src_scope,
2305 dscopecmp,
2306 ifa_best ? IN6_ARE_SCOPE_CMP(src_scope, best_scope) : -1,
2307 in6_matchlen(IFA_IN6(ifa), dst),
2308 ((struct in6_ifaddr *)ifa)->ia6_flags);
2309 #endif
2310
2311 /*
2312 * Don't use an address before completing DAD
2313 * nor a duplicated address.
2314 */
2315 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2316 IN6_IFF_NOTREADY)
2317 continue;
2318
2319 /* XXX: is there any case to allow anycasts? */
2320 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2321 IN6_IFF_ANYCAST)
2322 continue;
2323
2324 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2325 IN6_IFF_DETACHED)
2326 continue;
2327
2328 /*
2329 * If this is the first address we find,
2330 * keep it anyway.
2331 */
2332 if (ifa_best == NULL)
2333 goto replace;
2334
2335 /*
2336 * ifa_best is never NULL beyond this line except
2337 * within the block labeled "replace".
2338 */
2339
2340 /*
2341 * If ifa_best has a smaller scope than dst and
2342 * the current address has a larger one than
2343 * (or equal to) dst, always replace ifa_best.
2344 * Also, if the current address has a smaller scope
2345 * than dst, ignore it unless ifa_best also has a
2346 * smaller scope.
2347 */
2348 if (IN6_ARE_SCOPE_CMP(best_scope, dst_scope) < 0 &&
2349 IN6_ARE_SCOPE_CMP(src_scope, dst_scope) >= 0)
2350 goto replace;
2351 if (IN6_ARE_SCOPE_CMP(src_scope, dst_scope) < 0 &&
2352 IN6_ARE_SCOPE_CMP(best_scope, dst_scope) >= 0)
2353 continue;
2354
2355 /*
2356 * A deprecated address SHOULD NOT be used in new
2357 * communications if an alternate (non-deprecated)
2358 * address is available and has sufficient scope.
2359 * RFC 2462, Section 5.5.4.
2360 */
2361 if (((struct in6_ifaddr *)ifa)->ia6_flags &
2362 IN6_IFF_DEPRECATED) {
2363 /*
2364 * Ignore any deprecated addresses if
2365 * specified by configuration.
2366 */
2367 if (!ip6_use_deprecated)
2368 continue;
2369
2370 /*
2371 * If we have already found a non-deprecated
2372 * candidate, just ignore deprecated addresses.
2373 */
2374 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED)
2375 == 0)
2376 continue;
2377 }
2378
2379 /*
2380 * A non-deprecated address is always preferred
2381 * to a deprecated one regardless of scopes and
2382 * address matching.
2383 */
2384 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) &&
2385 (((struct in6_ifaddr *)ifa)->ia6_flags &
2386 IN6_IFF_DEPRECATED) == 0)
2387 goto replace;
2388
2389 /*
2390 * At this point, we have two cases:
2391 * 1. we are looking at a non-deprecated address,
2392 * and ifa_best is also non-deprecated.
2393 * 2. we are looking at a deprecated address,
2394 * and ifa_best is also deprecated.
2395 * Also, we do not have to consider a case where
2396 * the scope of if_best is larger(smaller) than dst and
2397 * the scope of the current address is smaller(larger)
2398 * than dst. Such a case has already been covered.
2399 * Tiebreaking is done according to the following
2400 * items:
2401 * - the scope comparison between the address and
2402 * dst (dscopecmp)
2403 * - the scope comparison between the address and
2404 * ifa_best (bscopecmp)
2405 * - if the address match dst longer than ifa_best
2406 * (matchcmp)
2407 * - if the address is on the outgoing I/F (outI/F)
2408 *
2409 * Roughly speaking, the selection policy is
2410 * - the most important item is scope. The same scope
2411 * is best. Then search for a larger scope.
2412 * Smaller scopes are the last resort.
2413 * - A deprecated address is chosen only when we have
2414 * no address that has an enough scope, but is
2415 * prefered to any addresses of smaller scopes.
2416 * - Longest address match against dst is considered
2417 * only for addresses that has the same scope of dst.
2418 * - If there is no other reasons to choose one,
2419 * addresses on the outgoing I/F are preferred.
2420 *
2421 * The precise decision table is as follows:
2422 * dscopecmp bscopecmp matchcmp outI/F | replace?
2423 * !equal equal N/A Yes | Yes (1)
2424 * !equal equal N/A No | No (2)
2425 * larger larger N/A N/A | No (3)
2426 * larger smaller N/A N/A | Yes (4)
2427 * smaller larger N/A N/A | Yes (5)
2428 * smaller smaller N/A N/A | No (6)
2429 * equal smaller N/A N/A | Yes (7)
2430 * equal larger (already done)
2431 * equal equal larger N/A | Yes (8)
2432 * equal equal smaller N/A | No (9)
2433 * equal equal equal Yes | Yes (a)
2434 * eaual eqaul equal No | No (b)
2435 */
2436 dscopecmp = IN6_ARE_SCOPE_CMP(src_scope, dst_scope);
2437 bscopecmp = IN6_ARE_SCOPE_CMP(src_scope, best_scope);
2438
2439 if (dscopecmp && bscopecmp == 0) {
2440 if (oifp == ifp) /* (1) */
2441 goto replace;
2442 continue; /* (2) */
2443 }
2444 if (dscopecmp > 0) {
2445 if (bscopecmp > 0) /* (3) */
2446 continue;
2447 goto replace; /* (4) */
2448 }
2449 if (dscopecmp < 0) {
2450 if (bscopecmp > 0) /* (5) */
2451 goto replace;
2452 continue; /* (6) */
2453 }
2454
2455 /* now dscopecmp must be 0 */
2456 if (bscopecmp < 0)
2457 goto replace; /* (7) */
2458
2459 /*
2460 * At last both dscopecmp and bscopecmp must be 0.
2461 * We need address matching against dst for
2462 * tiebreaking.
2463 */
2464 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2465 matchcmp = tlen - blen;
2466 if (matchcmp > 0) /* (8) */
2467 goto replace;
2468 if (matchcmp < 0) /* (9) */
2469 continue;
2470 if (oifp == ifp) /* (a) */
2471 goto replace;
2472 continue; /* (b) */
2473
2474 replace:
2475 ifa_best = (struct in6_ifaddr *)ifa;
2476 blen = tlen >= 0 ? tlen :
2477 in6_matchlen(IFA_IN6(ifa), dst);
2478 best_scope = in6_addrscope(&ifa_best->ia_addr.sin6_addr);
2479 }
2480 }
2481
2482 /* count statistics for future improvements */
2483 if (ifa_best == NULL)
2484 ip6stat.ip6s_sources_none++;
2485 else {
2486 if (oifp == ifa_best->ia_ifp)
2487 ip6stat.ip6s_sources_sameif[best_scope]++;
2488 else
2489 ip6stat.ip6s_sources_otherif[best_scope]++;
2490
2491 if (best_scope == dst_scope)
2492 ip6stat.ip6s_sources_samescope[best_scope]++;
2493 else
2494 ip6stat.ip6s_sources_otherscope[best_scope]++;
2495
2496 if ((ifa_best->ia6_flags & IN6_IFF_DEPRECATED) != 0)
2497 ip6stat.ip6s_sources_deprecated[best_scope]++;
2498 }
2499
2500 return(ifa_best);
2501 }
2502
2503 /*
2504 * return the best address out of the same scope. if no address was
2505 * found, return the first valid address from designated IF.
2506 */
2507 struct in6_ifaddr *
2508 in6_ifawithifp(ifp, dst)
2509 struct ifnet *ifp;
2510 struct in6_addr *dst;
2511 {
2512 int dst_scope = in6_addrscope(dst), blen = -1, tlen;
2513 struct ifaddr *ifa;
2514 struct in6_ifaddr *besta = 0;
2515 struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
2516
2517 dep[0] = dep[1] = NULL;
2518
2519 /*
2520 * We first look for addresses in the same scope.
2521 * If there is one, return it.
2522 * If two or more, return one which matches the dst longest.
2523 * If none, return one of global addresses assigned other ifs.
2524 */
2525 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2526 {
2527 if (ifa->ifa_addr->sa_family != AF_INET6)
2528 continue;
2529 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2530 continue; /* XXX: is there any case to allow anycast? */
2531 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2532 continue; /* don't use this interface */
2533 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2534 continue;
2535 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2536 if (ip6_use_deprecated)
2537 dep[0] = (struct in6_ifaddr *)ifa;
2538 continue;
2539 }
2540
2541 if (dst_scope == in6_addrscope(IFA_IN6(ifa))) {
2542 /*
2543 * call in6_matchlen() as few as possible
2544 */
2545 if (besta) {
2546 if (blen == -1)
2547 blen = in6_matchlen(&besta->ia_addr.sin6_addr, dst);
2548 tlen = in6_matchlen(IFA_IN6(ifa), dst);
2549 if (tlen > blen) {
2550 blen = tlen;
2551 besta = (struct in6_ifaddr *)ifa;
2552 }
2553 } else
2554 besta = (struct in6_ifaddr *)ifa;
2555 }
2556 }
2557 if (besta)
2558 return(besta);
2559
2560 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2561 {
2562 if (ifa->ifa_addr->sa_family != AF_INET6)
2563 continue;
2564 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_ANYCAST)
2565 continue; /* XXX: is there any case to allow anycast? */
2566 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_NOTREADY)
2567 continue; /* don't use this interface */
2568 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DETACHED)
2569 continue;
2570 if (((struct in6_ifaddr *)ifa)->ia6_flags & IN6_IFF_DEPRECATED) {
2571 if (ip6_use_deprecated)
2572 dep[1] = (struct in6_ifaddr *)ifa;
2573 continue;
2574 }
2575
2576 return (struct in6_ifaddr *)ifa;
2577 }
2578
2579 /* use the last-resort values, that are, deprecated addresses */
2580 if (dep[0])
2581 return dep[0];
2582 if (dep[1])
2583 return dep[1];
2584
2585 return NULL;
2586 }
2587
2588 /*
2589 * perform DAD when interface becomes IFF_UP.
2590 */
2591 void
2592 in6_if_up(ifp)
2593 struct ifnet *ifp;
2594 {
2595 struct ifaddr *ifa;
2596 struct in6_ifaddr *ia;
2597 int dad_delay; /* delay ticks before DAD output */
2598
2599 /*
2600 * special cases, like 6to4, are handled in in6_ifattach
2601 */
2602 in6_ifattach(ifp, NULL);
2603
2604 dad_delay = 0;
2605 for (ifa = ifp->if_addrlist.tqh_first; ifa; ifa = ifa->ifa_list.tqe_next)
2606 {
2607 if (ifa->ifa_addr->sa_family != AF_INET6)
2608 continue;
2609 ia = (struct in6_ifaddr *)ifa;
2610 if (ia->ia6_flags & IN6_IFF_TENTATIVE)
2611 nd6_dad_start(ifa, &dad_delay);
2612 }
2613 }
2614
2615 int
2616 in6if_do_dad(ifp)
2617 struct ifnet *ifp;
2618 {
2619 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2620 return(0);
2621
2622 switch (ifp->if_type) {
2623 case IFT_FAITH:
2624 /*
2625 * These interfaces do not have the IFF_LOOPBACK flag,
2626 * but loop packets back. We do not have to do DAD on such
2627 * interfaces. We should even omit it, because loop-backed
2628 * NS would confuse the DAD procedure.
2629 */
2630 return(0);
2631 default:
2632 /*
2633 * Our DAD routine requires the interface up and running.
2634 * However, some interfaces can be up before the RUNNING
2635 * status. Additionaly, users may try to assign addresses
2636 * before the interface becomes up (or running).
2637 * We simply skip DAD in such a case as a work around.
2638 * XXX: we should rather mark "tentative" on such addresses,
2639 * and do DAD after the interface becomes ready.
2640 */
2641 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
2642 (IFF_UP|IFF_RUNNING))
2643 return(0);
2644
2645 return(1);
2646 }
2647 }
2648
2649 /*
2650 * Calculate max IPv6 MTU through all the interfaces and store it
2651 * to in6_maxmtu.
2652 */
2653 void
2654 in6_setmaxmtu()
2655 {
2656 unsigned long maxmtu = 0;
2657 struct ifnet *ifp;
2658
2659 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
2660 {
2661 /* this function can be called during ifnet initialization */
2662 if (!ifp->if_afdata[AF_INET6])
2663 continue;
2664 if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
2665 IN6_LINKMTU(ifp) > maxmtu)
2666 maxmtu = IN6_LINKMTU(ifp);
2667 }
2668 if (maxmtu) /* update only when maxmtu is positive */
2669 in6_maxmtu = maxmtu;
2670 }
2671
2672 void *
2673 in6_domifattach(ifp)
2674 struct ifnet *ifp;
2675 {
2676 struct in6_ifextra *ext;
2677
2678 ext = (struct in6_ifextra *)malloc(sizeof(*ext), M_IFADDR, M_WAITOK);
2679 bzero(ext, sizeof(*ext));
2680
2681 ext->in6_ifstat = (struct in6_ifstat *)malloc(sizeof(struct in6_ifstat),
2682 M_IFADDR, M_WAITOK);
2683 bzero(ext->in6_ifstat, sizeof(*ext->in6_ifstat));
2684
2685 ext->icmp6_ifstat =
2686 (struct icmp6_ifstat *)malloc(sizeof(struct icmp6_ifstat),
2687 M_IFADDR, M_WAITOK);
2688 bzero(ext->icmp6_ifstat, sizeof(*ext->icmp6_ifstat));
2689
2690 ext->nd_ifinfo = nd6_ifattach(ifp);
2691 return ext;
2692 }
2693
2694 void
2695 in6_domifdetach(ifp, aux)
2696 struct ifnet *ifp;
2697 void *aux;
2698 {
2699 struct in6_ifextra *ext = (struct in6_ifextra *)aux;
2700
2701 nd6_ifdetach(ext->nd_ifinfo);
2702 free(ext->in6_ifstat, M_IFADDR);
2703 free(ext->icmp6_ifstat, M_IFADDR);
2704 free(ext, M_IFADDR);
2705 }
2706